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Abstract 
What are the best methods of capturing thematic similarity between literary texts? Knowing 
the answer to this question would be useful for automatic clustering of book genres, or any 
other thematic grouping. This paper compares a variety of algorithms for unsupervised 
learning of thematic similarities between texts, which we call “computational thematics”. These 
algorithms belong to three steps of analysis: text preprocessing, extraction of text features, 
and measuring distances between the lists of features. Each of these steps includes a variety 
of options. We test all the possible combinations of these options: every combination of 
algorithms is given a task to cluster a corpus of books belonging to four pre-tagged genres of 
fiction. This clustering is then validated against the “ground truth” genre labels. Such 
comparison of algorithms allows us to learn the best and the worst combinations for 
computational thematic analysis. To illustrate the sharp difference between the best and the 
worst methods, we then cluster 5000 random novels from the HathiTrust corpus of fiction. 
 
Keywords: text mining, computational literary studies, genre, topic modeling 
 

Introduction 
 
Computational literary studies have rapidly grown in prominence over the recent years. One 
of the most successful directions of inquiry within this domain, in terms of both methodological 
advances and empirical findings, has been computational stylometry, or computational 
stylistics: a discipline that develops algorithmic techniques for learning stylistic similarities 
between texts (Bories et al., 2023; Burrows, 1987; Eder et al., 2016). For this purpose, 
computational stylometrists extract linguistic features specifically associated with authorial 
style, or individual authorial habits. Often, these features are the most frequent words from the 
analyzed literary texts – they tend to be function words (“a”, “the”, “on”, etc.) – to which various 
measures of similarity (e.g., Euclidean distance) are applied. The most common goal of 
computational stylistics is attributing the authorship of texts where it is disputed, like the 
authorship of Molière’s plays (Cafiero & Camps, 2019), the Nobel Prize winning novel And 
Quiet Flows the Don (Iosifyan & Vlasov, 2020), or Shakespeare and Fletcher’s play Henry VIII 
(Plecháč, 2021). Thanks to numerous systematic comparisons of various approaches to 
computational stylometry, we now have a fairly good idea of which procedures and textual 
features are the most effective ones – depending on the goal of stylometric analysis, the 
language of texts, or their genre (Evert et al., 2017; Neal et al., 2017; Plecháč et al., 2018). 

https://www.zotero.org/google-docs/?18w66X
https://www.zotero.org/google-docs/?EVfCkQ
https://www.zotero.org/google-docs/?Xsav39
https://www.zotero.org/google-docs/?9O3xdp
https://www.zotero.org/google-docs/?o5NLIW
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At the same time, we lack such systematic comparisons in the research area that might be 
called “computational thematics”: the study of thematic similarities between texts. (Thematic 
similarities: say, that novels A and B both tell a love story or have a “fantasy” setting.) Why is 
learning about thematic similarities important? Genre – a population of texts united by broad 
thematic similarities – fantasy, romance, science fiction, and the like – is a central notion in 
literary studies, necessary not only for categorizing and cataloging literary works, but also for 
the historical scholarship of literature. Genres are evolving populations of texts that emerge at 
certain moments of time, spread across the field of literary production, and then disappear in 
their original form – usually becoming stepping stones for subsequent genres (Fowler, 1971). 
For example, the genre of “classical” detective fiction crystallized in the 1890–1930s, and then 
gave birth to multiple other genres of crime fiction, such as “hardboiled crime fiction”, “police 
procedural”, “historical detective”, and others (Symons, 1985). Studying the historical 
dynamics of genres – not only of literature, but also music or painting – is an important task of 
art history and sociology, and digital archives allow doing so on a much larger scale (Allison 
et al., 2011; Klimek et al., 2019; Sigaki et al., 2018). But to gain the most from this larger scale, 
we must determine the best, most reliable algorithms for detecting the thematic signal in books 
– similarly to how computational stylometrists have learnt the most effective algorithms for 
detecting the signal of authorship. 
 
Quantitative analysis of genres usually takes one of these forms. The first one is manual 
tagging of books by genre or using datasets where such tagging has already been done via 
large crowdsourced efforts, like the data collected on the Goodreads website (Thelwall, 2019). 
This approach is prone to human bias, it is laborious and also based on the idea that the 
differences between genre populations are qualitative, not quantitative (e.g., certain book is 
either a “detective” or “romance”, or both, but not 0.78 detective and 0.22 romance, which, we 
think, would be a more informative description). The second approach is an extension of 
manual tagging: supervised machine learning of book genres using a training dataset with 
manually tagged genres (Piper et al., 2021; Underwood, 2019). This approach has important 
strengths: it is easily scalable and it provides not qualitative but quantitative estimates of a 
book’s belongingness to a genre. Still, it has a problem: it can only assign genre tags included 
in the training dataset, it cannot find new, unexpected book populations – which is an important 
component of the historical study of literature. The third approach is unsupervised clustering 
of genres: algorithmic detection of book populations based on their similarity to each other 
(Calvo Tello, 2021; Schöch, 2017). This approach is easily scalable, allows quantitative 
characterization of book genres, and does not require a training dataset with manually 
assigned tags, thus allowing to detect new, unexpected book populations. All these features 
of unsupervised clustering make it highly suitable for historical research, and this is why we 
will focus on it in this paper. 
 
Unsupervised clustering can be conducted in a variety of ways. For example, texts can be 
lemmatized or not lemmatized; as text features, simple word frequencies can be used or some 
higher-level units, such as topics of a topic model; to measure the similarity between texts, a 
host of distance metrics can be applied. Hence, the question: what are the best computational 
methods for detecting thematic similarities in literary texts? This is the main question of this 
paper. To answer it, we will compare various combinations of (1) preprocessing (which, in this 
study, we will also call “thematic foregrounding”), (2) text features, and (3) the metrics used 
for measuring distance between features. To assess the effectiveness of these combinations, 

https://www.zotero.org/google-docs/?RlUccI
https://www.zotero.org/google-docs/?TAei7B
https://www.zotero.org/google-docs/?nPGwoo
https://www.zotero.org/google-docs/?nPGwoo
https://www.zotero.org/google-docs/?oVKlVQ
https://www.zotero.org/google-docs/?iX2U4q
https://www.zotero.org/google-docs/?vatPMw
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we use a tightly controlled corpus of four well-known genres – detective fiction, science fiction, 
fantasy, and romance – as our “ground truth” dataset. To illustrate the significant difference 
between the best and the worst combinations of algorithms for genre detection, we later cluster 
genres in a much larger corpus, containing 5000 works of fiction. 

Materials and Methods 
 
Data: The “ground truth” genres 
 
Systematic research on computational stylistics is common, while research on computational 
thematics is still rare (Allison et al., 2011; Schöch, 2017; Šeļa et al., 2022; Underwood, 2016). 
Why? Computational stylistics has clear “ground truth” data against which various methods of 
text analysis can be compared: authorship. The methods of text analysis in computational 
stylistics (e.g., Delta distance or Manhattan distance) can be compared as to how well they 
perform in the task of classifying texts by their authorship. We write “ground truth” in quotes, 
as authorship is no more than a convenient proxy for stylistic similarity, and, as any proxy, it 
is imprecise. It assumes that texts written by the same author should be more similar to each 
other than texts written by different authors. However, we know many cases when the writing 
style of an author would evolve significantly over the span of their career, or would be 
deliberately manipulated (Brennan et al., 2012). Authorship as a proxy for “ground truth” is a 
simplification – but a very useful one. 
 
The lack of a widely accepted “ground truth” proxy for thematic analysis leads to the 
comparisons of algorithms that are based on nothing more than subjective judgment (Egger 
& Yu, 2022). Such subjective judgment cannot lead us far: we need quantitative metrics of 
performance of different algorithms. For this, an imperfect “ground truth” is better than none 
at all. What could play the role of such an imperfect, but still useful, ground truth in 
computational thematics? At the moment, these are genre categories. They capture, to a 
different degree, thematic similarity between texts. To a different degree, as genres can be 
organized according to several principles, or “axes of categorization”: e.g., they can be based 
on the similarity of storylines (adventure novel, crime novel, etc.), settings (historical novel, 
dystopian novel, etc.), emotions they evoke in readers (horror novel, humorous novel, etc.), 
or their target audience (e.g., young adult novels). It does seem that these various “axes of 
categorization” correlate: say, “young adult” novels are appreciated by young adults because 
they often have similar storylines or characters. Or, horror novels usually have a broad, but 
consistent, arsenal of themes and settings that are efficient at evoking pleasant fear in readers 
(like the classical Gothic setting). Still, some axes of genre categorization are probably better 
for comparing the methods of computational thematics than others. Genres defined by their 
plots or settings may provide a clearer thematic signal than genres defined by their target 
audience or evoked emotions. 
 
We have assembled a tightly controlled corpus of four genres (50 texts in each) based on their 
plots and settings: 
  

● Detective fiction (recurrent thematic elements: murder, detective, suspects, 
investigation) 

https://www.zotero.org/google-docs/?9EGWWV
https://www.zotero.org/google-docs/?5YHXdQ
https://www.zotero.org/google-docs/?7B8CFG
https://www.zotero.org/google-docs/?7B8CFG
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● Fantasy fiction (recurrent elements: magic, imaginary creatures, quasi-medieval 
setting) 

● Romance fiction (recurrent elements: affection, erotic scenes, love triangle plot) 
● Science fiction (recurrent thematic elements: space, future, technology) 

 
We took several precautions to remove potential confounds. First, these genres are situated 
on a similar level of abstraction: we are not comparing rough-grain categories (say, romance 
or science fiction) to fine-grain ones (historical romance or cyberpunk science fiction). Second, 
we limited the time span of the book publication year to a rather short period of 1950–1999: to 
make sure that our analysis is not affected too much by language change (which would 
inevitably happen if we compared, for example, 19th-century gothic novels to 20th-century 
science fiction). Third, each genre corpus has a similar number of authors (29–31 authors), 
each represented by 1–3 texts. Several examples of books in each genre are shown in 
Table 1. The complete list is in Supplementary materials. Before starting our analysis, we 
pre-registered this list on Open Science Framework’s website 
(https://osf.io/rce2w/?view_only=16db492ab4464a4da53b1ef891416bd4). 
 

Genre Examples 

Detective fiction                      Josephine Tey, The Daughter of Time, 1951 
Agatha Christie, At Bertram's Hotel, 1965 
Colin Dexter, Last Bus to Woodstock, 1975 
Peter Lovesey, The False Inspector Dew, 1982 
Sue Grafton, M is for Malice, 1996 

Fantasy fiction          J. R. R. Tolkien, The Fellowship of the Ring, 1954 
Michael Moorcock, Stormbringer, 1965 
Ursula K. Le Guin, The Tombs of Atuan, 1970 
Terry Pratchett, The Colour of Magic, 1983 
J. K. Rowling, Harry Potter and the Philosopher’s Stone, 1997 

Romance fiction        Barbara Cartland, Love is the Enemy, 1952 
Jackie Collins, The World is Full of Married Men, 1968 
Gordon Merrick, The Lord Won’t Mind, 1970 
Danielle Steel, A Perfect Stranger, 1981 
Diana Gabaldon, Outlander, 1991  

Science fiction           Robert A. Heinlein, Double Star, 1956 
Arthur C. Clarke, 2001: A Space Odyssey, 1968 
Frank Herbert, Children of Dune, 1976 
C. J. Cherryh, Downbelow Station, 1981  
Kim Stanley Robinson, Red Mars, 1992 

Table 1. Examples of books in each genre corpus (full list in Supplementary materials). 
 
