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Supplementary Discussion 

Analytical solution of SOC storage with the microbial model 

Organic carbon dynamics represented by the microbial model can be expressed in a 

matrix equation1: 

 

𝑑𝑿(𝑡)
𝑑𝑡 = 𝑩𝐼(𝑡) + 𝑨𝝃(𝑡)𝑲𝑿(𝑡) + 𝑽(𝑡)𝑿(𝑡)								(𝑆1) 

 

We have discussed in the main text that Equation (S1) can be separated into two equations: 

one for litter carbon cycle and the other for mineral SOC cycle, because there is no carbon 

transfer from mineral soil carbon pools to litter carbon pools (i.e., 𝒂!"##$%	'((!,*("!	'((! = 𝟎 in 

the A matrix). Since A, K, 𝝃(𝑡), and V are all independent from litter carbon pool states (i.e., 

X), the analytical solution of litter carbon stock at the steady state (SS) can be calculated as: 

 

𝑿!"##$%,++ = 3𝑨!"##$%𝝃(𝑡)!,##$%44444444444𝑲!"##$% + 𝑽(𝑡)!,##$%4444444444445
-𝟏
3−𝑩!"##$%𝑰(𝑡)!,##$%444444444445								(𝑆2) 

 

For the mineral soil part, the related K matrix is carbon pool state dependent 

(Equation 5 of the main text). The steady-state solution for the mineral soil organic carbon 

pools cannot be readily obtained by an equation similar with Equation (S2). Thus, we 

transformed the matrix equation for the mineral soil carbon pools into four differential 

equations for each of the 20 soil layers: 

	
𝑑𝑥/01
𝑑𝑡 = 𝑢/01 +

𝑣234,5$6(2𝜉𝑥789𝑥2+01
𝐾2,5$6(2𝜉 + 𝑥2+01

+ 𝑎/01,:;1𝑘:;1𝜉𝑥:;1 + 𝑘789𝜉𝑥789

−
𝑣234,3**"2𝜉𝑥:;1𝑥/01
𝐾2,3**"2𝜉 + 𝑥/01

								(𝑆3) 

𝑑𝑥:;1
𝑑𝑡 = 𝑢:;1 + 𝜂/01

𝑣234,3**"2𝜉𝑥:;1𝑥/01
𝐾2,3**"2𝜉 + 𝑥/01

− 𝑘:;1𝜉𝑥:;1 								(𝑆4) 

𝑑𝑥789
𝑑𝑡 = 𝑎789,:;1𝑘:;1𝜉𝑥:;1 − 𝑘789𝜉𝑥789								(𝑆5) 

𝑑𝑥2+01
𝑑𝑡 = 𝑢2+01 + 𝑎2+01,:;1𝑘:;1𝜉𝑥:;1 −

𝑣234,5$6(2𝜉𝑥789𝑥2+01
𝐾2,5$6(2𝜉 + 𝑥2+01

								(𝑆6) 

 



 4 

Where DOC, MIC, ENZ, mSOC are the four soil carbon pools for dissolved organic carbon, 

microbial organic carbon, enzyme organic carbon, and mineral-associated soil organic 

carbon, respectively. 𝑢+! is the carbon input from litter pools (𝐿<) to a mineral soil carbon 

pool (𝑆", see Extended Data Fig. 3 for corresponding carbon flows for each mineral soil 

carbon pool) and can be expressed as ∑ G𝑎+!,="𝑘="𝜉𝑥="H=" . 𝜂/01  is the microbial carbon use 

efficiency for DOC and equals 𝑎:;1,/01  in the A matrix (see Equation 6 in the main text).  

 

At steady state, equations (S3) to (S6) equal 0 (i.e., 54
5#
= 0). From (S4), we have: 

 

𝑘:;1𝜉𝑥:;1 = 𝑢:;1 + 𝜂/01
𝑣234,3**"2𝜉𝑥:;1𝑥/01
𝐾2,3**"2𝜉 + 𝑥/01

								(𝑆7) 

 

(S3) + (S6) gives: 

 

𝑢2+01 + 𝑢/01 + K𝑎/01,:;1 + 𝑎2+01,:;1L𝑘:;1𝜉𝑥:;1 + 𝑘789𝜉𝑥789

=
𝑣234,3**"2𝜉𝑥:;1𝑥/01
𝐾2,3**"2𝜉 + 𝑥/01

								(𝑆8) 

 

Equation (S5) at the steady state gives: 

 

𝑎789,:;1𝑘:;1𝜉𝑥:;1 = 𝑘789𝜉𝑥789								(𝑆9) 

 

Substitute (S9) into (S8) and then substitute (S8) into the right part of (S7): 

 

