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Topological dynamical quantum phase transition in a quantum skyrmion phase
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The quantum skyrmionic phase is modeled in a two-dimensional helical spin lattice. This topological
skyrmionic phase retains its nature in a large parameter space before moving to a ferromagnetic phase. Next-
nearest-neighbor interaction improves the stability and it also causes a shift of the topological phase in the
parameter space. Nonanalytic behavior of the rate function observed, when the system which is initially in a
quantum skyrmion phase is quenched to a trivial quantum ferromagnetic phase, indicates a dynamical quantum
phase transition. Dynamical quantum phase transition is absent when the system initially in a skyrmion phase is
quenched to a helical phase.
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Progress made in the last decade in controlling matter at
quantum levels has made access to real-time dynamics of
closed quantum many-body systems realizable [1,2]. This
progress lifted the border between experimentally feasible
physical reality and model systems. Ultracold atoms in optical
lattices and trapped ions are examples in which such dynami-
cal phenomena were observed in real time. Today, we have full
access to the real-time dynamics of quantum many-body and
finite systems, either isolated or coupled to the Markovian or
non-Markovian environment. The experiments with terahertz
pulses in solids [3–6], high magnetic field pulse experiments
[7], etc. are also developments in the recent past which can be
aided by a theoretical understanding of dynamical properties
of the corresponding quantum systems, especially the study
of the evolution of the system after a sudden change in its
parameter or a quantum quench. When we talk about changing
the parameter of a system, the first thing that comes to mind
is the term phase transition. Phase transitions are the points
in the parameter space of a system around which a small
change in the control parameter manifests a drastic change
to its characteristics. In a classical/thermal phase transition,
the thermal fluctuations cause the destruction of long-range
ordering and facilitate the phase transition. But when we study
the changes of the parameters at zero temperature or ground
states the characteristics of the phase transition become purely
quantum, because here the phase transition is facilitated by
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quantum fluctuations instead of thermal fluctuations. Such
phase transitions are known as quantum phase transitions.
Equilibrium quantum phase transitions (EQPT) are studied
extensively, but we have a lesser understanding of quantum
systems out of equilibrium. In order to theoretically aid the
experimental developments mentioned earlier, we need to un-
derstand the dynamical quantum phase transitions (DQPT).
Recent experimental developments identified a signature of
dynamical behavior after a quench in a Haldane-like system
[8]. Experiments with trapped ions were able to directly ob-
serve DQPTs [9]. The theoretical inspiration for the DQPT
can be extracted from the Lee-Yang theorem, Fisher zeros, and
accompanying analysis. (For more details refer to Ref. [10]).

From Lee-Yang analysis [11,12] one can arrive at the con-
clusion that for a partition function of external fields (like
magnetic field), which also depends on the temperature T as
Z (T ), when zeros exist and have a positive real value then
each of those roots corresponds to nonanalyticity in the free
energy, i.e., phase transition. Fisher extended this analysis to
considering partition functions with complex temperature z
instead of T , Z (z). When Fisher zeros of Z (z) overlap with
the real axis it produces nonanalyticities or phase transitions;
however, no such overlaps is observed in the course of an
EQPT. The real values of Fisher zeros correspond to a dif-
ferent kind of phase transition, namely, DQPT [10,13]. Using
these analyses, the essence of DQPTs can be explained briefly
as follows [14–17].

Short-lived nonequilibrium phase transitions accompanied
with a nonanalytic behavior of physical quantities as a func-
tion of time are a characteristic feature of DQPTs [14]. To
study this we utilize a quantity G, the Loschmidt amplitude,
as a function of time t , given as

G(t ) = 〈ψ0|e−iĤt |ψ0〉. (1)

In a sense, it plays the same role in the study of states out
of equilibrium as the partition function Z = Tr(e−βĤ ) in the
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thermodynamic equilibrium case. Here Ĥ is the Hamiltonian
of the system, β is the inverse temperature, and ψ0 is the
initial state of the system. Here Z can be seen as the kind of
partition function considered by Lee and Yang(with inverse
temperature in place of temperature, still the conclusions of
the analysis holds). And in the exponent term of G(t ), if we
take (it ) as the complex temperature, G behaves like the parti-
tion function of complex temperature considered by Fisher.

