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We explore the use of Gibbs sampling in recovering the red noise power spectral density, the red
noise Fourier coefficients, and the white noise parameters for the case of single pulsar analyses, and
illustrate its effectiveness using the NANOGrav 11-year data set. We find that Gibbs sampling
noise modeling (GM) is superior to the current standard Bayesian techniques (SM) for single pulsar
analyses, yielding model parameter posteriors with significantly higher computational efficiency and
fidelity. Furthermore, the output of GM contains posteriors for the Fourier coefficients that can
be used to characterize the underlying red noise process of any pulsar’s timing residuals which are
absent in current implementations of SM. Through simulations, we demonstrate the potential for
such coefficients to recover the overall shape of the spatial cross-correlations between pulsar pairs
produced by gravitational waves.

I. INTRODUCTION

Pulsar timing arrays (PTAs) [1, 2] are low-frequency
gravitational-wave (GW) detectors that use high-
precision measurements of the times-of-arrival (TOAs)
of pulses produced by an array of millisecond pulsars
(MSPs). MSPs have ultra-stable spin periods on the
order of milliseconds, and if their TOAs are measured
to sufficient accuracy using large and sensitive radio tele-
scopes, they can be used as cosmic clocks spread through-
out our galaxy. Accurate models are constructed to pre-
dict the time at which each pulse is expected to arrive,
and small deviations from the expected TOAs caused
by GWs can be detected by searching for quadrupolar
spatial correlations in those deviations between pulsars
in the PTA [3]. In recent years, multiple PTA searches
for an isotropic stochastic gravitational wave background
(GWB), have uncovered a common but spatially uncor-
related red noise process [4, 5]. Such a process may be
the first sign of a GWB [6].

The sensitivity of PTAs to a GWB depends primarily
on the number of pulsars in the array [7]. This is due to
the fact that at late times the lowest frequencies in PTA
data sets become GW-dominated, and the significance of
the cross-correlations grows with the square root of the
time span of the data and linearly with the number of pul-
sars in the array. In this regime, increasing the number
of pulsars is the best way to maximize PTA sensitivity
to the GWB. Currently, the International Pulsar Timing
Array (IPTA) monitors 65 millisecond pulsars with 27 of
such pulsars observed for more than 10 years [5]. For this
reason, in each new release of a PTA data set the number
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of pulsars used in GWB detection analyses is expected
to grow, which in turn makes the computational cost of
noise modeling and parameter estimation increase signif-
icantly. This poses a significant challenge for Bayesian
inference as typical searches for a GWB involve work-
ing with a very large parameter space making the use of
computationally efficient algorithms a necessity.

Standard Bayesian techniques for single and multi-
pulsar noise modeling often result in a joint probability
distribution for all of the model parameters (see §II D).
Despite the flexibility that this approach offers in choos-
ing and implementing various noise models, the com-
putational cost of parameter estimation using Markov
Chain Monte Carlo (MCMC) simulations quickly be-
comes computationally expensive. For instance, in the
case of single-pulsar analyses, the number of parameters
required to describe a pulsar’s noise may well exceed forty
(see §III). This problem is more severe for the case of
multi-pulsar analyses as even the simplest noise models
(e.g., power-law models) require a number of parameters
that is larger than twice the number of pulsars in the
PTA. Hence, more computationally efficient data analy-
sis techniques are critical for future of PTA analyses.

To mitigate these problem, there have been numer-
ous efforts towards the development of more efficient
Bayesian GWB detection techniques to analyze PTA
data sets, such as those presented in [8–13]. The work
of van Haasteren and Vallisneri [8] in particular provides
an outline for single-pulsar noise analyses in which Gibbs
sampling can be used to characterize the red noise com-
ponent of each pulsar’s timing residuals.

In this paper, we explore the capabilities of the Gibbs
sampling method in single-pulsar noise analyses by ap-
plying it on the NANOGrav 11-year data set [14] as well
as simulated data sets. We show that the Gibbs sam-
pling method is well suited for PTA single-pulsar analyses
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and results in high-fidelity probability distribution func-
tions for all model parameters in a significantly shorter
time-scale compared to those obtained via the standard
MCMC methods. Furthermore we show via simulated
data that the Fourier coefficients that result from the
Gibbs sampling procedure can be used to identify the
shape of the underlying spatially-correlated signal in a
PTA data set.

The paper is structured as follows. In section §II,
we review and simplify the methods presented in van
Haasteren and Vallisneri [8] to outline the Gibbs sam-
pling method and its accompanying noise modeling. Fur-
thermore, in order to use the output of Gibbs sampling in
a subsequent multi-pulsars analysis, and inspired by An-
holm et al. [15], we introduce our version of a frequency
domain optimal statistic which follows from the PTA
multi-pulsar likelihood function. In section §III, we em-
ploy the outlined method in order to analyze NANOGrav
11 year data set and compare the results to those ob-
tained by the standard Bayesian PTA detection tech-
niques. Finally, in section §IV, we analyze PTA simu-
lated data sets to reveal the potential of the Gibbs sam-
pling technique in searches for a common correlated sig-
nal across an array of pulsars.

