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SUPPLEMENTARY INFORMATION 

  



Supplementary Tables 
Quantity Value Description 

State variables 
  

𝑟!
(#,%) 

 
Population firing rate of the excitatory (E) or 
inhibitory (I) population in brain area i 

𝑆!
(#,%) 

 
NMDA (E) and GABA (I) synaptic gating 

𝐼!
(#,%) 

 
Sum of input currents 

𝜐! 
 

Noise sampled from the standard normal 
distribution 

Parameters 
  

𝐼' 0.382 nA Overall effective external input 

𝑊(#,%) 1 (E); 0.7 (I) Modulation of 𝐼' for excitatory, respectively, 
inhibitory population 

𝑤( 1.4 Local excitatory recurrence 

𝐽)*+, 0.15 nA Excitatory synaptic coupling 

𝐽! Obtained by FIC Feedback inhibitory synaptic coupling 

𝐶!- Obtained by 
dwMRI 
tractography 

Structural connectivity matrix 

𝑤!-./# Obtained by FC 
fitting 

Long-range excitation 

𝑤!-00% Obtained by FC 
fitting 

Feedforward inhibition 

𝑎# , 𝑏# , 𝑑# 310 (1/nC), 125 
(Hz), 0.16 (s) 

Parameters of excitatory population’s frequency-
current (f-I) function 

𝑎% , 𝑏% , 𝑑% 615 (1/nC), 177 
(Hz), 0.087 (s) 

Parameters of inhibitory population’s f-I function 

𝛾# , 𝛾% 6.41x10-4, 1.0x10-
3 

Rate of saturation 

𝜏# , 𝜏% 100 ms, 10 ms Time scales of synaptic activity 

𝜎 0.01 Noise scaling 

Supplementary Table 1. State variables and parameters of the large-scale BNM. 

  



 

Quantity Value Description 

State variables 
  

𝑟 
 

Population firing rates 

𝑆!1 
 

NMDA synaptic gating 

𝐼!1 
 

Sum of input currents 

𝐼12!34,!  Noise current 

Parameters 
  

𝐼' 0.334 nA Overall effective external input 

𝐽!,-5→1         𝐽{,,,88}::;→::; = 0.3169 

𝐽{,8,8,}::;→::; = −0.0331 

𝐽{,,,88}:0;→:0; = 0.351 

𝐽{,8,8,}:0;→:0; = −0.0671 

𝐽{,,,,8}::;→:0; = 0.02 

𝐽{,,,,8}:0;→::; = 0.075 

Connection weight from population j in 
module m to population i in module n 

 

 
 

𝑎, 𝑏, 𝑐 270 (1/nC), 108 (Hz), 0.154 
(s) 

Parameters of frequency-current (f-I) 
function 

𝛾 6.41x10-4 Kinetic parameters 

𝜏 60 ms Time scales of synaptic activity 

Supplementary Table 2. State variables and parameters of the DM circuit. 

 

  