𝑘:;1𝜉𝑥:;1 = 𝑢:;1 + 𝜂/013𝑢2+01 + 𝑢/01 + K𝑎/01,:;1 + 𝑎2+01,:;1L𝑘:;1𝜉𝑥:;1 +

𝑘789𝜉𝑥7895 = 𝑢:;1 + 𝜂/01(𝑢2+01 + 𝑢/01 + 𝑘:;1𝜉𝑥:;1)        (S10) 

 

Thus, we have MIC at steady state: 

 

𝑥:;1,++ =
𝑢:;1 + 𝜂/01(𝑢2+01 + 𝑢/01)

(1 − 𝜂/01)𝑘:;1𝜉
								(𝑆11) 

 

From (S9), we have ENZ at the steady state: 
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𝑥789,++ =
𝑎789,:;1𝑘:;1𝑥:;1,++

𝑘789
								(𝑆12) 

 

At the steady state, Equation (S6) gives the steady state solution for mSOC: 

 

𝑥2+01,++ =
K𝑢2+01 + 𝑎2+01,:;1𝑘:;1𝜉𝑥:;1,++L𝐾2,5$6(2𝜉

(𝑣234,5$6(2𝜉𝑥789,++ − 𝑎2+01,:;1𝑘:;1𝜉𝑥:;1,++ − 𝑢2+01)
								(𝑆13) 

 

Similarly, Equation (S3) at steady state gives the steady state solution for DOC: 

 

𝑥/01,++ =
𝑘:;1𝜉𝐾2,3**"2𝜉𝑥:;1,++ − 𝑢:;1𝐾2,3**"2𝜉
(𝜂/01𝑣234,3**"2 − 𝑘:;1)𝜉𝑥:;1,++ + 𝑢:;1

								(𝑆14) 

 

Putting Equations (S11 - S14) together, the analytical solution for the mineral soil organic 

carbon pools is: 

 

𝑿*("!,++ = O

𝒙/01,++
𝒙:;1,++
𝒙789,++
𝒙2+01,++

Q =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝒌:;1𝝃𝐾2,3**"2𝝃𝒙:;1,++ − 𝒖:;1𝐾2,3**"2𝝃
(𝜂/01𝑣234,3**"2 − 𝒌:;1)𝝃𝒙:;1,++ + 𝒖:;1

𝒖:;1 + 𝜂/01(𝒖2+01 + 𝒖/01)
(1 − 𝜂/01)𝒌:;1𝝃

𝒂789,:;1𝒌:;1𝒙:;1,++
𝒌789

K𝒖2+01 + 𝒂2+01,:;1𝒌:;1𝝃𝒙:;1,++L𝐾2,5$6(2𝝃
(𝑣234,5$6(2𝝃𝒙789,++ − 𝒂2+01,:;1𝒌:;1𝝃𝒙:;1,++ − 𝒖2+01)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

								(𝑆15) 

 

where all the elements with bold font indicate vectors of the corresponding variables or 

parameters for the 20 soil layers. All the multiplications shown in Equation (S15) are 

element-wise operations.  
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Supplementary Tables and Figures 

Supplementary Table 1 | Summary of CUE and SOC data used in the meta-analysis. 

