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We demonstrate the capability of Flying Focus (FF) laser pulses with ℓ = 1 orbital angular mo-
mentum (OAM) to transversely confine ultra-relativistic charged particle bunches over macroscopic
distances while maintaining a tight bunch radius. A FF pulse with ℓ = 1 OAM creates a radial
ponderomotive barrier that constrains the transverse motion of particles and travels with the bunch
over extended distances. As compared to freely propagating bunches, which quickly diverge due
to their initial momentum spread, the particles co-traveling with the ponderomotive barrier slowly
oscillate around the laser pulse axis within the spot size of the pulse. This can be achieved at FF
pulse energies that are orders of magnitude lower than required by Gaussian or Bessel pulses with
OAM. The ponderomotive trapping is further enhanced by radiative cooling of the bunch resulting
from rapid oscillations of the charged particles in the laser field. This cooling decreases the mean
square radius and emittance of the bunch during propagation.

I. INTRODUCTION

Charged particle beams are ubiquitous in physics ex-
periments and applications. Their transport over macro-
scopic distances is necessary not only for devices like ac-
celerators and electron microscopes, but also for compact
radiation sources. The magnetic optics currently used
for transport [1, 2] become progressively more expen-
sive as the particle energy increases due to the need for
higher magnetic field gradients, which must be generated,
for example, by superconducting currents. Further, the
achievable focal lengths of these optics may be too large
for modern electron beam applications, such as inverse
Compton scattering sources [3]. More specifically, the
characteristic focusing lengths of magnetic optics range
from tens of centimeters to meters and are limited by the
physical size of the magnets. While permanent magnets
designed for ∼100 MeV electron energies can be rela-
tively compact (millimeter scale) allowing for ∼10 cm
focal lengths [3], at higher electron energies, focusing at
such short distances becomes technologically challenging.

All-optical setups for transporting charged particle
beams have been proposed as an alternative that would
circumvent the need for magnets [4]. In these schemes,
the transverse intensity profile of a laser pulse that coun-
terpropagates with respect to the beam is shaped to pro-
vide a confining ponderomotive potential. Such schemes
can be especially advantageous when employed at high-
intensity laser facilities, where laser pulses can be used
both for creating ultra-relativistic particle beams and for
their transport. Nevertheless, these schemes require large
laser pulse energies, whether they employ conventional or
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FIG. 1. Schematic of electron confinement in the pondero-
motive potential of an ℓ = 1 OAM flying focus (FF) pulse.
The off-axis intensity peak of the FF pulse (yellow toroids)
travels at the vacuum speed of light (vF = −1) in the opposite
direction of its phase fronts (vϕ = 1). Ultrarelativistic elec-
trons (blue lines) travel in the same direction as the intensity
peak. Electrons with low transverse momentum inside the
intensity peak are confined and slowly oscillate in the radial
direction, whereas electrons outside the peak are deflected.
[The solid (dashed) blue lines represent the past (future) tra-
jectory of the electrons with respect to the snapshot shown in
the figure].

axicon-focused Bessel pulses [5–7].

In this work, we introduce an all-optical setup for
charged particle beam guiding that uses a flying focus
(FF) to greatly reduce the required laser pulse energy.
The FF refers to a class of optical techniques that pro-
vide spatiotemporal control over the trajectory of a focal
point [8, 9]. The intensity peak formed by the moving fo-
cal point can travel at any arbitrary velocity independent
of the laser group velocity over distances much longer
than a Rayleigh range. The first experimental demon-
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stration of a FF used chromatic focusing of a chirped
laser pulse [9]. Alternate techniques employing space-
time light sheets [10, 11], axiparabola-echelon mirrors
[12], and nonlinear media [13, 14] have also been pro-
posed. The spatiotemporal control enabled by FF pulses
has presented a unique opportunity to revisit established
schemes and investigate regimes in which FF pulses pro-
vide an advantage over traditional fixed-focus Gaussian
pulses [12, 15–21].

Here we show that FF pulses with ℓ = 1 orbital angular
momentum (OAM) and a focus that moves in the oppo-
site direction of the phase fronts at the vacuum speed
of light can transport charged particles over macroscopic
distances. The ring-shaped transverse intensity profile
of the ℓ = 1 mode provides a ponderomotive potential
barrier that confines charged particles in the transverse
direction. Figure 1 illustrates the concept and problem
geometry (the units ℏ = ε0 = c = 1 are used throughout).
The ponderomotive confinement allows for transport of
an electron bunch with a tight radius, smaller that the
focal spot size of the pulse, with feasible laser pulse en-
ergies. As an example, a 10 pC, 500 MeV electron beam
can be transported over 6 mm using a 200 J, 5 TW FF
pulse, compared to the 2 MJ that would be needed in a
conventional pulse. Axicon-focused Bessel pulses require
even larger energies [7, 22]. The energy requirements to
confine the electron beam are much less for a FF pulse
because the peak intensity moves with the electron beam,
which decouples the interaction length from the Rayleigh
range. Confinement of the charged particles is aided by
radiative cooling (radiation reaction [23–26]), which de-
creases the emittance and mean-squared radius of the
beam at the cost of its average energy.

The remainder of the article is organized as follows:
Section II presents the four-potential of the ℓ = 1 OAM
FF beam and its properties. Section III describes the an-
alytical model for charged particle motion in the ℓ = 1 FF
pulse. In Section III A, oscillations in the ponderomotive
potential are discussed and constraints on the transverse
phase space of the trapped particles are derived. Section
III B describes the evolution of the particle bunch radius.
Longitudinal motion of the particles, including radiation
energy loss, is addressed in Section III C. The importance
of space charge repulsion on particle bunches is discussed
in Section III D. Section IV compares the energy required
in ℓ = 1 FF pulses and conventional Laguerre-Gaussian
pulses. Section V describes the simulation results. Elec-
tron confinement, radiation energy loss, oscillations in
the ponderomotive potential, and transverse emittance
behavior are covered in Section V C, and the longitudi-
nal delay of the electron bunch behind the FF intensity
peak is covered in Section V D. Technical details and ex-
plicit calculations are contained in six appendices.