II. METHODS

We begin our review of the Gibbs sampling method [8]
by writing a simple model for a pulsar’s post-fit timing
residuals, r, in terms of a set of Fourier coefficients a,
Fourier design matrix F , linear timing model parameters
ε, timing design matrix M , and white noise w1:

r = Mε+ Fa+w

= Tb+w,
(1)

where bT = [ε,a] and T = [M,F ]. Assuming a Gaussian
white noise, parameterized by the set of parameters n
with prior p(n), the above model allows for the construc-
tion of posterior probability density functions following
Bayes’ theorem:

p (ρ, b,n| r) ∝ p (r| b,n) p (a) p (ε) p (ρ) p (n) , (2)

where,

p (r| b,n) =
exp

{
− 1

2

[
(r − Tb)T N−1(r − Tb)

]}
√

det {(2π)pN}
, (3)

p (a) =
exp

{
− 1

2

[
aTϕ−1a

]}√
det {(2π)2kϕ}

, (4)

p (ρ) =

k∏
s=1

1

ρs
, (5)

1 Refer to Table I and Appendix §A for more details on the defi-
nitions of the quantities used throughout this paper.

for

ϕ =
〈
aaT

〉
= ρ2, (6)

B =
〈
bbT

〉
, (7)

and ρ denoting the collective set {ρ1, ρ2, . . . , ρk} whose
elements are used to parameterize a pulsar’s power-
spectral-density, frequency-bin by frequency-bin2, and
describe the variance of the Fourier coefficients. Addi-
tionally, a log-uniform (conjugate) prior p(ρk) = 1/ρk is
considered as seen in Equation 5.

Furthermore, we have assumed an unbounded im-
proper prior for the linear timing model parameters and
have set 〈εεT 〉 = diag{∞}. Such choices for the linear
timing model parameters are typical of PTA noise anal-
yses due to the lack of physically-motivated priors for
all of the timing model parameters and are acceptable
as long as the data is informative with respect to such
parameters. Hence, we can write

B−1 =

[
0 0
0 ϕ−1

]
. (8)

To proceed with Gibbs sampling, the posterior for each
of the model parameters needs to be cast into a condi-
tional probability distribution form where each model pa-
rameter is conditioned upon the other model parameters
and the timing residuals. In the following two subsec-
tions, we derive such conditional probabilities for param-
eters b and ρ.

A. Conditional probability of coefficients

For the coefficients b, the conditional probability can
be found by rewriting the full posterior (i.e., the product
of Equation 3, Equation 4 and Equation 5) while ignoring
all factors not depending on b coefficients explicitly:

ln p (b|ρ, r,n) ∝− 1

2

[
(r − Tb)T N−1(r − Tb)

+ bTB−1b
]

=− 1

2

[
bT
(
TTN−1T +B−1

)
b
]

− 1

2

[
−2bTTTN−1r

]
.

(9)

The above equation suggests that the b-dependence of
the log of the posterior probability is quadratic in nature;
thus, making the dependence of the probability itself to
be Gaussian. Using the maximum a posteriori of b found
by maximizing Equation 9 as an estimate of the mean of

2 Note that the total number of frequency-bins is k, but there
are two Fourier coefficients per each frequency-bin. Both acoss
and asins have the same variance parameterized by ρ2s. This is
reflected in Equation 4.
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Symbol Description
Tobs Observational baseline
t Time
f Frequency
I, J Pulsar indices
k, s frequency-bin indices
m Number of pulsars in the array
p Number of TOAs for a given pulsar
q Number of timing model parameters
r Timing residual
F Fourier design matrix
M Timing design matrix
T Combination of F and M such that T = [M,F ]
N White noise covariance matrix
B Covariance matrix for the linear timing model parameters and the Fourier coefficients (i.e., 〈bbT 〉)
Γ Hellings and Downs cross correlation matrix
A Collection of Fourier coefficients across pulsars and frequencies {am;k},
ϕ Single-pulsar red process covariance matrix
Φ Multi-pulsar red process covariance matrix
a Fourier sin-cos coefficients
λ Estimated cross correlations
ε Linear timing model parameters
b Combination of a and ε such that bT = [ε,a]
w White noise time series
n Collection of all white noise parameters
ρ Free-spectral parameter used in describing power-spectral-density (ρ2 = 〈aaT 〉)
A Amplitude of a red noise process
P power-spectral-density of a red noise process

P̂ Spectral shape of a red noise process obtained by P/A2

TABLE I. A table listing the symbols most commonly used throughout this paper and a short description of what they represent.
Refer to the Appendix §A for more details.

the Gaussian, one can write the conditional probability
distribution of the b coefficients in the form

p (b|ρ, r,n) =
exp

{
− 1

2 (µ̂− b)TΣ (µ̂− b)
}

√
det {(2π2k+q)Σ−1}

, (10)

where 3,

Σ = TTN−1T +B−1, (11)

µ̂ = Σ−1TTN−1r. (12)

B. Conditional probability of red noise
power-spectral-density

Similar to the b coefficients, the conditional probabil-
ity of the ρ parameters can be found by taking advan-
tage of the full posterior and ignoring all the factors not
depending on ρ explicitly. Additionally, we make the ob-
servation that the relevant probability distributions can

3 The definition of Σ in Equation 11 is chosen so that this paper’s
Σ represents the same quantity as the Σ defined in the PTA
GWB detection literature.

be factorized over frequency-bins:

p (ρ|a, r,n) =

k∏
s=1

p (ρs| as, r,n)

=

k∏
s=1

1

ρs
√

2πρ2s
exp

{
−1

2

(
as · as
ρs

)}

∝
k∏
s=1

1

ρ2s
exp

{
−
( as·as

2

ρs

)}

=

k∏
s=1

InvGamma
(
α = 1, β =

as · as
2

)
.

(13)

In the above, the dot-product denotes the sum of the
square of the cosine and sine Fourier coefficients for each
frequency-bin that is as · as = (acoss )2 + (asins )2 . Fur-
thermore, despite the analytic form for the dependence
of ρ on the Fourier coefficients a, the lower and the up-
per bounds of the inverse-gamma distribution extending
to zero and infinity would lead to astrophysically and
statistically incorrect assumptions as such bounds need
to be finite and constrained to avoid the implicit use of
improper priors in the modeling of red noise processes.
Thus, a truncated version of the derived inverse-gamma
distribution needs to be considered. In Appendix §B, we
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show how to obtain such a truncated distribution.