 
Site 
ID Longitude Latitude MAT (℃) Depth (cm) CUE Microbial biomass 

(mg/kg) SOC (g/kg) Method Source 

1 118.7083 33.9000 13.4 10 0.1400 256 15.82 

18O 

ref2 

2 125.3000 51.2000 -2.4 5 0.5500 2070 69.7 

ref3 

3 121.8000 48.7000 -1 5 0.3700 1490 49.2 

4 128.8000 47.2000 0 5 0.4200 2380 108.7 

5 127.5000 45.3000 2.8 5 0.1000 990 40.7 

6 127.6000 42.7000 3.6 5 0.6300 3780 131.5 

7 124.9000 41.9000 4.7 5 0.2600 1210 53.1 

8 115.4000 40.0000 5 5 0.4300 760 45.2 

9 117.1000 36.3000 4.9 5 0.3400 440 16.9 

10 107.1000 31.9000 13.1 5 0.1700 400 15.6 

11 114.0000 32.1000 15.2 5 0.0800 170 32.3 

12 114.0000 32.1000 16 5 0.2900 580 16.7 

13 118.0000 26.8000 20 5 0.1000 480 29.7 

14 109.6000 26.9000 16.5 5 0.1600 600 29.4 

15 112.5000 23.1000 20.9 5 0.1600 830 26.8 

16 108.9000 18.7000 19.8 5 0.2000 430 24.7 

17 108.8000 18.7000 19.8 5 0.0800 130 18.3 

18 113.8500 35.1500 13.9 7.5 0.0400  9.37 

13C ref4 

18 113.8500 35.1500 13.9 7.5 0.0400  11.12 

18 113.8500 35.1500 13.9 7.5 0.0505  13.52 

19 120.5000 31.5000 16 7.5 0.0467  27.94 

19 120.5000 31.5000 16 7.5 0.0427  30.47 

19 120.5000 31.5000 16 7.5 0.0517  33.63 

20 11.6222 49.9706 8.4 1.5 0.2290 748 33.7 

18O 

ref5 

20 11.6222 49.9706 8.4 5 0.4000 478 24.6 

20 11.6222 49.9706 8.4 12.5 0.2190 204 16.3 

20 11.6222 49.9706 8.4 37.5 0.0782 40 5.9 

21 11.5825 49.9756 8.1 1.5 0.2190 109 26.6 

21 11.5825 49.9756 8.1 5 0.2490 45 6.9 

21 11.5825 49.9756 8.1 12.5 0.3290 33 3.3 

21 11.5825 49.9756 8.1 37.5 0.3090 17 1.5 

22 11.5886 49.9722 8.2 1.5 0.1890 69 11.7 

22 11.5886 49.9722 8.2 5 0.2090 35 6.6 

22 11.5886 49.9722 8.2 12.5 0.2090 28 4.8 

22 11.5886 49.9722 8.2 37.5 0.1990 29 3.9 

23 14.1028 49.4936 7 3.5 0.3090 1177 38.4 

ref6 

23 14.1028 49.4936 7 3.5 0.3200 1052 33.7 

23 14.1028 49.4936 7 3.5 0.4510 1368 43.9 

23 14.1028 49.4936 7 3.5 0.4110 902 33.2 

23 14.1028 49.4936 7 3.5 0.4300 1064 34.4 

24 11.0728 51.5669 6.5 7.5 0.2845  42 
ref7 

25 11.9019 52.7808 9 7.5 0.3055  13 

26 116.2833 42.0333 2.1 7.5 0.5004  16.94 

13C 

ref8 

27 9.9094 51.3808 10.5 7.5 0.3300  11.4 
ref9 

28 77.5664 13.0900 24 7.5 0.4200  8.9 

29 14.1000 47.4833 7.2 7.5 0.3598 292 21.8 

ref10 
29 14.1000 47.4833 7.2 7.5 0.4995 647 26.7 

29 14.1000 47.4833 7.2 7.5 0.6480 581 49.9 

30 14.0667 47.5000 7.2 7.5 0.4091 1441 47 
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30 14.0667 47.5000 7.2 7.5 0.3895 1809 47.9 