II. FF BEAMS AND PULSES WITH ℓ = 1 OAM

A FF field with ℓ = 1 OAM forms a transverse pon-
deromotive potential barrier that is capable of confining
charged particles close to the propagation axis. Here, a
FF pulse with an intensity peak that moves at the vac-
uum speed of light against the laser phase velocity in the
negative z-direction (see Fig. 1) is considered. This spe-
cial case admits simple, but exact, closed-form analytical
expressions for the four-potential and the fields. This sec-
tion presents the exact expressions of the four-potential,
its cycle-averaged magnitude, and the extension to pulses
with finite energy. A scheme for generating FF pulses
with ℓ = 1 OAM is described in Ref. [14].

An exact beam solution to the vacuum wave equa-
tion can be written in terms of the lightcone coordinates
η = t + z and ϕ = t− z. The lightcone coordinate η de-
scribes the displacement from the moving focus (η = 0)
of the FF pulse, while ϕ tracks the fast phase oscillations.
The transverse part of the vector potential for the ℓ = 1
Laguerre-Gaussian (LG10) mode reads [21]

A⊥(η, r, θ, ϕ) = A0

√
2σ0r

σ2
η

e−r2/σ2
η cos Ψ1(0, 0) , (1)

where

Ψ1(a, b) = ω0ϕ−
r2

σ2
η

η

η0
+ (1 − a)θ

+ (2 + b) arctan

(
η

η0

) (2)

is the phase, r = |x⊥| =
√

x2 + y2 is the radial distance
from the z-axis, θ = arctan(y/x) is the azimuthal angle in
cylindrical coordinates, ω0 = 2π/λ0 is the laser angular
frequency, and λ0 its wavelength. The spot size ση and
Rayleigh range η0 equivalents for the FF beam are

ση = σ0

√
1 +

η2

η20
, η0 = ω0σ

2
0 . (3)

The effective duration of the moving intensity peak is
equal to the Rayleigh range η0. More generally, the
Rayleigh range and effective duration depend on the ve-
locity of the focus βF . In the paraxial approximation,
η0 = (1 − βF )ω0σ

2
0/2, which reduces to Eq. 3 when

βF = −1 and the stationary focus result η0 = ω0σ
2
0/2

when βF = 0 [14, 27].

Upon imposing the Lorenz gauge condition ∂µA
µ = 0

and the constraint A+ = A0+Az = 0 (so that two photon
degrees of freedom remain), one can evaluate A− = A0−
Az as

A−(η, r, θ, ϕ) = −
∫

dϕ∇⊥ ·A⊥(η, r, θ, ϕ) . (4)
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FIG. 2. Cycle-averaged invariant |AµA
µ| at the position of

the focus (η = 0).

For a laser beam polarized along the y-axis A0 = A0ŷ

A−(η, r,θ, ϕ) = A0

√
2σ0r

ω0σ2
η

e−r2/σ2
η

×
[

2y

σ0ση
sin Ψ1(0, 1) − 1

r
cos Ψ1(1, 0)

]
,

(5)

where the initial condition at t = 0 was chosen so that the
potential vanishes as |z| → ∞. The remaining Cartesian
components can be evaluated as

A0 = −Az =
1

2
A− . (6)

In this gauge, the Lorentz-invariant square of the four-
potential is given by

AµA
µ = (A0)2 − (Ay)2 − (Az)2 = −A2

⊥ , (7)

where the Minkowski metric tensor is chosen as ηµν =
diag(+1,−1,−1,−1). As a result, the square of the
transverse component |A⊥|2 = −AµA

µ is also Lorentz
invariant. Components of the electric and magnetic fields
corresponding to this four-potential are presented in Ap-
pendix A.

The cycle-average of the invariant |AµA
µ| at focus (η =

0) is proportional to intensity and equal to

|AµAµ|
∣∣∣
η=0

= A2
⊥|η=0 =

A2
0r

2

σ2
0

e−2r2/σ2
0 , (8)

where the overbar denotes a cycle-average. The cycle
averaging procedure is defined in Appendix B. Figure 2
displays Eq. (8) and demonstrates that the peak inten-
sity forms a ring surrounding the beam axis.

From the analytical beam solution, laser pulses with
finite total energy can be approximately constructed by
applying the pulse envelope function g(ϕ) as a multiplica-
tive factor on the electromagnetic fields. For the approx-
imation to be accurate, the up and down ramps of g(ϕ)

should be much longer than λ0. For details of the imple-
mentation, see Refs. [19, 21].

The average power Pave of the FF pulse is given by
(see Appendix B)

Pave ≈
π

4
A2

0ω
2
0σ

2
0 . (9)

To ensure that the FF pulse interacts with the particles
for a time tint, or equivalently a length Lint, the total
pulse energy must be

Etot ≈ 2Pavetint . (10)

Comparison with the energy required in a conventional
LG10 pulse is presented in Section IV.

III. CHARGED PARTICLE MOTION IN AN
ℓ = 1 OAM FF PULSE

The evolution of a charged particle (mass m and charge
q, respectively) interacting with an external electromag-
netic field, including radiation reaction in the classical
regime, is described by the Landau-Lifshitz equation of
motion [28]:

u̇µ =
q

m
Fµνuν

+
2q

3m
rq

[
d

dτ
(Fµν)uν +

q

m
Pµ
ν F

ναFαβu
β

]
,

(11)

where rq = q2/(4πm) is the classical particle radius, u̇µ

denotes the proper-time derivative of the four-velocity
uµ = (γ,u) = (γ, γβ), Pµ

ν = δµν − uµuν is the projection
tensor, and Fµν = ∂µAν − ∂νAµ is the electromagnetic
field tensor in terms of the vector four-potential.

For the analytic considerations in this section, radia-
tion reaction is assumed to be negligible, allowing the
term proportional to rq to be omitted. This term has
an effect of lowering the particle energy during the prop-
agation and will be revisited in the context of the lon-
gitudinal motion (Section III C) and simulation results
(Section V).

In the absence of radiation reaction, the motion of a
charged particle in the FF pulse can be described by the
ponderomotive guiding center equation of motion [29]

du

dt
= − q2

2m2γ
∇A2

⊥ , (12)

where γ = (1 + u2
z + u2

⊥ + q2A2
⊥/m

2)1/2 is the cycle-
averaged gamma factor and t is laboratory time. Equa-
tion 12 was derived in the Coulomb gauge and requires
that the particle experiences many phases of the field over
the duration of the pulse, i.e., η0ω0(1 − βz) ≫ 2π, which
is the case considered here. While there is no consen-
sus on a covariant and gauge-independent formulation
of the ponderomotive force [30, 31], Eq. 12 accurately
predicts the motion independent of gauge as long as the
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cycle averaging procedure remains valid. In Appendix C,
the transverse component of the ponderomotive force is
derived in the Lorenz gauge for ultrarelativistic particles
moving with the intensity peak (η ≈ 0) and against the
phase fronts of a FF pulse. The particles have an initial
relativistic factor γ0 ≫ 1 and a small transverse velocity
ξ0 ≪ γ0, such that γ ≈ γ0, which further simplifies the
expression for γ in Eq. (12). Applying these conditions
to Eq. (12) yields the same result as Eq. (C10):

du⊥

dt
≈ − q2

2m2γ0
∇⊥A2

⊥|η=0 . (13)

For the remainder of the manuscript, the velocity com-
ponents and spatial coordinates will be understood to
represent cycle averaged quantities, and the overbar will
be dropped.