Supplementary Notes 

How E/I-ratios control synchrony and amplitude of synaptic currents 
Why did E/I-ratios modulate population synchronization? The E/I-ratio of each long-range connection 
was set by the two parameters 𝑤!"# and 𝑤$$% (Equations 1, 2). To increase the E/I-ratio 𝑤!"# has 
been increased and 𝑤$$% has been decreased (Fig. 4c). As 𝑤!"# was increased the excitatory 
population activity depended more on long-range inputs and less on local inputs and noise: long-range 
inputs increasingly dominated the activity of excitatory populations, which entrained the nodes 
towards higher synchrony. Vice versa, when 𝑤$$% was increased inhibitory population activity 
became increasingly synchronized with the global inputs and, as it is inhibitory activity, it drove its 
excitatory partner towards the opposite dynamics, which lead to anti-synchronization of the excitatory 
population with the global input. Interestingly, at a balanced E/I-ratio these tendencies towards 
synchronization versus antisynchronization were also balanced--they canceled each other--and hence 
absolute correlations were at their minima (close to zero) for balanced E/I-ratios (Figs. 4d, e).  
To better understand the correlation of simulated synaptic currents with the participants' empirical 
PMAT24_A_RTCR (Fig. 4a, b; Supplementary Fig. 2) we studied synaptic currents in dependence of 
the E/I-ratio in the two-node model (Fig. 4f, g). One important observation is that FIC had reversed 
the relationship between E/I-ratios and input amplitudes: without FIC the input amplitude had 
monotonically increased for increasing E/I-ratios (Fig. 4f, blue curve); in contrast, when FIC was 
active the input amplitude peaked at a relatively low E/I-ratio and from there on only decreased for 
increasing E/I-ratios (Fig. 4f, black curve). This observation is important, because it shows that FIC 
was required to simultaneously obtain a direct relationship between E/I-ratios and FC and an indirect 
relationship between input amplitude and RTs. In contrast, without FIC, the models with a higher FC 
would have had increased input amplitudes. As we show here, this no-FIC scenario is implausible, 
because increased amplitudes would have increased the speed of decision-making, and not slowed it 
down.  
The observation that increased E/I-ratios had led to decreased current amplitudes is non-trivial: if 
excitatory coupling was increased and inhibitory coupling decreased, why did the input amplitude 
decrease when FIC was active, instead of increase, as it did without FIC (black versus blue curve in 
Fig. 4f)? Our explanation is based on the observation that the variance and the mean of synaptic 
inputs appear to be coupled through FIC as indicated by comparing Fig. 4f and Fig. 4g: the black 
curves show inverted shapes while the blue curves appear unrelated. To test this hypothesis more 
directly, we injected one pair of coupled excitatory and inhibitory population models with a pure 10 
Hz sine wave with increasing variances and compared outcomes with FIC versus without FIC (Fig. 
4h-j). Plotting variance against mean (Fig. 4h) shows that FIC compensates for higher variances by 
decreasing the mean of inputs in order to stabilize firing: as the variance of inputs had been increased 
by increasing E/I-ratios (using the multiplicative parameters 𝑤!"# and 𝑤$$% in Equations 1, 2), it was 
necessary for FIC to decrease its mean amplitude in order to obtain an average population firing rate 
at the set target value. This was necessary, because the peaks of the firing activity continued to grow 
for increasing input variance, while the troughs were bound from below due to physiological 
constraints: firing could not get below 0 Hz and it was therefore necessary for FIC to decrease the 
mean input, which prolonged the inhibition time window to arrive at the desired firing rate (compare 
traces with FIC in Fig. 4i versus traces without FIC in Fig. 4j). Such a rectification of neuronal 
oscillations due to shunting inhibitory feedback was also identified as the underlying mechanism for 
the pulsatile inhibitory action of alpha rhythms79. 
 
Studying DM and WM with a frontoparietal circuit model 
To more directly study the modulatory effects of input amplitude and correlation on cognitive 
performance we adopted a frontoparietal circuit model for WM and DM37, which we call DM circuit 
here. The DM circuit attractor network uses recurrent excitation to enable stimulus-selective persistent 
activity for WM84 and winner-take-all competition for DM77. The DM circuit consists of four 
mutually and recurrently coupled neural mass models: two located in prefrontal cortex (PFC) and two 
in posterior parietal cortex (PPC). The two population pairs encode the outcomes of a binary decision, 
respectively, two working memory states. For WM, recurrent excitation creates a bistability between 



low- and high-activity attractors, enabling to encode memory states. Cross-inhibition between 
populations that encode opposing outcomes leads to winner-take-all competition; recurrent excitation 
generates ramping activity through slow reverberation, which allows integration of evidence until one 
of the two attractors is reached37. Evidence for either of the two options is simulated by constant 
currents to the two PPC populations with one population receiving a slightly higher current. A 
decision is made, respectively, a WM state is assumed, when one of the two populations in PFC 
reaches the high-activity attractor, following sufficient integration of inputs from PPC. The robustness 
of a WM state is estimated by applying a current to the other population pair as a distractor. The 
ongoing WM state is robust, if the encoding population pair continues its persistent high-firing 
activity after the distractor current is removed again. For DM, a correct decision is formed when the 
PPC and PFC population pair that corresponds to the preferred option reaches the high-activity 
attractor state, while the other population pair is inhibited and in a low-firing state (see Supplementary 
Fig. 4a for exemplary time series of correct versus incorrect decisions). If the difference in evidence 
between the two options gets smaller, that is, if the associated evidence currents differ only slightly in 
amplitude, it gets increasingly likely that brain network background activity (in DM circuit modelled 
by noise) triggers incorrect decisions, because the wrong population is accidentally brought over the 
separatrix that separates the two basins of attraction of the respective attractors. 
 