C. Conditional probability of white noise
parameters

In contrast to b and ρ, the white noise parameters can-
not be written in terms of standard statistical distribu-
tions. This is mainly due to the dependence of the white
noise parameters to various radio telescope receivers (i.e.,
each backend of each radio telescope needs its own white
noise parameters). Solving the full-likelihood for the
white noise parameters, collectively denoted by n, results
in

ln p (n|ρ, b, r) =− 1

2

p∑
i=1

{
(r − Tb)TN−1 (r − Tb)

}
− 1

2

p∑
i=1

ln (det {2πN}),

(14)

where the sum is over the TOAs. Since Equation 14
cannot be simplified further in any useful way, we have
no choice but to utilize a non-Gibbs MCMC procedure
to sample the posterior.

D. Standard method of single-pulsar analyses

The standard method of single-pulsar analyses involves
an analytical marginalization of the product of Equa-
tion 3 and Equation 4 over the the coefficients b. The
result is

p (r|ρ) =
1√

det {(2π)
p
C}

exp

{
−1

2
rTC−1r

}
, (15)

C = N + TBTT , (16)

C−1 = N−1 −N−1TΣ−1TTN−1, (17)

where in the last line, we have used the Woodbury iden-
tity :

(X + UY V )
−1

= X−1

−X−1U
(
Y −1 + V X−1U

)−1
V X−1,

(18)

and Σ is defined in Equation 11. The dependence of
Equation 15 to the red noise parameters ρk is through the
elements of the matrix Σ−1. Once Equation 15 is multi-
plied by the appropriate priors of the model parameters,
the resulting joint probability distribution of p (ρ| r) is
ready to be given to a non-Gibbs MCMC algorithm for
parameter estimation.

FIG. 1. A schematic representation of the first three steps
of the outlined Gibbs sampling procedure. The first step of
the sampling process (blue) starts by guesses of the ρ and the
white noise parameters and results in an estimate of the coef-
ficients b following Equation 10 using the previously guessed
values. The second (red) and the third (green) steps of the
sampling continue the sequence by estimating the next re-
maining model parameter given the most recent estimates of
the other two parameters using the conditional probability
distributions of Equation 10, Equation 13, and Equation 14.

E. Gibbs sampling

Gibbs sampling is a MCMC algorithm designed to take
advantage of the conditional probability distributions of
all model parameters in order to perform parameter es-
timation. It is often used in statistical inferences where
a joint probability distribution of all parameters is dif-
ficult to sample, yet each model parameter’s probability
distribution can be written in terms of the rest of the
parameters and the data. Gibbs sampling allows for ran-
dom draws from the conditional probability distributions
of model parameters whose analytic functional form must
be found prior to the start of the sampling process as we
have done for the case of single-pulsar noise analyses by
deriving equations Equation 10 and Equation 13. Due
to the existence of analytic forms for the probabilities,
the concept of rejection of random states, an integral
part of the other MCMC algorithms, does not belong to
the Gibbs sampling as all draws are considered accepted.
Nevertheless, Gibbs sampling is still a MCMC algorithm
as it possesses features such as no long-term-memory and
the need for burn-in of the final Markovian chain. We will
outline a step-by-step implementation of Gibbs sampling
for a single-pulsar noise analysis in the remaining part of
this section.

Knowing the conditional probabilities of our model pa-
rameters, ρ, b, and n, it is simple to implement Gibbs
sampling in the following way:

Step 1: Make initial guesses of ρ and n denoted by
ρ0 and n0.

Step 2: Using Equation 10, find an estimate of b0
given ρ0 and n0.
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Step 3: To start the first iteration, find an estimate of
ρ1 given b0 and n0 using Equation 13.

Step 4: Continuing the first iteration, find an esti-
mate of n1 given b0 and ρ1 with a very short MCMC
procedure sampling Equation 14.

Step 5: To end the first iteration, find an estimate of
b1 given ρ1 and n1 using Equation 10.

Figure 1 provides an illustration of the explained pro-
cedure. The above steps can be repeated until all the
model parameters reach satisfactory convergence. Due to
the analytical draws of the ρ and the b coefficients, con-
vergence will be reached quickly compared to the fully
non-Gibbs MCMC algorithms. This perk is one of the
most desirable features of Gibbs sampling as the overall
run-time of the PTA single-pulsar noise analyses will be
reduced significantly.

F. Frequency domain multi-pulsar likelihood

The outlined Gibbs sampling procedure is an effi-
cient Bayesian scheme capable of estimating each pulsar’s
power-spectral-density as well as the Fourier coefficients
required to describe the total red noise (i.e., GWB plus
spatially-uncorrelated intrinsic red noise process) compo-
nent of the timing residuals. However, the information
required in characterising a GWB requires subsequent
multi-pulsar analyses. As will be demonstrated in this
section, the output of Gibbs sampling provides enough
information to perform multi-pulsar analyses aiming at
detecting a GWB.

Using only the Fourier coefficients a, one can construct
a factorized likelihood in the frequency domain for the to-
tal variance of a PTA’s red noise process in the following
way:

p (A|Φ) ∝
exp

{
− 1

2

(
aTk;IΦ

−1
ks as;J

)}
√

det {Φ}
(19)

∝
∏
s

exp
{
− 1

2

(
aTs;IΦ

−1
ss as;J

)}√
det {Φss}

, (20)

for

Φ =


Φ11 0 . . . 0
0 Φ22 . . . 0
...

...
. . .

...
0 0 . . . Φkk

, (21)

Φkk =


ϕk,1 Γk;12ρ

2
k;g . . . Γk;1mρ

2
k;g

Γk;21ρ
2
k;g ϕk,2 . . . Γk;2mρ

2
k;g

...
...