Another quantity of interest is the rate function of the return
probability, Eq. (2) (hereinafter referred to as rate function),
which is analogous to the thermodynamic free energy. As
discussed earlier, during a phase transition the thermodynamic
free energy, F = − ln(Z )

β
, turns out to be a nonanalytic function

of a control parameter. Based on the analogy we established so
far, we expect to see a nonanalytic behavior on L when there
is a DQPT, since it is a dynamical analog of thermodynamic
free energy. The rate function is given as

L(t ) = − lim
N→∞

1

N
ln |G(t )|2, (2)

where N is the number of degrees of freedom of the system.
DQPT has been intensively studied during the last decade

[13,18–22]. In the present work we are interested in the inter-
play between topology and DQPTs considering the quantum
skyrmion [23]. The scientific community is still fascinated by
topological states of matter even though it has been over four
decades since the discovery of the quantum Hall state, the
first discovered topological state [24]. Topologically distinct
states or topological states are those states which are classified
based on a certain invariant [25,26]. Such states are said to
be identical when we can move from one state to another
by applying continuous smooth deformations (deformations
which do not close the bulk energy gap) without changing the
value of the invariant [27]. When the system shows this kind
of resistance to deformation we say that it is topologically
protected. Conventional states, which are earlier believed to be
the same, may become topologically distinct. We discover this
only when the accompanying physical behavior is detected,
like in the case of the quantum Hall effect.

In the past few decades, scientists discovered many
topological materials and states like topological insulators
[28,29], topological crystalline insulators [30,31], topologi-
cal semimetals [32,33], etc. This classification is based on
the behavior of the corresponding band Hamiltonians in the
reciprocal state. There are also nontrivial topological objects
determined by their characteristics in real space, such as vari-
ous types of topological defects in condensed matter [34].

Magnetic skyrmions are among the most popular types
of topological defects studied currently. Skyrmions are par-
ticular examples of solitons that can be informally defined
as localized waves with a stable shape (for a more accurate
definition and detailed discussion see, e.g., Ref. [35]). They
are related to peculiar localized noncolinear magnetic textures
within magnetic systems [36–38]. Skyrmions are promised
to be potential information carriers for the next generation
of spintronic devices [39]. New studies suggest macroscopic
skyrmion qubits design suitable for quantum computing tech-
nology controlling the helicity and dynamics of the skyrmions

through electric fields [40]. These developments make the
study of the dynamics of quantum skyrmions demanding.

The formation of magnetic order in spin systems depends
on different factors and competing interactions. Formation of
noncolinear magnetic textures is mainly fueled by competing
nearest-neighbor ferromagnetic and next-nearest-neighbor an-
tiferromagnetic or asymmetric exchange interactions, termed
as Dzyaloshinskii-Moriya interaction (DMI). In most cases,
the DMI is the dominant mechanism forming nonconventional
magnetic textures [41–57].

Recently, the quantum analog of magnetic skyrmions has
been suggested and studied [23,58,59]. However, contrary to
the classical skyrmion, the quantum skyrmion is not topo-
logically stable in a rigorous sense. Qualitatively, it is not
protected with respect to the quantum tunneling to the topo-
logically trivial vacuum state. At the same time, it presents a
quantum spin state with quite a special character reminiscent
of its topologically protected classical analog. Here we use the
words “topological phase” for the case of quantum skyrmions
in this, not completely rigorous but intuitively clear, sense.
To better understand the nature of this state we studied its
real-time dynamical properties.

Unlike skyrmions [48,58,60–62], helical magnetic textures
do not possess a topological invariant and a topological pro-
tection. Any classification of two-dimensional (2D) helical
phases is difficult, and even properties of quantum skyrmions
are not well explored. Recent attempts to discover quantum
skyrmions show a certain degree of success. Lohani et al.
[58] and Gauyacq et al. [59] could identify magnetization
patterns of a quantum skyrmion, but topological protection
of skyrmion phase was not explored. Sotnikov et al. used a
quantum scalar chirality to identify a topological protection
[23]. Siegl et al., using topological index and winding param-
eters, were able to identify a skyrmion phase and quantify its
stability [63]. All these works could only find a skyrmionic
phase in the ground state. In the present work, we investigate
the stability of quantum skyrmions in higher excited levels as
well.