Analysis: The race of algorithms 
 
To compare the methods of detecting thematic signal, we developed a workflow consisting of 
four steps – see Figure 1. Same as our corpus, all the detailed steps of the workflow were 
pre-registered. 
 

https://osf.io/rce2w/?view_only=16db492ab4464a4da53b1ef891416bd4
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Step 1. Choosing a combination of thematic foregrounding, features, and distance 
As a first step, we choose a combination of (a) the level of thematic foregrounding, (b) the 
features of analysis, and (c) the measure of distance. 
 
By thematic foregrounding (Step 1a on Figure 1) we mean the extent to which the thematic 
aspect of a text is highlighted (and the stylistic aspect – backdropped). With weak thematic 
foregrounding, only the most basic text preprocessing is done: lemmatizing words and 
removing 100 most frequent words (MFWs) – the most obvious carriers of strong stylistic 
signal. 100 MFWs roughly correspond to function words (or closed-class words) in English, 
routinely used in authorship attribution (Chung & Pennebaker, 2007; Stamatatos, 2009) 
beginning with the classical study of Federalist Papers (Mosteller & Wallace, 1963). With 
medium thematic foregrounding, in addition to lemmatizing, we also remove entities (named 
entities, proper names, etc.) using SpaCy tagger (Honnibal & Montani, 2017). Additionally, we 
perform part-of-speech tagging and remove all the words that are not nouns, verbs, adjectives, 
or adverbs, which are the most content-bearing parts of speech. With strong thematic 
foregrounding, in addition to all the steps of the medium foregrounding, we also apply lexical 
simplification. We simplify the vocabulary by replacing less frequent words with their more 
frequent synonyms – namely, we replace all words outside of 1000 MFWs with their more 
common semantic neighbors (out of 10 closest neighbors), with the help of pre-trained 
FastText model that includes 2 million words and is trained on English Wikipedia (Grave et al., 
2018). 
 
Then, we transform our pre-processed texts into lists of features (Step 1b on Figure 1). We 
vary both the type of features and the length of lists. We consider four types of features. The 
simplest features are most frequent words as used in the bag-of-words approach (1000, 5000, 
or 10,000 of them) – a common solution for thematic analysis in computational literary studies 
(Hughes et al., 2012; Underwood, 2019). The second type of features are topic probabilities 
generated with the Latent Dirichlet Allocation (LDA) algorithm (Blei et al., 2003) – another 
common choice (Jockers, 2013; Liu et al., 2021). LDA has several parameters that can 
influence results, such as the predefined k of topics or the number of most frequent words 
used. Plus, a long text like a novel is too large for meaningful LDA topic modeling, and the 
typical solution is dividing the text into smaller chunks. We use an arbitrary chunk size of 1000 
words. The third type of features are modules generated with weighted correlation network 
analysis, also known as weighted gene co-expression network analysis (WGCNA) – a method 
of dimensionality reduction that detects clusters (or “modules”) in networks (Langfelder & 
Horvath, 2008). WGCNA is widely used in genetics (Bailey et al., 2016; Ramírez-González et 
al., 2018), but also showed promising results as a tool for topic modeling of fiction (Elliott, 
2017). We used it with either 1000 or 5000 most frequent words. Typically, WGCNA is used 
without chunking data, but, since chunking leads to better results in LDA, we decided to try 
using WGCNA with and without chunking, with the chunk size of 1000 words. All the 
parameters of WGCNA were kept at defaults. Finally, as the fourth type of feature, we use 
document-level embeddings doc2vec (Lau & Baldwin, 2016; Le & Mikolov, 2014) that directly 
position documents in a latent semantic space defined by a pre-trained distributional language 
model – FastText (Grave et al., 2018). Document representations in doc2vec depend on the 
features of the underlying model: in our study, each document is embedded in 300 dimensions 
of the original model. Doc2vec and similar word embedding methods are increasingly used for 
assessing the similarity of documents (Dynomant et al., 2019; Kim et al., 2019; Pranjic et al., 

https://www.zotero.org/google-docs/?XoeKgN
https://www.zotero.org/google-docs/?uN8g3X
https://www.zotero.org/google-docs/?aYgUjs
https://www.zotero.org/google-docs/?aYgUjs
https://www.zotero.org/google-docs/?aYgUjs
https://www.zotero.org/google-docs/?Z9eP0r
https://www.zotero.org/google-docs/?Z9eP0r
https://www.zotero.org/google-docs/?HpjI9U
https://www.zotero.org/google-docs/?7wWunI
https://www.zotero.org/google-docs/?qjqlJ9
https://www.zotero.org/google-docs/?1COX2s
https://www.zotero.org/google-docs/?1COX2s
https://www.zotero.org/google-docs/?VM4Am5
https://www.zotero.org/google-docs/?VM4Am5
https://www.zotero.org/google-docs/?78WISi
https://www.zotero.org/google-docs/?78WISi
https://www.zotero.org/google-docs/?Th993s
https://www.zotero.org/google-docs/?zhASij
https://www.zotero.org/google-docs/?ZQnWQJ
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2020). As a result of Step 1b, we obtain a document-term matrix formed of texts (rows) and 
features (columns). 
 
Finally, we must learn the similarity between the texts represented with the chosen lists of 
features – by using some metric of distance (Step 1c on Figure 1). There exist a variety of 
metrics for this purpose: Euclidean, Manhattan, Delta, Cosine, Cosine Delta distances and 
Jensen–Shannon divergence (symmetrized Kullback–Leibler divergence) for features that are 
probability distributions (in our case, this can be done for LDA topics and bag-of-words 
features). 
 
Variants of Step 1a, 1b, and 1c, can be assembled in numerous combinations. In our “race of 
algorithms”, each combination is a competitor – and a potential winner. Say, we could choose 
a combination of weak thematic foregrounding, LDA topics with 50 topics on 5000 most 
frequent words, and Euclidean distance. Or, medium thematic foregrounding, simple bag-of-
words with 10,000 most frequent words, and Jensen–Shannon divergence. Some of these 
combinations are researchers’ favorites, while others are underdogs – used rarely, or not at 
all. Our goal is to map out the space of possible combinations – to empirically test how each 
combination performs in the task of detecting the thematic signal. In total there are 311 
competing combinations. 
 
Step 2. Sampling for robust results 
A potential problem with our experiment could be that some combinations might perform better 
or worse simply because they are more suitable to our corpus of novels – for whatever reason. 
To reduce the impact of individual novels in our corpus, we do cross-validation: instead of 
analyzing the corpus as a whole, we analyze smaller samples from the corpus multiple times. 
Each sample contains 120 novels: 30 books from each genre. Altogether, we perform the 
analysis for each combination on 100 samples. For each sample, all the models that require 
training – LDA, WGCNA, and doc2vec – are trained anew. 

 

https://www.zotero.org/google-docs/?ZQnWQJ
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Figure 1. Four steps of the analysis. The workflow includes two loops. Big loop goes through various 
combinations of thematic control (Step 1a), feature type (1b), and distance metric (1c). For each such 
combination, a small loop is run: it randomly draws a genre-stratified sample of 120 novels (Step 2), 
clusters the novels using Ward algorithm (Step 3), and validates the clusters on the dendrogram using 
Adjusted Rand Index (Step 4). As a result of these four steps, each combination receives an ARI score: 
a score of its performance in detecting genres. 
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Step 3. Clustering 
As a result of Step 2, we obtain a matrix of text distances. Then, we need to cluster the texts 
into groups – our automatically generated genre clusters, which we will later compare to the 
“true” clusters. For this, we could have used a variety of algorithms (e.g., k-means). We use 
hierarchical clustering with Ward’s linkage (Ward, 1963): it clusters two items when resulting 
clusters maximize variance across the distance matrix. Despite being originally defined only 
for Euclidean distances, it was empirically shown that Ward’s algorithm outperforms other 
linkage strategies in text-clustering tasks (Ochab et al., 2019). We assume that novels from 
four defined genres should roughly form four distinct clusters (as the similarity of texts within 
genre is greater than similarity of texts across genres). To obtain the groupings from a resulting 
tree we cut it vertically by the number of assumed clusters (which is 4). 
 
Step 4. Cluster validation 
How similar are our generated clusters to the “true” genre populations? To learn this, we 
compare the clusters generated by each chosen combination to the original genre labels. For 
this, we use a measure of cluster validation called the adjusted Rand index (ARI) (Hubert & 
Arabie, 1985). ARI score of a particular combination shows how well this combination 
performs in the task of detecting genres – and thus, in picking the thematic signal. Steps 1–4 
are performed for every combination, so that every combination receives its ARI score. In the 
end of the analysis, we obtain a dataset of 29,100 rows (291 combinations, each tested on 
100 random samples). 

Results 
 
Figure 2 shows the average performance of all the combinations of thematic foregrounding, 
features, and distance metrics. Our first observation: the average ARI of the best performing 
algorithms ranges from 0.66 to 0.7, which is rather high for the complicated, noisy data that is 
literary fiction. This gives additional support to the idea that unsupervised clustering of fiction 
genres is possible. Even a cursory look at 10 best-performing combinations immediately 
reveals several trends. First, none of the top combinations have weak thematic foregrounding. 
Second, 6 out of 10 best-performing features are LDA topics. Third, 8 out of 10 distances on 
this list are Jensen–Shannon divergence. 

 

https://www.zotero.org/google-docs/?wodVDX
https://www.zotero.org/google-docs/?bO1qUc
https://www.zotero.org/google-docs/?jRw2Gt
https://www.zotero.org/google-docs/?jRw2Gt
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Rank Combination Median ARI Standard deviation 

1 Strong foregr. doc2vec (300 dimensions) cosine 0.703 0.092 

2 Strong foregr. LDA (k=50, 5000 MFWs) Jensen-Shannon 0.677 0.107 

3 Strong foregr. LDA (k=100, 1000 MFWs) Jensen-Shannon 0.670 0.086 

4 Medium foregr. doc2vec (300 dimensions) cosine 0.668 0.093 

5 Strong foregr. bag-of-words (10,000 
MFWs) 

Jensen-Shannon 0.665 0.110 

6 Medium foregr. LDA (k=50, 5000 MFWs) Jensen-Shannon 0.661 0.092 

7 Strong foregr. bag-of-words (5000 MFWs) Jensen-Shannon 0.657 0.093 

8 Strong foregr. LDA (k=20, 10,000 MFWs) Jensen-Shannon 0.657 0.114 

9 Strong foregr. LDA (k=20, 5000 MFWs) Jensen-Shannon 0.656 0.116 

10 Strong foregr. LDA (k=100, 5000 MFWs) Jensen-Shannon 0.656 0.074 

 
Figure 2. Raw distributions of ARI scores for all the combinations of thematic foregrounding, feature 
type, and distance metric. Boxplots are colored by feature type. Numbers on the horizontal axis 
correspond to the names of combinations in the table to the right, showing 10 best-performing 
combinations (see all the combinations in Supplement, Table S7). 
 
