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Abstract 

Valentine’s influential norm-based multidimensional face-space model (nMDFS) predicts that 

perceived distinctiveness increases with distance to the norm. Occipito-temporal event-related 

potentials (ERPs) have been recently shown to respond selectively to variations in distance-to-norm 

(P200) or familiarity (N250, late negativity), respectively (Wuttke & Schweinberger, 2019). Despite 

growing evidence on interindividual differences in face perception skills at the behavioral level, little 

research has focused on their electrophysiological correlates. To reveal potential interindividual 

differences in face spaces, we contrasted high and low performers in face recognition in regards to 

distance-to-norm (P200) and familiarity (N250). We replicated both the P200 distance-to-norm and 

the N250 familiarity effect. Importantly, we observed: i) reduced responses in low compared to high 

performers of face recognition, especially in terms of smaller distance-to-norm effects in the P200, 

possibly indicating less ‘expanded’ face spaces in low compared to high performers; ii) increased 

N250 responses to familiar original faces in high performers, suggesting more robust face identity 

representations. In summary, these findings suggest the contribution of both early norm-based face 

coding and robust face representations to individual face recognition skills, and indicate that ERPs 

can offer a promising route to understand individual differences in face perception and their 

neurocognitive correlates.  
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Introduction 

How are Known Faces Mentally Encoded? Valentine’s Norm-based Multidimensional 

Face-space Model 

Similar to other animal species (Hotta et al., 2017; Kendrick et al., 1996; Sheehan & 

Tibbetts, 2011; Tibbetts et al., 2019), humans heavily rely on faces for identifying other 

individuals. Familiar faces can be recognized within a few hundred milliseconds, among thousands 

of known faces (Jenkins et al., 2018). Successful recognition occurs, on one hand, when different 

instances of a face are related to a certain identity, across changes in external conditions such as 

luminance, viewing angle, context, or changes in the face itself due to emotions, make-up, hairstyle 

or momentary health (Burton et al., 2011; Jenkins et al., 2011). On the other hand, faces belonging 

to different identities need to be correctly told apart. Both processes (telling faces together and 

apart) depend on the acquisition of an image-independent, stable mental representation of that 

particular face identity (Burton et al., 2011). After more than six decades of research, prominent 

theories of how face recognition works have been formulated (Bruce & Young, 1986; Haxby et 

al., 2000; Young et al., 2020), and researchers have identified reliable neural correlates of this 

process (Fox et al., 2009; Freiwald, 2020; Müller et al., 2018; Schweinberger & Neumann, 2016). 

 According to representational models of face perception, known faces are stored in a 

mental “face space” (Valentine, 1991; Valentine et al., 2016), based on their similarity. In norm-

based multidimensional face space (nMDFS), a face is encoded as a point in an n-dimensional 

space in which the individual dimensions are defined by orthogonal statistical variation and thus, 

typically, do not necessarily correspond to labels/features or descriptions such as eye distance or 

mouth size. Since each dimension is assumed to be normally distributed, and the mean values of 

all dimensions lie in the area of the center of the space, the center represents an average or norm 

face. The distance between each exemplar face and the norm (distance-to-norm, DTN) is defined 

by the vector from that norm to that exemplar face, with faces closer or more distant to the center 

being perceived as more typical or distinctive, respectively. For completeness, note that an 

exemplar-based version (eMDFS), in which a norm or central tendency is irrelevant was also 

discussed by Valentine (1991). Although eMDFS and nMDFS models can make similar predictions 

and the debate is not fully resolved (Ross et al., 2014), norm-based coding of facial identity has 

been advocated by studies using contrastive adaptation of face identity (Leopold et al., 2001, 2005; 
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Little, 2012; Rhodes & Jeffery, 2006) and computational neuroimaging (Carlin & Kriegeskorte, 

2017). Across versions of MDFS, the space will be densely clustered by similar faces, and sparsely 

populated by dissimilar ones. Recognition is more difficult in contrast to similar distractor faces 

which entail a higher risk of confusion, which explains why more distinctive faces (which by 

definition have fewer similar competitors) are recognized more easily (Dawel et al., 2019; Rhodes 

et al., 1997; Schulz et al., 2012a).  

The effects of typicality can be studied by morphing individual faces with an average face 

(which represents a morph combining a large number of real faces). By varying the contribution 

of the individual and the average face when morphing (e.g., 0.33 individual; 0.66 average), one 

can manipulate the relative DTN level of the morphed face (e.g., 0.33 DTN relative to the 

individual face, see Figure 1). The characteristics on which a face differs from the average can 

even be extrapolated beyond that face, thus resulting in caricatures of that face. In contrast, 

extrapolations in the opposite direction beyond the average face on the trajectory result in so-called 

“anti-faces”, which differ from the average face in opposite ways relative to the individual face. 

Studies with such manipulations have uncovered differences in behavioral responses and neural 

processing dependent on DTN (Ewing et al., 2013; Itz et al., 2014; Jeffery et al., 2013, 2018; 

Leopold et al., 2001, 2005; Limbach et al., 2022; Little, 2012; Rhodes et al., 2011, 2014; Ross et 

al., 2014; Schulz et al. 2012b; Wuttke & Schweinberger, 2019).  

Research on event-related potentials (ERPs) elicited by faces has identified a number of 

occipito-temporal components which can be considered as markers of face-processing stages 

(Schweinberger & Neumann, 2016). In particular, the N170 may represent a marker of face 

detection (Schweinberger et al., 2002; Itier & Taylor, 2002; 2004). The subsequent P200 

component appears to  be more specifically related to DTN variations: Larger P200 responses were 

reported for more vs. less typical faces (Halit et al., 2000), and the P200 also was smaller both for 

digital caricatures and naturally distinctive faces, compared to their more typical counterparts 

(Kaufmann & Schweinberger, 2012; Schulz et al., 2012a; Schulz et al., 2012b). In line with these 

findings, the P200 amplitude has been interpreted as a neural correlate of the perceived 

“prototypicality of a face's individual second-order spatial configuration” (Schweinberger & 

Neumann, 2016, p. 146) independent of its individual familiarity. Specific predictions from this 

hypothesis were confirmed in experiments that investigated adaptation to spatially distorted faces 

(Kloth et al., 2017) or DTN variations (Wuttke & Schweinberger, 2019). For time ranges following 
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the P200, the occipitotemporal N250 and a sustained later temporal negativity (LN) have both been 

identified as neural correlates of the activation of identity representations in response to familiar 

faces: The N250 has been related to familiar face recognition (Eimer et al., 2012; Kaufmann et al., 

2009; Tanaka et al., 2006; Zheng et al., 2012), and this component has also been related to the 

development of stable face representations via learning new faces from natural variability 

(Andrews et al., 2017). More recent research has additionally drawn attention to the fact that a 

sustained late negativity (LN), typically measured at latencies from approximately 400 ms, can be 

related to the activation of visual and identity-specific representations when recognizing familiar 

or learned faces (Popova & Wiese, 2022; Wiese et al., 2019a, 2019b, 2022a, 2022b; Wuttke & 

Schweinberger, 2019). However, it remains largely unclear whether the P200, N250 or LN ERP 

components might serve as neural markers that differ reliably between people with different levels 

of face recognition skills.  