An important question is the strength of the DMI. DMI can
be determined in experiments or calculated accurately from
first principles [64,65]. Our interest is focused on materials
with large DMI [66–68]. In recent experimental works Yang
et al. [69] has shown that magnetic films sandwiched between
nonmagnetic layers exhibit DMI with an electrically tunable
strength, i.e., Co films sandwiched between nonmagnetic
layers or MgO/Fe/Pt. The value of DMI in such materi-
als linearly increases with the applied external electric field
D = D0 + gME E , where D0 is the intrinsic DMI part, gME is
the magnetoelectric coupling, and E is the external electric
field. Enhanced DMI can formally reach the order of exchange
interaction for a large electric field. The dynamic control of
intrinsic magnetic interactions by varying the strength of a
high-frequency laser field allows further enhancing of the ratio
between DMI and exchange interaction constants [61,70,71].
The idea relies on the fact that DMI and exchange interaction
are both based on hopping processes and that time-periodic
fields renormalize the electronic tunneling, leading to the
effective rescaled DMI and exchange constants D ≈ 4t�

U0−U

and J ≈ 4t2

�2 (U0 − U ). Here � describes the Rashba spin-orbit
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FIG. 1. PBC is applied to the 19 spins central supercell (black
unit of the lattice). The supercell is repeated due to the PBC such
that it forms a larger triangular lattice. The solid bonds show bonds
within the boundary and the dashed bonds represent PBC. The bonds
of this lattice can be classified into three based on their orientation.
Hence, the direction of corresponding DMI vectors is also different
for each of these categories of bonds. Three types of bonds and the
direction of corresponding DMI vectors (dashed arrows) can be seen
in the figure inset.

coupling, t denotes the hopping amplitude, U0 − U is the
gain in the Coulomb energy due to the electron displacement,
and � is the frequency of the laser field. Because of the
factor 1/�2, the high-frequency laser field can substantially
reduce the rescaled exchange constant to achieve the condition
D > J . In order to study helical-skyrmionic-ferromagnetic
phases, we consider an array of spins formed in a triangular
lattice. The spins are arranged in such a way that it has a
sixfold rotation symmetry (see Fig. 1); also, with periodic
boundary conditions (PBC) it possesses translation symmetry.
The Hamiltonian of the system has the form

Ĥ = B
∑

i

Ŝz
i + J1

∑

〈i, j〉
ŜiŜ j + J2

∑

〈〈i, j〉〉
ŜiŜ j

+
∑

i< j

Di, j[Ŝi × Ŝ j], (3)

where summation in single brackets is taken over the nearest
neighbors and in double brackets over the next-nearest neigh-
bors, B is an external magnetic field, and the DMI vector D
is aligned perpendicular to the bond between lattice sites i
and j, see inset of Fig. 1. The direction of DMI vectors is
chosen to ensure that the sixfold rotation symmetry holds.
We note that in helical multiferroic insulators, the parameter
D is an effect of the magnetoelectric coupling gME with an
external electric field E , i.e., D = gME E . Thus, the strength
of the DMI term can be controlled externally [62]. Here we
consider both J1 (a ferromagnetic nearest-neighbor exchange)
and J2 (an antiferromagnetic next-nearest-neighbor exchange)
interactions along with the DMI.

An array of spins read along with the above Hamiltonian
with a specific parameter set forms a quantum skyrmion. The
nearest-neighbor ferromagnetic J1 term encourages colinear

(a)

(b)

(c) (d)

FIG. 2. (a) Locations of spins and spin textures of the local
magnetization of a system at different values of an applied magnetic
field. Here D = 1, J1 = −0.5D, J2 = 0.1D. The colors quantify ex-
pectation values of Ŝz components of specific spins. (b) The Fourier
transform of the longitudinal spin correlation function for D =
1, J1 = −0.5D, J2 = 0.1D. The observed intensity peaks confirm
the formation of nontrivial magnetic textures. (c) For D = 1, J1 =
−0.5D, J2 = 0.1D, the quantum scalar chirality remains constant
between magnetic field values of 0.46D and 0.86D. (d) A phase di-
agram showing ferromagnetic, skyrmionic, and helical phases using
the scalar chirality in the J2 − B parametric space.

spin orientation while the DMI term compels noncolinear
spin texture. These two competing interactions form classical
skyrmions stabilized by the applied magnetic field. Below
we show that adding even the small next-nearest-neighbor
antiferromagnetic Heisenberg term J2 improves the stability
of quantum skyrmion structures. In general, it is well known
that the J2 term leads to spin frustration and formation of
antiferromagnetic classical skyrmions [72]. However, quan-
tum skyrmion structures are quite specific as compared to
classical skyrmions. In particular, quantum skyrmions do not
possess continuous magnetic texture and topological charge.
Therefore, to infer the quantum skyrmion state, we exploit
another tool, such as scalar chirality. The energy levels of the
system Eq. (3) show a sixfold degeneracy even at very high
magnetic field values. We calculated the expectation values
considering the maximally mixed state of these degenerate
states with equal probability.