30 14.0667 47.5000 7.2 7.5 0.2498 890 36.8 

31 -21.1858 64.0003 11 5 0.2455 1228 60.98 

18O 

ref11 

31 -21.1858 64.0003 11.5 5 0.2579 1061 59.16 

31 -21.1858 64.0003 12.5 5 0.2006 627 36.5 

31 -21.1858 64.0003 14 5 0.2436 838 45.17 

31 -21.1858 64.0003 17 5 0.2292 850 37.34 

32 112.3000 28.1167 17.2 7.5 0.4775 945 19.73 

ref12 

32 112.3000 28.1167 17.2 7.5 0.4925 1137 20.34 

32 112.3000 28.1167 17.2 7.5 0.4795 1302 24.39 

32 112.3000 28.1167 17.2 7.5 0.4855 1313 28.77 

32 112.3000 28.1167 17.2 7.5 0.4650 1808 33.09 

33 -93.2100 45.4300 6 7.5 0.2102  9.4 

ref13 

33 -93.2100 45.4300 6 7.5 0.2397  15.7 

33 -93.2100 45.4300 6 7.5 0.2923  9 

33 -93.2100 45.4300 6 7.5 0.2593  11 

33 -93.2100 45.4300 6 22.5 0.2973  5.2 

33 -93.2100 45.4300 6 22.5 0.3612  10.4 

33 -93.2100 45.4300 6 22.5 0.3160  4.4 

33 -93.2100 45.4300 6 22.5 0.1752  5.8 

34 -93.3900 41.7900 9 7.5 0.3330  7.2 

34 -93.3900 41.7900 9 7.5 0.3948  8.2 

34 -93.3900 41.7900 9 7.5 0.4079  6.9 

34 -93.3900 41.7900 9 7.5 0.4172  7.4 

34 -93.3900 41.7900 9 22.5 0.4649  4.1 

34 -93.3900 41.7900 9 22.5 0.3503  5.1 

34 -93.3900 41.7900 9 22.5 0.3501  4 

34 -93.3900 41.7900 9 22.5 0.4217  4.1 

35 -0.6400 51.4100 10 7.5 0.5630  24.3 

35 -0.6400 51.4100 10 7.5 0.5174  28.7 

35 -0.6400 51.4100 10 7.5 0.4939  26.9 

35 -0.6400 51.4100 10 7.5 0.4516  24.9 

35 -0.6400 51.4100 10 22.5 0.5056  10.5 

35 -0.6400 51.4100 10 22.5 0.4624  12.8 

35 -0.6400 51.4100 10 22.5 0.4358  11.6 

35 -0.6400 51.4100 10 22.5 0.4305  10.1 

36 -0.6400 51.4100 10 7.5 0.4420  36.7 

36 -0.6400 51.4100 10 7.5 0.4837  36.7 

36 -0.6400 51.4100 10 7.5 0.4742  36.5 

36 -0.6400 51.4100 10 7.5 0.4515  37 

36 -0.6400 51.4100 10 22.5 0.5321  24.4 

36 -0.6400 51.4100 10 22.5 0.5822  24.5 

36 -0.6400 51.4100 10 22.5 0.6202  25.6 

36 -0.6400 51.4100 10 22.5 0.5299  23.9 

37 30.4000 -29.6700 18 7.5 0.2791  42 

37 30.4000 -29.6700 18 7.5 0.2504  42.5 

37 30.4000 -29.6700 18 7.5 0.2779  44.4 

37 30.4000 -29.6700 18 7.5 0.2407  45.7 

37 30.4000 -29.6700 18 22.5 0.3435  37.5 

37 30.4000 -29.6700 18 22.5 0.3635  32 

37 30.4000 -29.6700 18 22.5 0.3974  34.8 

37 30.4000 -29.6700 18 22.5 0.3593  36.4 

38 30.7200 -29.8100 18 7.5 0.4848  49.1 

38 30.7200 -29.8100 18 7.5 0.5516  51.1 

38 30.7200 -29.8100 18 7.5 0.4151  51.7 
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38 30.7200 -29.8100 18 7.5 0.4746  51.7 

39 112.1000 28.3667 17 5 0.1316 740 18.36 

ref14 

39 112.1000 28.3667 17 15 0.0760 352 15.77 

39 112.1000 28.3667 17 25 0.0660 124 6.44 

39 112.1000 28.3667 17 5 0.1127 800 17.46 

39 112.1000 28.3667 17 15 0.1480 528 16.11 

39 112.1000 28.3667 17 25 0.1850 222 9.39 

39 112.1000 28.3667 17 5 0.1384 970 25.43 

39 112.1000 28.3667 17 15 0.1540 870 24.98 

39 112.1000 28.3667 17 25 0.2285 446 12.09 

40 -123.8103 39.3753 10.8 10 0.4900  100 

14C ref15 

40 -123.8103 39.3753 10.8 6.5 0.4600  140 

40 -123.8103 39.3753 10.8 1.5 0.6100  67.5 

40 -123.8103 39.3753 10.8 1.5 0.5100  54 

40 -123.8103 39.3753 10.8 2 0.6700  43 

41 127.6300 42.7000 4 5 0.1702 1876 33.91 

18O 

ref16 41 127.6300 42.7000 4 5 0.2101 1236 39.44 

41 127.6300 42.7000 4 5 0.3900 1422 49.73 

42 10.4195 52.2840 9.3 5 0.5900  16.6 

ref17 

42 10.4195 52.2840 9.3 5 0.2400  12.3 

43 9.9962 52.2009 9.3 5 0.2400  43.3 

43 9.9962 52.2009 9.3 5 0.2800  22.7 

44 10.6065 52.3304 9.2 5 0.1800  24.2 

44 10.6065 52.3304 9.2 5 0.1500  19 

45 10.5238 52.3882 9.1 5 0.7900  64.1 

45 10.5238 52.3882 9.1 5 0.0900  18.6 

46 10.4354 52.2998 9.2 5 0.4500  13.7 

46 10.4354 52.2998 9.2 5 0.4200  7.7 
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Supplementary Table 2 | Unstandardized coefficients of relationships between CUE and 

microbial and non-microbial biomass in the mixed-effects model with meta-analysis 

data. CUE, depth and mean annual temperature (MAT) were set as the fixed effects to 

microbial and non-microbial biomass carbon content (i.e., total SOC minus microbial 

biomass carbon). The study source was set as the random effect. We assumed random 

intercepts in all regressions. The total observation size 𝑛*32'!$ = 62; the random effects size 

𝑛*#>5? = 9.  