 

Individual Differences in Face Recognition and Differences in the MDFS 

Individuals strongly vary in their ability to recognize faces. Face recognition skills are 

assumed to be normally distributed in the population, ranging from complete face blindness 

(Duchaine & Nakayama, 2006; Kennerknecht et al., 2006) to extraordinary face recognition skills 

(Ramon et al., 2019; Russell et al., 2009). There is now consensus that differences in face 

recognition skills are related at least to some extent to genetic factors, and are relatively resistant 

to change or training (DeGutis et al., 2014; Dolzycka et al., 2014). Assessment of face recognition 

skills often is conducted with a whole battery of tests targeting different sub-processes (e.g., 

simultaneous identity matching, recognition memory), with only a moderate degree of consistency 

across different tests (Fysh et al., 2020; Noyes et al., 2018).  

Identifying factors determining why individuals perform consistently well or poorly in 

these tests has been challenging. Some studies suggest that differences in low-level visual 

processes could impact on face recognition skills. Candidates include altered sensitivity to spatial 

frequencies (Nador et al., 2021) or frequency-dependent contrast sensitivity in low-performing 

face recognizers (Dougherty et al., 2009; Fisher et al., 2016; Newcombe, 1989) and old individuals 

(Boutet et al., 2015; Norton et al., 2009; Owsley & Sloane, 1987), or different use of texture and 

shape information (Itz et al., 2017; Kaufmann et al., 2013) which might characterize different 

performance profiles. Other studies report positive relationships between face recognition 
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performance and traits such as extraversion (Lander & Poyarekar, 2015; Li et al., 2010) as well as 

social network size (Wang et al., 2021), and negative relationships with autistic and social anxiety 

traits (Davis et al., 2011; Halliday et al., 2014; Klin et al., 1999; Weigelt et al., 2012). A small but 

significant gender difference, with women performing better than males, also tends to be 

consistently seen in studies with large samples, but this may be modulated by socio-cultural factors 

(Mishra et al., 2019; Sunday et al., 2019). Of note, both general intelligence (Gignac et al., 2016; 

Hildebrandt et al., 2011; Wilhelm et al., 2010) and recognition skills for objects (Dennett et al., 

2012b; Wilhelm et al., 2010; Wilmer et al., 2010, 2012), seem to be unrelated to face recognition. 

One under-investigated hypothesis is that differences in norm-based encoding in individual 

nMDFS could be associated with individual differences in face recognition performance. In 

Superportraits: Caricatures and Recognition, G. Rhodes hypothesized that “perhaps our memory 

representations are themselves caricatured” (Rhodes, 1997, p.115; but see also Kaufmann & 

Schweinberger, 2008), which could promote the idea that good performers in face recognition 

could encode faces at higher DTN, as compared to low performers. 

Studies investigating face identity and shape aftereffects provide some support for this idea. 

Engfors et al. (2017) measured shifts in perception in a recognition task where target identities 

were preceded by adaptors that were either on the same or a different identity trajectory through 

an average face (norm). Face recognition skills correlated positively with the size of identity 

aftereffects, a finding which is in line with earlier works (Dennett et al., 2012a; Rhodes et al., 

2014). Across the three studies, the correlation was specific to faces and did not generalize to other 

object categories, suggesting that skill-related differences in nMDFS affect the recognition of faces 

only. Despite these interesting findings, these studies leave some crucial gaps open. First, none of 

these utilized a battery of face recognition tests in order to quantify individual differences in face 

recognition reliably. Second, all of the presented correlations were calculated on the scores from 

the short version of the Cambridge Face Memory Test (Duchaine & Nakayama, 2006), which 

cannot well capture the whole spectrum of face recognition skills due to ceiling effects (Russell et 

al., 2009). Third, these studies offer no insight about how differences in the nMDFS relate to those 

in face recognition at the neural level.  
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The Present Study 

To understand the extent to which individual differences in the nMDFS and in face 

recognition skills are related at the behavioral and at the neural level, we adopted the experimental 

paradigm from Wuttke and Schweinberger (2019). Briefly, participants were instructed to rate the 

typicality of familiar and unfamiliar faces, while EEG was recorded. Face stimuli could be either 

famous persons (original familiar faces) or unknown people (original unfamiliar faces), and their 

respective anti-faces (same DTN, but deviating in opposite direction from the norm than original 

faces on the same trajectory, and therefore all appearing unfamiliar to participants, see Figure 1). 

DTN was manipulated for all faces by morphing faces with a norm face (average of all presented 

faces of the same gender). Differently from Wuttke and Schweinberger (2019), we were interested 

in testing individual differences in face recognition, and thus recruited a larger pre-screened sample 

containing two extreme performance groups of high and low performers in face recognition.  

Note that we expected to replicate the main pattern of findings by Wuttke and 

Schweinberger (2019) for the entire sample: In particular, we expected that the P200 amplitude 

would decrease with increasing DTN, across all face types. We also expected that for unfamiliar 

faces, the original and anti-faces would evoke similar ERPs at each level of DTN, and that the 

N250 and LN would be larger for (recognizable) familiar original faces, as compared to all the 

other faces presented.  

