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ABSTRACT: Step edges of topological crystalline insulators can be viewed
as predecessors of higher-order topology, as they embody one-dimensional
edge channels embedded in an effective three-dimensional electronic vacuum
emanating from the topological crystalline insulator. Using scanning
tunneling microscopy and spectroscopy, we investigate the behavior of
such edge channels in Pb1−xSnxSe under doping. Once the energy position of
the step edge is brought close to the Fermi level, we observe the opening of a
correlation gap. The experimental results are rationalized in terms of
interaction effects which are enhanced since the electronic density is
collapsed to a one-dimensional channel. This constitutes a unique system to
study how topology and many-body electronic effects intertwine, which we
model theoretically through a Hartree−Fock analysis.
KEYWORDS: topological crystalline insulators, Hartree−Fock, topological edge states, strong correlations in flat bands

The hallmark feature of three-dimensional topological
insulators (TIs)1,2 are their protected gapless surface

states with the dispersion of an odd number of massless Dirac
Fermions. These surface states have a property called chirality,
which makes them anomalous: It is not possible to obtain
these two-dimensional surface states without incorporating the
three-dimensional bulk. Mathematically, this is encoded in the
Fermion doubling theorem3−5 which says that it is not possible
to obtain Fermions of a single chirality in a purely two-
dimensional system with time-reversal.
Topological crystalline insulators (TCI) are TIs that are

protected by crystalline symmetries.6,7 In contrast to TIs, the
surface of this TCI can host multiple Dirac cones, which are all
of the same chirality (see Figure 1a), and exhibit the rotation
anomaly: A purely two-dimensional model would have an
equal number of Dirac cones with positive and negative
chirality (see Figure 1b).8 In this work we investigate the one-
dimensional edge states arising at odd-atomic step edges on
the surface of the TCI Pb1−xSnxSe (Figure 1c). The detection
of these spin-polarized midgap states at step edges on the
surface of Pb1−xSnxSe was described in previous work including
some of the present authors,9 which was confirmed in ref 10
and further theoretically detailed in ref 11. In this contribution,
we report scanning tunneling microscopy (STM) and
spectroscopy (STS) measurements of these edge states using
surface doping to controllably tune their energy position with
respect to the Fermi level. This experimental approach is used

to systematically scrutinize the emergence of correlation effects
under the effect of distinct dopants.
In typical 3D TIs the Coulomb interaction is not strong

enough to lead to spontaneous symmetry breaking in the two-
dimensional surface states.12 For Pb1−xSnxSe with its large
dielectric constant which effectively screens electron−electron
interactions, correlation effects are generally disregarded.13

However, the 1D flat bands, which reside at step edges, are
characterized by an enhanced density of states which can lead
to correlated states (Figure 1d). For example, in an attempt to
provide a possible explanation for the zero-bias conductance
peak observed in point contact spectroscopy experiments,14 it
has been suggested that 1D flat bands might be susceptible to
correlation-driven instabilities resulting in the formation of
magnetic domains.15 Similar flat boundary states are known to
arise in a variety of systems, such as graphene,16 topological
semimetals,17 and d-wave superconductors,18 which in some
cases exhibit spontaneous symmetry breaking. In the present
case, the edge modes have a flat dispersion and are therefore
susceptible to flat-band Stoner ferromagnetism�a one-dimen-
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sional analogue of quantum Hall ferromagnetism in the zeroth
Landau level (LL) of graphene19,20 or in twisted bilayer
graphene.21,22

Spontaneous symmetry breaking is associated with the
opening of correlation gaps. Our spectroscopic measurements
show the following behavior, when the energy of the 1D flat
band is tuned to the Fermi level, the single peak in the density
of states (DOS) from the edge mode splits into either two or
four peaks. A theoretical assessment within k·p theory explains
the different experimentally observed peak multiplicities by a
variation of the ratio V/W, where V is the interaction energy
and W is the bandwidth, resulting in up to four states that
spontaneously break time-reversal symmetry.
Pb1−xSnxSe crystallizes in a rock salt structure for x ≤ 0.4.