  Intercept CUE Depth MAT 

𝑀𝑖𝑐𝑟𝑜𝑏𝑖𝑎𝑙	𝑏𝑖𝑜𝑚𝑎𝑠𝑠~𝐶𝑈𝐸 + 𝐷𝑒𝑝𝑡ℎ + 𝑀𝐴𝑇 + (1|𝑆𝑡𝑢𝑑𝑦	𝑆𝑜𝑢𝑟𝑐𝑒) 
variance explained by mixed model: 63% 

Fixed Effects 

Estimates 0.79 2.01 -0.011 -0.038 

Std. Error 0.32 0.58 0.0080 0.014 

t value 2.48 3.47 -1.37 -2.66 

P 0.018 0.0011 0.18 0.010 

Random Effects Standard 
Deviation 0.34 NA NA NA 

𝑁𝑜𝑛𝑚𝑖𝑐𝑟𝑜𝑏𝑖𝑎𝑙	𝑏𝑖𝑜𝑚𝑎𝑠𝑠~𝐶𝑈𝐸 + 𝐷𝑒𝑝𝑡ℎ + 𝑀𝐴𝑇 + (1|𝑆𝑡𝑢𝑑𝑦	𝑆𝑜𝑢𝑟𝑐𝑒) 
variance explained by mixed model: 67% 

Fixed Effects 

Estimates 31.68 60.56 -0.45 -1.42 

Std. Error 10.16 18.21 0.25 0.45 

t value 3.12 3.33 -1.80 -3.14 

P 0.0034 0.0016 0.077 0.0027 

Random Effects Standard 
Deviation 11.39 NA NA NA 
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Supplementary Table 3 | Unstandardized coefficients of the CUE-SOC relationship 

(considering fixed effects from other covariates) in the mixed-effects model with 

microbial model data assimilation results. CUE and one other environmental variable (i.e., 

bulk density, citation exchange capacity, clay content, or NPP) were set as the fixed effects to 

logarithmic SOC content. Climate types that soil profiles belong to were set as the random 

effect. We applied a mixed-effects model that considered random intercepts with random 

slopes to test CUE-SOC relationship (i.e., log10(SOC)~CUE + Selected	Variable +

(CUE|Climate	Types)). The random effects size n@ABCDEF = 12. The total observation size 

𝑛(G* = 56,270. The observation size is different from the total soil profile size (i.e., 57,267) 

because the environmental variable or climate type information is not available for some 

profiles. 

 

  Intercept CUE Variable 

log	(𝑆𝑂𝐶)~𝐶𝑈𝐸 + log	(𝐵𝑢𝑙𝑘	𝐷𝑒𝑛𝑠𝑖𝑡𝑦) + (𝐶𝑈𝐸|𝐶𝑙𝑖𝑚𝑎𝑡𝑒	𝑇𝑦𝑝𝑒𝑠), explained variation = 42% 

Fixed Effects 

Estimates 5.92 0.95 -1.61 

Std. Error 0.052 0.081 0.011 

t value 114.62 11.61 -147.75 

P <0.0001 <0.0001 <0.0001 

Random Effects Standard Deviation 0.13 0.28 NA 

log	(𝑆𝑂𝐶)~𝐶𝑈𝐸 + 𝐶𝐸𝐶 + (𝐶𝑈𝐸|𝐶𝑙𝑖𝑚𝑎𝑡𝑒	𝑇𝑦𝑝𝑒𝑠), explained variation = 31% 

Fixed Effects 

Estimates 0.64 1.00 0.014 

Std. Error 0.048 0.087 0.00011 

t value 13.33 11.52 122.41 

P <0.0001 <0.0001 <0.0001 

Random Effects Standard Deviation 0.17 0.30 NA 

log(𝑆𝑂𝐶)~𝐶𝑈𝐸 + 𝐶𝑙𝑎𝑦	𝐶𝑜𝑛𝑡𝑒𝑛𝑡 + (𝐶𝑈𝐸|𝐶𝑙𝑖𝑚𝑎𝑡𝑒	𝑇𝑦𝑝𝑒𝑠), explained variation = 18% 

Fixed Effects 

Estimates 0.76 1.11 0.0067 

Std. Error 0.056 0.13 0.00013 

t value 13.50 8.71 52.83 

P <0.0001 <0.0001 <0.0001 

Random Effects Standard Deviation 0.19 0.44 NA 

log(𝑆𝑂𝐶)~𝐶𝑈𝐸 + log	(𝑁𝑃𝑃) + (𝐶𝑈𝐸|𝐶𝑙𝑖𝑚𝑎𝑡𝑒	𝑇𝑦𝑝𝑒𝑠), explained variation = 18% 

Fixed Effects 

Estimates 0.84 1.11 0.029 

Std. Error 0.057 0.13 0.0054 

t value 14.64 8.78 5.31 

P <0.0001 <0.0001 <0.0001 

Random Effects Standard Deviation 0.19 0.43 NA 
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Supplementary Table 4 | Unstandardized coefficients of relationships between CUE and 

microbial and non-microbial biomass in the mixed-effects model with microbial model 

data assimilation results. CUE was set as the fixed effects to microbial and non-microbial 

biomass (i.e., total SOC minus microbial biomass carbon) carbon content. Climate types that 

soil profiles belong to were set as the random effect. We assumed random intercepts in all 

regressions. The total observation size 𝑛(G* = 56,270, the random effects size n@ABCDEF = 12. 