Near the focus (η ≈ 0), A2
⊥ is only a function of the

radial coordinate [see Eq. (8)]. As a result, the motion
in the transverse plane is approximately described by

r′′ − r(θ′)2 = − q2

2m2γ2
0

d

dr
A2

⊥|η=0 , (14)(
γ0r

2θ′
)′

= 0 , (15)

where prime denotes a derivative with respect to time
in the laboratory frame. The first equation describes
the radial motion, and the second equation implies the
conservation of relativistic angular momentum

Lz = mγ0r
2θ′ = const. (16)

Using this constant of motion in Eq. (14) provides

r′′ − L2
z

m2γ2
0r

3
= − q2

2m2γ2
0

d

dr
A2

⊥|η=0 . (17)

Equation (17) can be re-expressed in the form of New-
ton’s law for a particle with a mass mγ0 moving in a
potential that depends only on the radial coordinate:

mγ0r
′′ = − d

dr
Veff(r) , (18)

where the effective potential

Veff(r) = VP (r) + VC(r)

=
q2

2mγ0
A2

⊥|η=0 +
L2
z

2mγ0r2
(19)

includes both the ponderomotive and centrifugal contri-
butions.

A. Transverse motion

To illustrate the approximate harmonic motion of
charged particles in the FF pulse, Eq. (13) can be rewrit-
ten using the potential from Eq. (8) as

d2x⊥

dt2
= −Ω2

(
1 − 2

r2

σ2
0

)
e−2r2/σ2

0x⊥, (20)

where ξ0 = |q|A0/m is the normalized field amplitude
and

Ω =
2π

T
=

ξ0
γ0σ0

(21)

is the angular frequency of oscillations in the harmonic
approximation, i.e., when r ≪ σ0. The actual oscilla-
tion frequency of confined particles is smaller due to the
anharmonicity of the potential.

Multiplying Eq. (18) by the radial velocity r′ = βr and
integrating over time provides a conservation relation for
the energy E⊥ associated with the transverse motion:

1

2
mγ0β

2
r + Veff(r) =

1

2
mγ0β

2
⊥ + VP (r) = E⊥ , (22)

where

β⊥ =
√

(r′)2 + r2(θ′)2 =
√
β2
x + β2

y (23)

is the magnitude of the transverse velocity. In terms of
the Cartesian velocities and positions, r′ = (xβx+yβy)/r.

Equation (22) can be used to determine the initial con-
ditions of particles that will be bound in the FF potential.
To begin, note that Veff(r) → ∞ as r → 0 and Veff(r) → 0
as r → ∞. Because there cannot be bound trajectories in
regions of space where the potential is monotonically de-
creasing, dVeff(r)/dr ≥ 0 provides a necessary condition
for the existence of bound trajectories. Upon applying
this inequality to Eq. 19, one obtains

ρ2 ≤ r4

σ4
0

(
1 − 2

r2

σ2
0

)
e−2r2/σ2

0 ⪅ 0.02, (24)

where ρ = Lz/(mσ0ξ0) and 0.02 is a numerical upper
bound on the RHS. Physically, a particle with too large
of an angular momentum will not be bound in the pon-
deromotive potential.

Equality in Eq. (24) determines the local extrema of
Veff(r). For ρ ≪ 1, the position rmax of the local max-
imum of Veff(r) can be approximated to leading order
as

rmax =
σ0√

2
. (25)

The position rmin of the local minimum of Veff(r) is ob-
tained by assuming rmin ≪ σ0. To leading order

rmin = σ0
√
ρ . (26)

Consistent with the expression for the effective potential,
a non-zero initial angular momentum prevents the parti-
cle from penetrating the potential all the way to r = 0.

Using these values of the extrema, bound trajecto-
ries in the FF beam are determined by the constraints
Veff(rmin) ≤ E⊥ ≤ Veff(rmax), i.e.,

4eρ ≤
(

β⊥

β⊥,max

)2

+

(√
e

r

rmax
e−r2/σ2

0

)2

≤ 1 , (27)

where β⊥,max = ξ0/(
√

2eγ0) and e = 2.7183 . . . is Euler’s
number. Note that for this derivation to be consistent√
ρ ≪ 1 and 4eρ < 1.
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B. Evolution of the particle bunch in the harmonic
approximation

The previous section described the radial dynamics of
individual particles. In this section, the dynamics of a
particle bunch is described in terms of the bunch cen-
troid in the transverse plane ⟨x⊥⟩ and the root mean

squared (RMS) radius of the bunch R =
√
⟨r2⟩. Here

the ensemble average of a quantity Q is defined as ⟨Q⟩ =

N−1
∑N

i=1 Qi, where N is the number of particles.
In the harmonic approximation, the centroid evolves

according to harmonic part of Eq. (20) averaged over an
ensemble of particles

d2⟨x⊥⟩
dt2

= −Ω2⟨x⊥⟩ . (28)

Equation 28 has the solution ⟨x⊥(t)⟩ = ⟨x⊥(0)⟩ cos(Ωt).
Thus an electron bunch that is initially offset from the
propagation axis of the FF pulse will oscillate about the
axis with a period 2π/Ω.

An evolution equation for R can be derived by taking
its second derivative with respect to the laboratory time

R′′ = −⟨rr′⟩2
R3

+
⟨r′2⟩
R

+
⟨rr′′⟩
R

. (29)

Substituting the harmonic approximation of the force
from Eq. (20) in polar coordinates

r′′ = −Ω2r + rθ′2 (30)

into the expression for R′′ provides

R′′ +

(
Ω2 − ε2⊥

γ2R4

)
R = 0 , (31)

where

ε⊥ = γ
√
⟨r2⟩⟨r′2 + r2θ′2⟩ − ⟨rr′⟩2 (32)

is approximately the normalized transverse emittance of
the bunch (see Appendix D). In the absence of energy
spread and radiation reaction, ε⊥ is a constant of mo-
tion: in a conservative potential, the phase-space distri-
bution maintains a constant area despite deformations of
its boundaries [32]. However, the initial ramp up and
final ramp down of the pulse render the ponderomotive
potential non-conservative and change the emittance (see
discussion in Section V C).