Our overall hypothesis was that carefully pre-selected high and low performers in face 

recognition would demonstrate systematic differences in these face-elicited ERP components. Our 

main theory-driven hypothesis is that, to the extent that high performers exhibit more efficient 

coding of faces in nMDFS, we would find larger differences in the P200 between DTN levels in 

high as compared to low performers. Such a finding would substantially extend and refine earlier 

findings regarding differences between high and low performers in famous face recognition 

(Kaufmann et al., 2013). Additionally, to the extent that high performers exhibit more efficient 

activation of stored representations of familiar faces, we predicted to find larger N250 (Herzmann 

et al., 2010; Kaltwasser et al., 2014; Sommer et al., 2021) and LN responses to familiar original 

faces (but not to the other face types) in high than low performers. We also explored group 

differences in other components (P100, N170, LPC), without any strong hypothesis on the 

direction and strength of such differences.  
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Methods 

General Procedure 

The study included two phases: a screening phase and a testing phase. Both these took 

place in the lab, on two distinct occasions, mostly days or weeks apart from each other. During the 

screening phase participants performed several tests assessing face learning, memory, matching 

and recognition, tests of visual acuity and contrast sensitivity, one object recognition test and a 

questionnaire assessing autistic traits. Based on the screening results, two performance subgroups 

were selected for the subsequent testing phase. In the testing phase participants performed the same 

experimental paradigm as in Wuttke and Schweinberger (2019), while undergoing EEG 

recordings. Neither the study procedures nor the analyses were pre-registered. 

Screening Phase 

Screening Phase: Participants 

During the screening phase 129 participants (46 males), with an average age of 23.9 years 

old (SD = 3.6) performed a battery of tests. Part of this group was then selected for the testing 

phase depending on their performance. All participants had normal or corrected to normal vision, 

provided their informed consent, and received either 20 euros or University credits for their 

participation. The Ethical Commission of the Faculty of Social and Behavioral Sciences at the 

Friedrich-Schiller-University of Jena approved the study (reference: FSV 15/15).  

Screening Phase: Assessment tools 

In total nine screening tests were administered. In order to select participants eligible for 

the testing phase, we used two main tools. These were: i) the long version of the Cambridge Face 

Memory Test (CFMT+ Duchaine & Nakayama, 2006; Russell et al., 2009) as an indicator of 

unfamiliar face learning skills, and ii) a short questionnaire investigating participants’ familiarity 

with the identities that were used in the main experiment. To qualify for the present study, 

participants’ CFMT+ score had to be above 77 or below 56 (respectively one standard deviation 

above and below the mean performance, see Duchaine & Nakayama, 2006 and Russell et al., 

2009); in addition, participants needed to be familiar with the famous identities used in the EEG 

experiment to achieve a valid dissociation between familiar and unfamiliar stimuli in both groups. 

Further tests in our battery were the following: the Glasgow Face Matching Test (Burton et al., 

2010), an adapted version of the Bielefelder Famous Faces Test (Dobel et al., 2008; Fast et al., 

2008), the Cambridge Car Memory Test (Dennett et al., 2012b), two subtests from the Freiburg 
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Vision Test (Bach, 1996, 2006), and finally an autism questionnaire (Baron-Cohen et al., 2001). 

These screening tests are described in detail in the Supplementary Materials. 

Screening Phase: Procedure 

The order of test administration was constant across participants. The duration of whole 

screening phase was approximately 2.5 hours. 

Testing Phase 

Testing Phase: Participants 

Sample size for our effect of interest was defined based on an a priori power analysis (see 

Supplementary Materials). Out of the 129 participants who took part in the screening phase, 43 

participants (all right-handed) qualified for further participation based on their results in the long 

form of the Cambridge Face Memory Test (CFMT+) (Duchaine & Nakayama, 2006; Russell et al., 

2009).  The selected sample consisted of 21 high performers and 22 low performers (See Table 1). 

Cutoff criteria were taken from accumulated former research of the department with comparable 

samples (N = 76, 𝑀𝐶𝐹𝑀𝑇+ = 66.46, 𝑆𝐷𝐶𝐹𝑀𝑇+ = 10.41) and were similar to earlier published results 

(see Figure S1, Supplementary Materials) (Bobak et al., 2016; Russell et al., 2009; Russell et al., 

2012). A participant was assigned as ‘high performer’ if a score of 77 or higher was reached, that 

is, at least one standard deviation above the mean in the CFMT+; conversely, low performers 

obtained a score of 56 or smaller, that is, at least one standard deviation below the mean of the 

CFMT+ (Duchaine & Nakayama, 2006; Russell et al., 2009). 

 

Table 1. Demographic data of high and low performers in the CFMT+. 

 N Males Mean age (SD) Mean CFMT+ score (SD) 

High CFMT+ 

performers 
21 7 24.71 (3.56) 84.65 (4.58) 

Low CFMT+ 

performers 
22 7 23.04 (3.40) 51.24 (4.27) 

Whole screened sample 129 14 23.86 (3.54) 66.99 (12.49) 
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Testing Phase: EEG experiment 

Both the stimulus materials and the experimental procedures used in the testing phase are 

the same as described in Wuttke & Schweinberger (2019). Therefore, we refer the interested reader 

to this work, and we only report a summary here.  

Experimental stimuli consisted in a total of 120 face images, of which 30 showed faces of 

10 famous people (e.g., very well-known celebrities), 30 showed faces of 10 unfamiliar people 

(e.g. relatively unknown celebrities), and the remaining 60 showed their respective anti-faces. A 

constant number of 20 faces was used both to create the average face (an average of 20 images 

each showing a different identity) and to create each original face (an average of 20 images each 

showing the same identity), to avoid morphing artifacts that are prevalent when high-resolution 

individual images are morphed with smoothed average faces. Anti-faces were generated by 

morphing an original face image with the respective average face (norm) along the same trajectory 

in the MDFS, but in the opposite direction. Each of these identities was displayed in three possible 

levels of typicality (or distance-to-norm, DTN), achieved by morphing with the norm: 0.33, 0.66, 

and 0.99 for faces, and −0.33, −0.66, and −0.99 for anti-faces. For a graphical illustration of the 

relationship between original and anti-faces, as well as the effects of DTN manipulations, see 

Figure 1 (see also Faerber et al., 2015, Fig.1; and Wuttke & Schweinberger, 2019, Fig. 1). 
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Figure 1. Overview of the stimuli and paradigm. The trajectory of one exemplary familiar (David Beckham) 

and one exemplary unfamiliar face (Richard Lounello) are depicted.  Each trajectory goes from the original 

face (right side) through the average face (center) to the respective anti-face. Three levels of distance to 

norm were used (0.33, 0.66, and 0.99).  