But how generalizable are these initial observations? How shall we learn the average 
“goodness” of a particular kind of thematic foregrounding, or a feature type, or a distance 
metric? To learn this, we need to control for their influence on each other, as well as for 
additional parameters, such as the number of most frequent words and chunking. Hence, we 
have constructed five Bayesian linear regression models (see Supplement 5.1). They answer 
questions about the performance of various combinations of thematic foregrounding, features, 
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and distance metrics, helping us reach conclusions about the performance of individual steps 
of thematic analysis. All the results of this study are described in detail in Supplement 5.1. 
Below, we focus only on key findings. 
 
Conclusion 1. Thematic foregrounding improves genre clustering 
 

 
Figure 3. The effect of thematic foregrounding (weak, medium, or strong) on clustering genres, stratified 
by feature type. 
 
The goal of thematic foregrounding was to highlight the contentful parts of the texts and to 
backdrop the stylistic parts. So, does larger thematic foregrounding improve genre 
recognition? As expected, we have found that low thematic foregrounding shows the worst 
performance across all four feature types (see Figure 3). For LDA and bag-of-words, it leads 
to drastically worse performance. At the same time, we do not see a large difference between 
the medium and the strong levels of thematic foregrounding. The major difference of the strong 
level of thematic foregrounding is the use of lexical simplification. This lexical simplification 
has not led to noticeable improvement of genre recognition. The gains of using strong thematic 
foregrounding for document embeddings, LDA and bag-of-words are marginal and 
inconsistent. 
 
Conclusion 2. Various feature types show similarly good performance 
 
Does the choice of feature type matter for the performance of genre clustering? We have 
found that almost all feature types can perform well. As shown on Figure 2, three out of four 
feature types – doc2vec, LDA, and bags of words – when used in certain combinations, can 
lead to almost equally good results. But how good are they on average? Figure 4 shows the 
posterior distributions of ARI for each type of features used in our analyses – in each case, for 
high level of thematic foregrounding. 
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Figure 4. Posterior distributions of ARI scores for four feature types, at high level of thematic 
foregrounding. 
 
As we see, doc2vec shows the best average performance, but this study has not experimented 
enough with using various other parameters of this feature type. It might be that another 
number of dimensions (e.g., 100 instead of 300) would worsen its performance. More research 
is needed to better understand the performance of doc2vec. LDA is the second best approach 
– and interestingly, the variation of parameters in LDA (such as k of topics or n of MFWs) does 
not increase the variance compared to doc2vec. Bag-of-words approach, despite being the 
simplest kind of feature, proves to be surprisingly good. It does not demonstrate the best 
performance, but it is not far behind doc2vec and LDA. At the same time, bags of words have 
a powerful advantage: simplicity. They are simpler to use and require fewer computational 
resources, meaning that in many cases they can still be a suitable choice for thematic analysis. 
Finally, WGCNA shows the worst ARI scores on average. 
 
Conclusion 3. The performance of LDA does not seem to depend on k of topics and n 
of most frequent words 
 
LDA modeling depends on parameters, namely k of topics and n of most frequent words, which 
should be decided, somewhat arbitrarily, before modeling. There exist algorithms for 
estimating the “good” number of topics, which help assessing how many topics are “too few” 
and how many are “too many” (Sbalchiero & Eder, 2020). In our study, however, we find no 
meaningful influence of either of these choices on learning the thematic signal (Figure 5). The 
single most important factor making a massive influence on the effectiveness of thematic 
classification is thematic foregrounding. Weak thematic foregrounding (in our case, only 
lemmatizing words and removing 100 most frequent words) proves to be a terrible choice that 
noticeably reduces ARI scores. Our study points towards the need for further systematic 
comparisons of various approaches to thematic foregrounding, as it seems to play a key role 
in the solid performance of LDA. 
 

https://www.zotero.org/google-docs/?ypZNU9
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Figure 5. Posterior probabilities of the effects of k of topics on ARI, stratified by the level of thematic 
foregrounding and n of most frequent words used in LDA. Error bars show 95% credible intervals. 
 
Conclusion 4. Bag-of-words approach requires a balance of thematic foregrounding 
and n of most frequent words 
 
Using bags of words as features is the simplest approach in thematic analysis, but still an 
effective one, as we have demonstrated. But how does one maximize the chances that bags 
of words perform well? We have varied two parameters in the bag-of-words approach: the 
level of thematic foregrounding and the number of MFWs used. Figure 6 illustrates our 
findings: both these parameters influence the performance. Using 5000, instead of 1000, 
MFWs, drastically improves ARI scores. Similarly, using medium, instead of weak, thematic 
foregrounding, makes a big difference. At the same time, pushing these two parameters 
further – using 10,000 MFWs and strong thematic foregrounding – brings only marginal, if any, 
improvement in ARI scores.  

 

 
 
Figure 6. The influence of the number of most frequent words, used as text features, on learning the 
thematic signal, measured with ARI. There is a positive relationship between n of words and ARI, as 
well as between the level of thematic foregrounding and ARI. However, the middle parameter values of 
both (5000 MFWs and medium foregrounding) should be enough for most analyses. 
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Conclusion 5. Jensen–Shannon divergence is the best distance metric for genre 
recognition, Euclidean – the worst 
 
Choosing the right distance metric is crucial for improving genre clustering. Figure 7 shows 
the performance of various distances for each type of feature (note that Jensen–Shannon 
divergence, which was formulated for probability distributions, could not be applied to doc2vec 
dimensions and WGCNA module weights). For LDA and bag-of-words, Jensen–Shannon 
divergence is the best distance, with Delta and Manhattan distances being highly suitable too. 
For doc2vec, the choice of distance matters less. Interestingly, Euclidean distance is the 
worst-performing distance for LDA, bag-of-words, and WGCNA. This is an important, because 
this distance is often used in text analysis, also in combination with LDA (Jockers, 2013; 
Schöch, 2017; Underwood et al., 2022), while our study suggests that this distance should be 
avoided in computational thematic analysis. Cosine distance is also known to be useful for 
authorship attribution, when combined with bag-of-words as a feature type. At the same time, 
cosine distance is sometimes used to measure the distances between LDA topic probabilities, 
and our study shows that it is not the best combination. 
 

 
 

Figure 7. The influence of distance metrics on ARI scores, separately for each feature type. Note that 
Jensen–Shannon divergence could not be combined with WGCNA and doc2vec. 
 
Comparison of algorithms on a larger dataset 
 
How well does this advice apply to clustering other corpora, not just our corpus of 200 novels? 
A common problem in statistics and machine learning is overfitting: tailoring one’s methods to 
a particular “sandbox” dataset, without making sure that these methods would work “in the 
wild”. In our case, this means: would the same combinations of methods work well/poorly on 
other genres and other books than those included in our analysis? One precaution that we 
took to deal with overfitting was sampling from our genre corpus: instead of analyzing the full 
corpus just once, we analyzed smaller samples from it. But, additionally, it would be useful to 
compare the best-performing and the worst-performing methods against a much larger corpus 
of texts. 
 
For this purpose, we use a sample of 5000 books of the NovelTM dataset of fiction, built from 
HathiTrust corpus (Underwood et al., 2020). Unlike our small corpus of four genres, these 

https://www.zotero.org/google-docs/?RMq2Sh
https://www.zotero.org/google-docs/?RMq2Sh
https://www.zotero.org/google-docs/?OTiAn2


 14 

books do not have reliable genre tags, so we could not simply repeat our study on this corpus. 
Instead, we decided to inspect how a larger sample of our four genres (detective, fantasy, 
science fiction, and romance) would cluster in the HathiTrust corpus. For this, we included all 
the books in these four genres that we could easily identify (see Supplement for details) and 
seeded them into a random sample of 5000 works of fiction. Then we clustered all these books 
using two approaches: a particularly bad combination of methods for identifying genres (weak 
thematic foregrounding, bag-of-words with 5000 words, cosine distance) and a particularly 
good one (medium thematic foregrounding, LDA on 1000 words with 100 topics, clustered with 
Delta distance). The result, visualized with two UMAP projections (McInnes et al., 2018), is 
shown on Figure 8. One combination of methods resulted in a meaningful clustering, while 
the other – in chaos. However, this is only a first step towards further testing various algorithms 
of computational thematics “in the wild”. 
 

 
 

Figure 8. UMAP projections for a corpus consisting of 5,000 random novels from NovelTM HathiTrust 
corpus and all the novels all the authors included in the original corpus of four genres, found in NovelTM. 
Left-hand figure is clustered based on one of the worst-performing combinations, as found out by our 
study. Right-hand figure is based on one of the best-performing combinations. 

Discussion 
 
This study aimed to answer the question: how good are various techniques of learning 
thematic similarities between works of fiction? In particular, how good are they at detecting 
genres – and are they good at all? For this, we tested various techniques of text mining, 
belonging to three consecutive steps of analysis: pre-processing, extraction of features, and 
measuring distances between the lists of features. We used four common genres of fiction as 
our “ground truth” data, including a tightly controlled sample of books. Our main finding is that 
unsupervised learning can be effectively used for detecting thematic similarities, but 
algorithms differ in their performance. Interestingly, the algorithms that are good for 
computational stylometry (and its most common task, authorship attribution) are not the same 
as those good for computational thematics. To give an example, one common approach to 
authorship attribution – using limited pre-processing, with a small number of most frequent 

https://www.zotero.org/google-docs/?WYH2Zc
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words as features, and cosine distance – is one of the least accurate approaches for learning 
thematic similarities. How important are these differences in the real-world scenario, not 
limited to our small sample of books? To test this, we have contrasted one of the worst-
performing combinations of algorithms, and one of the best-performing combinations, using a 
large sample of the HathiTrust corpus of books. 
 
Systematic comparisons between various algorithms for computational thematic analysis will 
be key for a better understanding of which approaches work and which do not work – a 
requirement for assuring reliable results in the growing area of research which we suggest 
calling “computational thematics”. Using a reliable set of algorithms for thematic analysis 
would allow tackling several large problems that remain not solved in the large-scale analysis 
of books. One such problem is creating better genre tags for systematizing large historical 
libraries of digitized texts. Manual genre tags in corpora such as HathiTrust are often missing 
or are highly inconsistent, which leads to attempts of using supervised machine learning, 
trained on manually tagged texts, to automatically learn the genres of books in the corpus 
overall. However, this approach, by design, allows capturing only the genres we already know 
about, and not the genres we do not know exist: “latent” genres. Unsupervised thematic 
analysis can be used for this task. Another important problem that unsupervised approaches 
to computational thematics may be good at is historical analysis of literary evolution. So far, 
we are lacking a comprehensive “map” of literary influences, based on the similarity of books. 
Such a map would allow creating a computational model of literary macroevolution, similar to 
phylogenetic trees (Bouckaert et al., 2012; Tehrani, 2013) or rooted phylogenetic networks 
(Neureiter et al., 2022; Youngblood et al., 2021) used in cultural evolution research of 
languages, music, or technologies. Having reliable unsupervised algorithms for measuring 
thematic similarities would be crucial for any historical models of this sort. Also, measuring 
thematic similarities may prove useful for creating book recommendation systems. Currently, 
book recommendation algorithms are mostly based on the analysis of user behavior: ratings 
or other forms of interaction (Duchen, 2022). Such methods are highly effective in the cases 
when user-generated data is abundant, like songs or brief videos. However, for longer content 
types, which take more time to consume and, the amount of user-generated data is much 
smaller. Improving the tools for content-based similarity detection in books would allow 
recommending books based on their content – as it is already happening to songs: projects 
such as Spotify’s Every Noise at Once (https://everynoise.com/) combine user behavior data 
with the acoustic features of songs themselves to learn the similarity between songs and 
recommend them to listeners. 
 