. . .
...

Γk;m1ρ
2
k;g Γk;m2ρ

2
k;g . . . ϕk,m

,
(22)

where A denotes the collection of Fourier coefficients,
across all pulsars and all frequencies, (i.e., A = {ak;m}),
ρk;g parameterizes the common power-spectral-density of
the GWB observed across the entire pulsar array at fre-
quency k, and ΓIJ represents the functional form of the
cross correlations (e.g., Hellings and Downs curve).

One can use this equation to derive an optimal esti-
mator of the signal-to-noise analogous to those presented
in Anholm et al. [15] and Chamberlin et al. [16]. We
leave the details of the derivation to our future project
[17] where we explore the use of the Fourier coefficients
in GWB characterisation in great detail as this work is
focused on single-pulsar analyses using Gibbs sampling.
Here, we report the results in the form of the optimal
estimators of the cross-correlations λIJ and their uncer-
tainty σIJ :

λIJ =

∑
s
as;I · as;J P̂g

ϕs;Iϕs;J∑
s

P̂ 2
g

ϕs;Iϕs;J

, (23)

σIJ =

[∑
s

P̂ 2
g

ϕs;Iϕs;J

]− 1
2

. (24)

Without a need for a detailed derivation, Equation 23
and Equation 24 can be understood by following a very
simple rational. The numerator is the weighted product
of as;I · as;J . The weights associated with such product,
1/ϕI and 1/ϕJ , have the role of suppressing the contri-
butions from pulsars whose total non-GWB noise power
is substantial (i.e., dominant spatially-uncorrelated in-
trinsic red noise). Moreover, the choice for the normal-
ization in the denominator ensures that the estimated
correlations would yield A2

gΓIJ if averaged over many re-
alizations of GWB as is shown in Appendix §C.

Additionally, estimates of the amplitude, the uncer-
tainty of the estimated amplitude, and the signal-to-
noise-ratio (SNR) can be made from Equation 23 and
Equation 24 by minimizing a weighted-chi-squared statis-
tic of the form

χ2 =
∑
IJ

(
λIJ −A2

gΓIJ
)2

σ2
IJ

, (25)

with respect to A2
g which results in

Â2
g =

∑
IJ;I 6=J

∑
s
as;I · as;JΓIJ

P̂g

ϕs;IϕJ;s∑
IJ;I 6=J

∑
s

Γ2
IJ

P̂ 2
g

ϕI;sϕs;J

, (26)

σg =

 ∑
IJ;I 6=J

∑
s

Γ2
IJ

P̂ 2
g

ϕI;sϕJ;s

− 1
2

, (27)

SNR =
Â2
g

σg
. (28)
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FIG. 2. A comparison of posteriors for all model parameters of PSR J1713+0747 for NANOGrav 11 year data set obtained via
GM (blue) and SM (red). The posteriors on the left column belong to the red noise model parameters, collectively referred to
as ρ, whereas the posteriors on the right column belong to the white noise parameters EFAC, EQUAD, and ECORR. There is
one ρk parameter for each frequency (k = 30 frequencies in total) and three white noise parameters for each receiver (8 receivers
in total). To obtain the plots via GM, 30 steps of a Metropolis Hasting algorithm within each step of Gibbs sampling has been
implemented for the white noise parameters. The above plots show a great level of consistency in extracting the posteriors
between the two methods.

When estimating the optimal correlations using Equa-
tion 23, one has a few options to select from for the
choice of aI and aJ . The trivial option is to draw ran-
domly from the multivariate probability distribution of
each pulsar’s a (the output of Gibbs sampling) and ob-

tain the cross product of such random draws for each
pulsar pair. Another option is to construct posteriors of
the mean, µ̂, following Equation 10, and draw randomly
from such posteriors. Similar to the previous case, the
cross product of the random draws can be used in Equa-
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tion 23 and with the difference that the normalization
factor in the denominator of Equation 23 should be re-
calculated (see Appendix §C for more details). Lastly,
for the choice of ϕI , we use the total red noise power PI .

As a final note, it is important to recognize the lim-
itations of the presented technique as well as the opti-
mal statistic in general. In practice, optimal statistic
results in biased estimates of the GWB amplitude and
the signal-to-noise ratio if one does not have separate es-
timates for the spatially-uncorrelated as well as the com-
mon red noise power. In other words, if one uses the
red noise power estimates from the single-pulsar analy-
ses instead of obtaining separate estimates for a common
red noise signal and intrinsic red noise signal, one cannot
characterise a common correlated signal correctly. This
has been explored in depth in [18].

III. ANALYSIS OF NANOGRAV 11 YEAR
DATA SET

To test the capabilities of the outlined data analysis
technique, we analyze NANOGrav 11 year data set [14]
using Gibbs sampling. The results are then compared
to the ones obtained via standard Bayesian modeling de-
tection routine used by the NANOGrav collaboration in
their most recent work [4]. To ensure the fairness of
the convergence comparisons, we allow each technique
to sample the data set for two hours for each pulsar. Af-
ter the two hours time-limit, we compare the posteriors’
effective-sample-size (ESS) and rank-normalized-split R-
hat (r̂) values using the diagnostic tools provided by Ku-
mar et al. [19].

A. Details of the Bayesian modeling

The Gibbs sampling implementation used for the 11
year data set models the data as outlined in section §II.
This Bayesian modeling together with Gibbs sampling is
referred to as Gibbs Method (GM) from hereon. More-
over, the competing method of analyzing NANOGrav 11
year data set follows the standard single-pulsar analyses
currently implemented in the most recent GWB searches
and explained in §II D. The PTMCMC sampling package
[20] as well as the structure of the Bayesian modeling
accompanying this sampling is referred to as Standard
Method (SM) from hereon.

