Schulz, E Research Group Computational Principles of Intelligence, Max Planck Institute for Biological Cybernetics, Max Planck Society;
https://openreview.net/pdf?id=CbsJ53LdKc (Verlagsversion)
https://proceedings.neurips.cc/paper_files/paper/2023/file/e3fe7b34ba4f378df39cb12a97193f41-Supplemental-Conference.pdf (Verlagsversion)
Salewski, L., Alaniz, S., Rio-Torto, I., Schulz, E., & Akata, Z. (2024). In-Context Impersonation Reveals Large Language Models’ Strengths and Biases. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, & S. Levine (Eds.), Advances in Neural Information Processing Systems 36: 37th Conference on Neural Information Processing Systems (NeurIPS 2023) (pp. 72044-72057). Red Hook, NY, USA: Curran.