Equation (31) has an exact analytical solution for the
initial condition R(0) = R0 and R′(0) = 0:

R(t) = R0

√
1 +

(
ε2⊥

γ2R4
0Ω2

− 1

)
sin2(Ωt) . (33)

In the absence of ponderomotive confinement, i.e., Ω →
0, Eq.(33) demonstrates that the RMS radius increases

without bound as R(t) = R0

√
1 + (t/Ts)2, where Ts =

γR2
0/ε⊥. This expression describes the evolution of the

−8 −6 −4 −2 0 2 4 6 8
η/η0
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y
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|/A

2 0

FIG. 3. Cycle-averaged invariant |AµA
µ| for the ℓ = 1 OAM

FF field in the plane of the field polarization. Note the dif-
ferent scales for the axes.

RMS radius before the FF ramps up and after it ramps
down. With ponderomotive confinement, the RMS ra-
dius either oscillates with the angular frequency Ω or re-
mains constant. Setting the terms in the round brackets
to zero provides the condition for constant RMS radius

σ0ε⊥
ξ0R2

0

= 1 , (34)

where Eq. (21) has been used. Note that the depen-
dence on the energy of the particles is still contained in
the definition of the emittance. Although this formula
applies only in the harmonic approximation, it provides
a starting point for initializing the particle bunches in
the simulations described in Section V.

C. Longitudinal motion

Because the intensity peak of the FF pulse travels at
the vacuum speed of light, the particles will gradually fall
behind the peak intensity and experience weaker trans-
verse confinement. There are several effects that can con-
tribute to the rate at which the particles fall behind the
peak. First, the initial velocity of each particle is less
than the vacuum speed of light. This causes the light-
cone variable η = t + z to grow linearly in time, but this
growth is negligible for ultra-relativistic particles.

Second, the FF pulse can accelerate (or decelerate) the
particles in the longitudinal direction. Fig. 3 displays a
slice of the |AµA

µ| invariant in the polarization plane (yz-
plane). In the focal region, this invariant varies weakly
in the longitudinal direction, so that the ponderomotive
force can be neglected. However, if the relativistic factor
γ becomes comparable to the field strength ξ0, the in-
crease in the effective mass of the particles due to trans-
verse and longitudinal oscillations in the fields of the FF
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pulse can significantly reduce the time-averaged longitu-
dinal velocity. This deceleration also causes the lightcone
variable to grow linearly in time and can be neglected as
long as ξ0 ≪ γ0.

Finally, as was discussed in Ref. [21], a charged par-
ticle co-moving with the FF intensity peak continuously
loses energy due to radiation reaction. The resulting de-
celeration becomes dominant in regions of high field in-
tensity. When ξ0 ≪ γ0, the amplitude of the fast trans-
verse oscillations are small compared to the spot size of
the pulse. As a result, each particle locally experiences a
plane-wave-like field. Because the ultrarelativistic par-
ticles primarily move in the opposite direction of the
phase fronts, the approximations u− = γ − uz ≈ 2γ and
ϕ ≈ 2t can be employed. The electron energy loss due to
Landau-Lifshitz radiation reaction in plane wave fields is
then given by [33]

γ(t) ≈ γ0
1 + κ(t)

, (35)

where

κ(t) =
4

3
γ0rqω

2
0

∫ t

0

ξ2(t′)dt′ (36)

is the deceleration factor after a time t. The integral is
taken over the normalized field amplitude ξ(t′) along the
particle trajectory. This integral can be approximated
by its average value ξ2efft, where ξeff < ξ0 is the effective
field strength along the particle trajectory up to time t.
The deceleration factor increases with the initial gamma
factor and with the field strength along the particle tra-
jectory. For the ℓ = 1 OAM pulses of interest here, the
field intensity is lowest on axis and rises with radial dis-
tance (up to rmax for confined particles). As a result, the
particles predominantly radiate in the regions around the
turning points.

For ultrarelativistic particles with small transverse ve-
locity, the delay behind the intensity peak can be approx-
imately evaluated as

ηd(t) =

∫ t

0

[1 − βz(t̃)]dt̃

≈ 1

2

∫ t

0

(
1

γ2(t̃)
+ β2

⊥(t̃)

)
dt̃ .

(37)

Substituting the expression for γ(t) [Eq. (35)] and ap-
proximating β2

⊥(t) ≈ β2
⊥(0) + ξ2eff/2γ2(t), where the sec-

ond term accounts for the transverse velocity of the rapid
oscillations in the field, one obtains

ηd(t) ≈ 1 + ξ2eff/2

2

1

γ2
0

+
1

2
β2
⊥(0)t

+

(
1 +

ξ2eff
2

)(
2

3

rqω
2
0ξ

2
eff

γ0
t2 +

8

27
r2qω

4
0ξ

4
efft

3

)
.

(38)

The terms on the first line are the contributions from the
particle moving at a subluminal velocity with non-zero

transverse component, while the terms on the second line
are the contributions from radiation energy loss. In order
to keep the particle close to the focus, ηd(t)/η0 ≪ 1 needs
to be satisfied during the whole interaction.

D. Space-charge effects

To assess the impact of space-charge forces on the par-
ticle motion, consider a particle bunch with the charge
density [34]

ρ(r, z) = qN
1

2πσ2
r

e
− r2

2σ2
r λL(z) , (39)

where N is the number of particles and σr the bunch
width. The longitudinal distribution

λL(z) =
1

2L

[
erf

(
L− 2z

2
√

2σr

)
+ erf

(
L + 2z

2
√

2σr

)]
(40)

is parameterized by the length scale L and was chosen be-
cause it permits an analytical solution for the field [34].
Comparing the strength of the ponderomotive force to
the repulsive fields of the particle bunch provides a con-
dition for when space-charge effects can be neglected (see
Appendix E):

N ≪ Nsc = 0.21
4πm

q2e

Lσr

σ0
ξ20

= 8 × 107[µm]−1Lσr

σ0
ξ20 ,

(41)

where the numerical value is given for electrons. As
an example, a typical electron bunch from laser wake-
field acceleration (LWFA) has a ∼pC of charge [35],

L = 7λ0, and σr = 3λ0/2
√

2 (the same parameters
used in the simulations presented below, see Sections V A
and V B). For a FF pulse with ξ0 = 10 and σ0 = 3λ0,
Nsc = 2 × 1010 ≫ N , thus space-charge forces are neg-
ligible. Note that the space-charge repulsion would be
even less important in a mixed species electron-positron
bunch [36].