How input amplitude modulates DM performance 
To study the mechanism how input amplitude switches between fast-but-faulty and precise-but-slow 
modes of decision-making (Fig. 5a, b) we analyzed the phase space of the DM circuit for different 
input amplitudes (Supplementary Fig. 4). Specifically, we compared phase portraits for five different 
PPC input amplitude offsets (ranging from -0.008 nA to 0.004 nA) and three time points of interest 
during which feedback from PFC increased until decisions were made. To simulate difficult decisions 
the PPC populations were stimulated with almost identical evidence currents, that is, the supplied 
evidence had a low contrast. Supplementary Fig. 4a shows exemplary firing rate time series for all 
four DM populations that only differed with respect to the five tested input amplitudes. In this 
example, the three trials with low input amplitude resulted in correct decisions, while the two trials 
with high input amplitude resulted in incorrect decisions. The accompanying phase portraits 
(Supplementary Fig. 4b) show how phase flow moves the state from the origin into the direction of 
the attractors. The two stable attractors correspond to the two possible outcomes of the decision-
making with one of the population pairs assuming a persistent high-firing state and the other one 
assuming a low-activity state due to cross-inhibition. In these experiments the PPC population A 
received the higher current, therefore, the attractor at the bottom right represents a correct decision 
and the attractor at the top left represents an incorrect decision. 
Analyzing the phase portraits (Supplementary Fig. 4b) shows that input amplitude had a considerable 
impact on the system's flow. For the DM circuit default configuration with an input offset of 0 nA 
(middle column) a separatrix divided the phase space diagonally, separating the basins of attraction of 
the two options into almost identical halves with a slight preference for option A, due to the slightly 
higher input current. In the top right corner, at the intersection of the separatrix and the two nullclines, 
a high-activity saddle was located that pulled the state diagonally, close to the separatrix, during the 
first phase of evidence integration (upper row). As feedback from PFC continued to increase the 
phase portrait reconfigured (middle row): the separatrix moved to the top left, enlarging the basin of 
attraction of the correct option, and increasing flow towards the correct option. Time to integrate 
evidence is limited in this scenario: the two high activity attractors enforce a decision after a certain 
amount of time, as the state of the system is inevitably pulled towards one attractor. The more time 
that had elapsed, and the farther away from the separatrix the state was already pulled, the less was it 
possible for the circuit to integrate further evidence before a decision was finally taken. Consequently, 
the system jumps towards a conclusion that was essentially formed during an early and narrow time 
window of the decision-making process, which increases the possibility for random rather than 
sensory inputs to trigger the decision. Therefore, unrelated background activity or noisy evidence 
during the initial phase of the decision-making had a decisive impact on the evolution of the system in 
later stages and determined the decision already early in the evidence integration process. The 
situation was considerably different for the decreased input amplitude because in this scenario the 
high-activity saddle was located closer towards the origin, and flow towards the attractors was 



reduced (2nd column). The decreased flow kept both populations in a low firing state close to the 
separatrix over a longer amount of time, which yielded more opportunity to take evidence into 
account that arrived later. For the scenario with the lowest input amplitude a bifurcation had split the 
saddle into two saddles and a new stable attractor had appeared (1st column). This created a third 
basin of attraction that kept the state of both PPC populations within a low-firing regime, which 
enabled to hold up the decision and to continue integrating evidence over a longer time. In this 
scenario, flow was more diagonally oriented towards the new low-activity attractor and only after 
reconfiguration of the phase portrait due to PFC feedback (middle row) the system's states moved on 
to converge towards one of the high activity attractors. Importantly, the more the input amplitude was 
reduced the more did the decision-making depend on recurrent excitation from PFC. While in the 
higher-amplitude scenarios (columns three to five) the ramping of PFC towards a decision attractor 
was driven by ramping in PPC this contrasts with the lower-amplitude scenarios (columns one and 
two) where PFC had ramped earlier and drove the ramping in PPC (compare how in the first and 
second panels the PFC population is first to increase towards the high firing rate, while in the third, 
fourth and fifth panels the PPC population increases first, followed by PFC). That is, in the lower-
amplitude scenario recurrent connectivity in the frontoparietal loop had reverberated and integrated 
evidence over a wider time scale, which led to a higher percentage of correct decisions. These 
dynamics suggest a cognitive mechanism that gives high-level prefrontal regions control to stall on 
decisions for extended amounts of time, creating the opportunity to integrate sufficient evidence for 
making more complex decisions. In contrast, in the higher-amplitude scenarios the PPC populations 
had the ability to ramp activity more autonomously, requiring less feedback from PFC, and providing 
reduced opportunity for such slowed integration of evidence. Rather, the system was poised to 
perform quick decisions, as there was high-velocity flow towards the high-activity fixed points. For 
very high input amplitudes (fifth column) a bifurcation split the saddle into three high activity fixed 
points: two saddles and a new attractor emerged, which led to rapid ramping of both PPC populations 
upon stimulation. This fast ramping enabled rapid decision-making: the system quickly jumped to a 
high activity state which enabled quick reaction to sensory inputs. As visible in the last column of 
Supplementary Fig. 4b, the emerging high-activity attractors can be interpreted as an undecided-but-
anticipating state that keeps both populations active to react to incoming stimuli more quickly, like 
tennis players performing small left and right movements to react more effectively to an impeding 
serve instead of staying static (see also Supplementary Movie 1 for phase space animations). 
 