During the EEG experiment, participants rated the typicality of the presented faces using a 

6-point-Likert scale (1 = very atypical, 6 = very typical) on a standard computer keyboard. They 

were instructed to indicate how much the physical appearance of the face differed from all the 

faces familiar to them, and to perform these ratings fast and spontaneously. Stimuli were presented 

on a ViewSonic Graphics Series G90fB screen with 19'' and 60 Hz refresh rate. First, participants 

performed 16 practice trials using other face stimuli (subsequently discarded from the analyses). 

Then, they performed 480 trials (2 familiarity conditions [familiar, unfamiliar] x 2 polarities 

[original face, anti-face] x 3 DTN levels [0.33, 0.66, 0.99] x 4 repetitions x 10 identities), resulting 

in 40 trials per condition. Target face stimuli were presented for 1000 ms each, in a randomized 

order. A fixation cross preceded each stimulus (500 ms), and a blank screen followed (1500 ms). 

Participants were prompted to respond faster in case their response time was longer than 2000 ms. 

The experiment was divided into blocks of 40 trials, between which the participants could take 

self-paced breaks. In total, the EEG experiment lasted about one hour. 

Testing Phase: Statistical Analyses of Behavioral and EEG data 

We performed t-tests to assess significant differences between high- and low-performers in 

the screening tests. In case the Shapiro-Wilk test and the Levene-test detected a violation of the 
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assumptions of normality and homoscedasticity respectively, then we performed nonparametric 

Wilcoxon-Man-Whitney U tests instead. We ran these analyses in R (Version 4.0.4, R Core Team, 

2020). 

As for the testing phase data, we collected typicality ratings, reaction times (RTs) and 

electrophysiological signal during rating task performance. As ratings were our main interest, RTs 

were not analyzed further.  

Electrophysiological data were recorded using a 32-channel EEG with BioSemi Active II 

system (BioSemi, Amsterdam, The Netherlands). Active sintered Ag/Ag-Cl electrodes were 

attached with the help of an elastic cap in the 10-20 system. Signals were recorded with a 512 Hz 

sample rate from DC to 155 Hz from the following sites: Fz, Cz, Pz, Iz, FP1, FP2, F3, F4, C3, C4, 

P3, P4, O1, O2, F7, F8, T7, T8, P7, P8, F9, F10, FT9, FT10, TP9, TP10, P9, P10, PO9, PO10, I1, 

I2. A “zeroRef” was used and ground and reference electrodes were replaced at CMS/DRL circuit 

(see also www.biosemi.com/faq/cms&drl.htm).  

The multiple source eye correction algorithm implemented in BESA 5.1.8.10 (Berg & 

Scherg, 1994; MEGIS Software GmbH, Graefelfing, Germany) was used to correct the effects of 

ocular artefacts and blinks. To reduce eye movements, participants had to keep their fingertips on 

the response keys while performing the task. Trials with non-ocular artefacts were rejected 

manually and by using the BESA™ artefact rejection tool (amplitude threshold 75 μV, gradient 

criterion 50 μV). We segmented EEG recordings from −200 ms until 1000 ms relative to stimulus 

onset, with the first 200 ms as baseline. Trials were averaged separately for each channel and 

experimental condition. Averaged ERPs were low-pass filtered at 30 Hz (zero phase shift, 12 

dB/octave), and recalculated to average reference. After artefact rejection, a mean of 37.8 out of 

40 trials for familiar OF, 37.9/40 for “familiar” AF, 37.9/40 for unfamiliar OF, and 37.8/40 for 

unfamiliar AF contributed to an average ERP.  

ERPs were quantified using mean amplitudes for the occipito-temporal P200 components 

(190–260 ms) and the ventral-temporal N250 (260–400 ms) and late negativity (LN, 400–800 ms). 

Mean amplitudes were also taken for the N170 (140–180 ms) and the late positive component 

(LPC, 500–700 ms), all relative to a 200 ms pre-stimulus baseline. The time windows for N170, 

P200, N250, and LPC were selected in accordance with a previous publication using the same 

paradigm (Wuttke & Schweinberger, 2019), and were confirmed by visual inspection of the grand 

mean ERPs. To select electrodes of interest, we used amplitude maxima of a particular component 

http://www.biosemi.com/faq/cms&drl.htm
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in the present grand means and previous research as criteria (Bindemann et al., 2008; 

Schweinberger, Pickering, Burton, & Kaufmann, 2002; Schweinberger, Huddy, & Burton, 2004). 

Accordingly, N170 was assessed at P7, P8, P200 at P7, P8, P9, and P10, N250 and LN was 

captured at P7, P8, P9, P10, PO9. PO10, TP9, and TP10, and the LPC was measured at Cz and Pz. 

We performed repeated measures ANOVAs with the following within-factors: topography 

(e.g., site and hemisphere, depending on the ERP component), a combined familiarity-polarity 

factor (familiar original faces, familiar anti-faces, unfamiliar original faces, unfamiliar anti-faces), 

and DTN (0.33, 0.66, and 0.99) and the between-factor group (high vs. low performer). Note that 

participants subjectively perceived only original familiar faces as actually familiar, whereas the 

other face types looked unfamiliar to them. Analyses were performed in SPSS and R version 4.1.2 

(R Core Studio, 2020). Here we mainly report ERP reports to significant effects that involved 

group differences in the experimental factors of familiarity-polarity, and DTN, and do not report 

topographical effects per se. We refer the interested reader to the Supplementary Information for a 

complete report. 

Testing Phase: Procedure 

The order of test administration was constant across participants. The duration of whole 

testing phase was approximately one hour.  
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Results 

Screening tests 

High performers in the CFMT+ were also superior to low performers in the other face 

processing tests, including famous face recognition (as measured by the BFFT, W = 78.5, p < 

.0001) and face matching (GFMT, W = 44.5, p <.0001). While a certain consistency between face 

processing measures is not surprising, two of our screening results were unexpected. First, high 

performers also performed marginally but not significantly better in object recognition (tested in 

the CCMT, t(40) = -1.993, p = .053). Second, the two groups did not differ in terms of autistic 

traits (AQ questionnaire, t(38) = -0.047, p = .962). Furthermore, while we found no differences in 

visual acuity (W = 178.5, p = 0.4804), contrast sensitivity was slightly but significantly higher in 

CFMT+ high performers (t(34) = -2.736, p = .009; cf. Fig. 2).1 See Table 2 for a complete report 

 
1 We conducted extensive further analyses which, in short, ruled out the possibility that the group 

differences in face perception reported below would be entirely explained by contrast sensitivity. In the 

interest of readability, these additional analyses are reported in the Supplementary Information. 