IV. REQUIRED PULSE ENERGY: FF PULSES
VS OTHER SCHEMES

A FF laser pulse requires substantially less energy than
a conventional LG10 laser pulse to confine a relativistic
particle bunch. For a conventional laser pulse, the inter-
action time is limited by the Rayleigh range. Extend-
ing the interaction time requires increasing the Rayleigh
range and the focal spot, which, in turn, requires increas-
ing the power to maintain the strength of the pondero-
motive force. In contrast, the intensity peak of a FF
pulse co-propagates with the electron bunch, which de-
couples the interaction time from the Rayleigh range and
the strength of the ponderomotive force.
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Using Eq. (10), the energy required in a FF pulse for
the interaction time tint,F is given by

EF = 2Pavetint,F =
π

2
A2

0,Fω
2
0σ

2
0,Ftint,F , (42)

where the subscript F denotes the parameters of the FF
pulse. Similarly, for a conventional LG10 pulse, denoted
by subscript C, the energy is

EC =
π

2
A2

0,Cω
2
0σ

2
0,Ctint,C . (43)

The interaction length in both cases is equal to the inter-
action time Lint = tint. Confinement of the relativistic
particles depends on the strength of the ponderomotive
force. For a fixed ponderomotive force at a given distance
from the axis [see Eq. (20)]

A2
0,F

σ2
0,F

=
A2

0,C

σ2
0,C

= K , (44)

where K is proportional to the strength of the pondero-
motive force. Substituting Eq. (44) into Eqs. (42) and
(43) yields

EF =
π

2
Kω2

0σ
4
0,Ftint,F , (45)

EC =
π

2
Kω2

0σ
4
0,Ctint,C . (46)

To ensure that the particles interact with the focus of
the conventional pulse over the entire interaction time
(or length)

tint,C = 2η0,C = ω0σ
2
0,C . (47)

Thus, the energy in the conventional pulse grows as the
cube of the interaction time [Eq. (46)], while the energy
in the FF pulse scales linearly with the interaction time
[Eq. (45)]. Now, two comparisons can be made:

a) For the same interaction time tint,F = tint,C = tint

EC

EF
=

σ4
0,C

σ4
0,F

=
t2int

ω2
0σ

4
0,F

=

(
tint
η0,F

)2

. (48)

As an example, to confine an electron bunch with
a radius of 2 µm over an interaction distance Lint

= 6 mm (tint = 20 ps), EC/EF = 1.1 × 104 where
η0,F = 18π µm was used. Setting ξ0 = 5, EF = 200
J and EC ≈ 2 MJ.

b) For the same energy EF = EC

tint,F =

(
tint,C
η0,F

)2

tint,C . (49)

Thus, a FF pulse is advantageous as long as the in-
teraction time tC is longer than the Rayleigh range
of the FF pulse. An electron bunch with a radius
of 2 µm can be confined by a FF laser pulse with
η0,F = 18π µm for a distance Lint,F = 6 mm (tint,F
= 20 ps) compared to only Lint,C = 0.3 mm (tint,C =
0.9 ps) for a conventional pulse, where both pulses
have 200 J of energy.

Recently an alternative scheme that employs a Bessel
beam to guide a relativistic electron bunch has been pro-
posed [7, 22]. In this scheme, the electrons counter-
propagate with respect to a radially polarized Bessel
beam created by an axicon lens. The axicon creates
an extended longitudinal region of high intensity. How-
ever, to create a ponderomotive barrier of comparable
strength [37] to the FF, the axicon must maintain a high
intensity across the entire region for the full interaction
time. Maintaining this high intensity requires very high
energies. In contrast, FF pulses concentrate the energy
density along the the trajectory of the charged particles,
greatly reducing the required energy.

V. SIMULATIONS

The motion of charged particles in the FF pulse was
simulated using the classical Landau-Lifshitz equation of
motion Eq. (11). This equation accounts for the radia-
tive energy losses from both the fast oscillations at the
laser phase and the slow oscillations in the ponderomo-
tive potential. Inspection of Eq. (11) shows that the
derivative term in the radiation-reaction force can be ne-
glected [38] if the field in the instantaneous rest frame of
the electron does not vary significantly over a classical
electron radius. This is the case in all of the simulations
presented here, and this term is ignored.

The simulations were performed for electrons (mass
m = me, charge q = qe < 0, classical radius rq = re, and
normalized field strength ξ0 = |qe|A0/me). However, be-
cause the ponderomotive force applies equally for posi-
tively and negatively charged particles, all of the results
also describe the motion of positrons.

A. Simulation parameters

For the simulation results presented in this work, the
distances are measured in the units of k−1

0 = 2π/λ0 and
the time in units ω−1

0 = 2π/λ0. In these units, the clas-
sical electron radius re = 1.77 × 10−8 k−1

0 .
Numerical integration of the electron equations of mo-

tion was performed using a fourth-order Runge-Kutta
scheme with a time step dt = 0.05 ω−1

0 and a total inte-
gration time tint = 4 × 104 ω−1

0 = 21.2 ps. A fifth order
polynomial was employed to smoothly switch the fields
on and off. The exact analytical form of the field enve-
lope g(ϕ) can be found in the supplemental material of
[21]. The ramp time of the field was set to ∼ 0.4 ps and
the period of the laser pulse was about 3.3 fs, correspond-
ing to λ0 = 1µm. Thus, the time scales were sufficiently
disparate that the pulse envelope approximation and the
expression for the laser power presented in Appendix B
were valid.

For all simulations the FF spot size was set to σ0 =
6πk−1

0 = 3λ0, which corresponds to the Rayleigh range
η0 = 36π2k−1

0 = 18πλ0. Therefore the characteristic



8

⟨γ0⟩ σβ⊥(0) R2(0)/k−2
0 ε⊥(0)/ω

−1
0 ξ0

1000 0.0021 44.4 13.9 5.9

200 0.0054 45.2 7.10 3.0

100 0.021 44.6 14.1 6.0

TABLE I. Initial parameters for the electron bunches and
normalized laser field amplitude ξ0. The parameter ξ0 was
fixed so that the initial bunch satisfies the matching condition
from Eq. (34).

length in the longitudinal direction η0 is about 19 times
longer than the characteristic length in the transverse
direction σ0 (see discussion in Section III C). The inter-
action length in terms of the Rayleigh range is Lint =
112.6 η0.