How input correlation modulates DM performance 
We analyzed simulation results to better understand why correlations between synaptic inputs led to 
better DM performance (Fig. 5c, d). Dynamical systems often use noise to mimic the combined 
perpetual action of fluctuations that originate from variables that are not directly modelled by the 
deterministic equations of motion. In contrast to other types of noise, like observation noise that 
merely amounts to a blurring of signals, in stochastic dynamical systems noise acts as a driving force 
that drastically modifies the deterministic dynamics, leading to complex non-trivial effects that cannot 
be predicted by considering the deterministic part of the system alone85,86. Importantly, we found that 
noise correlations had a considerable impact on system dynamics that are not visible in traditional 
phase portraits. An important difference to deterministic systems is that the flow at each point in 
phase space is not necessarily confined towards a single direction. Rather, noise can potentially move 
the state also in other directions, depending on the properties of the noise process. While deterministic 
systems yield a unique gradient vector at each point in phase space, in stochastic systems the gradient 
vector's orientation and magnitude depend also on the noise term and can therefore vary when the 
gradient is computed repeatedly. Therefore, vector fields with simple arrows are not suitable to 
visualize the expected flow into different directions. We therefore extended traditional phase portraits 
using ellipsoid glyphs: the magnitude of flow in each direction is mapped onto the radius of the glyph 
at that orientation (Supplementary Fig. 5 and Supplementary Movie 1). For example, if the glyph is a 
circle, then the magnitude of flow is equal in every direction (isotropic), which indicates a strong 
impact of noise. Stretched ellipsoids, on the other hand, indicate that flow is stronger into the 
elongated directions (anisotropic), which indicates a strong deterministic component and a reduced 
impact of noise. To construct such stochastic phase portraits (SPPs) we computed the gradient at each 
visualized point 10,000 times for different noise inputs and then used Kernel Density Estimation to 



obtain a smoother estimate. The probability density at each location is then turned into a glyph by 
setting the radius for each orientation proportional to its corresponding probability density. We 
constructed SPPs for five different settings of noise correlation, keeping everything else fixed, and 
found considerable differences in their geometries that help explain why increased noise correlation 
led to higher accuracy but slower decisions. First, we looked at a global feature of this phase portrait: 
the average flow speed, that is, the average magnitude of the gradient vector for different noise 
correlations (Supplementary Fig. 7). We found that flow speed follows a U-shape with a minimum at 
intermediate correlation values (𝑟~0.65) and maxima for 𝑟 = 0 and 𝑟 = 1. This aligns with the shape 
of integration time for different noise correlations, which follows a reversed pattern that peaks for 
intermediate values and is lowest for zero and full correlation (Fig. 5d): flow speeds are highest for 
low and high noise correlations and therefore integration times are lowest at those points. When 
examining the geometries of the five SPPs, an important change of glyph shapes was visible: with 
increasing noise correlations, flow orientation distributions shifted from uniform to peaked 
(Supplementary Fig. 6). To quantify the change of glyph shapes, we computed the entropies of the 
orientation distributions. Glyphs in the low-correlation SPPs had a higher entropy compared to the 
high-correlation SPPs: the high-entropy circularly shaped glyphs indicate that there was a higher 
uncertainty regarding the gradient's direction, and a higher impact of random movements on evidence 
integration, compared to the oval glyphs. Also, for low correlations flow is predominantly oriented 
horizontally and vertically towards the high activity attractors. In contrast, for high correlations flow 
is more diagonally oriented, parallel to the separatrix, and tangential to the decision attractors. 
Crucially, high noise correlations yielded a more diagonal movement that kept the state closer to the 
separatrix, which kept both options open for continuous integration of evidence. Conversely, low 
noise correlations come with the tendency to move the state towards of one of the two attractors, 
which makes it increasingly unlikely to cross back over the separatrix again and to reverse an 
upcoming decision. This can be explained by comparing the effects of uncorrelated versus correlated 
noise. Increased correlation implies that moment-to-moment inputs are more similar in magnitude and 
sign, which means that the system moves in a more coherent (that is, diagonal) way in phase space. 
That is, with higher input correlation the activities of both PPC populations had a stronger tendency to 
jointly increase or to jointly decrease. The resulting diagonal movement allowed the system to stay 
closer to the separatrix, which allowed to continue integrating evidence. Conversely, uncorrelated 
inputs imply a stronger tendency to move along horizontal and vertical directions, leading the system 
away from the diagonal and deeper into one basin of attraction, making it more unlikely to integrate 
further evidence that could allow the system to again reach the other basin of attraction. This 
mechanism is especially relevant for hard decisions that are based on ambiguous evidence, where 
decision performance is close to the chance level and factors like noise or brain state play an 
increasingly important role for the decision outcome. In summary, the degree of correlation between 
inputs allowed to trade decision-making accuracy with decision-making speed. Furthermore, noise 
correlations had tremendous impact on system dynamics that were not apparent with conventional 
phase portraits but became visible in SPPs, which may therefore be relevant for a wide class of 
models that make use of noise.  
 