This study is a preliminary attempt at systematizing various approaches to computational 
thematics. More work is needed to further test the findings of this paper and to overcome its 
limitations. One apparent limitation is the concept of “ground truth” genres. It may be noted – 
rightly – that there are no “true” genres and that genre tags overall may not be the best 
approach for testing thematic similarities. As further steps we see using large scale user 
generated tags from Goodreads and similar websites as a proxy for “ground truth” similarity. 
Also, this study has certainly not exhausted all the possible techniques for text analysis that 
can be used for computational thematics. For example, a much wider testing of vector models, 
like doc2vec, but also BERTopic (Grootendorst, 2022) or Top2Vec (Angelov, 2020) is an 
obvious next step, or testing other network-based methods for community detection (Gerlach 
et al., 2018). Likewise, text simplification could have large potential for thematic analysis, it 
must be tested further. Possibly, the most straightforward way to test our findings would be 

https://www.zotero.org/google-docs/?XAglaJ
https://www.zotero.org/google-docs/?em25cn
https://www.zotero.org/google-docs/?w4s6UG
https://everynoise.com/
https://www.zotero.org/google-docs/?B2JCtJ
https://www.zotero.org/google-docs/?TBVGDp
https://www.zotero.org/google-docs/?n97VgN
https://www.zotero.org/google-docs/?n97VgN
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attempting to replicate our results on other genre corpora, containing more books or other 
genres. Testing these methods on books in other languages is also critical. The approach 
taken in this paper offers a simple analytical pipeline – and we encourage other researchers 
to use it for testing all the various other computational approaches. Such a communal effort 
will be key for assuring robust results in the area of computational thematics. 
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1 Corpus summary

The corpus was constructed so that books roughly span the same time period across genres
(Figure S1); also, each genre subcorpus does not include more than three books per author
(Figure S2). The total number of authors contributing to each genre was also similar in each
subcorpus.

scifi

romance

fantasy

detective

1950 1960 1970 1980 1990 2000
Year

Figure S 1: Distribution of books through time within each genre.
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Figure S 2: Count of books belonging to a single author. Arranged by frequency rank.

2 Preprocessing

2.1 Thematic foregrounding: weak

At the first level of thematic foregrounding we remove 100 most frequent words (MFW) from
analysis. 100 MFWs roughly correspond to function words (or closed-class words) in English
(Chung & Pennebaker, 2007; Stamatatos, 2009) that are routinely used in authorship attribu-
tion starting from the classical study of The Federalist Papers (Mosteller & Wallace, 1963).
MFWs can be removed to cheaply lower the impact of style (which heavily depends on grammar
and syntactic differences) in favor of semantics and content.

2.2 Thematic foregrounding: medium

At the second level of thematic foregrounding words are pruned systematically based on mor-
phology: we allow only nouns, adjectives, verbs and adverbs (auxiliary verbs are excluded too).
We also remove entities and proper nouns, which might be specific to an author or a series
of novels. Morphological tagging and named entity recognition was done with a basic spaCy
language model for English due to its accessibility.

3



We did not use an external list of stopwords, since these lists are often arbitrary, can signficantly
alter results, and are dominated by industry (specifically, information retrieval) standards.
Lately, there is a tendency to minimize stopwords usage (Calvo Tello, 2021; Underwood et al.,
2022), or to completely avoid them in the tasks like topic inference in a collection of documents
(e.g. top2vec algorithm (Angelov, 2020)).

2.3 Thematic foregrounding: strong

The third level of thematic foregrounding includes steps from the medium foregrounding level
and adds naive semantic simplification. We reduce the sparseness of feature space by turning
less frequent words into more frequent words from similar semantic domains. We replace a
word outside of 1000 MFWs with its closest semantic neighbor (out of the 10 closest neighbors)
if this neighbor 𝑛 ∈ 𝑀𝐹𝑊 . To infer semantic similarity we use off-the-shelf FastText model
(Mikolov et al., 2018) which includes 2M words and is trained on English Wikipedia, which
provides a slice of ‘modern’ use of language. Again, this model is easily accessible and scalable
to different tasks or languages.

Table S1 presents a random example of 20 semantic replacements.

As seen from examples, this lexical simplification can loosely sort target words by semantic
domains represented by their more frequent semantic neighbors and, in some cases, clean
original texts (loove -> claim). Noise is present, too, both from the domain-specific language
of underlying word2vec model (download -> free) and the lack of context-based semantic
disambiguation (filmclip -> song).

Finally, Figure S3 shows the filtering effects which different pre-processing strategies have on
the corpus. The largest drop in word type diversity, predictably, happens after morphological
filtering at medium thematic foregrounding; our naive lexical simplification allows removing
another 5% of word types, but preserving the amount of tokens.

3 Features

3.1 Bag of words

A classic multivariate representation of texts as bags of words. We follow a stylometric tradition
that assumes any weighting would also be part of the distance measure (e.g. Burrows’ Delta is
scaled Manhattan distance: see more about scaling features and vector length normalization in
Evert et al. (2017)), so we only transform word frequencies to relative frequencies, ultimately
dealing with a text as a probability distribution over an ordered set of words (arranged by their
frequency) and defined by MFW cut-off. Different weightening techniques are widely used in
information retrieval (TF-IDF, logarithmic transformation, etc.), but are more suitable as an

4



Table S 1: A random sample of 20 ’simplified’ words. ’Source’ column holds original words.

source replacement
sundress skirt
download free
unlease destroy
recycling waste
organically grow
trident sword
snowed snow
redeye flight
cardholder card
generate create
struggling struggle
dab rub
houseparty party
looove love
grandmaster master
filmclip song
vantage view
endeavor effort
framing frame
files file

5
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Figure S 3: Filtering effects on corpus. Percentages are given relative to the ‘original’ corpus
size.

input to supervised learning (Calvo Tello, 2021) and might interfere with distance calculations
(e.g. transforming original probabilities to something else).

3.2 Topic probabilities (LDA)

Latent Dirichlet Allocation (blei_latent_2003?) is the most widely used probabilistic
alogrithm of topic modeling, that still performs competitively with newer methods (Harrando
et al., 2021). LDA infers groups of words (topics) based on their co-occurence in documents.
Because LDA is generative, we can in turn represent each document as a probability distribu-
tion of topics. Compact lexical representation also makes the feature space more interpretable.
We use topicmodels LDA implementation in R (Grün & Hornik, 2011). We vary parameters𝑘 (number of topics) and MFW used. We do leave out hyperparameters alpha and delta at 0.1
default and do not rely on coherence/perplexity measures of a model, since we do not aim to
fine-tune the LDA to a particular corpus; there is also empirical evidence that perceived LDA
performance does not completely align with validation measures ((Hoyle et al., 2021); see also
(Antoniak, 2022) for a summary of research on LDA performance).

An important pre-processing step for LDA is chunking of texts. A complete novel is too large
of a context for inferring topics: too many words co-occur in large documents with many other
words. Thus, instead of representing each novel as a bag of words, we represent it as many

6



Table S 2: A sample of most probable words in LDA topics. Underlying model: full corpus,
LDA, medium thematic foregrounding, 100 topics, 1000 MFWs.

topic terms
2 ship captain space sea leave time control war send command
3 hand eye head smile sit nod shake stand hold voice
4 father mother son daughter family child sister die live home
7 answer question speak doctor word call talk moment voice reply
8 feel eye smile walk moment stand sit suddenly hand slowly
11 human world planet life time system people space race war
12 dog bone animal bird mouth leg stick foot head eat
15 magic creature power castle change animal form head tree human
16 dragon fire wing fly eye head hold time land shoulder
19 time reach feel moment start completely hope system begin mind

smaller bags of words from consecutive parts (chunks) before training an LDA. We use an arbi-
trary chunk size of 1000, but other structural cues (paragraphs, pages, chapters) for chunking
might also be a good idea. We aggregate the probabilities from these smaller documents back
to a single novel by taking an average of probability distributions (a centroid).

Table S2 demonstrates a sample of topics (10 most probable words per topic) in a model that
is built using texts at medium level of thematic foregrounding, 100 topics, document-term
matrix (DTM) was cut at 1000 MFWs. Topics clearly capture thematic groups like locations
and settings, and are often linked to actions and relationships.

3.3 Module’s weights (WGCNA)

Weighted gene correlation network analysis (WGCNA) is similar to LDA, but comes from a
different research field: genetics. Some point out its promising features for text analysis, like
relative independence from high-frequency function words (Elliott, 2017). WGCNA has one
advantage over LDA: there is no need to guess the optimal number of topics, as WGCNA
“modules” are determined automatically based on network of similarity in behavior between
traits. Internally, WGCNA already relies on hierarchical clustering to derive modules that
describe the variation in individuals/documents and could be greedy in reducing the word
behavior in distinct genres to only one or two modules, especially if the analyzed texts have
been chunked.

An example of this behavior from one of the sampling runs (120 novels) is presented on Figure
S4. WGCNA was run on chunked novels, with medium thematic foregrounding, 5000 MFWs.
We use implementation of the algorithm by Langfelder & Horvath (2008). The algorithm
derived only one module of words that show almost perfectly opposite expression in detective
and fantasy fiction, to no surprise: these genres are the easiest to distinguish. However, one
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module is too greedy when it comes to clustering: romance and sci-fi will be just mixed into
two other distinct genres (and share more similarity to detectives than to fantasy).
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Figure S 4: Single-module problem in WGCNA

To find the most defining words for this global module we use a connectivity measure: in this
case, these are words with the highest positive correlation to an “eigengene”, which is a joint
expression of a module in samples / documents. Figure S5 shows 20 most correlated words
to a module from the same sample as on Figure S4. It is quite clear that these are words
from a police procedural universe, and, more generally, these are words of a ‘modern-like’
urban setting, which also explains this module’s expression in romance and science fiction.
Conversely, the most inversely correlated words point to open spaces of adventure, magic and
medieval attributes.

To give an example of WGCNA producing several meaningful distinct modules akin to LDA
topics, we can use another model without chunking (medium thematic foregrounding, without
chunking, 5000 MFWs). Examples of 10 most closely correlated words to a sample of mod-
ules are presented on Table S3. Unsurprisingly, removing chunking makes modules closely
associated with specific books.

3.4 Document embeddings (doc2vec)

Doc2vec directly embeds documents into a latent semantic space that is defined by a dis-
tributional language model. In the end, each document is represented as a vector in this
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footcloakflamewalltreemountainlandgroundquestionmentionreadtimedealphonecar
papernicedeskideaprettyjob
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supposeoffice
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Figure S 5: Single-module WGCNA model: 5000 MFWs, medium thematic foregrounding,
1000-word chunks. Word correlations to the module’s eigengene, 20 most and
20 less correlated words.