B. Electron bunch initialization

The electron bunches were initialized based on param-
eters typical of LWFA with bunch lengths of ∼ 10λ0 and
divergences up to tens of mrad [35, 39]. The electrons
move predominantly in the negative z direction with the
intensity peak of the FF pulse and against the phase
fronts (see Fig. 1). The initial electron positions were
randomly sampled from the charge distribution given by
Eqs. (39) and (40), with a width and length represen-
tative of bunches produced in either laser wakefield ac-
celerators or proposed conventional accelerators [40, 41].
The electron bunch was aligned with the optical axis of
the FF pulse, such that ⟨x⊥(0)⟩ = 0. More generally,
the centroid of the bunch would also oscillate in the pon-
deromotive potential [see Eq. (28)]. The initial variance
in the radial position was chosen to be

σr(0) =
rmax

2
=

σ0

2
√

2
=

3π√
2
k−1
0 =

3

2
√

2
λ0 . (50)

The initial longitudinal spread of the bunch was set to

L(0) = 14πk−1
0 = 7λ0 . (51)

With this choice, ∼99% of the simulated electrons are
initialized within a longitudinal distance of 5λ0 from the
center of the bunch. The length of the electron bunch is
therefore much shorter than the Rayleigh range 18πλ0.
As a result, electrons initialized within a longitudinal dis-
tance of 5λ0 from the focus experience a ponderomotive
force that is within 99% of the maximum.

The initial longitudinal components of the four-
velocity were normally distributed with a standard de-
viation equal to 1% of the central value uz(0) =

−
√
⟨γ0⟩2 − 1. The gamma factors ⟨γ0⟩ used to gener-

ate the distribution were 1000, 200, and 100 for the three
simulated cases. The transverse velocities were also nor-
mally distributed but with zero mean. The initial vari-
ance in the magnitude of perpendicular velocity σβ⊥(0)
and the normalized field strength ξ0 were chosen such

that the condition in Eq. (34) was satisfied. See Table
I for details. To capture the effect of electrons escaping
the FF pulse, the initial values were also chosen to ensure
that some electrons were initialized with a transverse ve-
locity and position outside of the constraint in Eq. (27).
As a result, the subset of confined electrons were not nor-
mally distributed. With the longitudinal and transverse
velocities known, the initial energy for each electron was
fully determined. Each simulated bunch was composed
of 1000 independent electrons, which was sufficient for
calculating average quantities.

For the simulation parameters given in Table I, the
maximum quantum nonlinearity parameter for electrons
χe = |qe|

√
|(Fµνuν)2|/m2 (see Ref. [33]) is 0.03, 0.003,

and 0.003, respectively. In addition, the De Broglie wave-
lengths of the simulated electrons were between 50 - 170
fm, which is many orders of magnitude smaller than the 1
µm laser wavelength. Thus, the use of classical radiation
reaction is justified.

C. Electron confinement in the FF pulse and
radiation cooling

Figure 4(a) demonstrates the rapid expansion of an
electron bunch in the absence of external fields. Early in
time the expansion is slower as a subset of electrons move
towards the bunch axis. Quickly thereafter, the initial
spread in transverse momenta cause the RMS radius to
evolve as approximately [see discussion below Eq. (33)]

R(t)|ξ0=0 ≈ R0
t

Ts
≈ σβ⊥(0)t . (52)

The beam divergences without the fields of the FF pulse

Θ = 2 arctan

(
R(tint) −R(0)

⟨βz(0)⟩tint

)
≈ 2 arctan

(
σβ⊥(0)

⟨βz(0)⟩

) (53)

were 4.2, 11 and 42 mrad respectively. The electrons
had a high enough transverse momentum so that some
escaped the ponderomotive barrier of the FF pulse and
also large enough beam divergences > 1 mrad to be rel-
evant to LWFA-based electron sources [39].

As shown in Fig. 4(b), this expansion is contained by
counter-propagating a flying focus pulse with the elec-
tron bunch. Even though the matching condition for a
constant bunch radius, i.e., Eq. (34), was satisfied for
the mean energy, the energy spread in the bunch and the
anharmonicity of the ponderomotive potential result in
oscillations of the RMS radius. Only confined electrons,
defined as those chosen as having r(t) < 0.75σ0 during
the entire interaction, were used to calculate the RMS
radius in Fig. 4(b).

Radiation reaction gradually decreases the RMS spot
size and increases the oscillation frequency of the bunch
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FIG. 4. Time evolution of the RMS radius for a) freely traveling electrons with no external field and b) electrons confined to
the ponderomotive potential of a FF pulse with σ0 = 6πk−1

0 = 3λ0. The dotted line denotes the case of ⟨γ0⟩ = 1000 with no
radiation reaction. For the parameters of the electron bunches see Section VB.
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FIG. 5. Average relativistic gamma factor of electrons con-
fined to the ponderomotive potential of the FF pulse with
σ0 = 6πk−1

0 = 3λ0. The loosely dotted lines denote sim-
ulation runs with no radiation reaction. The densely dot-
ted lines denote analytical estimates based on Eq. 35 with
ξeff = 0.26 ξ0. For the parameters of the electron bunches see
Section VB.

[cf. ⟨γ0⟩ = 1000 cases in Fig. 4(b)]. As the electrons ra-
diate and lose energy (Fig. 5), the ponderomotive force
becomes stronger [Eq. (20)], which increases the oscil-
lation frequency [Eq. (21)]. Consistent with Eq. (35),
the radiative cooling of the bunch occurs more rapidly
for higher values of γ0 and ξ0 (Fig. 5).

The reduction in the RMS spot size of the bunch and
increase in its oscillation frequency due to radiation re-
action mitigate the effect of anharmonicity. Figure 6 dis-
plays the oscillation periods of electrons as a function of
initial radius without [Fig. 6(a)] and with [Fig. 6(b)]
radiation reaction. The period of oscillations around an
axis i (either x or y) was determined numerically as an
average period over the interaction time

Ti =
2(t

(ni)
i − t

(1)
i )

ni − 1
, (54)

where ni is the number of times the electron crosses the

ith axis. The first crossing happens at time t
(1)
i and last

at time t
(ni)
i . The arithmetic mean of Tx and Ty is plotted

in Fig. 6.