Previous studies showed how this substitution alloy can host
two topological distinct phases.23 Starting from PbSe, a trivial
narrow band gap semiconductor, the system undergoes a
topological phase transition by progressively increasing the Sn
concentration. At low temperature, the topological crystalline
phase is observed for x ≥ 0.2.24 In the present study, we focus
on Pb0.7Sn0.3Se single crystals grown by the self-selecting vapor
growth method.9,24 Our crystals are thus safely inside the
topological crystalline regime of the Pb1−xSnxSe phase diagram.
Single crystals have been cleaved at room temperature in
ultrahigh-vacuum conditions (p < 5 × 10−10 mbar). Experi-
ments have been performed in two distinct STM setups,
operated at T = 2 K and T = 4.5 K. All measurements have
been acquired using electrochemically etched tungsten tips.
Differential conductance dI/dU data have been measured by a
lock-in technique by applying a bias voltage modulation Vrms to
the tip.
Figure 1e shows an STM topographic image acquired in

constant-current mode on a freshly cleaved Pb0.7Sn0.3Se crystal.
The exposed surface corresponds to the (001) orientation
which is commonly obtained when cleaving a bulk crystal.24−28

At this surface, angle-resolved photoemission studies revealed
the presence of four Dirac cones protected by mirror symmetry
located close to the X̅ and Y̅ points of the Brillouin
zone.24−26,29 The topographic image shows large terraces
separated by step edges which, as highlighted by the line profile
reported in Figure 1f, are characterized by different heights.
These two steps are representative of two distinct classes,
namely, (i) steps whose height is equal to an integer multiple
of the lattice constant n·a, and (ii) steps whose height is a half-
integer multiple of the lattice constant (1/2 + n)a with n being
the integer and a the lattice constant (a ≈ 6 Å). As described in
ref 9, while the translation symmetry of the surface lattice is
preserved for integer multiple steps, half-integer multiple steps
introduce a 1D structural π-shift which dramatically influences
the surface electronic properties. This is illustrated in Figure
1g, which reports a dI/dU map acquired at the Dirac point
located at ED ≈ + 125 meV (see Supporting Information
Figure 1 for a description of the energy level alignment). The
dI/dU signal, which is proportional to the sample LDOS,
shows a strong enhancement at the half-integer step. As
discussed in ref 9, this corresponds to the spectroscopic
signature of a 1D flat band localized around the 1D structural
π-shift.
The present system thus represents an ideal platform to

scrutinize the emergence of interaction effects in 1D flat bands,
which are expected to manifest once the flat bands are
energetically localized close to the Fermi level. The key idea is
that, as the kinetic energy is quenched, electron correlations
can become the dominant energy scale. To experimentally
realize such a scenario, the 1D flat band has to be tuned to the
Fermi level. To achieve this goal, we used a surface doping
approach. Starting from pristine p-doped crystals, we
progressively dose higher amounts of distinct 3d adatoms
onto the crystal surface held at cryogenic temperature, a
procedure known to create a downward band bending, i.e. a

Figure 1. Emergence of 1D flat bands in TCI. (a) The TCI Pb1−xSnxSe has four Dirac cones of the same chirality in the BZ. (b) For a purely 2D
system there would be an equal number of Dirac cones with positive and negative chirality. (c) 1D flat bands emerge at a step edge on the TCI
surface. (d) Band structure eq 3 of the four edge mode states along with the surface Dirac cones. (e) STM topographic image acquired at the (001)
surface of pristine Pb0.7Sn0.3Se. The dashed gray line corresponds to the line profile reported in panel f. Two different steps are visible,
corresponding to unit and half-unit cell heights. (g) dI/dU map acquired at the Dirac point (ED = +125 meV). The signal, proportional to the
sample local density of states (LDOS), shows a strong enhancement localized around the half unit cell step. Scanning parameters: V = 125 mV, I =
250 pA, Vrms = 10 meV. (h) STM topographic image of the very same sample region reported in panel e after Cr adatoms have been deposited onto
the surface.
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rigid shift toward negative energies.30 This procedure is
illustrated in Figure 1h, which shows a topographic image of
the very same sample region reported in Figure 1e after Cr
adatoms have been deposited on the surface. Close inspection
of the image reveals small protrusions which correspond to Cr
adatoms. Representative images acquired after dosing Mn, Fe,
and Cu adatoms are reported in Supporting Information
Figure 2.
Figure 2a−d summarizes the spectroscopic results as a

function of the doping level, with each panel corresponding to
a distinct dopant, namely Cr, Mn, Fe, and Cu. Starting from
pristine samples (gray lines), a rigid shift toward negative
energy is observed upon deposition onto the surface,
irrespective of which specific 3d element is used. The shift
successively increases with each deposition step. Once the 1D
flat band is close to the Fermi level, the single peak is found to
split into a double-peak structure, as highlighted by the insets
in Figure 2a−d. By further increasing the concentration of
surface dopants, the Dirac point is shifted below the Fermi
level which results in the recovery of a single peak structure
characteristic of the 1D flat band.