Table S 3: Words associated with WGCNA modules, random selection. 500 MFWs, medium
thematic foregrounding, no chunking.

module words
1 bugger fighter commander formation strategy practice maneuver video bunk enemy
4 nuclear crisis mayor empire tech scientific science trader policy navy
9 dimension magician disguise assassin kid demon grumble flagon terrific mumble
10 hairy star meadow unicorn chain stall caravan gap innkeeper wax
12 sellsword tyrion Arya godswood maester raven eunuch ranger direwolf knight
16 menion mystic flick beyond sentry awesome massive attacker terrain quickly
19 oblige beg daresay countenance acquaint contrive disposition lordship shocking fashionable
24 laird iain elder outsider topic announce nudge blurt agreement argue
25 camera cowboy truck bridge vest vegetable brandy magazine corn bracelet
26 runciter talent organization anti spray employee commercial tv anyhow elevator
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𝑁 -dimensional space (depends on the underlying model). Again, we embed each novel split
into chunks, in order to capture semantic variation on a small scale and then average the vec-
tors in the space to get a single-vector-per-novel representation (a centroid of chunk vectors).
We chose to use the chunks of 800 words and a pretrained FastText model (Mikolov et al., 2018)
for vector representation of word semantics (300 dimensions, 2M words, trained on Wikipedia)
and doc2vec implementation that allows fine-tuning and follows Angelov’s alogrithm (2020).

Figure S6 shows UMAP projections of averaged novel vectors.

genre
DT

FS

RM

SF

Figure S 6: UMAP projection of novel embedding ‘centroids’: average vectors of 800-words
chunks; doc2vec, medium thematic foregrounding.

4 Clustering and validation

4.1 Distance measures

We infer similarity between novels by calculating pairwise distances between representations
/ vectors. We test several classic distances that are used for measuring text similarity (and
are widely used in stylometry): Euclidean, Manhattan, Burrows’ delta (scaled Manhattan),
cosine, cosine delta (scaled cosine) and Jensen-Shannon divergence.

Euclidean. Square root of the squared pairwise differences in features
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𝐸𝑢𝑐(𝐴, 𝐵) = √∑(𝐴𝑖 − 𝐵𝑖)2
Manhattan. Sum of the pairwise differences in dimensions (cityblock distance)𝑀𝑎𝑛(𝐴, 𝐵) = ∑(𝐴𝑖 − 𝐵𝑖)
Burrows’ delta. Sum of the pairwise differences in scaled dimensions, normalized by vector
length (Burrows, 2002). 𝑧(𝐴𝑖) is scaled and centered variable 𝑖 in text 𝐴.

Δ(𝐴, 𝐵) = ∑ 𝑧(𝐴𝑖) − 𝑧(𝐵𝑖)𝑁
Cosine. 1 - cosine similarity.

𝑐𝑜𝑠(𝐴, 𝐵) = 1 − ∑ 𝐴𝑖𝐵𝑖√∑ 𝐴2𝑖 √∑ 𝐵2𝑖
Cosine delta. Same as cosine, but features are scaled (Evert et al., 2017).

Jensen-Shannon Divergence. Symmetrized Kullback-Leibler divergence. Not meaningful
for feature vectors that are not probability distribution, but weights (e.g. WGCNA, doc2vec).𝐽𝑆𝐷(𝐴, 𝐵) = 0.5 ∗ (𝐴 − 𝐵) ∗ (𝑙𝑜𝑔𝑖𝑡(𝐴) − 𝑙𝑜𝑔𝑖𝑡(𝐵))
4.2 Clustering

In principle any other clustering algorithm could have been used (e.g. k-means). We use hier-
archical clustering (Ward’s linkage that pairs items when it minimizes within-cluster variance).
Despite being originally defined only for Euclidean distances, it was empirically shown that
Ward’s algorithm outperforms other linkage strategies in text-clustering tasks (Ochab et al.,
2019).

We assume that novels from four defined genres should roughly form four distinct clusters
(similarity of texts within genre is greater than similarity of texts across genres). To obtain
the groupings from a resulting tree we cut it vertically by the number of assumed clusters
(k=4). Then we compare resulting classes to ideal clustering using Adjusted Rand Index
(similar usages for unsupervised clutering with literary texts: (Cafiero & Camps, 2019; Šeļa et
al., 2022)). ARI takes values between 1 and 0, where 1 would be a perfect classification and 0
would mean clustering not better than random.
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4.3 Dendrogram of all novels

To provide an example of clustering performance, we build a dendrogram for all the novels in
four genres (Figure S7). Underlying features are document embeddings at the medium level of
thematic foregrounding and we use cosine distance for dissimilarity calculation. Colors of the
branches are based on majority of genre neighbors. Adjusted Rand index of the tree presented
below is 0.786.

genre
DT

FS

RM

SF

Figure S 7: Hierarchical clustering of the full corpus, doc2vec, medium thematic foregrounding,
Ward’s linkage. Clusters are colored by the dominant genre, up until a tree is cut
to four major clusters.
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Table S 4: Confusion matrix of clustering performance per genre.

1 3 2 4
DT 0.85 0.02 0.07 0.06
FS 0.07 0.77 0.05 0.11
RM 0.30 0.12 0.53 0.04
SF 0.13 0.24 0.07 0.55

Table S 5: Confusion matrix of clustering performance per genre (distances are filtered).

2 3 4 1
DT 0.90 0.01 0.06 0.03
FS 0.02 0.84 0.03 0.11
RM 0.27 0.06 0.64 0.02
SF 0.04 0.16 0.03 0.77

4.4 Confusion matrices

As seen from several figures above (S6, S7), genres differ in clustering consistency: detectives
and fantasy books group together better than science fiction and romance. To address this dif-
ference in behavior we create a confusion matrix, based on all 100 cross-validation runs, which
shows a dispersion of books across four clusters. Since this is not a supervised classification,
a confusion matrix requires some heuristics to determine which clusters correspond to which
genres in each clustering tree and can only show approximate results (we assume a cluster to
be the ‘detective’ cluster if majority of books in this cluster are detectives).

This confusion matrix presents a total share of labeled novels that end up in different clusters
across 29100 confusion matrices (100 samples, 291 clustering rounds in each). As usual, in the
case of a pefect clustering, the diagonal of the matrix would contain “1”. As expected, we see
that the most diffused genres are romance (often grouped with detectives, 30% of hits) and
science fiction (often grouped with fantasy, 24% of hits).

However, not all the methods summarized in the matrix above are equal and some distance
measures (like Euclidean for bag of words) are ‘bad choices’ by default. To trim the matrix
a little, we can follow the strategy that we also employ for modeling: use only well-suited
distance measure for each method and remove chunked WGCNA, which proved to be a poor
choice for thematic clustering.

Now the “good” clustering numbers are higher, but the difference between romance and science
fiction becomes more pronounced. Comparatively, romance tends to form much more diffused
clusters than science fiction (this tendency is visible on Figure S6).

Are different methods resulting in different sensitivity to genres and cluster formation? Figure
S8 present a breakdown of the confusion matrix by document representation method.
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Overall the same pattern holds across all methods, which is to be expected: they all rely on
the same lexical frequency-based information. There is an advantage for d2v since it uses
an external representations of word co-occurence based on a very large corpus, but higher
numbers for doc2vec compared to LDA also should not be treated at face value, since it has
fewer degrees of freedom (and, as a result, fewer ways to fail): doc2vec was used only in 3
different combinations per sample, while, for instance, LDA was used in 27.

5 Analysis

5.1 Linear models

Figure S9 shows the overall distribution of ARI values, with and without chunked WGCNA
option. Value concentration on zero comes from unsuited distance choices that are inadequate
for a given feature space (e.g. Euclidean for bag of words). When the data is filtered by better
performing distances, distribution is not zero-inflated (see Figure S12).
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Figure S 9: Distribution of ARI values.

Alongside distance calculation and hierarchical clustering, we ran 𝑘-means clustering (with𝑘 = 4), but its average performance in separating books in four clusters (Figure S10), as
measured by ARI, was way worse.

5.1.1 Distance selection

To simplify inference we will deal with results that were obtained with suited distance measure
per each feature type. We select only the best performing distance measure per used feature.
This is done to remove the factor of distances altogether and to equalize model’s chances for
comparison. There is no real reason to lump results from different distance measures together,
since different data (e.g. probabilities vs. feature weights) has different sensitivity to distance
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Figure S 10: Distribution of ARI values (k-means)

selection, while some distances were not measured for some feature types (JSD for WGCNA
and doc2vec).

To choose the suited distances we fit a simple model ari ~ 1 + feature*distance to get
estimates for each distance measure performance with each feature type (Figure S11). All
further models were built using distances with highest posterior averages.

The list of chosen distances with estimates:

1. BoW: Jensen-Shannon (0.58)

2. LDA: Jensen-Shannon (0.57)

3. WGCNA: cosine delta (0.53)

4. doc2vec: cosine (0.65)

Figure S12 shows the ARI distribution for the filtered set of distances.
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Figure S 11: Posterior predictions for distance performance across methods.
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5.1.2 General model: effect of thematic foregrounding

What is the effect of thematic foregrounding for different feature types? For this model data
was filtered by removing chunked WGCNA results and selecting distances with the highest
average.

We fit a multilevel model with interaction between method (𝐹𝑒𝑎𝑡𝑢𝑟𝑒) and the level of thematic
foregrounding (𝐿𝑒𝑣𝑒𝑙), pooled by individual samples. In R library brms formula, it is ari ~
1 + Feature * Level + (1|sample). We use regularizing priors for ‘intercept’ and ‘slope’
coefficients as seen in the expanded model notation below. (We use dummy coding with brms in-
terface for categorical variables, so 𝛽 coefficients represent difference between a 𝐹𝑒𝑎𝑡𝑢𝑟𝑒, 𝐿𝑒𝑣𝑒𝑙
combination and reference ‘intercept’ which is doc2vec at level 1. 𝛽 = 𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.1) does
not expect any difference on average). We use 𝐿𝑒𝑣𝑒𝑙 as a shorthand for the level of thematic
foregrounding in notation. All further models have the same structure and priors.𝐴𝑅𝐼 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑖, 𝜎𝑖)𝜇𝑖 = 𝛼 + (𝛽𝑓 ∗ 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑖 + 𝛽𝑓𝑙 ∗ 𝐿𝑒𝑣𝑒𝑙𝑖) + 𝛽𝑙 ∗ 𝐿𝑒𝑣𝑒𝑙𝑖 + 𝛿𝑠𝑎𝑚𝑝𝑙𝑒[𝑖]𝛼 = 𝑁𝑜𝑟𝑚𝑎𝑙(0.5, 0.1)𝛽𝑓,𝑙,𝑓𝑙 = 𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.1)𝛿 = 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝛿)𝜎𝑖 = 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1)𝜎𝛿 = 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1)
We model the 𝐿𝑒𝑣𝑒𝑙 of thematic foregrounding as categorical variable, and not ordinal, because
we constructed the ‘levels’ artificially: there might not be any order in relationship between
these levels. That said, modeling 𝐿𝑒𝑣𝑒𝑙 via monotonic effects would still work and resulting
models will be similar (as shown by leave-one-out cross validation in Table S6). Addition-
ally, including varying slopes for individual samples does not improve model prediction much.
It suggests that, across 100 samples of texts, methods and thematic foregrounding behaved
similarly relative to each other. Since adding slopes to random effects can complicate fitting
models and chain convergence, we instead only fit models grouped by samples.