How FIC modulates DM 
To study the effect of E/I-ratios on DM in isolation we coupled the DM circuit with the two-node 
model that we used before to create Fig. 4c-j (Supplementary Fig. 9). We found that only when FIC 
was active (black dots) that the fraction of correct decisions and the time to decision both increased 
when E/I-ratios were increased (Supplementary Fig. 9a, b). Conversely, when FIC was inactive (blue 
dots), the fraction of correct decisions and the time to decision both decreased when E/I-ratios were 
increased. Consequently, only when FIC was active the empirical direct relationships between DM 
and FC (Fig. 4e, f) were reproduced (Supplementary Fig. 9c, d). Summarizing, the empirically 
observed relationship between DM performance and FC only emerged when FIC was active. 
  



Supplementary Figures 
 

 
Supplementary Fig. 1 | Correlations between group-average cognitive scores and mean FC for different groupings (three to 120) for 
all N=650 models. a Correlations between g-factor and mean FC. b Correlations between PMAT24_A_RTCR and mean FC. c Correlations 
between PMAT24AqXX_RTCR and mean FC. Each dot in panel c represents the correlation between mean FC and PMAT24AqXX_RTCR 
for each of the 24 PMAT questions for the respective grouping. Obtained p-values of two-sided Pearson’s correlation test: yellow dots: p < 
0.05, green dots: p < 0.01; including only p-values that remained significant after controlling for multiple comparisons using the Benjamini-
Hochberg procedure with a False Discovery Rate of 0.1. 

 

 
Supplementary Fig. 2 | Correlations between group-average PMAT24_A_RTCR and whole-brain input amplitude, respectively 
input correlation for different groupings (three to 120) for all N=650 models. a PMAT24_A_RTCR versus input amplitude. b 
PMAT24_A_RTCR versus input correlation. Obtained p-values of two-sided Pearson’s correlation test: yellow dots: p < 0.05, green dots: p 
< 0.01; including only p-values that remained significant after controlling for multiple comparisons using the Benjamini-Hochberg 
procedure with a False Discovery Rate of 0.1. 
 

 
Supplementary Fig. 3 | Empirical FC correlates with simulated synaptic currents on a single-subject level for all N=650 models. a 
Mean whole-brain synaptic current amplitudes decreased with mean FC (r=-0.76, 𝑝 = 2.0 × 10!"#$). b Mean whole-brain correlation of 
synaptic currents increased with mean FC (r=0.92, 𝑝 = 2.0 × 10!#%&). Obtained p-values remained significant after controlling for multiple 
comparisons using the Benjamini-Hochberg procedure with a False Discovery Rate of 0.1. 