For both SM and GM, we have allowed each pulsar’s
set of red noise parameters, ρ, to follow a 30 frequency
free-power-spectral-density model with frequencies rang-
ing from 1/Tobs to 30/Tobs in which Tobs denotes the
observational baseline of each considered pulsar. The
choice of prior for the model parameters are listed be-
low. For each pulsar, the white noise parameters are per
receiver/backend system while the ρ parameters are per

frequency:

ρ [s] ∼ log-Uniform(−9,−4), (29)

EQUAD [s] ∼ log-Uniform(−8.5,−5), (30)

ECORR [s] ∼ log-Uniform(−8.5,−5), (31)

EFAC ∼ Uniform(0.01, 10), (32)

for [s] denoting the unit of the quantities, which is sec-
onds.

B. Comparison of posteriors

For the sake of brevity, out of the thirty four pulsars
of NANOGrav 11 year data set, we have chosen to fea-
ture a GM vs SM posterior comparison plot for only PSR
J1713 + 0747 as this pulsar has the longest observational
baseline as well as the largest number of TOAs making
it the most computationally expensive pulsar to analyze.
As shown in Figure 2, the two techniques yield consis-
tent posteriors for both the red noise and the white noise
model parameters for PSR J1713 + 0747 showcasing the
robustness and the capability of GM to be implemented
on real PTA data sets. The same consistency is also ob-
served in all the remaining thirty three pulsars. For a
quantification of the degree of consistency between the
two sets of posteriors, refer to Figure 3 which highlights
the differences in the output of GM and SM in the form of
a histogram of Hellinger distance [21] 4 values across all
pulsars. With the exception of a few white noise param-
eters, the Hellinger distances are concentrated between
0 and 0.2 indicating an adequate degree of consistency
between the GM and the SM posteriors. We attribute
the higher Hellinger distance values of some model pa-
rameters (especially the white noise parameters) to the
differences in the level of convergence of the posteriors as
GM is more successful at yielding converged posteriors
than SM. Refer to §III D for a more detailed discussion.

C. The effect of using different number of MCMC
steps in GM

To obtain the white noise posteriors of Figure 2, 30
steps of a Metropolis Hasting algorithm for each step
of Gibbs sampling has been implemented. The choice
for the number of MCMC steps for each step of the
Gibbs sampling depends on factors such as the number

4 Hellinger distance is a measure of similarity between two prob-
ability distributions ranging from 0 (identical distributions) to
1 (disagreeing distributions). For two discrete probability dis-
tributions p and q, the Hellinger distance H is defined as H =
1√
2

√∑
i

(√
pi −

√
qi
)2

, where i ranges over the binned quantities

of interest whose probability distribution is described by p and
q.
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FIG. 3. A histogram showcasing the distribution of the
Hellinger distance values for the log10 ρ posteriors (blue) and
the white noise parameters (orange) obtained by compar-
ing the outputs of GM and SM. The histogram contains the
Hellinger distances of model parameters across all frequencies
and pulsars. As evident by the distribution, GM and SM result
in sufficiently similar distributions with a few exceptions whose
inconsistencies can be attributed to the differences in the level
of convergence of posteriors resulting from GM and SM even
though we have allowed sufficient time for SM to converge (i.e.,
more than two hours). GM posteriors follow the general shape
of SM posteriors but are significantly more converged.

FIG. 4. A histogram showcasing the distribution of the
Hellinger distance values between the log10 ρ posteriors ob-
tained using GM with two different number of MCMC steps (30
and 5 steps) for each step of Gibbs sampling for the white noise
parameters. The figure is made by combining the Hellinger dis-
tance values across all of the pulsars and all of the frequencies.
As evident by the distribution, choosing a much lower num-
ber of MCMC steps for each step of Gibbs sampling for the
white noise parameters does not change the shape of the target
log10 ρ posteriors significantly. This effect can be attributed to
the knowledge of GM about the analytical shape of the log10 ρ
parameters prior to the start of the sampling.

FIG. 5. A scatter-plot showcasing the differences in the spread
of the effective-sample-size (ESS) values for the log10 ρ and the
white noise parameters expressed in the form of the ratio of
GMs’ ESS over SMs’ ESS (blue circles). For each pulsar, there
is one log10 ρk for each frequency (30 frequencies in total) and
three white noise parameters for each receiver. Across all of
the pulsars, GM is more capable at yielding posteriors with
significantly higher ESS levels given the two hour time limit.
The values of ESS are found using the functionalities provided
in Kumar et al. [19].

FIG. 6. A scatter-plot showcasing the differences in the spread
of rank-normalized-split-R-hat, r̂, values obtained from the
log10 ρ and the white noise parameters analyzed by GM and
SM. Each blue circle represents a single model parameter and
the figure is obtained by combining the r̂ − 1 values of all
model parameters for all pulsars and across all frequencies. As
evident by the figure, GM is more capable at resulting in pos-
teriors with a lower r̂ level given the two hour time limit. The
r̂ values are estimated by dividing each Markov chain into two
sub-chains and applying the rank-normalized-split-R-hat test
[19] on it.

of TOAs, one’s threshold and preferred measure of con-
vergence for the posteriors as well as the efficiency of the
type of MCMC algorithm used in the white noise pa-
rameter estimation. However, the red noise parameters’
posteriors are not overly sensitive to this choice as the

target distributions for ρk parameters are all analytically
determined prior to the start of sampling. To test the
sensitivity of the red noise parameters to the choice for
the number of MCMC steps for each step of Gibbs sam-
pling, we have applied GM on all of the NANOGrav 11
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year pulsars using only 5 steps of MCMC. As shown in
Figure 4, the estimated Hellinger distance values between
the two sets of posteriors of log10 ρ parameters are suf-
ficiency low suggesting a weak degree of correlation be-
tween the red noise parameters’ posteriors to the white
noise parameters’ if analyzed via GM. Nevertheless, our
current implementation of GM is adequately optimized
to handle large number of MCMC steps without much
of a sacrifice in the overall run-time of a single-pulsar
analysis.