In all cases, the size of the splitting amounts to a few meV, as
summarized in Figure 2e. The different data points reported
for Cr correspond to distinct experimental runs, revealing a
distribution in the size of the splitting which is not linked to
the specific element but which is attributed to sample
inhomogeneities (both intrinsic as well as induced by the
random distribution of dopants), which can affect the flatness
of the 1D bands (see theory section). This is demonstrated by
the additional spectroscopic data reported in Supporting
Information Figures 3 and 4.
To test the robustness of this observation against potential

artifacts, we performed numerous control experiments. For
example, in order to exclude an uncontrolled influence of a
spatial inhomogeneity of the TCI surface, the very same
sample region was mapped before and after deposition, as
illustrated in Figure 1. Moreover, we verified that integer step
edges under the same doping conditions, i.e. once the Dirac
point is tuned to the Fermi, do not show any significant change
with respect to the spectral shape observed in the pristine case,
see Supporting Information Figure 5. This ensures that the
observed behavior is indeed linked to the evolution of the

Figure 2. Doping dependence of the 1D flat band. (a−d) Scanning tunneling spectroscopy of the 1D flat band emerging at half unit cell steps as a
function of the doping level. Each panel reports the energy evolution of the 1D flat band at different doping concentrations for distinct dopants (Cr,
Mn, Fe, and Cu). Measurements on Cr- and Mn-doped samples have been performed at T = 2 K. Measurements on Fe- and Cu-doped samples
have been performed in a different setup operated at T = 4.5 K. For all elements, the deposition onto the Pb0.7Sn0.3Se surface provides a n-doping
effect. Starting from p-doped crystals, this procedure allows to progressively shift the energy of the 1D flat band toward the Fermi level. A splitting
of the single peak in LDOS into a double-peak structure is visible once the 1D flat band is energetically close to the Fermi level, as highlighted in
the insets. By continuously doping the surface, the splitting disappears once the 1D flat band is shifted below the Fermi level. (e) Magnitude of the
splitting observed in panels a−d. (f) Line spectroscopy acquired along a step edge once the energy of the 1D flat band is brought close to the Fermi
level (Cr adatoms as dopants). The inset shows a STM topographic image of the step edge along which the line spectroscopy (marked by the blue
arrow) has been acquired. The spectra provide evidence for the existence of spatial fluctuations of the double-peak structure, an effect attributed to
intrinsic sample inhomogeneities and the disorder created by the random distribution of dopants.
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electronic properties of the 1D flat band hosted at half-integer
steps as a function of doping level.
Note that, although this surface doping approach allows us

to controllably shift the Dirac point toward the Fermi level, the
random distribution of dopants inevitably increases the surface
disorder after each deposition step. This results in spatial

fluctuations of the Dirac point illustrated in Figure 2f, which
reports spatially resolved scanning tunneling spectroscopy
acquired at distinct positions along a structural π-shift (see
blue arrow in the inset of Figure 2f). Although these data
provide evidence of the existence of different broadening as

Figure 3. Spectroscopic signatures of interaction effects. (a−c) Scanning tunneling spectroscopy data acquired at odd-atomic step edges which
exhibit a structural π-shift. The measurements have been acquired on different samples. Cr adatoms have been used as dopants. Similar to the
double-peak structure discussed in Figure 2, a clear suppression of the LDOS is visible at the Fermi level. Additionally, each peak splits into a
doublet, resulting in a four-peak structure.