Figure 2: Performance of individual participants in each test: unfamiliar face learning (CFMT+), 

familiar face recognition (BFFT), face matching (GFMT), object recognition (CCMT), autism quotient 

and vision tests (decimal visual acuity and contrast sensitivity). The Y axis represents the raw performance 

score in the original units, whereas the X axis represents the tests used. Both colour and shape code 

participant group (high and low performers in the CFMT+, see first facet on the left). Higher values 

reflect better performance, except the autism quotient where higher values indicate scoring higher on 

autism spectrum. For reference to colour in this figure, please refer to the online version of this article.  
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of the screening results, and Figure 2 for a visualization of the performance of individual 

participants in each test. 

Table 2. Results of the screening tests: long form of the Cambridge Face Memory Test (CFMT+), 

Bielefelder Famous Faces Test (BFFT), Glasgow Face Matching Test (GFMT), Autism Questionnaire 

(AQ), Vision tests. Unpaired t-tests were performed if there was no violation of the assumptions. If else, 

Wilcoxon-Mann-Whitney U test was conducted and median and range are reported instead of the mean 

and standard deviation. Table structure was adopted from Crawford, Garthwaite, and Porter (2010).  

a
 If the assumptions were violated, Wilcoxon-Mann-Whitney U test is reported. 

b If the assumptions were violated, median and range are reported instead of mean and sd. 
c Wilcoxon-Mann-Whitney U 
d Median and range 

 

Behavioral data 

 In the main Experiment while measuring EEG, participants performed a typicality rating 

task on familiar and unfamiliar celebrities. Behavioral typicality ratings are summarized in Figure 

3. We performed an ANOVA on typicality ratings, including DTN (0.33, 0.66, 0.99) as a within 

factor, and group as a between factor (CFMT+ low performers vs. CFMT+ high performers). We 

also included a combined factor familiarity-polarity (which had 4 levels that reflected orthogonal 

combinations of familiarity: familiar, unfamiliar and polarity: original face, anti-face). It is notable 

that perceived typicality did not differ overall between high and low performers, F(1, 41) = 2.69, 

 
Test assumptions of normal distribution and 
variance homogeneity 

Unpaired t-tests 

Task 

Levene test 
Shapiro-Wilk 
test High 
performers 

Shapiro-Wilk 
test Low 
performers 

  
High 
performers 

Low 
performers 

F(df) p W p W p t (df)a p N 
Meanb 
(SD) 

N 
Mean 
(SD) 

CFMT+ 
0.12  
(1, 41) 

.731 .97 .820 .89 .015 0c <.001 21 
85.06d  
(4.65) 

22 
51.34  
(4.35) 

BFFT 
8.08  
(1, 41) 

<.001 .73 <.001 .94 0.231 78.5c <.001 21 
0.94d  
(0.08) 

22 
0.78  
(0.16) 

GFMT 
1.64  
(1, 41) 

.207 .91 .049 .96 .550 44.5c <.001 21 
0.95d  
(0.04) 

22 
0.86  
(0.06) 

CCMT 
0.14  
(1, 41) 

.709 .96 .538 .96 .516 
-2.00  
(41) 

.053 21 
0.77  
(0.12) 

22 
0.69  
(0.11) 

AQ 
0.93  
(1, 41) 

.341 .94 .257 .97 .737 
-0.05 
(41) 

.963 21 
15.43  
(3.74) 

22 
15.36 
 (5.18) 

Acuity 
decVA 

2.29  
(1, 38) 

.138 .55 <.001 .54 <.001 178.5c .480 21 
1.47d  
(0.06) 

19 
1.39  
(0.22) 

Vision 
Contrast 
Michelson 

1.86  
(1, 38) 

.180 .92 .073 .98 .978 
-2.77  
(38) 

.009 21 
2.32  
(0.11) 

19 
2.21  
(0.14) 
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εG-G = .532, p = .108, ηp² = .062. In line with the manipulation intention, faces of larger DTN were 

rated to be less typical, as evident in a significant main effect of DTN, F(1.06, 43.31) = 111.05, εG-

G = .528, p < .001, ηp² = .730 (all pairwise comparison’s p < .001). Additionally, in line with the 

manipulation intention, a main effect of the combined familiarity-polarity factor indicated that 

familiar original faces were rated to be more typical compared to all other combinations, F(1.39, 

57.02) = 14.41, εG-G = .464, p < .001, ηp² = .260 (contrast testing familiar original faces against the 

other conditions: t(41) = 3.63, p < .001). Descriptively this difference seems to be even larger in 

the group of high performers, but the interaction of DTN and familiarity-polarity with group was 

not significant, F(1.39, 57.02) = 1.54, εG-G = .464, p = .224, ηp² = .036. Contrasts additionally 

indicated that familiar anti-faces systematically differed from both unfamiliar face conditions, as 

they were rated to be less typical than unfamiliar original faces and unfamiliar anti-faces (p < .001). 

Strikingly, there was an interaction between DTN and the factor familiarity-polarity, F(2.17, 

88.82) = 9.89, εG-G = .361, p < .001, ηp² = .194, with the difference between familiar OFs and all 

other faces increasing from DTN level 0.33 to 0.99, as depicted in Figure 3 (larger difference at 

DTN level 0.66 compared to 0.33, p = .023, and larger difference at DTN level 0.99 compared to 

0.66, p < .001). This means that, with increasing DTN, faces were perceived to be less typical, but 

lesser so for familiar original faces. 
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Figure 3. Typicality ratings (mean and CI) obtained during the EEG-rating task. Error bars indicate 95% 

within-subject confidence intervals (cf., Baguley, 2012). For reference to colour in this figure, please refer 

to the online version of this article. 