The observation size is different from the soil profile size used in microbial model data 

assimilation (i.e., 57,267) because the climate type information is not available for some 

profiles. 

 

  Intercept CUE 

𝑀𝑖𝑐𝑟𝑜𝑏𝑖𝑎𝑙	𝑏𝑖𝑜𝑚𝑎𝑠𝑠~𝐶𝑈𝐸 + (1|𝐶𝑙𝑖𝑚𝑎𝑡𝑒	𝑇𝑦𝑝𝑒) 
variance explained by mixed model: 29% 

Fixed Effects 

Estimates -0.95 10.07 

Std. Error 0.38 0.096 

t value -2.51 104.44 

P 0.029 <0.0001 

Random Effects Standard Deviation 1.31 NA 

𝑁𝑜𝑛𝑚𝑖𝑐𝑟𝑜𝑏𝑖𝑎𝑙	𝑏𝑖𝑜𝑚𝑎𝑠𝑠~𝐶𝑈𝐸 + (1|𝐶𝑙𝑖𝑚𝑎𝑡𝑒	𝑇𝑦𝑝𝑒) 
variance explained by mixed model: 17% 

Fixed Effects 

Estimates 4.23 64.15 

Std. Error 3.51 0.86 

t value 1.21 74.96 

P 0.25 <0.0001 

Random Effects Standard Deviation 12.12 NA 
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Supplementary Table 5 | Relationship between PRODA-retrieved CUE values in these 

pixels where CUE was measured in the meta-analysis and the measured values. CUE 

predicted by the PRODA approach (𝐶𝑈𝐸'%(53) was set as the fixed effects to measurements 

in the meta-analysis (𝐶𝑈𝐸2$#3). The study source was set as the random effect. We assumed 

random intercepts in the regression. The total observation size 𝑛*32'!$ = 132; the random 

effects size 𝑛*#>5? = 16. The difference of the regression slope between 𝐶𝑈𝐸2$#3 and 

𝐶𝑈𝐸'%(53 from 1 was tested by offsetting 𝐶𝑈𝐸'%(53 in the same mix-effects model.  

 

  Intercept 𝐶𝑈𝐸!"#$% 

𝐶𝑈𝐸&'(%~𝐶𝑈𝐸!"#$% + (1|𝑆𝑡𝑢𝑑𝑦	𝑆𝑜𝑢𝑟𝑐𝑒	), R2 = 0.54 

Fixed Effects 

Estimates 0.14 0.66 

Std. Error 0.068 0.22 

t value 1.99 3.01 

P 0.050 0.0032 

Random Effects Standard Deviation 0.11 NA 

𝐶𝑈𝐸&'(%~𝐶𝑈𝐸!"#$% + 1 ∗ 𝐶𝑈𝐸!"#$% + (1|𝑆𝑡𝑢𝑑𝑦	𝑆𝑜𝑢𝑟𝑐𝑒	) 

Fixed Effects 

Estimates 0.14 -0.34 

Std. Error 0.068 0.22 

t value 1.99 -1.56 

P 0.050 0.12 

Random Effects Standard Deviation 0.11 NA 
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Supplementary Table 6 | Parameters in the vertically-resolved microbial model that 

were optimized in the profile-level data assimilation.  

 

 

  

No. Name Related 
components Description Conventional 

values Unit Prior range 

1 𝜂!"# 

Microbial carbon use 
efficiency 

Microbial CUE for DOC assimilation 0.6 unitless [0.01 0.7] 

2 𝜂$% Microbial CUE for metabolic litter assimilation 0.5 unitless [0.4, 0.9] 

3 𝜂#%&%% Microbial CUE for cellulose/lignin litter assimilation 0.5 unitless [0, 0.4] 

4 𝐾',)**+' Concentration of DOC for half max DOC assimilation 
reaction  4×102 gCm-3 [300 3000] 

5 𝜏)**+' Inverse of 𝑣'),,)**+' in DOC assimilation 0.011 year [0.03 0.001] 

6 𝜏-./0' 

Decomposition 
 

Inverse of 𝑣'),,-./0' in SOC decomposition 1.1×10-4, 4.6×10-
5, 2×10-7 year [0 3´10-4] 