D. Comparison of convergence levels

Despite resulting in consistent posteriors, SM and GM
differ significantly in their state of convergence of the
model parameters, especially those pertaining to the
effective-sample-size (ESS). Figure 5 shows the spread
of the ratio of ESS values (GM divided by SM) across
all of the model parameters for every pulsar. As evident
by Figure 5, a significant majority of each pulsar’s model
parameters have higher ESS values when analyzed us-
ing GM as compared to SM. Figure 5 proves our claim
about the high efficiency of GM. Additionally, the same
observation can be made about the rank-normalized-split
R-hat (r̂) values calculated for both GM and SM poste-
riors for each pulsar. Figure 6 points towards the higher
state of convergence of a significant majority of the model
parameters that were analyzed by GM.

IV. SIMULATIONS

Despite the successful implementation of GM on the
NANOGrav 11 year data set, we have not tried to an-
alyze the correlation content of the data set using the
concepts discussed in section §II F as the 11 year data
set lacks a common correlated signal across pulsar pairs
[14]. We will dedicate future projects to the analysis of
the upcoming NANOGrav 15 year and IPTA’s DR3 data
sets, which are currently under development and are ex-
pected to contain a stronger correlated signal. Mean-
while, to explore the capability of the Fourier coefficients
a in characterizing a common spatially-correlated signal,
we make use of simulated PTA data sets.

A. Details of the simulations

We have chosen two types of simulated data sets, re-
ferred to as SIM0 and SIM1, with 100 realizations for
each type, to analyze in order to explore the capability
of the Fourier coefficients a to characterize a common
correlated signal. The two simulated data sets are iden-
tical in every aspect except the content of their spatially-
uncorrelated intrinsic red noise: for SIM0, the log of the
amplitude of the spatially-uncorrelated intrinsic red noise

FIG. 7. A comparison between postfit time series reconstruc-
tion using the Fourier coefficients obtained from GM (blue),
the injected red noise time series (red), and the total residuals
(green) for one of SIM0’s pulsars. The reconstructed residuals
are made by considering the entire posterior probability dis-
tribution of the recovered Fourier coefficients. As evident by
the figure, the reconstructed post-fit red noise signal matches
the underlying red noise signal closely.

of each pulsar is randomly chosen from a uniform dis-
tribution between 10−16 and 10−14 while for SIM1 this
range is between 10−14 and 10−13. For both data sets’
pulsars, the spectral index of the spatially-uncorrelated
intrinsic red noise follows a uniform distribution with
lower and upper bounds of 0 and 7 respectively. Addi-
tionally, each data set has 90 pulsars uniformly scattered
in the sky timed for 20 years with random timing ca-
dences between 14 to 30 days. Furthermore, each data
set contains 10 microseconds of white Gaussian noise for
each pulsar as well as a unique realization of a GWB
with amplitude of Ag = 2× 10−15 and spectral index of
γg = 13/3. Lastly, to employ GM on each data set,
we keep the white noise parameters constant and use
the same range of frequency-bins for all pulsars which
is {1/20 yrs, 2/20 yrs, 3/20 yrs, 4/20 yrs, 5/20 yrs}.

It is worth mentioning that our intention is not about
simulating realistic data sets and analyzing it with GM.
We have already shown the capability of GM in single-
pulsar analyses of real data sets. Our intention is to high-
light what the Fourier coefficients can potentially reveal
about an existing GWB signal, hence the reason behind
our choices for the specific parameters of the two sim-
ulated data sets. Nonetheless, we have introduced very
high levels of spatially-uncorrelated intrinsic red noise
in the SIM1 data set (higher than what is observed in
the real PTA data sets) as dealing with such processes
is an extremely challenging part of GWB searches using
PTAs whose impact on the correlation recovery using the
Fourier coefficients is non-trivial.
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FIG. 8. A plot depicting the reconstruction of the Hellings and Downs correlation (green dashed curve) using GM’s estimates
of the Fourier coefficients obtained for both SIM0 (blue circles) and SIM1 (red stars) data sets. The reconstructions are the
average over 100 realizations of both data sets. Remarkably, the recovery of the shape of the correlations is not affected
significantly by the introduction of extremely high levels of spatially-uncorrelated red noise to each pulsar in SIM1.

FIG. 9. Two histograms comparing the distributions of the
recovered common correlated signal between SIM0 (blue) and
SIM1 (red) data set using the method provided in §II F. Each
distribution is obtained by combining the estimates of the
amplitude (Equation 26) of the cross-correlated signal over
100 realizations. The injected GWB signal is indicated with
the vertical dashed green line. The figure suggests that the
Fourier coefficients contain the right amount of information
about the amplitude of the cross-correlated signal in the case
of SIM0. For SIM1, the injected amplitude does not align
correctly with the recovered amplitude as every pulsar has a
significantly higher non-GWB red noise power than the GWB
power.