 

Electrophysiological data 

For all ERP-components mixed design ANOVAs were calculated including a topographical 

predictor (either site or hemisphere or both, based on the respective ERP component), the within 

factors "familiarity-polarity” (4 levels: familiar original faces, familiar anti-faces, unfamiliar 

original faces, unfamiliar anti-faces) and DTN (3 levels: 0.33, 0.66 or 0.99), and the between factor 

group (high or low performers). Only significant effects or interactions with the manipulated 

factors (familiarity-polarity or DTN) will be reported, with a focus on group differences. As purely 

topographical effects of site or hemisphere are of minor importance for our research question, these 

effects are reported in the Supplementary Materials, together with a complete report of the ANOVA 
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results on all ERP components. We show an overview of our analysis component by component in 

Figure 4, which illustrates the effects detailed in the following sections. 

Figure 4. Overview of all ERP components analyzed, separated by DTN levels (shades), polarity-

familiarity levels (color and y axis) and performance group (x axis). The first significant effect of DTN can 

be found in the N170 in low performers, but DTN effects become more pronounced in the P200, especially 

for high performers. A significant difference for familiar original faces (red) compared to all other faces is 

first evident in the N250, and it remains prominent in the LN and the LPC. Error bars reflect 95% within-

subject confidence intervals (cf., Baguley, 2012). Note the different scaling used for the late positive 

component. Please refer to the online version of this article for a colour version of this figure. 

  

N170 (140-180 ms) 

The results of the N170 analysis revealed a significant main effect of DTN, F(2, 82) = 4.56, 

p = .013, ηp² = .100, with decreasing negativity (decreasing amplitude) for increasing DTN. 

Importantly, this effect differed between groups, as indicated by a significant interaction between 

DTN and group, F(2, 82) = 3.65, p = .030, ηp² = .082.  The main effect of group was not significant 

(p = .051). Sliding difference contrasts revealed a significant decrease of the N170 amplitude from 

DTN level 0.33 to 0.66 (p = .004) for low performers only. For high performers there was a non-

significant trend for DTN effect, but only for level 0.66 vs. 0.99 (p = .056), all other contrasts were 

not significant (p > .123).  
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P200 (190-260 ms) 

Replicating previous research, we observed a prominent effect of DTN in the P200, F(2, 

82) = 62.75, p < .001, ηp² = .605. In line with the view that P200 is a marker of face typicality, 

P200 amplitude declined with increasing DTN. Central to our research question, this effect differed 

substantially between groups, as reflected in the interaction between group and DTN, F(2, 82) = 

5.33, p = .007, ηp² = .115. In both high and low performers all DTN levels differed between each 

other (ps < .002). Critically, the DTN effect was more pronounced in high performers between 

levels 0.33 and 0.66 (p = .005) (Note that groups did not differ in the decrease from level 0.66 to 

0.99, p = .106). We additionally found a main effect of the combined familiarity-polarity factor, 

F(3, 123) = 2.77, p = .044 , ηp² = .063. Planned contrasts revealed a non-significant difference 

between familiar original faces and all the other face types (p = .053), as well as a significant 

difference between original faces and anti-faces, regardless of their familiarity (p = .021), with 

original anti-faces eliciting larger amplitudes than original faces. The familiarity-polarity effect 

did not differ depending on performance group in this time range. 
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Figure 5. P200 DTN effect at electrodes PO9 and PO10 for high and low performers of face recognition. 

Note that only familiar original faces (OF) were familiar to the participants, whereas their anti-faces (AF) 

should not be interpreted as familiar. 

High Performers 

Low Performers 
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N250 (260-400 ms) 

The analysis of the N250 revealed a significant main effect of the familiarity-polarity 

factor, F(3, 123) = 49.72, p <.001 , ηp² = .548. Planned contrasts revealed a difference between 

familiar original faces and all the other face types (p < .001), between familiar and unfamiliar 

original faces (p < .001), and between original faces and anti-faces (p < .001). 

Strikingly, we observed a significant familiarity-polarity by group interaction, F(3, 123) = 

5.46, p = .001 , ηp² = .118. Planned contrasts showed that in both performance groups there was a 

difference between original familiar faces and all the other face types (p < .001 in each group, with 

original faces eliciting larger amplitudes). Crucially, this difference was even larger in high, as 

compared to low performers (p < .003). In Figure 6 this effect is evident when comparing the 

“familiar original” ERP curves in red to all other conditions (also cf. Figure 7 for a plot of mean 

amplitudes of the difference between familiar and unfamiliar original faces). We interpret this 

difference as the effect of being truly familiar with a face (original, familiar faces), that is larger in 

high CFMT+ performers. 

Additionally, the effect of DTN was significant, F(1.42, 58.21) = 10.87, εG-G = .710, p < 

.001 , ηp² = .208. Familiarity-polarity and DTN interacted significantly, F(6, 246) = 2.34, p = .032, 

ηp² = .054. Post-hoc contrasts revealed a significant difference between original familiar faces and 

the other face types at all DTN levels (all ps < .001), but this effect increased significantly from 

DTN level 0.33 to DTN level 0.66 (p = .007; sliding difference contrasts over DTN levels ps < 

.083).  
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 High Performers 

Low Performers 

Figure 6. N250 familiarity effect at electrodes P8, P10, and PO10 for high and low performers of face 

recognition. Note that only familiar original faces (OF) were familiar to the participants, whereas their 

anti-faces (AF) should not be interpreted as familiar. 
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Late negativity (400-800) 

 The analysis of the late negativity revealed a significant main effect of familiarity-polarity, 

F(2.45, 100.28) = 61.03, εG-G = .815, p < .001, ηp² = .598, which was very similar to that observed 

in the N250 range. This effect again differed between groups, F(2.45, 100.28) = 3.06, εG-G = .815, 

p < .041, ηp² = .069. Post-hoc contrasts showed that the difference between familiar, original faces 

and the other face types was enhanced in high, as compared to low performers (p < .001). 

Moreover, the effect of DTN was significant, F(1.56, 64.05) = 11.45, εG-G = .781, p < .001, ηp² = 

.218, but did not interact with group. With increasing DTN the amplitude increased, as shown by 

sliding difference contrasts (all ps < .007). 