7 𝐾',-./0' Concentration of SOC for half max SOC 
decomposition reaction 6×105 gCm-3 [105 106] 

8 𝜏123,450- Turnover time for enzyme production 22 year [15 30] 

9 𝜏$% Turnover time of metabolic litter 0.0541 year [0 0.1] 

10 𝜏#6! Turnover time of coarse woody debris 3.33 year [1 6] 

11 𝜏#%&%% Turnover time of cellulose and lignin litter 0.2041 year [0.1 0.3] 

12 𝜏123,-./)7 Turnover time for enzyme decay 0.11 year [0.001 1] 

13 𝜏$8# Turnover time for microbial mortality 0.57 year [0 2] 

14 𝑎9"#,$8# 

Carbon transfer 
fraction 

Fraction of microbial necromass that is stabilized as 
SOC 0.5 year [0 1] 

15 𝑎#%,#6! Fraction of decomposed CWD that goes to cellulose 
litter 0.75 unitless [0.5, 1] 

16 𝑎!"#,$% 
Fraction of total decomposed metabolic litter that 

goes to DOC 0.05 unitless [0 0.1] 

17 𝑎!"#,#% 
Fraction of total decomposed cellulose litter that 

goes to DOC 0.15 unitless [0.05 0.3] 

18 𝑎9"#,%% 
Fraction of total decomposed cellulose litter that 

goes to SOC 0.8 unitless [0.6 0.95] 

19 w-scaling 
Environmental 
modification 

Scaling factor to soil water scalar 1 unitless [0 5] 

20 q10 Temperature sensitivity 1.5 unitless [1.2 3] 

21 cryo 
Vertical transport 

Cryoturbation rate 0.0005 m2yr-1 [3´10-5 16´10-4] 

22 diffus Bioturbation rate 0.0001 m2yr-1 [3´10-5 5´10-4] 

23 b Carbon input 
allocation 

Parameter controlling vertical distribution of carbon 
input to litter pools PFT dependent unitless [0.5 1] 
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Supplementary Table 7 | Unstandardized coefficients of the CUE-SOC relationship in 

the mixed-effects model with different isotope-derived CUE data in the meta-analysis. 

CUE, depth and mean annual temperature (MAT) were set as the fixed effects to SOC 

content. The study source was set as the random effect.  

 

  Intercept CUE Depth MAT 
13C/14C derived relationship, 𝑛#)* = 21, 𝑛*(+$, = 6 

𝑆𝑂𝐶~𝐶𝑈𝐸 + 𝐷𝑒𝑝𝑡ℎ + 𝑀𝐴𝑇 + (1|𝑆𝑡𝑢𝑑𝑦	𝑆𝑜𝑢𝑟𝑐𝑒), explained variation = 79% 

Fixed Effects 

Estimates -22.67 16.28 6.61 0.04 

Std. Error 36.91 47.14 2.50 1.61 

t value -0.64 0.35 2.61 0.026 

P 0.55 0.73 0.020 0.98 

Random Effects Standard Deviation 36.33 NA NA NA 
18O derived relationship, 𝑛#)* = 111, 𝑛*(+$, = 10 

 𝑆𝑂𝐶~𝐶𝑈𝐸 + 𝐷𝑒𝑝𝑡ℎ + 𝑀𝐴𝑇 + (1|𝑆𝑡𝑢𝑑𝑦	𝑆𝑜𝑢𝑟𝑐𝑒), explained variation = 46% 

Fixed Effects 

Estimates 14.99 61.06 -0.72 0.17 

Std. Error 7.33 12.56 0.21 0.35 

t value 2.04 4.86 -3.46 0.48 

P 0.046 <0.0001 0.0007 0.63 

Random Effects Standard Deviation 10.51 NA NA NA 
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Supplementary Table 8 | Forcing variables for driving the microbial model simulation 

Variable Names Full Description Resolution 

nbedrock Soil layer number that reaches the 
bedrock 

0.5 degree, monthly record of 20-
year simulation after the system 

reaches the steady state. 

ALTMAX Maximum active layer depth of current 
year 

ALTMAX_LASTYEAR Maximum active layer depth of last 
year 

CELLSAND Sand content 

NPP Net primary productivity 

SOILPSI Soil water potential 

TSOI Soil temperature 

O_SCALAR Oxygen scalar for decomposition 

FPI_vr Nitrogen scalar for decomposition 

These forcing variables were the outputs from CLM5 simulation. 
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Supplementary Table 9 | Environmental variables used in predicting optimized 

parameter values of the microbial model by the deep learning model. Note that 

information of some of the variables (e.g., clay content) was reported at different depths (i.e., 

0cm, 30cm, and 100cm).   
No. Variable Name Data Source Category Description 

1 Longitude WoSIS 

Geography 

 