Multilevel models with group-level effects for individual samples are always a better fit than
those without. They allow to be more uncertain about the mean estimates, since clustering
results notably differ from sample to sample.

Left-hand side of the Figure S13 shows posterior ARI means in each 𝐿𝑒𝑣𝑒𝑙 and each 𝐹𝑒𝑎𝑡𝑢𝑟𝑒
type. Right-hand side shows the same relationship, but now the mean is taken marginal of
samples: credible intervals are now much wider.

At the medium and strong thematic foregrounding three out of four feature types seem to
behave similarly with doc2vec having an upper hand. We can directly compare their posterior
distributions (Figure S14). Dotted lines represent the mean of distribution for each feature.
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Table S 6: Leave-one-out results for group 1 models (feature*level)

elpd_diff se_diff
ari ~ level * type + (level + type | sample_n) 0.00 0.00
ari ~ 1 + level * type + (1 + level + type + level:type | sample_n) -3.64 2.04
ari ~ mo(level) * type + (1 | sample_n) -15.53 7.05
ari ~ 1 + level * type + (1 | sample_n) -15.63 6.89
ari ~ mo(level) * type -213.19 21.42
ari ~ 1 + level * type -213.65 21.37
ari ~ 1 + level + type -514.73 31.39
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Figure S 13: Posterior predictions for methods behavior across thematic foregrounding levels
(left). Pooled means, marginal of 100 sample runs (right).

19



0

1

2

3

0.3 0.6 0.9
Posterior prediction

de
ns

ity

type
BoW

d2v

LDA

WGCNA

Figure S 14: Posterior distribution of ARI at strong thematic foregrounding for different fea-
tures.

Sampling introduces considerable variation to the behavior of all features types. We can use
posterior predictions to check differences in specific samples (10 samples drawn at random,
Figure S15). Note that doc2vec has only one observation per sample for each level, but model
uses grand mean to keep estimations conservative.

5.1.3 Overall best performance, distances filtered

To get an overall picture of comparable method performance we filter results by selected
distances only. Figure S16 shows ARI boxplots per each of 51 combinations.

5.1.4 All combinations

Table S7 records all 291 combinations, without any filters, arranged by descending median
ARI.

20



69 72 78 83 84

25 26 35 47 59

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

Thematic foregrounding

AR
I (

Es
tim

at
e) type

BoW

d2v

LDA

WGCNA

Figure S 15: Posterior predictions for 10 random individual samples, superimposed on the
empirical data points. Varying slopes model.