 

Figure 7. Planned contrast for the group differences in the familiarity x polarity interaction in the 

N250. AF (anti-face), OF (original face). Means and within-subjects confidence intervals (cf., 

Baguley, 2012) are displayed. 
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     Late positive component (500-700 ms) 

For the late positive component the analysis revealed a significant main effect of 

familiarity-polarity, F(2.33, 95.42) = 21.45, εG-G = .776,  p < .001, ηp² = .343. Again, post-hoc 

contrasts showed a difference between original familiar faces and the rest, as well as between 

familiar and unfamiliar faces (both ps < .001). This effect did not differ significantly between 

groups, F(2.33, 95.42) = 2.66, εG-G = .776, p = .067, ηp² = .061. The main effect of DTN was again 

significant, F(1.57, 64.23) = 41.33, εG-G = .783, p < .001,  ηp² = .502. With increasing DTN the 

amplitude increased, as revealed by sliding difference contrasts (ps < .001). Furthermore, there 

was a significant interaction between familiarity-polarity and DTN, F(6, 246) = 3.36,  p = .003, 

ηp² = .076. Familiar original faces differed from other face types at each DTN level (ps < .001). 

Whilst familiar original faces elicited larger amplitudes as compared to unfamiliar original faces 

at each level of DTN (all ps < .001), familiar anti-faces elicited smaller amplitudes at DTN level 

33 (p = .034) but larger amplitudes at level 99 (p = .038), as compared to unfamiliar anti-faces.  

 

Discussion 

Overview and replication of past research 

On the basis of Valentine’s nMDFS (Valentine, 1991), we aimed to better understand how 

faces with varying DTN and familiarity levels are processed in individuals with high and low 

recognition skills, as assessed by the CFMT+ (long version of the Cambridge face memory test). 

We were able to i) replicate electrophysiological correlates of distance-to-norm (DTN) and 

familiarity processing, namely the P200 and N250 across both groups, and ii) showed 

interindividual differences in both the P200-typicality processing and the N250-familiarity 

processing.  

Behaviourally, we observed performance differences between high and low performers of 

face recognition in other face processing tasks, such as recognizing famous people and matching 

unfamiliar faces, but not in tasks involving object processing (although marginally poorer car 

memory was observed in low performers of face recognition). High performers also displayed 

slightly higher contrast sensitivity on average – a group difference, which was significant, whereas 

we found no evidence for differences in visual acuity nor in subclinical autistic traits. As regards 

typicality perception of the faces in the main experiment, original, familiar faces were rated as 
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more typical than all other faces, replicating a special role of familiar face processing as evident 

in previous findings (Burton et al., 2011; Burton et al., 2015; Wuttke & Schweinberger, 2019; 

Young & Burton, 2018). While this familiarity effect increased with increasing DTN for both high 

and low performers, it appears descriptively stronger for high performers. The perception of anti-

faces of familiar faces as slightly more distinctive than the original familiar faces has also been 

reported before (Wuttke & Schweinberger, 2019). A tentative interpretation of the systematic 

difference of “familiar” anti-faces is that morphing familiar faces, which are perceived as more 

typical than unfamiliar faces (DTN and facial attractiveness being equal) would enhance a-typical 

features (Faerber et al., 2016, also cf. Figure 1 in Faerber et al., 2016). In other words, creating an 

anti-face of these faces  would selectively change those features that determined the increased 

typicality perception of familiar faces into its diametral opposite.  Thus, one can speculate that this 

“typicality boost” is reversed by the anti-face morphing procedure, thus leading to increased 

distinctiveness of the respective anti-faces. This again somehow supports the idea that familiar 

faces are represented in a special way and calls for studies focussed on anti-faces of familiar vs. 

unfamiliar identities (Burton et al., 2015; Young & Burton, 2018).  

At the neural level, we observed several interesting effects. In contrast to by Wuttke & 

Schweinberger (2019) we observed DTN effects as early as in the N170 time window. This 

difference could be due to our larger sample size (43 compared to 24 participants), resulting in an 

increased power to detect this effect (see Kaufmann et al., 2013, who detected a trend in this 

direction with 28 participants). Of potential interest, whereas this present N170 DTN effect was 

prominent in low performers, it was not significant in high performers. Crucially, we replicated 

Wuttke & Schweinberger (2019) as regards the observation of decreased P200 amplitudes with 

increasing DTN (Halit et al., 2000; Itz et al., 2014; Kaufmann & Schweinberger, 2012; Latinus & 

Taylor, 2006; Limbach et al., 2018; Schulz et al., 2012a; Schulz et al., 2012b), and also with respect 

to larger N250 amplitudes for familiar original faces (Gosling & Eimer, 2011; Herzmann et al., 

2004; Kaufmann et al., 2009; Pierce et al., 2011; Schweinberger et al., 1995; 2002; Tanaka et al., 

2006; Zheng et al., 2012). The sensitivity of the P200 to second-order face configuration and to 

familiarity has also been long known in ERP literature (reviewed in Schweinberger & Neumann, 

2016). Most importantly, we found: i) larger P200 amplitude differences between DTN levels in 

high performers, as compared to low performers, and ii) larger differences in the N250 and late 
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negativity between familiar, original faces and all the other face types (unfamiliar) in high, as 

compared to low performers.  

 

 General Vision Differences Contribute to Face Recognition Performance 

In line with other published works (Baldson et al., 2018; Burton et al., 2010; Fysh & 

Bindemann, 2018; Itz et al., 2018; McCaffery et al., 2018), high and low performers also differed 

in their ability to recognize celebrities from their face and the ability to tell together and apart two 

unfamiliar face identities. This suggests that, despite these tasks likely tap into different 

mechanisms (Itz et al., 2017), there seems to be at least some degree of overlap across face 

processing tasks. However, group differences in other aspects of visual perception are less clear-

cut. In line with reports that face and object processing are more associated than previously thought 

(Hendel et al., 2019; White & Burton, 2022), high performers were marginally better at learning 

and recognizing car exemplars. This is likely due to very similar demands between the CFMT+ 

and the CCMT (Dennett et al., 2012b; Harrington et al., 2022; Shakeshaft & Plomin, 2015), which 

feature the same task structure and require similar mental strategies. Together with task demands 

similarities, however, high and low performers might also differ in a general factor representing 

efficient visual processing (Faghel-Soubeyrand et al., 2022). This factor could potentially 

differentiate high and low performers in a non-clinical sample like ours (Hendel et al., 2019). Since 

contrast sensitivity was significantly higher in high performers, one can speculate that low-level 

aspects of vision, at least partially drive face recognition performance. While this idea seems to be 

supported by clinical studies (Hirji et al., 2020), our N250 analyses suggest that differences in 

neural correlates of face recognition persist even when contrast sensitivity is added as a covariate.  