We used spin correlation functions to characterize quantum
nontrivial magnetic structures. In particular, we explore the
Fourier transform of the longitudinal spin correlation function
G‖(q) = 1

N

∑
i j G‖(ri j ) exp(−iqri j ), where N is the number

of spins and the correlation function is given by

G‖(ri j ) = 1

Z

∑

n

〈n|Ŝz
i Ŝz

j |n〉 exp(−βEn), (4)

where Ens are the eigenvalues of the Hamiltonian of the sys-
tem and ri j is the distance between the lattice sites i and j.

Topologically protected systems like skyrmions tend to
show resistance to a deformation in its configuration [73,74].
Throughout this work an applied magnetic field is considered
as a cause of deformation. In Figs. 2(a) and 2(b), panels are
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FIG. 3. Chirality and magnetization vs field for the first few eigenstates for D = 1, J1 = −0.5D, J2 = 0.1D. Here GS stands for the
ground state and ES stands for exited states. In GS, ES-1, ES-2, and ES-3, we can identify the scalar chirality Cψ with the almost constant
value (at Cψ ∼ 0.5) corresponding to a certain range of the magnetic field B. For the GS the range of B is B ∼ 0.48D to B ∼ 0.91D. In ES-1 it
is B ∼ 0.48D to B ∼ 0.89D. In ES-2 it is B ∼ 0.48D to B ∼ 0.85D. In ES-3 it is B ∼ 0.59D to B ∼ 0.79D. We notice that for higher excited
energy levels the range of the plateau is diminished, and at ES-4 we completely lose the plateau. An important fact is that already for the first
excited state ES-1, we observe fluctuation in the case of the strong field B ∼ 0.9D. For higher excited states ES-2 and ES-3 fluctuations are
enhanced and features of the quantum skyrmion state are absent.

arranged in the increasing order of applied magnetic field
from left to right. Figure 2(a) shows that the local magne-
tization is uniform and increasing magnetic field causes the
local magnetization to increase in the direction of the field.
This observation fails to identify any magnetic textures in the
system. In Fig. 2(b), multiple intensity spots (Bragg peaks)
observed for nonzero q (Fourier conjugate of r or wave vec-
tor in reciprocal space) confirms the formation of quantum
nontrivial magnetic texture [61]. This quantity could distin-
guish between helical and ferromagnetic phases but it fails
to identify a skyrmionic phase within the helical phase. So,
we require another quantifier that can trace out the skyrmion
phase from helical and ferromagnetic phases.

Scalar chirality [23],

C� = N
π

〈Ŝ1[Ŝ2 × Ŝ3]〉, (5)

is considered as a distinguishing property of a helical spin
system. When the chirality has a nonzero value we say that
the system is in a helical phase. It is proposed that chirality
can distinguish quantum skyrmion phase from other phases of
the system [23].

In this equation N is the number of nonoverlapping ele-
mentary triangular patches covering the lattice. Three adjacent
spins form a patch. The scalar chirality for any of these three
adjacent spin combinations is the same, because of the trans-
lational and rotational symmetries of the lattice.

In Fig. 2(c), from B = 0D to B = 0.46D chirality increases
almost steadily. In this region no two deformed states have
the same chirality value, therefore all those states are topo-
logically nonidentical. From B = 0.46D to B = 0.86D the
plateau of scalar chirality implies that all the states in this
region have a common topological invariant, and we call them
topologically identical phases or simply topological phases.
After crossing B = 0.86D the system briefly falls back to a
helical phase. It is represented by a dip in chirality. Then
around B = 1.0D the system goes to the trivial ferromagnetic
phase, indicated by zeros of scalar chirality.

In Fig. 2(c) the magnetization graph is telling us that for the
region where we have a plateau in chirality the magnetization
is not the same for any two states, i.e., the system is in fact
undergoing deformation during the constant chirality plateau
also.

The phase diagram [Fig. 2(d)] shows that for nonzero J2

the invariance of scalar chirality extends for larger values of
the applied magnetic field compared to J2 = 0. The skyrmion
phase is embedded into the helical phase. For a larger value of
the interaction parameter J2, the system retains the skyrmion
phase for a longer range of applied magnetic field. We studied
the scalar chirality not only in the ground state but also in
several excited states. We see that the skyrmion state survives
in the first and second excited states, and a certain degree of
topological invariance can be seen in higher excited states as
well, see Fig. 3. When J2 = 0D we arrive at the results from
Sotnikov et al. [23]. For higher values of J2(J2 > 0.35D) the
plateau gets distorted.