Figure 4. Model and Hartree−Fock results. (a) Schematic of the toy model in eq 1 we consider for the step edge. We shift the two Dirac cones of
the two valleys by an amount κ along the x-axis. We take this shift to be opposite for y > 0 and y < 0; this way we obtain an edge mode at y = 0. The
HF band structures (b−d) along with the corresponding DOS (e−g) are shown for three values of Rs and κ̅ = 1. The color bar in the band structure
shows ⟨τz⟩. As Rs increases, we obtain a two- and four-peak structure. The conduction and valence band are split by the energy scale W.
Hybridization between orbitals leads to interaction-induced gaps of order V opening up. The circles indicate filled states while the crosses indicate
empty states. We pick a resolution of Ny = 41 for ky. (h) Hartree−Fock results showing the continuous evolution of the DOS as a function of the
interaction parameter Rs = V/W. As Rs increases from zero, the four peaks are initially so close that they will not be resolved due to the thermal
smearing in the experiment. However, for larger Rs, the four peaks can clearly be distinguished. In experiments, either four-peak or two-peak
structures are observed at the Fermi energy. There are inhomogeneities within the sample, and due to this disorder, the bandwidthW can vary from
sample to sample and also within a sample from one position to another. This explains the observation of either two or four peaks seen in the
experiments at the Fermi energy, since the value of Rs may be different in the two cases.
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well as fluctuations in the peak intensity, the peak splitting
remains clearly visible along the entire profile.
A splitting of the 1D flat band into a double-peak structure is

predominantly found in our samples once the Dirac point is
close to the Fermi level. However, our measurements
frequently reveal the existence of a spectroscopically more
rich scenario where the LDOS associated with the 1D flat band
splits into a multipeak structure. This is illustrated in Figure 3,
which reports three representative spectra acquired on
different samples. As for the double-peak case discussed in
Figure 2f, the spectra reveal a clear suppression of the LDOS
near the Fermi. However, each peak has been further split into
two subpeaks, resulting in a four-peak structure. We note that,
while a dip at the Fermi is always clearly detected, the splitting
of each peak into a doublet is more subtle and its observation
can be easily hampered by broadening, both intrinsic (related
to the bandwidth of 1D flat band) as well as disorder-induced
(related to random distribution of dopants). As discussed in
the theory section, these observations are in agreement with
our theoretical analysis, being a direct fingerprint of two
distinct energy scales.
The k·p theory for Pb1−xSnxSe has been worked out in refs

31 and 32, and the corresponding Landau level spectrum was
discussed in ref 33. Here, as a model we propose a more simple
Hamiltonian consisting of four Dirac points in the BZ at (±κ,
±κ):

= [ ]H v p p( ) ( )y y x x x yF (1)

where pi = −i∂i and σi are the Pauli matrices associated with
spin. We label the valleys by two pseudospin degrees of
freedom τi, ηi. The step edge manifests as an exchange of the
valleys between y > 0 and y < 0, such that y = 0 is the location
of the step edge (see Figure 4a): (κx, κy) = κ(τz sign(y), ηz).
Estimates for the Fermi velocity vF can be found in refs 34 and
35.
We label the eigenstates by their σz, τz, ηz eigenvalues σ, τ, η.

There are four zero modes in the range −κ < kx < κ which are
localized around y = 0 with opposite spins in the two valleys
(i.e., the eigenvalue of σz is the same as the eigenvalue of τz36):
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We study the symmetry-breaking patterns in the edge states
due to electron−electron interactions. This problem is
reminiscent of the long-standing problem of magnetism in
graphene edges. The zigzag edge of graphene hosts an exact
zero-energy mode37,38 (a finite dispersion for the edge modes
can be generated by next-nearest neighbor hopping), and
interactions lead to a ferromagnetic state, as shown in
Hartree−Fock,37 exact diagonalization,39 perturbative ap-
proaches,40 and bosonization.41 Furthermore, in graphene
nanoribbons, the two edges can be coupled by interactions,
leading to antiferromagnetic interedge coupling.37,42,43 By a
similar mechanism, the Majorana flat bands in d-wave
superconductors order magnetically.44 We choose to study
the step-edge problem in a similar vein and rely on the
Hartree−Fock approximation, since for zigzag edges more
sophisticated techniques yield similar results. There are two
important differences between the zigzag edges of graphene
and the step-edge modes studied here. First, we have twice the
number of flat bands, namely four instead of two. Second,