B. Reconstruction of red noise signal using Fourier
coefficients

The a coefficients are capable of reconstructing the
red component of the timing residulas as suggested by
Equation 1. The reconstructed signal is pre-fit and white
noise free. Once the reconstructed signal obtained by Fa
is fitted for the timing model parameters, it mirrors the
underlying total post-fit red noise signal in the data set
closely. Figure 7 highlights this case for one of SIM0’s

FIG. 10. Two histograms comparing the distributions of the
signal-to-noise ration (SNR) between SIM0 (blue) and SIM1
(red) data set using the method provided in §II F. Each dis-
tribution is obtained by combining the estimates of the SNR
(Equation 28) of the cross-correlated signal over 100 realiza-
tions. As expected, SIM1 data set exhibits a lower SNR due
to containing a significantly higher non-GWB red noise power
than the GWB power.

pulsars. As suggested by the figure, the Fourier coeffi-
cients are capable of reconstructing the underlying red
noise process of the total timing residuals. This fact al-
lows the Fourier coefficients to be adequate replacement
for the timing residuals in the frequency domain with
the added benefit that one no longer needs to take into
account a white noise process or be concerned with the
complications of the timing model parameters when us-
ing the a coefficients in a subsequent analysis. In fact,
the effects of the timing model parameters and the white
noise levels are implicit in the posteriors for the Fourier
coefficients obtained via GM.
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C. Searching for correlations using Fourier
coefficients

To characterize the GWB signal in each of the realiza-
tions of SIM0 and SIM1, we use Equation 23 and Equa-
tion 24 with µ̂I as the quantity representing the Fourier
coefficients of each pulsar (see Equation 10). Further-
more, as was stated in section §IV C, due to the inher-
ent biases that might arise in using the power-spectral-
density estimates originating from the single-pulsar anal-
yses in optimal statistic equations, the weights ϕI are set
to the total red noise power that was used to make the
data sets. The practical use of Equation 19 requires sep-
arating the total power between intrinsic and common
and will be explored in depth in a future project as our
goal is to showcase the potential of the Fourier coeffi-
cients in revealing information about the GWB signal,
not outlining a complete and practical pipeline capable
of fully characterizing a GWB signal.

The shape of the correlation recovery is depicted in
Figure 8 for both simulated data sets. This shape is
obtained by dividing the pulsar pairs of each realization
into 15 different angular separation bins such that all bins
have 267 pulsars pairs in them. The average and stan-
dard deviation (over the 100 realizations) of the correla-
tions for each angular separation bin is then computed
and plotted in Figure 8. Furthermore, the histogram of
the estimated amplitude Âg and signal-to-noise ratio of
all the 100 realizations of each data set is stacked on top
of each other (i.e., no averaging is performed) and pre-
sented in Figure 9 and Figure 10 respectively. The im-
pact of introducing extreme levels of intrinsic spatially-
uncorrelated red noise to the data set manifests itself in
the form of lowering the signal-to-noise ratio and biased
amplitude recovery. However, the shape of the correla-
tions recovery remains remarkably close to the Hellings
and Downs curve over many realizations.

V. DISCUSSION AND FUTURE WORK

In this paper, we have shown that the Gibbs method
(GM) is an efficient single pulsar Bayesian noise anal-
ysis technique capable of producing posteriors for the
single-pulsar free-power-spectral-density and the white
noise model parameters with convergence properties that
are superior to those obtained using standard Bayesian
methods (SM). GM is a robust and computationally ef-
ficient alternative to SM for future PTA noise analyses.
Additionally, we have shown that the Fourier coefficients
resulting directly from GM contain adequate information
about the shape the cross-correlations signal through the
use of simulations. In effect, GM produces the frequency
domain representation of each pulsar’s red noise signal,
free of white noise and timing model parameters, hence
providing all the necessary information to start perform-
ing subsequent GWB detection analyses exclusively in
the frequency domain.

As one of the most exciting prospects for the use of
GM in the future, this method can be utilized in data
combination efforts between different PTA experiments.
This is due to the fact that every pulsar is represented in
the frequency domain free of complications of timing and
white noise sources making it possible to consider every
pulsar of every PTA experiments in one single large array.
We will dedicate future projects to the use of GM on real
PTA data sets in searches for a GWB.

GM results in raw information in the frequency domain
which may need to be processed further depending on the
needs of the subsequent analyses. For instance, the as-
trophysical interpretation of a pulsar’s red noise signal
will require a more constrained model of the power spec-
tral density than the free-spectral model which could be
achieved by fitting for the parameters of such a model
using the output of GM (e.g., a power-law fit to the free-
spectral model) [13]. Combined with the fitting utilities
provided by Lamb et al. [13], GM can become a pow-
erful and efficient tool for use in the future PTA GWB
detection analyses.

A. Software

The GM code takes advantage of the functionalities
provided by ENTERPRISE [22] and ENTERPRISE-
extensions [23], and PTMCMC sampler [20]. The pack-
age Arviz [19] has been used for diagnosing MCMC
chains. Python packages matplotlib [24] and plotly [25]
have been used for generating the figures in this paper.
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Appendix A: GWB Detection Terminology

Most of the PTA noise analysis concepts have been de-
veloped over many years and scattered over many papers
[7, 8, 15, 16, 26–28]. To help readers better understand
the methods used in this paper, we define the necessary
PTA noise analysis quantities and concepts in this sec-
tion. Additionally, refer to Table I for a short description

of the mathematical symbols used throughout this paper.

1. Basis matrices and their coefficients

To model the contribution of any red noise process to
the timing model residuals of a given pulsar, rRed, we
employ a Fourier basis matrix and a vector of coefficients
such that

rRed = Fa, (A1)

F =


sin (2πf1t1) cos (2πf1t1) · · · sin (2πfkt1) cos (2πfkt1)
sin (2πf1t2) cos (2πf1t2) · · · sin (2πfkt2) cos (2πfkt2)

...
...

. . .
...

...
sin (2πf1tp) cos (2πf1tp) · · · sin (2πfktp) cos (2πfktp)

 , (A2)

aT =
(
acos1 , asin1 , . . . , acosk , asink

)
, (A3)

for tp denoting the last measured TOA, fk denoting the
last considered frequency-bin, and as and ac referring to
the coefficients of sin and cos elements of the F matrix
respectively.