 

 



 
Supplementary Fig. 4 | Input amplitude switches between fast-but-faulty and precise-but-slow DM. a exemplary firing rate time series 
of all four PPC and PFC populations for five simulations that only differed in input amplitude. In the example, correct decisions were made 
for the three smaller input offsets and wrong decisions were made for the two larger offsets (titles indicate offset and time until decision). 
Arrows indicate time points of interest related to three different levels of feedback from PFC. b Phase space plots for the three TOIs (from 
top to bottom) and the five input offset scenarios (from left to right, values as in a). Titles indicate percent correct decisions and average 
decision time for each offset over 1000 simulations with different noise time series. X-axes: synaptic activity of PPC population A (correct 
decision); y-axes: synaptic activity of PPC population B (wrong decision). Phase space background colours denote the speed and arrows the 
direction of flow. Blue and green lines depict nullclines of A and B, respectively. Circles with black faces indicate attractors, circles with 
white faces indicate saddles. Brown lines show separatrices. The semi-transparent green and red lines depict trajectories around the time 
points of interest that ended with correct and incorrect decisions in the 1000 test simulations. 
 

 
Supplementary Fig. 5 | Stochastic phase portraits for five different correlations of input noise to the populations A and B in the PPC 
module 𝑰𝒏𝒐𝒊𝒔𝒆,𝑨𝑷𝑷𝑪  and 𝑰𝒏𝒐𝒊𝒔𝒆,𝑩𝑷𝑷𝑪  (Eq. 10). Due to noise the flow at each location is not confined to the single direction and magnitude given by 
the deterministic component of the dynamic system. Stochastic flow is visualized using ellipsoid glyphs where the radius at each orientation 
is proportional to the magnitude of flow in this direction. Circular glyphs indicate isotropic flow while ovals indicate anisotropic flow. 
Glyphs were generated by computing 10000 gradients of the model's differential equations at each location for five noise correlation settings 
(indicated in titles, along with average decision-making accuracies and integration times). Colors indicate the entropy of the underlying 

a

b



distributions with a higher entropy indicating more isotropic flow. With increasing noise correlations, the shape of the flow distributions gets 
less uniform and more peaked, which leads to increasingly diagonal flow (note how entropy, especially along the diagonal, increases from 
left to right). Diagonal flow prolongs the winner-take-all race allowing to integrate more evidence. Conversely, the prominent horizontal and 
vertical flows for lower correlations pull the system towards one of the two attractors, which makes it increasingly unlikely that the state can 
move back over the separatrix again. 

 

Supplementary Fig. 6 | Effect of input amplitude on WM in the isolated DM circuit. a Bifurcation diagram showing robustness of WM 
as a function of strength of recurrent structure JS (recurrent excitation minus local inhibition) and stimulus strength Iapp for three different 
mean input amplitudes. Red: WM was not distracted by novel stimuli; blue: novel stimuli were strong enough to disrupt WM; gray: stimulus 
was too weak to induce WM. Bifurcations shifted depending on mean input amplitude. b Decreased mean input amplitude increased the 
threshold for WM to be overwritten, while increased input decreased this threshold. c Decreased mean input amplitude increased the 
threshold for induction of memory states, while increased inputs made it easier for stimuli to trigger new WM states. 

 

Supplementary Fig. 7 | Average flow speed for different noise correlations in Supplementary Fig. 5. 
 

a

b c



 
Supplementary Fig. 8 | Model Validation. Subjects were divided into six groups according to their PMAT24_A_RTCR to test whether 
two key model predictions related to DM performance (amplitude of synaptic inputs decreases and correlation increases for increasing 
PMAT24_A_RTCR) are robustly reproduced over different fitting runs. For each group, group-average SC and FC were computed and the 
corresponding model was fitted 100 times using each time a different random noise generator seed and different initial conditions for the six 
groups. In all 100 tests input correlation monotonically increased (left panel) and input amplitudes monotonically decreased (right panel) 
from low to high PMAT24_A_RTCR, which confirmed that these key model predictions are robustly produced independent of the fitting 
run. 

 

 
Supplementary Fig. 9 | DM performance depends on the E/I-ratios of synaptic inputs, enabling to trade decision-making accuracy 
with speed. With active FIC (active FIC shown in black, inactive FIC in blue) the relationship between FC and DM performance reflected 
the empirically observed relationship (higher FC associated with longer time to decision, Fig. 1f-h). a E/I-ratio versus percent correct 
decisions. b E/I-ratio versus time to decision. c Percent correct decisions versus FC. d Time to decision versus FC. Data are presented as 
mean values +/- SD derived over 1000 simulations with different random number generator seeds. 
 
 



 
Supplementary Fig. 10 | Empirical versus simulated dynamics. a Exemplary empirical (upper panel) and simulated time series (lower 
panel). b Average power spectral density over six randomly selected subjects (Empirical) in comparison to the average PSD of the six 
groups from the reproduction test (Simulated, please see section Model validation). c Average autocorrelation of the time series data from 
panel b. 
 