Table S 7: Median performance of all 291 method + distance combinations

rank method TF distance median.ARI SD
1 d2v_lvl_3 Strong cosine 0.703 0.092
2 d2v_lvl_3 Strong euclidean 0.687 0.097
3 d2v_lvl_3 Strong cosine delta 0.681 0.104
4 LDA_lvl_3_50_5k Strong jensen-shannon 0.677 0.107
5 LDA_lvl_3_50_5k Strong delta 0.672 0.099
6 LDA_lvl_2_100_5k Medium manhattan 0.671 0.096
7 LDA_lvl_3_100_1k Strong jensen-shannon 0.67 0.086
8 d2v_lvl_2 Medium cosine 0.668 0.093
9 lvl_3_BoW Strong jensen-shannon 0.665 0.11
10 LDA_lvl_2_50_5k Medium jensen-shannon 0.661 0.092
11 d2v_lvl_2 Medium cosine delta 0.657 0.125
12 LDA_lvl_3_20_1k0 Strong jensen-shannon 0.657 0.114
13 lvl_3_BoW Strong jensen-shannon 0.657 0.093
14 LDA_lvl_3_100_5k Strong jensen-shannon 0.656 0.074
15 LDA_lvl_3_20_5k Strong jensen-shannon 0.656 0.116
16 LDA_lvl_3_50_1k Strong jensen-shannon 0.656 0.099
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rank method TF distance median.ARI SD
17 d2v_lvl_3 Strong delta 0.655 0.089
18 LDA_lvl_3_50_1k0 Strong delta 0.654 0.098
19 LDA_lvl_3_50_1k0 Strong jensen-shannon 0.654 0.111
20 lvl_2_BoW Medium jensen-shannon 0.654 0.104
21 d2v_lvl_3 Strong manhattan 0.653 0.099
22 LDA_lvl_2_100_5k Medium delta 0.653 0.094
23 d2v_lvl_1 Weak euclidean 0.652 0.104
24 d2v_lvl_2 Medium euclidean 0.651 0.104
25 LDA_lvl_3_100_1k Strong delta 0.649 0.088
26 LDA_lvl_3_100_1k Strong manhattan 0.649 0.084
27 LDA_lvl_2_50_1k0 Medium jensen-shannon 0.648 0.1
28 LDA_lvl_2_50_1k0 Medium delta 0.643 0.099
29 LDA_lvl_3_100_5k Strong manhattan 0.643 0.095
30 LDA_lvl_3_20_1k0 Strong delta 0.642 0.103
31 LDA_lvl_2_20_1k0 Medium delta 0.639 0.096
32 LDA_lvl_3_100_5k Strong delta 0.639 0.085
33 LDA_lvl_3_50_5k Strong manhattan 0.637 0.115
34 lvl_2_BoW Medium jensen-shannon 0.637 0.098
35 d2v_lvl_2 Medium manhattan 0.636 0.099
36 LDA_lvl_2_20_1k0 Medium jensen-shannon 0.636 0.111
37 LDA_lvl_2_20_5k Medium jensen-shannon 0.636 0.106
38 LDA_lvl_2_20_1k0 Medium manhattan 0.635 0.129
39 LDA_lvl_2_50_5k Medium delta 0.635 0.093
40 LDA_lvl_2_100_1k Medium jensen-shannon 0.634 0.09
41 lvl_1_BoW Weak cosine delta 0.634 0.094
42 LDA_lvl_3_20_5k Strong manhattan 0.632 0.104
43 d2v_lvl_2 Medium delta 0.631 0.105
44 lvl_1_BoW Weak cosine delta 0.631 0.095
45 LDA_lvl_3_20_1k Strong jensen-shannon 0.628 0.106
46 LDA_lvl_3_20_1k0 Strong manhattan 0.628 0.107
47 d2v_lvl_1 Weak cosine 0.627 0.108
48 LDA_lvl_2_100_1k Medium manhattan 0.627 0.09
49 d2v_lvl_1 Weak cosine delta 0.626 0.105
50 d2v_lvl_1 Weak manhattan 0.626 0.108
51 lvl_2_BoW Medium cosine delta 0.625 0.104
52 LDA_lvl_2_100_1k0 Medium delta 0.624 0.112
53 LDA_lvl_2_50_1k Medium jensen-shannon 0.623 0.094
54 LDA_lvl_3_100_1k0 Strong delta 0.623 0.096
55 lvl_1_BoW Weak jensen-shannon 0.623 0.092
56 d2v_lvl_1 Weak delta 0.622 0.109
57 LDA_lvl_2_20_5k Medium manhattan 0.622 0.112
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rank method TF distance median.ARI SD
58 LDA_lvl_2_20_1k Medium jensen-shannon 0.621 0.113
59 LDA_lvl_2_100_1k0 Medium jensen-shannon 0.615 0.104
60 LDA_lvl_3_20_5k Strong delta 0.615 0.092
61 lvl_3_BoW Strong cosine delta 0.615 0.108
62 LDA_lvl_2_100_5k Medium jensen-shannon 0.614 0.08
63 lvl_2_BoW Medium cosine delta 0.614 0.113
64 LDA_lvl_3_50_1k Strong manhattan 0.609 0.109
65 LDA_lvl_3_20_1k Strong manhattan 0.605 0.116
66 LDA_lvl_2_50_5k Medium manhattan 0.604 0.095
67 LDA_lvl_3_50_1k Strong delta 0.604 0.095
68 lvl_1_BoW Weak jensen-shannon 0.601 0.09
69 LDA_lvl_2_20_5k Medium delta 0.6 0.09
70 lvl_3_BoW Strong cosine delta 0.599 0.087
71 WGCNA_lvl2_5k_ Medium cosine delta 0.599 0.098
72 WGCNA_lvl2_5k_ Medium cosine 0.599 0.098
73 lvl_1_BoW Weak manhattan 0.596 0.09
74 LDA_lvl_2_100_1k Medium delta 0.595 0.09
75 LDA_lvl_3_100_1k0 Strong jensen-shannon 0.592 0.099
76 LDA_lvl_3_20_1k Strong delta 0.592 0.089
77 lvl_1_BoW Weak delta 0.592 0.096
78 LDA_lvl_2_50_1k0 Medium manhattan 0.59 0.105
79 LDA_lvl_2_100_5k Medium cosine delta 0.588 0.102
80 lvl_1_BoW Weak delta 0.588 0.123
81 LDA_lvl_3_100_5k Strong cosine delta 0.585 0.091
82 WGCNA_lvl1_5k_ Weak delta 0.583 0.086
83 WGCNA_lvl1_5k_ Weak manhattan 0.583 0.086
84 WGCNA_lvl3_5k_ Strong cosine delta 0.583 0.101
85 WGCNA_lvl3_5k_ Strong cosine 0.583 0.101
86 LDA_lvl_2_20_1k Medium manhattan 0.582 0.125
87 lvl_1_BoW Weak manhattan 0.582 0.093
88 WGCNA_lvl1_5k_ Weak cosine delta 0.581 0.104
89 WGCNA_lvl1_5k_ Weak cosine 0.581 0.104
90 lvl_3_BoW Strong delta 0.579 0.116
91 LDA_lvl_3_50_1k0 Strong manhattan 0.577 0.117
92 LDA_lvl_3_100_1k Strong cosine delta 0.576 0.076
93 lvl_3_BoW Strong jensen-shannon 0.575 0.101
94 lvl_2_BoW Medium delta 0.572 0.121
95 LDA_lvl_3_100_1k0 Strong cosine delta 0.571 0.094
96 LDA_lvl_2_50_1k Medium delta 0.566 0.107
97 lvl_2_BoW Medium jensen-shannon 0.564 0.091
98 lvl_2_BoW Medium manhattan 0.564 0.117
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rank method TF distance median.ARI SD
99 LDA_lvl_3_20_1k0 Strong cosine delta 0.563 0.095
100 LDA_lvl_3_20_5k Strong cosine delta 0.56 0.088
101 LDA_lvl_2_20_1k Medium delta 0.558 0.101
102 lvl_1_BoW Weak cosine delta 0.558 0.092
103 LDA_lvl_3_20_1k0 Strong cosine 0.556 0.121
104 lvl_3_BoW Strong manhattan 0.556 0.124
105 LDA_lvl_2_20_1k0 Medium cosine delta 0.555 0.098
106 lvl_3_BoW Strong manhattan 0.554 0.12
107 WGCNA_lvl2_5k_ Medium delta 0.552 0.109
108 WGCNA_lvl2_5k_ Medium manhattan 0.552 0.109
109 LDA_lvl_1_100_1k Weak delta 0.551 0.088
110 LDA_lvl_2_50_1k Medium manhattan 0.551 0.096
111 LDA_lvl_2_100_1k0 Medium cosine delta 0.548 0.103
112 LDA_lvl_3_20_1k Strong cosine 0.546 0.128
113 LDA_lvl_1_100_5k Weak delta 0.545 0.085
114 LDA_lvl_2_100_1k Medium cosine delta 0.544 0.079
115 lvl_1_BoW Weak delta 0.543 0.099
116 WGCNA_lvl2_5k_ Medium euclidean 0.543 0.107
117 LDA_lvl_1_100_1k0 Weak delta 0.542 0.096
118 LDA_lvl_3_20_5k Strong cosine 0.541 0.126
119 LDA_lvl_2_20_5k Medium cosine delta 0.539 0.106
120 WGCNA_lvl3_5k_ Strong delta 0.538 0.102
121 WGCNA_lvl3_5k_ Strong manhattan 0.538 0.102
122 LDA_lvl_3_50_5k Strong cosine delta 0.53 0.102
123 LDA_lvl_1_100_1k Weak manhattan 0.529 0.087
124 lvl_2_BoW Medium cosine delta 0.529 0.092
125 lvl_2_BoW Medium manhattan 0.529 0.107
126 WGCNA_lvl3_5k_ Strong euclidean 0.529 0.124
127 LDA_lvl_3_50_1k Strong cosine delta 0.527 0.082
128 lvl_2_BoW Medium delta 0.525 0.134
129 lvl_3_BoW Strong cosine delta 0.522 0.106
130 LDA_lvl_2_20_1k0 Medium cosine 0.519 0.132
131 LDA_lvl_3_100_1k0 Strong manhattan 0.519 0.108
132 LDA_lvl_3_50_1k0 Strong cosine delta 0.518 0.092
133 LDA_lvl_1_100_1k Weak jensen-shannon 0.514 0.094
134 LDA_lvl_3_20_1k Strong cosine delta 0.511 0.09
135 LDA_lvl_2_20_5k Medium cosine 0.505 0.117
136 lvl_2_BoW Medium delta 0.505 0.097
137 LDA_lvl_1_100_1k Weak cosine delta 0.503 0.088
138 LDA_lvl_2_20_1k Medium cosine delta 0.501 0.083
139 LDA_lvl_2_50_1k Medium cosine delta 0.501 0.095
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rank method TF distance median.ARI SD
140 WGCNA_lvl1_1k_ Weak cosine delta 0.498 0.104
141 WGCNA_lvl1_1k_ Weak cosine 0.498 0.104
142 WGCNA_lvl1_5k_ Weak euclidean 0.497 0.147
143 LDA_lvl_1_100_5k Weak jensen-shannon 0.495 0.109
144 lvl_3_BoW Strong delta 0.495 0.106
145 LDA_lvl_2_50_1k0 Medium cosine delta 0.494 0.117
146 lvl_3_BoW Strong manhattan 0.49 0.103
147 LDA_lvl_2_50_5k Medium cosine delta 0.489 0.09
148 LDA_lvl_1_50_1k Weak delta 0.484 0.084
149 LDA_lvl_2_100_1k0 Medium manhattan 0.482 0.131
150 LDA_lvl_1_100_5k Weak manhattan 0.481 0.101
151 LDA_lvl_2_20_1k Medium cosine 0.479 0.114
152 lvl_1_BoW Weak manhattan 0.475 0.096
153 WGCNA_lvl3_1k_ Strong cosine delta 0.473 0.11
154 WGCNA_lvl3_1k_ Strong cosine 0.473 0.11
155 LDA_lvl_1_100_5k Weak cosine delta 0.471 0.09
156 lvl_3_BoW Strong delta 0.469 0.137
157 LDA_lvl_3_100_1k Strong cosine 0.467 0.118
158 WGCNA_lvl2_1k_ Medium cosine delta 0.467 0.102
159 WGCNA_lvl2_1k_ Medium cosine 0.467 0.102
160 LDA_lvl_3_20_5k Strong euclidean 0.464 0.134
161 LDA_lvl_1_100_1k0 Weak jensen-shannon 0.462 0.106
162 WGCNA_lvl1_1k_ Weak euclidean 0.462 0.115
163 LDA_lvl_3_50_1k Strong cosine 0.461 0.114
164 LDA_lvl_3_20_1k Strong euclidean 0.46 0.136
165 lvl_1_BoW Weak jensen-shannon 0.458 0.085
166 LDA_lvl_2_50_1k Medium cosine 0.453 0.095
167 WGCNA_lvl1_1k_ Weak delta 0.453 0.094
168 WGCNA_lvl1_1k_ Weak manhattan 0.453 0.094
169 LDA_lvl_2_20_5k Medium euclidean 0.451 0.133
170 lvl_2_BoW Medium manhattan 0.451 0.1
171 LDA_lvl_1_100_1k0 Weak cosine delta 0.449 0.09
172 LDA_lvl_1_50_5k Weak jensen-shannon 0.442 0.1
173 LDA_lvl_1_50_5k Weak delta 0.439 0.095
174 LDA_lvl_3_20_1k0 Strong euclidean 0.433 0.149
175 LDA_lvl_2_50_5k Medium cosine 0.429 0.099
176 WGCNA_lvl2_1k_ Medium delta 0.429 0.109
177 WGCNA_lvl2_1k_ Medium manhattan 0.429 0.109
178 WGCNA_lvl3_1k_ Strong delta 0.429 0.101
179 WGCNA_lvl3_1k_ Strong manhattan 0.429 0.101
180 WGCNA_lvl3_1k_ Strong euclidean 0.428 0.105
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rank method TF distance median.ARI SD
181 LDA_lvl_2_20_1k0 Medium euclidean 0.425 0.158
182 LDA_lvl_1_100_1k0 Weak manhattan 0.419 0.092
183 LDA_lvl_1_50_1k Weak manhattan 0.417 0.101
184 LDA_lvl_2_100_1k Medium cosine 0.416 0.123
185 LDA_lvl_3_50_5k Strong cosine 0.411 0.103
186 LDA_lvl_1_50_1k Weak jensen-shannon 0.41 0.106
187 WGCNA_lvl2_1k_ Medium euclidean 0.409 0.106
188 LDA_lvl_1_50_5k Weak manhattan 0.399 0.112
189 LDA_lvl_1_20_5k Weak jensen-shannon 0.398 0.088
190 LDA_lvl_2_20_1k Medium euclidean 0.397 0.119
191 LDA_lvl_1_50_1k0 Weak jensen-shannon 0.393 0.101
192 LDA_lvl_1_20_1k Weak delta 0.39 0.102
193 LDA_lvl_1_50_1k0 Weak delta 0.386 0.094
194 LDA_lvl_1_20_5k Weak delta 0.374 0.092
195 LDA_lvl_3_50_1k0 Strong cosine 0.371 0.113
196 LDA_lvl_1_20_1k Weak jensen-shannon 0.366 0.097
197 LDA_lvl_2_50_1k0 Medium cosine 0.364 0.105
198 LDA_lvl_1_20_1k Weak cosine delta 0.363 0.087
199 LDA_lvl_1_50_1k0 Weak manhattan 0.363 0.104
200 LDA_lvl_2_100_5k Medium cosine 0.356 0.087
201 LDA_lvl_1_20_1k Weak manhattan 0.355 0.113
202 LDA_lvl_1_20_5k Weak manhattan 0.351 0.102
203 LDA_lvl_3_100_5k Strong cosine 0.348 0.104
204 LDA_lvl_1_50_1k Weak cosine delta 0.338 0.087
205 LDA_lvl_1_20_1k Weak cosine 0.33 0.081
206 LDA_lvl_1_20_5k Weak cosine 0.328 0.1
207 LDA_lvl_1_20_1k0 Weak delta 0.325 0.096
208 LDA_lvl_1_20_1k0 Weak jensen-shannon 0.308 0.098
209 LDA_lvl_3_100_1k0 Strong cosine 0.291 0.084
210 lvl_1_BoW Weak cosine 0.291 0.065
211 LDA_lvl_1_50_1k Weak cosine 0.289 0.069
212 lvl_1_BoW Weak cosine 0.289 0.063
213 LDA_lvl_1_20_1k0 Weak manhattan 0.286 0.093
214 LDA_lvl_1_20_1k0 Weak cosine 0.276 0.091
215 LDA_lvl_1_50_5k Weak cosine delta 0.275 0.094
216 LDA_lvl_1_20_5k Weak cosine delta 0.27 0.077
217 LDA_lvl_2_100_1k0 Medium cosine 0.27 0.094
218 LDA_lvl_1_20_1k Weak euclidean 0.266 0.085
219 LDA_lvl_1_50_1k0 Weak cosine delta 0.251 0.082
220 LDA_lvl_1_50_1k0 Weak cosine 0.245 0.095
221 LDA_lvl_1_100_1k0 Weak cosine 0.244 0.096
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rank method TF distance median.ARI SD
222 LDA_lvl_1_100_1k Weak cosine 0.243 0.066
223 LDA_lvl_1_50_5k Weak cosine 0.243 0.096
224 WGCNA_lvl1_5k_chunked Weak cosine delta 0.242 0.029
225 lvl_1_BoW Weak cosine 0.238 0.055
226 LDA_lvl_1_100_5k Weak cosine 0.236 0.078
227 LDA_lvl_1_20_1k0 Weak cosine delta 0.232 0.078
228 LDA_lvl_3_50_5k Strong euclidean 0.232 0.138
229 WGCNA_lvl1_1k_chunked Weak cosine delta 0.23 0.029
230 WGCNA_lvl1_5k_chunked Weak cosine 0.23 0.027
231 WGCNA_lvl2_5k_chunkedMedium cosine delta 0.23 0.02
232 WGCNA_lvl3_5k_chunkedStrong cosine delta 0.229 0.021
233 LDA_lvl_1_50_1k Weak euclidean 0.226 0.09
234 lvl_1_BoW Weak euclidean 0.226 0.064
235 WGCNA_lvl1_5k_chunked Weak manhattan 0.222 0.046
236 lvl_1_BoW Weak euclidean 0.221 0.065
237 WGCNA_lvl1_5k_chunked Weak euclidean 0.221 0.056
238 WGCNA_lvl3_1k_chunkedStrong cosine delta 0.218 0.025
239 lvl_1_BoW Weak euclidean 0.217 0.063
240 LDA_lvl_3_50_1k Strong euclidean 0.216 0.139
241 lvl_3_BoW Strong cosine 0.215 0.083
242 WGCNA_lvl2_1k_chunkedMedium cosine delta 0.207 0.024
243 lvl_3_BoW Strong cosine 0.206 0.086
244 WGCNA_lvl1_5k_chunked Weak delta 0.206 0.109
245 WGCNA_lvl2_5k_chunkedMedium delta 0.204 0.032
246 WGCNA_lvl2_5k_chunkedMedium euclidean 0.204 0.032
247 WGCNA_lvl2_5k_chunkedMedium manhattan 0.204 0.032
248 LDA_lvl_1_20_5k Weak euclidean 0.203 0.088
249 WGCNA_lvl2_5k_chunkedMedium cosine 0.203 0.025
250 WGCNA_lvl3_5k_chunkedStrong cosine 0.202 0.024
251 WGCNA_lvl1_1k_chunked Weak cosine 0.198 0.028
252 lvl_3_BoW Strong cosine 0.197 0.067
253 LDA_lvl_2_50_1k0 Medium euclidean 0.196 0.129
254 WGCNA_lvl3_5k_chunkedStrong delta 0.196 0.036
255 WGCNA_lvl3_5k_chunkedStrong euclidean 0.196 0.036
256 WGCNA_lvl3_5k_chunkedStrong manhattan 0.196 0.036
257 WGCNA_lvl1_1k_chunked Weak delta 0.191 0.043
258 WGCNA_lvl1_1k_chunked Weak euclidean 0.191 0.043
259 WGCNA_lvl1_1k_chunked Weak manhattan 0.191 0.043
260 LDA_lvl_2_50_5k Medium euclidean 0.19 0.134
261 WGCNA_lvl3_1k_chunkedStrong cosine 0.184 0.027
262 LDA_lvl_3_50_1k0 Strong euclidean 0.183 0.119
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263 LDA_lvl_2_50_1k Medium euclidean 0.182 0.148
264 WGCNA_lvl2_1k_chunkedMedium cosine 0.181 0.029
265 lvl_2_BoW Medium cosine 0.18 0.077
266 lvl_3_BoW Strong euclidean 0.177 0.07
267 lvl_2_BoW Medium euclidean 0.175 0.054
268 lvl_2_BoW Medium cosine 0.174 0.061
269 WGCNA_lvl2_1k_chunkedMedium delta 0.174 0.037
270 WGCNA_lvl2_1k_chunkedMedium euclidean 0.174 0.037
271 WGCNA_lvl2_1k_chunkedMedium manhattan 0.174 0.037
272 lvl_2_BoW Medium cosine 0.173 0.074
273 lvl_3_BoW Strong euclidean 0.171 0.054
274 lvl_3_BoW Strong euclidean 0.162 0.058
275 WGCNA_lvl3_1k_chunkedStrong delta 0.162 0.031
276 WGCNA_lvl3_1k_chunkedStrong euclidean 0.162 0.031
277 WGCNA_lvl3_1k_chunkedStrong manhattan 0.162 0.031
278 lvl_2_BoW Medium euclidean 0.154 0.05
279 lvl_2_BoW Medium euclidean 0.149 0.047
280 LDA_lvl_1_20_1k0 Weak euclidean 0.143 0.076
281 LDA_lvl_1_100_1k0 Weak euclidean 0.031 0.078
282 LDA_lvl_1_50_5k Weak euclidean 0.03 0.102
283 LDA_lvl_1_50_1k0 Weak euclidean 0.02 0.08
284 LDA_lvl_2_100_1k0 Medium euclidean 0.006 0.057
285 LDA_lvl_1_100_5k Weak euclidean 0.005 0.066
286 LDA_lvl_3_100_1k0 Strong euclidean 0.005 0.072
287 LDA_lvl_3_100_5k Strong euclidean 0.004 0.061
288 LDA_lvl_2_100_1k Medium euclidean 0.003 0.068
289 LDA_lvl_2_100_5k Medium euclidean 0.003 0.055
290 LDA_lvl_3_100_1k Strong euclidean 0.003 0.066
291 LDA_lvl_1_100_1k Weak euclidean 0.002 0.065