unlike in graphene the edge modes in the TCI are not spin-
degenerate since Pb1−xSnxSe exhibits a significant spin−orbit
coupling.
In the phenomenological model introduced above, we

obtain fully flat bands for the edge states. However, a
microscopic three-dimensional model finds edge states with a
finite dispersion;9 hence, we add this dispersion by hand. The
bands calculated in ref 9 have two van Hove singularities
(VHSs). One of the VHSs arises where the flat band merges
with the Dirac cone, at which point the states also get more
extended perpendicular to the edge. Therefore, we expect only
the other VHS to show up as a peak in the edge density of
states (DOS) measured by the STS. This motivates the
following model for the dispersion (Figure 1d):

i
k
jjjj

y
{
zzzz= +W

k k
cos

2
1
5

sink
x x

x (3)

with W being the bandwidth. The full second-quantized
Hamiltonian is of the form H = Hkin + Hint where Hkin =
∑αϵαcα†cα, and the interaction term will be

= † †H V c c c c
1
2int (4)

where we use the short-hand label α = (kx, τ, η). The matrix
elements Vαβγδ are obtained by projecting the Coulomb
interaction onto the flat bands. Since our model is a purely
two-dimensional model of the surface, we use the two-

dimensional Coulomb interaction =Vq
e

q2

2

0
. Screening from

the three-dimensional bulk may result in a renormalized
dielectric constant. We perform a mean-field decoupling of the
Hamiltonian and solve the Hartree−Fock equations self-
consistently (see Supporting Information for details).
There are two energy scales in the problem. The kinetic

energy scale is the bandwidth W, while the interaction energy

scale is =V e
2

2

0
. The model thus has two dimensionless

parameters, κ̅ = κa (a is the lattice spacing in the y-direction)
and Rs = V/W. The qualitative results are largely independent
of κ̅; for the band structure of the TCI in question in this work,
we have κ̅ = 0.5.9 Rather, we focus on the dependence on Rs.
Let us consider this model at half filling. The HF results are
shown in Figure 4. In the limit Rs ≪ 1, we completely fill the
valence band subspace (η = −1), and the interaction leads to a
slight hybridization between the opposite spin bands at the
band crossing (Figure 4b). This state spontaneously breaks
time-reversal symmetry and leads to two peaks in the DOS
(Figure 4e), with a splitting given byW. In the limit Rs ∼ 1, the
splitting between the conduction and valence band (∼W)
remains, and the valence band subspace is completely filled.
Due to the interaction, however, the opposite spin bands in the
valence and conduction band subspaces are fully hybridized
forming bonding and antibonding orbitals, which are split by
an amount V (Figure 4c), thus leading to four peaks in the
DOS (Figure 4f). For Rs ≫ 1 the kinetic term is negligible, and
there is mixing between all four bands, again forming bonding
and antibonding orbitals (Figure 4d). Since we can form
bonding and antibonding orbitals in both the spin and the
conduction/valence band degrees of freedom, this leads to a
four-peak DOS (Figure 4g), where the splitting is set by V. We
show the continuous evolution of the DOS as a function of Rs
in Figure 4h, demonstrating that the interaction continuously
splits the two peaks into a four-peak structure.
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We used a combination of high-resolution STM and
theoretical calculations to investigate the edge modes arising
at a step edge on the surface of the topological insulator
Pb1−xSnxSe. We developed a continuum model description of
these edge states and performed a Hartree−Fock calculation to
investigate the effect of interactions. The edge modes have a
flat dispersion, thus leading to ferromagnetic states, which may
open up additional correlation gaps, as seen in the STM
measurements on the system when doped to the Fermi level.
In future work, it would be interesting to perform spin-resolved
STM measurements on the edge modes to confirm that edge
modes follow the symmetry-breaking patterns predicted by the
HF calculation.
The step-edge flat bands studied here have similarities to the

edge states arising at the zigzag edge of graphene. In graphene
nanoribbons, the edges can be close enough such that they are
coupled via interactions. In that case it is known that while the
intraedge coupling is ferromagnetic, the interedge coupling is
antiferromagnetic. It is therefore natural to wonder what would
happen with two nearby step edges in the TCI and how the
edge modes are then coupled. Previous work has shown that
two nearby step-edge modes can couple to form bonding and
antibonding orbitals.28 It remains an open question what
happens to the magnetism in that case.
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