The present high and low performer groups did not differ in visual acuity. Indeed, severe 

visual acuity deficits, especially since childhood, can result in impaired face recognition (Mauer 

et al., 2007). However, in our study participants’ vision deficiency was likely not comparably 

strong, and was corrected with glasses or contact lenses during CFMT+ performance. Thus, the 

lack of differences in visual acuity we report might not be very informative and is not particularly 

unexpected. Nonetheless, it seems that personality variables such as subclinical autistic traits play 

a minor role in face recognition performance, in contrast to low-level visual features. As a 

comment, research positing a face recognition deficit in autism (Klin et al., 1999; Weigelt et al., 
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2012) might benefit from a systematic investigation of low-level visual differences between 

autistic and neurotypical individuals (cf. Simmons et al., 2009, for a review).   

Differences in Neural Effects of DTN and Familiarity between High and Low Performers 

We had two main hypotheses. One was that high and low performers differ in their norm-

based coding, with high performers showing stronger DTN effects. The second was that enhanced 

familiarity processing in high performers is reflected in larger neural correlates of face familiarity, 

in comparison to low performers.  

 In support of the idea that high performers in face recognition encode faces at higher DTN, 

as compared to low performers, these participants seemed to have a more sensitive perception of 

typicality, as shown by more diversified typicality ratings for different face types. These patterns, 

presented in Figure 3, suggest an expanded or better tuned face space in high performers, for 

whom typicality perception is more sensitive. This is mirrored at the neural level in increased DTN 

effects in the P200 component in high performers: in particular, the decreased P200 amplitude with 

increasing DTN was even more pronounced in high performers. This might represent a neural 

substrate for their fine-grained typicality perception, and complements studies reporting increased 

identity aftereffects (more efficient norm-based coding) in good recognizers (Engfors et al., 2017; 

Rhodes et al., 2014). To our knowledge, this difference is investigated here for the first time, and 

the present study thus represents initial evidence that differences in individual face space 

contribute to recognition performance. 

Notably, typicality processing appears to be relevant not only for face recognition, but also 

in the formation of impressions of other people. One important finding is that more typical faces 

(e.g., faces morphed towards the average), overall are rated more likeable and attractive than less 

typical faces, an effect called “beauty-in-averageness” (e.g., Langlois & Roggman, 1990; Zäske et 

al., 2020). In order to explain this finding, it has been suggested that processing of face typicality 

follows an efficient coding strategy (Ryali et al., 2020): Faces are encoded in relation to their 

difference to a norm face (statistically typical face), which is an efficient way to represent faces 

because it minimizes coding costs. The less typical a face is, the higher the mental effort should 

be to encode it, because the difference to the norm is larger. As a result, such faces receive negative 

affective ratings (e.g., less likely/attractive). Relating the efficient coding hypothesis to the current 

individual differences in the P200 DTN effect, the question arises whether high vs. low performers 
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might differ in their efficiency in representing faces and eventually their social judgements. This 

might be a fruitful research direction for future studies. 

Our second hypothesis, that high performers should show, by definition, increased 

behavioural and neural correlates of familiarity, was overall supported too. Behaviourally, our 

selected CFMT+ performers also performed better at another face memory task, the BFFT, and an 

unfamiliar face matching task, the GFMT. Critically, at the neural level, we found significant group 

differences in the N250 familiarity-polarity effect, which is in line with previous findings relating 

N250 amplitudes and face memory accuracy (Kaltwasser et al., 2014, p. 872, Table 2). As shown 

in Figure 7, high performers showed a larger N250 amplitude than low performers, when observing 

familiar original faces, the only faces that were really familiar to the observers, vs. all other face 

types. This finding, on one hand, further supports the notion of the N250 as a marker of face 

familiarity (Kaufmann et al., 2009; Schweinberger et al., 2002; Tanaka et al., 2006; Wiese et al., 

2019b). On the other hand, the N250 represents a key neural substrate of superior face encoding 

in high performers, which has been reported in previous studies (Herzmann et al., 2010; Huang et 

al., 2017; Kaltwasser et al., 2014; Kaufmann et al., 2013, but see Belanova et al., 2018). To put 

our findings in perspective, it must be mentioned that the group difference in familiarity processing 

was not as robust as, for instance, the reported group difference in DTN processing (see footnote 

in results section). The claim that familiarity processing is enhanced in high performers is 

nevertheless supported by enhanced responses to original familiar faces in high performers in the 

late negativity time range.  

 

Neural Individual Differences in Face Processing across Milliseconds 

In this section we sketch a synthetic time course of the neural differences between high and 

low performers in two effects of special interest, namely those of DTN and the interaction between 

polarity and familiarity (i.e., the difference between truly familiar and unfamiliar faces). 

Group differences in DTN effects seem to appear between 140 and 240 milliseconds 

(N170-P200 time range), and reach their maximum size after 190 ms. Then, high and low 

performers do not seem to differ in their DTN neural effects after 260 ms. While the DTN effects 

in the P200 replicated the general pattern reported in a previous study (Wuttke & Schweinberger, 

2019) and were substantially larger in high performers, DTN effects in the preceding N170 were 

less consistent, and were in fact larger in low performers. If this finding is substantiated in future 
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research, it might provide another perspective on performance-related differences in the time 

course and specific neural processing of DTN information in face perception. 

We were also interested in group differences between original familiar faces and the other 

face types across time. Such group differences did not emerge before 250 ms after stimulus onset, 

but hereafter high performers showed increased occipito-temporal negativity to truly familiar (vs. 

not familiar) faces between 260 and 400 ms (N250), a difference which persisted until about 800 

ms (late negativity). 

Conclusions 

The present research shows that event-related brain potentials can offer substantial insights 

into the understanding of individual differences in face recognition. Face learning and memory 

performance appears to be substantially related to neural processing of typicality, as reflected in 

the P200 ERP - with high performers showing evidence for an “expanded” face space. Neural 

processing of familiarity, as reflected in the N250 and LN ERP components, also appears to be 

related to individual differences in face recognition, although perhaps to a lesser extent than 

expected. The present study established that these relationships are not simply explained by 

differences in autistic traits or in low-level visual processing, but they also provide evidence to 

suggest that these factors should be systematically considered in this type of research.  
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