5.1.5 LDA

For the LDA model we want to know the effect of number of topics and MFWs used to prepare
training DTM. We fit the following multilevel interaction model:

ARI ~ 1 + level*MFWs*topics + (1 + | sample)

First, we look at direct effects of 𝑀𝐹𝑊𝑠 and 𝑡𝑜𝑝𝑖𝑐𝑠 on ARI across all thematic foregrounding𝑙𝑒𝑣𝑒𝑙𝑠 and marginal of novel samples (Figure S17). It appears that LDA with larger number
of topics and smaller number of MFWs performs slightly better on average. LDA models with
100 topics also show the smallest variance in performance across sampling runs. These effects,
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Figure S 16: Empirical distributions of method combinations. Error bars correspond to 95%
CI. Filtered distances.

Table S 8: Leave-one-out results for LDA models.

elpd_diff se_diff
ari ~ level * mfw_t * topics + (1 + level + mfw_t + topics | sample_n) 0.00 0.00
ari ~ level * mfw_t * topics + (1 | sample_n) -24.75 8.19
ari ~ level + mfw_t + topics + (1 + level + mfw_t + topics | sample_n) -150.45 17.62
ari ~ level * mfw_t * topics -173.71 20.14
ari ~ level * mfw_t + topics -280.31 24.17
ari ~ level + mfw_t + topics -287.66 24.51

29



however, mostly come from the corpus with weak thematic foregrounding as seen on Figure
S18.
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Figure S 17: Posterior predictions for LDA performance, marginal of samples.

Bars mark posterior .95 CI, shaded dots show empirical LDA results. We see that, again, the
level of thematic foregrounding has the largest influence on LDA performance. At medium
and strong levels, however, the impact of topics and MFWs is not clear. It seems that, on
average, an increase in the number of topics for the small number of features tends to improve
clustering, while the effect is reversed for large number of features (smaller number of topics
have a slight edge, see Figure S19). Overall, the choice of number of topics and features is
more critical in a corpus without pre-processing and becomes less influential when features are
foregrounded.

5.1.6 Bags of words

Again, we fit a Bayesian multilevel interaction model. Two factors drive the performance of
bag-of-words features: level of thematic foregrounding and the length of vector (number of
MFWs). In brms model notation:

ari ~ level*MFWs + (1|sample_no)

Figure S20 shows that clustering with bag of words improve on average with longer vectors:
since there is no algorithm that summarizes similarity in individual words behavior, word
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Figure S 18: Posterior predictions for LDA performance grouped by thematic foregrounding,
marginal of samples.
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Figure S 19: LDA posterior means at strong thematic foregrounding and 1000 MFWs.
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Table S 9: Leave-one-out results for BoW group of models.

elpd_diff se_diff
ari ~ level * mfw_t + (1 + level + mfw_t | sample_n) 0.00 0.00
ari ~ level + mfw_t + (1 + level + mfw_t | sample_n) -11.99 5.21
ari ~ level * mfw_t + (1 | sample_n) -29.54 8.38
ari ~ level * mfw_t -142.47 17.73
ari ~ level + mfw_t -145.77 17.95
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Figure S 20: Bag-of-words posterior predictions, superimposed on empirical observations.
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frequences are more dependent on diverse lexical pools and sparse DTMs. It might be a
suboptimal way to model texts, since the final clustering would rely on groups of present/absent
words rather than the actual distribution. Also we would expect results to plateau if the length
of bag of words is increased further. The plateau is better visible when posterior estimates are
taken as average of foregrounding levels and marginal of samples (Figure S21).

0.2

0.4

0.6

0.8

1000 5000 10000
N most frequent words

AR
I (

Es
tim

at
e)

Figure S 21: Bag-of-words posterior means, summarized for the levels of thematic foreground-
ing and marginal of the samples of novels.

5.1.7 WGCNA

We model three factors in WGCNA performance: chunking, level and MFWs:

ari ~ chunking*level*MFWs + (1 + chunking + level + MFWs | sample_no)

First, Figure S22 clearly confirms that that chunking texts drastically reduces the performance
of clustering with WGCNA modules, because of greedy module identification problem (see
Section 2.3).

Figure S23 shows posterior means for different cut-offs of MFWs and thematic foregrounding
levels (only for models without chunking).

Non-chunked WGCNA, on average, benefits mostly from medium thematic foregrounding and
increasing MFWs.
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Table S 10: Leave-one-out results for WGCNA group of models.

elpd_diff se_diff
chunking * level * mfw_t + (1 + chunking + level + mfw_t | sample_n) 0.00 0.00
chunking * level * mfw_t + (1 | sample_n) -26.10 11.83
chunking * level * mfw_t -55.73 17.54
chunking + level + mfw_t + (1 + chunking + level + mfw_t | sample_n) -57.04 12.14
chunking + level + mfw_t + (1 | sample_n) -75.00 15.52
chunking + level + mfw_t -97.92 19.30
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Figure S 22: Effect of chunking on WGCNA performance. Posterior predictions, marginal of
samples, superimposed on empirical data points.
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Figure S 23: WGCNA posterior predctions by MFW and thematic foregrounding.

Table S 11: Leave-one-out results for doc2vec group of models.

elpd_diff se_diff
ari ~ level + (1 + level | sample_n) 0.00 0.00
ari ~ level + (1 | sample_n) -0.80 1.48
ari ~ 1 + level -18.19 6.14

5.1.8 doc2vec

There is only one predictor for the behavior of doc2vec in our setup: the level of thematic
foregrounding. We fit a model with varying slopes per novel sample (Bayesian framework
handles single observations in samples just fine):

ari ~ 1 + level + (1+level|sample_n)

doc2vec embeddings perform similarly across the different levels of thematic foregrounding
(Figure S23), which is not surprising, since it uses external representation of semantics and
does not depend too much on filtering words. However, there is a steady increase in ARI, which
means that filtering words and simplifying lexicon can improve document representation, even
if the same model is used both for semantic similarity scores and document embeddings.
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Figure S 24: Posterior predictions for doc2vec performance

5.2 Clustering HathiTrust corpus

To test if our results maintain validity in the ‘outside’ world, we turned to HathiTrust corpus
of fiction. We sampled 5000 “unknown” novels from the same period of time (books released
after the year 1950). We couldn’t just use our small target corpus as a seed of “known” novels,
because HathiTrust does not provide original texts: only the token count per page alongside
with morphological tagging. It is still possible to train an LDA model with this data, but not
reproduce our spaCy pre-processing steps exactly. In addition, many books from our corpus
did not have a match in HathiTrust data.

We used another approach. We have found all of the 97 authors from our dataset of four
genres in HathiTrust corpus. All the books by these authors were marked as belonging to
a corresponding genre. For example, while our original dataset contained only 3 novels by
Agatha Christie, HathiTrust contains 71 novels by her. We labeled all of them as “detective”
(which, of course, is a simplification). The distribution of books across four genres that we
aquire this way is shown on Figure S25. Table S12 shows 10 authors with the largest amount
of books.

We chose two combinations of methods to show the difference between ‘better’ and ‘worse’
approaches:
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Figure S 25: Genre book counts in HathiTrust data.

Table S 12: Book counts by author.

genre author books
detective Christie, Agatha 71
scifi Asimov, Isaac 50
romance Steel, Danielle 45
fantasy Moorcock, Michael 43
scifi Silverberg, Robert 41
scifi Dick, Philip K 39
fantasy Anderson, Poul 37
scifi Clarke, Arthur C. (Arthur Charles) 37
scifi Aldiss, Brian Wilson 36
scifi Heinlein, Robert A. (Robert Anson) 35
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1. Better option: LDA model with 1000 MFWs, 100 topics, medium thematic foregrounding,
Jensen-Shannon divergence;

2. Worse option: Bag of words, 5000 MFWs, weak thematic foregrounding, cosine distance.

We compare their performance by projecting all 6293 novels in two dimensions with UMAP.
We expect a better option to retain visible clusters by genres. Figure S26 sets two projections
side by side.

5k bag of words, Cosine

detective

fantasy

romance

scifi

other

LDA 1k words, 100 topics, Delta

Figure S 26: Two UMAP projections. ‘Worse’ methods choice on the left, and ‘better’ methods
choice on the right
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