To model the contribution of any linear timing model
parameter to the timing residuals, rT, we use a basis
matrix known as the timing-design-matrix such that

rT = Mε, (A4)

M =


1 t1 t21 · · ·
1 t2 t22 · · ·
...

...
... · · ·

1 tp t2p · · ·

 . (A5)

While the first three columns of the design matrix models
the quadratic spin down of all millisecond pulsars, the un-
specified columns of the matrix are populated with var-
ious timing model contributions specific to each pulsar.
Moreover, it is often convenient to project the residuals
onto a subspace orthogonal to the timing model param-
eters, or in other words, to create fitted timing residuals.
The so-called G matrix is a useful matrix obtained via
singular-value-decomposition of the design-matrix con-
structed to perform the fitting:

M = USV T

Gxy = Uxy,
(A6)

where x ranges from 1 to p (the number of TOAs) while
y ranges from q to p for q being the total number of the
linear timing model parameters.

To model the contribution of the white noise to the
timing model residuals, rw, we consider a m×m identity

matrix as the basis with the coefficients n such that

rw = w, (A7)

wi ∼ Normal (mean = 0, scale = σwi
) , (A8)

σwi
= efi

√
σ2
i + eq2

i , (A9)

for σi being the TOA error of observation i, and ef and
eq being the usual EFAC and EQUAD parameters [14].
Note that the Gausianity of the white noise is an assump-
tion included in our all of our models.

2. Noise power-spectral-density modeling

In this paper, we only consider one-sided power-
spectral-densities (PSD). Most commonly for PTA noise
analyses, the PSD is expressed in two ways:

Power Law: assuming the PSD to follow a simple
power-law relation with amplitude a and spectral in-
dex γ as well as a reference frequency fref across all
frequency-bins

P (f) =
A2

12π2f3

(
f

fref

)3−γ

, (A10)

P̂ (f) =
P (f)

A2
. (A11)

The quantity P̂ describes the shape of the spectrum
and will be useful in section §IV C.

Free-spectral: allowing the PSD to have indepen-
dent amplitude in each frequency-bin with normaliza-
tion constant Tobs equal to a fixed observation time.



13

The observation time can either be the baseline of each
pulsar or the baseline of the total PTA experiment.

P (fk) = Tobsρ
2
k. (A12)

3. Covariance matrices

The white noise covariance matrix n plays a key role in
posterior probability calculation of all model parameters.
This matrix is modeled as

N = diag (σw1
, ..., σwm

) . (A13)

Note that the introduction of ECORR white noise pa-
rameter will complicate this picture. See chapter 7 of
Taylor [28] for more details. Furthermore, the red process
covariance matrix is obtained via the discretized form of
the Wiener-Khinchin theorem

〈rred (ti) rred (tj)〉 = FϕFT , (A14)

ϕ = diag (Pred (f0) , . . . , Pred (fk)) , (A15)

where Pred is the one-sided PSD of a red noise process
and the diagonal matrix ϕ is the matrix representation
of such PSD.

Appendix B: Truncated Inverse-gamma Distribution

To obtain a truncated inverse-gamma distribution, we
take advantage of inverse-transform sampling method.
However, first, we need to find a normalization factor,
Norm, for the truncated inverse-gamma distribution de-
fined between the lower bound ρmin and the upper bound
ρmax:

βk =
(ak · ak)

2
, (B1)

Norm =

[∫ ρmax

ρmin

dρk

{
βk
ρ2k

exp

(
−βk
ρk

)}]−1
=

β

exp
(
− β
ρmax

)
− exp

(
− β
ρmin

) . (B2)

Equation B2 allows for calculation of the cumulative dis-
tribution function (CDF), which in turn can be used to
find a distribution for ρk given a uniform random num-
ber U defined between 0 and 1 based on inverse-transform
sampling method. This yields the following as the target
distribution for the ρk parameters:

p (ρk| ak, r, n) = − βk

ln
{

exp
(
− βk

ρmin

)
U(0, 1)

[
exp

(
− βk

ρmax

)
− exp

(
− βk

ρmin

)]} . (B3)

Appendix C: Derivation of the Normalization Factor
in Equation 23

The choice of normalization in the denominator of
Equation 23 enforces the condition that the estimated
cross correlations must yield GWB amplitude if averaged
over many realizations as is shown below:

λIJ =
ptop

Norm
, (C1)

ptop =
∑
k

aI
ϕI

aJ
ϕJ

P̂g, (C2)

〈ptop〉 =

〈∑
k

aI
ϕI

aJ
ϕJ

P̂g

〉
(C3)

=
∑
k

〈
aI
ϕI

aJ
ϕJ

〉
P̂g (C4)

=
∑
k

〈aIaJ〉 P̂g
ϕIϕJ

(C5)

=
∑
k

(
ΓIJA

2
gP̂g

)
P̂g

ϕIϕJ
(C6)

= ΓIJA
2
g

∑
k

P̂ 2
g

ϕIϕJ
, (C7)

which makes Norm =
∑
k

P̂ 2
g

ϕIϕJ
consequently.

Furthermore, when the quantity µ̂ is used in the FDOS
equations, the normalization need to be re-estimated
since

〈
aIa

T
J

〉
6=
〈
µ̂Iµ̂

T
J

〉
for an average over many GWB

realizations. The new normalization factor is found to be〈
µ̂Iµ̂

T
J

〉
=
〈

ΣIF
T
I D

−1
I FIaIa

T
JF

T
J

(
D−1J

)T
FJΣTJ

〉
= ΣIF

T
I D

−1
I F

〈
aIa

T
J

〉
FTJ
(
D−1J

)T
FJΣTJ . (C8)
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