Here we show that important information about helical
and quantum skyrmion phases can be obtained from the anal-
yses of topological DQPTs. Namely, when quenching the
system from a quantum skyrmion to a topologically trivial
phase, we observe a characteristic signature of a DQPT as
a nonanalyticity in the rate function. On the other hand, a
quench between a skyrmion and a helix does not lead to
a DQPT.

Let the system be prepared in the ground state |ψ0〉 of
the Hamiltonian Ĥ0 = Ĥ (λ0). At t = 0 the parameter λ is
quenched to a new value Ĥ (λ f ), and the initial wave function
is evolved to a new state |ψ (t )〉 = e−iĤt |ψ0〉 under this new
Hamiltonian. In order to describe the DQPT we study the
Loschmidt amplitude (return amplitude) and the rate function,
in the thermodynamic limit [75–80].

Our primary interest concerns DQPTs between a quantum
skyrmion phase and a trivial phase. The quench protocol
applied on a topological phase to a trivial (skyrmion to fer-
romagnet) phase produced a nonanalytic behavior of the rate
function with respect to time. The result is plotted in Fig. 4(a)
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(a) (b)

FIG. 4. Quench protocol is applied on ground state initiated with
D = 1, J1 = −0.5D, J2 = 0.1D, B = 0.85D. (a) Time evolution of
rate function for skyrmionic to polar phase transition. At t = 0 DMI
is turned off (set D = 0). The peak of rate function at t = 9.71, 30.1,
etc. shows nonanalytic behavior. (b) Time evolution of rate function
for skyrmionic to helical phase transition. At t = 0 the applied field
B is turned off. Here we do not find any nonanalyticity.

with respect to time: L(t ) ∝ |t − tc|α , where α is the criti-
cal exponent. On the other hand, when switching between
a skyrmionic phase to a helical phase, we do not observe
any DQPT. We can confirm this from the lack of nonanalytic
behavior of the rate function when plotted against time in
Fig. 4(b). Here we looked for nonanalyticity with different
values of the parameter B but we could not find any. The pres-
ence of nonanalyticity in the former case can be explained by
a sharp and discontinuous transition of Cψ from skyrmionic to
trivial phase in Fig. 2(c). Similarly, the lack of nonanalyticity
in the later case is due to the smooth and continuous transition
of Cψ from helical to skyrmionic phase. From Fig. 4(a) the
critical exponent α = 0.7020 ± 0.0233 around tc = 9.66. The
value turned out to be very close to this for other critical points
as well (see Supplemental Material for details [81], as well as
Refs. [82–84] therein). Further study is required with larger
system sizes [L = 3i(i + 1) + 1, i = 3, 4, 5, ...] in order to
comment on the universality of the critical exponent that we
calculated.

We have computational limitations to analyzing finite-size
effects and artifacts of a particular quantum skyrmion state in
our system. However, we performed the study of finite-size
effects using another quantum skyrmion state obtained for
a slightly different model in Ref. [63]. The results of the
calculations are shown in Ref. [81]. We see the same trend for
this case also, i.e., nonanalytic singularities in the rate function

during the dynamical quantum phase transition between the
skyrmion and FM phases. Thus obtained results are pretty uni-
versal and apply to any quantum skyrmion. The reason for the
universal effect is the orthogonality of quantum skyrmion and
FM states. This argument is valid for any quantum skyrmion
independent of its size.

Apart from this, we achieved a significant improvement of
the topological phase stability with our model compared to the
previous works [23,58,63]. We note that within a skyrmionic
phase a larger J2 value gives a topological phase protection
against a larger range of applied magnetic fields. At high
values of J2 the topological invariance is destroyed. This
result tells us that the key for tunability and improved sta-
bility of quantum skyrmions can be the interaction parameter,
which may be useful when choosing the material to realize
skyrmions for experiments. This kind of model is realized
in the Pd/Fe/Ir(111) system with Co surrounded edges [85].
Also, nanoscale skyrmions are reported at room temperature
with large DMI interaction in Ir/CoFeB/MgO systems [86].

In conclusion, the quantum skyrmion model proposed
above shows significant improvement in topological protec-
tion. In said model we identified a robust DQPT when quench
protocol is applied from a skyrmionic state to a ferromagnetic
state. Robust DQPTs accompany many interesting properties.
An interesting direction is to look for the connection between
entanglement dynamics and DQPTs in a skyrmionic phase.
Certain systems have reported to show an enhanced entangle-
ment entropy around critical points of DQPTs [9].
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