Without radiation reaction [Fig. 6(a)], electrons ini-
tialized at small radii oscillate with a period close to
that predicted by Eq. (21), marked by the horizontal
dashed lines. In contrast, electrons initialized at larger
radii undergo oscillations with a longer period due to the
weakening of the ponderomotive potential with increas-
ing radius. Figure 6(b) and its inset demonstrate the
decrease in the oscillation period resulting from radia-
tion reaction as compared to Fig. 6(a). The decrease in
period is most pronounced for electrons initialized fur-
ther from the z-axis in regions of high intensity, where
radiation reaction is strongest. The effect of radiation re-
action diminishes with decreasing γ0 and ξ0 as predicted
by Eq. 35.

The increase in the strength of the ponderomotive po-
tential as electrons lose energy to radiation reaction re-
sults in the confinement of more electrons. This is il-
lustrated in Fig. 7(a) which shows the initial phase
space distributions of confined and unconfined electrons
for ⟨γ0⟩ = 1000. The trapping boundary predicted by
Eq. (27) is also plotted as a red dashed line. Consistent
with the reduction in period shown in Fig. 6, the increase
in trapping is most pronounced for electrons initialized
in regions of high intensity [electrons well outside of the
red dashed line in Fig. 7(a) are still confined].

In Figs. 7(b) and 7(c), ⟨γ0⟩ is lower, which reduces the
effect of radiation reaction on the electron trajectories.
The highest ξ0/γ0 ratio is presented in Fig. 7(c). In this
case the coupling between longitudinal and transverse
motion becomes important, and Eq. (27) is no longer ac-
curate, which can be observed as the lack of confinement
within the red-dashed boundary.

In addition to reducing the RMS radius of the elec-
tron bunch and improving the transverse confinement,
radiation reaction reduces the emittance of the electron
beam (Fig. 8). However, all of these improvements in
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FIG. 6. Oscillation period in the ponderomotive potential as a function of the initial distance from the z-axis. The horizontal
dashed lines indicate the period in the harmonic approximation, Eq. (21). The vertical dotted line marks rmax = σ0/

√
2.

a) radiation reaction is switched off. The gray crosses show the equivalent simulation runs with zero energy and momentum
spread. b) radiation reaction is included. The inset displays the ratio of oscillation periods with and without radiation reaction.
For the parameters of the electron bunches see Section VB.

⟨γ0⟩ ∆⟨γ⟩ ∆ε⊥

1000 0.65 0.55

200 0.14 0.17

100 0.22 0.24

TABLE II. Relative changes in the average gamma factor from
Fig. 5 and in the normalized transverse emittance from Fig.
8 for the three simulated cases.

the quality of the electron bunch come at the expense
of its average energy (Fig. 5). In fact, comparing the
⟨γ0⟩ = 1000 cases in Figs. 5 and 8 shows that the relative
change in the emittance ∆ε⊥ = [ε⊥(0) − ε⊥(tint)]/ε⊥(0)
is nearly equal to the relative change in the average en-
ergy ∆⟨γ⟩ = [⟨γ0⟩ − ⟨γ(tint)⟩]/⟨γ0⟩:

∆ε⊥ ≈ ∆⟨γ⟩ . (55)

For example, in the ⟨γ0⟩ = 1000 case, the average gamma
factor decreases by 65% from 1000 to 353 while the emit-
tance drops by 55% from 11.2 k−1

0 to 5.0 k−1
0 . Due to

the oscillatory nature of the emittance, an average value
from 5 η0 after the field ramp up and from 5 η0 before the
field ramp down was taken. The relative changes for the
remaining two electron bunches are shown in Table II.

In Fig. 8, the emittance was calculated using the elec-
trons that remained confined to the FF pulse, i.e., those
with r(t) < 0.75σ0 during the entire interaction. The
difference in the initial emittances of the beams with and
without radiation in Fig. 8 was due to the different statis-
tics of the confined electrons in the two cases. The jump
in emittance during the ramp on and ramp off of the
FF pulse results from the onset of electron oscillations
in the fields: the statistical definition of emittance [Eq.
(D1)] uses mechanical and not canonical transverse mo-

mentum.

D. Longitudinal motion

Over the entire interaction length, the electron bunch
remains in the vicinity of the intensity peak to within
a small fraction of the Rayleigh range (Fig. 9). The
longitudinal delay of the bunch with respect to the FF
intensity peak is in reasonable agreement with the pre-
dictions of Eq. 38. In Fig. 9, the average delay for the
three simulated bunches are plotted as thick lines, while
Eq. (38) is plotted as thin lines. For the purposes of Fig.
9, Eq. (38) was evaluated using average quantities of the
bunch, i.e., β2

⊥(0) → σ2
β⊥

(0) and γ0 → ⟨γ0⟩, and the ef-
fective field strength along the particle trajectory was set
to the fit value obtained from Fig. 5: ξeff = 0.26ξ0.

The increase in delay due to radiation reaction is only
significant for the ⟨γ0⟩ = 1000 case. For the ⟨γ0⟩ =
100 and 200 cases, the delay results almost entirely from
the initial subluminal velocity of the electrons. This is
demonstrated by the similarity of the thick lines and the
dotted lines which show the average delay in the absence
of the fields of the FF pulse.

Any predictable delay can be eliminated by using a
FF pulse with a focal velocity equal to that of the elec-
trons. Closed form expressions for FF pulses with focal
velocities βF ̸= −1 have been derived in the paraxial ap-
proximation [20] and exactly [27]. However, this more
general treatment is not necessary here, because the av-
erage electron delay ⟨η − η(0)⟩ is much smaller than the
Rayleigh range η0 over the entire interaction length.
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FIG. 7. Initial transverse phase space of electrons co-
travelling with the intensity peak of a FF pulse, with σ0 =
6πk−1

0 = 3λ0. The analytical approximation for the boundary
between confined and not confined electrons (red dashed line)
is given by Eq. (27). Each simulation evolved 1000 indepen-
dent electron trajectories and nc indicates the percentage of
confined electrons. For the parameters of the electron bunches
see Section VB.
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trons from the focus of the FF pulse with σ0 = 6πk−1
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(thick lines). Thin lines indicate the estimate of Eq. (38) for
the longitudinal lag. The dotted lines show the results from
simulations without the fields of the FF pulse. For the pa-
rameters of the electron bunches see Section VB.