2 Latitude WoSIS  

3 Elevation NOAA Available at https://www.ngdc.noaa.gov/mgg/global/  

4 Absolute Depth to Bedrock ref18  

5 Bedrock Depth CLM5 simulation  

6 Koppen Climate Classification ref19 

Climate 

 

7 Annual Mean Temperature 

ref20 

 

8 Mean Diurnal Range Temperature  

9 Isothermality  

10 Temperature Seasonality  

11 Max Temperature of Warmest Month  

12 Min Temperature of Coldest Month  

13 Temperature Annual Range  

14 Mean Temperature of Wettest Quarter  

15 Mean Temperature of Driest Quarter  

16 Mean Temperature of Warmest Quarter  

17 Mean Temperature of Coldest Quarter  

18 Annual Precipitation  

19 Precipitation of Wettest Month  

20 Precipitation of Driest Month  

21 Precipitation Seasonality  

22 Precipitation of Wettest Quarter  

23 Precipitation of Driest Quarter  

24 Precipitation of Warmest Quarter  

25 Precipitation of Coldest Quarter  

26 USDA 2014 Suborder Classes 

ref18 
Soil 

Structure 

 

27 WRB 2006 Subgroup Classes  

28 Coarse Fragments Volumetric 
Three depths were included, which are 0cm, 30cm and 100cm, 

respectively 

29 Clay Content 
Three depths were included, which are 0cm, 30cm and 100cm, 

respectively 

30 Silt Content 
Three depths were included, which are 0cm, 30cm and 100cm, 

respectively 

31 Texture Classes 
Three depths were included, which are 0cm, 30cm and 100cm, 

respectively 

32 Sand Content 
Three depths were included, which are 0cm, 30cm and 100cm, 

respectively 

33 Bulk Density 
Three depths were included, which are 0cm, 30cm and 100cm, 

respectively 

34 Soil Water Capacity 
Three depths were included, which are 0cm, 30cm and 100cm, 

respectively 

35 Soil pH in H2O ref18 
Three depths were included, which are 0cm, 30cm and 100cm, 

respectively 
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36 Soil pH 
Soil 

Chemical 

Properties 

Three depths were included, which are 0cm, 30cm and 100cm, 

respectively 

37 Cation Exchange Capacity 
Three depths were included, which are 0cm, 30cm and 100cm, 

respectively 

38 Grade of a Sub-Soil Being Acid  

39 ESA Land Cover 
ESA. Land Cover 
CCI Product User 
Guide Version 2. 

Tech. Rep. (2017). 

Vegetation 

Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-

LC-Ph2-PUGv2_2.0.pdf 

40 NPP 

CLM5 simulation 

Mean value of 20-year simulation after the system reaches the 

steady state 

41 Standard deviation of NPP 
Standard deviation of 20-year simulation after the system 

reaches the steady state 

42 Vegetation Carbon Stock 
Mean value of 20-year simulation after the system reaches the 

steady state 
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Supplementary Fig. 1 | Dependence of system-level CUE on the CUE of the mineral soil 

part.  

 

  



 19 

 
Supplementary Fig. 2 | The MAT-CUE relationship emerged from the meta-analysis 

with 132 measurements (a) and microbial model data assimilation with all 57,267 

profiles (b). Black lines and shaded areas are the linear regression results and 95% 

confidence interval. 
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Supplementary Fig. 3 | Distribution of climate zones. Data is taken from ref19. 
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Supplementary Fig. 4 | Coverage of different sources of data in multi-dimensional 

covariate spaces. Panels show the percentage of data sites located at different climates (a), 

soil textures (b) soil orders (c), and land cover types (d) in the profiles used in the PRODA 

approach of this study (i.e., 57,267 profiles) and the meta-analysis with 132 data sets. For 

different climate types: Af, Am and Aw are tropical rainforest, monsoon and savannah 

climates, respectively. BW and BS are arid desert and steppe climates, respectively. Cs, Cw 

and Cf are temperate climates with dry summer, dry winter, and without dry season, 

respectively. Ds, Dw and Df are cold climates with dry summer, dry winter, and without dry 

season, respectively. E is polar climate. For different soil texture, Cl is clay, SiCl is silty clay, 

SaCl is sandy clay, ClLo is clay loam, SiClLo is silty clay loam, SaClLo is sandy clay loam, 

Lo is loam, SiLo is silty loam, SaLo is sandy loam, Si is silt, LoSa is loamy sand, Sa is sand. 
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Supplementary Fig. 5 | Different vertical shapes of SOC profiles used in this study. 

Shown in the figure are 1,000 profiles randomly selected from the 57,276 profiles. SOC 

values are normalised by the value at the first soil layer of each profile.  
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