VI. SUMMARY AND CONCLUSIONS

A flying focus pulse with ℓ = 1 OAM can prevent
the spreading of relativistic particle bunches over macro-
scopic distances, providing an alternative to magnetic op-
tics at high power laser facilities. The peak intensity of
the FF pulse travels at the vacuum speed of light in the
opposite direction as its phase fronts. Charged particles
traveling with the peak intensity experience a pondero-
motive potential that confines their transverse motion
over distances far greater than a Rayleigh range. Radia-
tion reaction decreases the RMS radius and emittance of
the particle bunch and improves the transverse confine-
ment at the cost of a reduction in the average particle
energy. Simulations demonstrated the confinement of 50
- 500 MeV electron bunches with 40 - 4 mrad beam di-
vergences over 6 mm. The electron bunches maintained
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a tight RMS radius of ∼ 1µm.

All-optical confinement of a charged particle bunch
with a FF could have utility in any situation where the
bunch must be transported from its source to its target
with a small RMS radius. For instance, the transverse
size of the particle bunch determines the spatial reso-
lution of probes based on secondary radiation sources,
such as bremsstrahlung x-ray imaging. The bunch size
also contributes to the Pierce parameter, which is critical
to the performance of free-electron-lasers.

Flying focus pulses require much less energy to con-
fine a charged particle bunch than either LG10 Gaus-
sian or axicon-focused Bessel pulses. In contrast to these
pulses, the peak intensity of the FF travels with the elec-
tron bunch, which decouples the interaction length from
the Rayleigh range. For the simulated examples, the FF
pulse had an energy and power of 200 J and < 5 TW,
respectively, compared to the 2 MJ required in a LG10
Gaussian pulse.

The distance over which a particle bunch remains con-
fined can be lengthened by using FF pulses with a peak
intensity that travels at a velocity equal to that of the
particles. Such pulses have been experimentally demon-
strated and theoretically analyzed [9, 27]. The use of a
velocity-matched FF pulse would provide an additional
advantage over Gaussian or Bessel pulses.

The electron bunches considered in this work had pa-
rameters characteristic of the bunches created in LWFA.
The short lengths (∼ 10µm) and high divergences (> 1
mrad) make these bunches ideal for confinement by a FF
pulse. The short length also ensures that the bunch sits
in a region of near-constant peak intensity. The high di-
vergences ensure that the confinement afforded by the FF
pulse has an impact on the transport. At high-intensity
laser facilities, a laser pulse can be used for both LWFA
and transport of the resulting bunches, without the need
for magnetic optics. In contrast, conventional e-/e+ ac-
celerators, such as those produced at SLAC, have much
longer bunch lengths (∼ 1 mm) and smaller divergences
(< 1 mrad). However, shorter bunch lengths are ex-
pected for next generation e-/e+ colliders, such as the
ILC or CLIC.

While the simulations were performed for electrons,
the results are equally applicable to positrons. In
fact, mixed electron-positron bunches [36] experience less
Coulomb repulsion due to their lower net charge and
would be easier to confine. This property could be ex-
ploited to guide the products of Breit-Wheeler pair pro-
duction from the collision of a high-intensity laser pulse
with hard photons. Moreover, transverse confinement in
a FF pulse could provide an alternative to injecting elec-
tron beams for mitigating alignment sensitivity in wake-
field and direct laser acceleration of positrons [42, 43].
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Appendix A: Electromagnetic fields of ℓ = 1 OAM
FF beam

Here, the electromagnetic field components of a FF
beam are derived for the special case where the focal ve-
locity is equal and opposite to the phase velocity at the
vacuum speed of light. The vector four-potential Aµ, lin-
early polarized along y-direction, is fully determined by
Eqs. (1), (5), and (6). The electromagnetic field compo-
nents can be calculated using the standard formulas

E = −∂tA−∇A0, B = ∇×A, (A1)

which can be straightforwardly evaluated after a some-
what lengthy calculation. For the sake of conciseness, the
common factor is taken out

E =
√

2
A0

ση
e−r2/σ2

ηE, B =
√

2
A0

ση
e−r2/σ2

ηB, (A2)

where the remaining dimensionless components of the
electric field are

Ex =
r

ω0σ2
η

[
2xy

σησ0
sin Ψ1(0, 2) − cos Ψ1(2, 1)

]
, (A3)

Ey =
rσ0

ση
T1(2) +

1

ω0ση
T2, (A4)

Ez =
σ0

ση

[
2ry

σησ0
cos Ψ1(0, 1) + sin Ψ1(1, 0)

]
. (A5)

The phases are defined in Eq. (2). Similarly, the di-
mensionless components of the magnetic field are given
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by

Bx =
rσ0

ση
T1(1) +

1

ω0ση
T2, (A6)

By = − r

ω0σ2
η

[
2xy

σησ0
sin Ψ1(0, 2) − cos Ψ1(2, 1)

]
, (A7)

Bz = −σ0

ση

[
2rx

σησ0
cos Ψ1(0, 1) − cos Ψ1(1, 0)

]
, (A8)

where

T1(j) =

[
(−1)jω0 −

r2

η0σ2
η

]
sin Ψ1(0, 0)

+
σ0

η0ση

[
sin Ψ1(0, 1) − 2r2η

σ2
ηη0

cos Ψ(0, 1)

]
,

(A9)

T2 =
2ry2

σ2
ησ0

sin Ψ1(0, 2) − 2y

ση
cos Ψ1(1, 1) . (A10)

In order to derive these expressions the trigonometric
angle addition formulas and identities

sin

[
arctan

(
η

η0

)]
=

σ0η

σηη0
, (A11)

cos

[
arctan

(
η

η0

)]
=

σ0

ση
(A12)

were frequently used.

Appendix B: Average ℓ = 1 OAM FF beam power

In this appendix, a formula for the average beam power
in the ℓ = 1 OAM FF beam is obtained. The cycle
average for a general function f(η, r, θ, ϕ) can be written
as

f(η, r, θ) =
1

2π

∫ 2π

0

f(η, r, θ, ϕ)dϕ , (B1)

where the average is calculated over one cycle. In this
work, the averages are performed for an ultra-relativistic
observer who is approximately co-moving with the field
focus η = t + z ≈ 0. At focus, the phase defined in Eq.
(2) can be written as

Ψ1(a)|η=0 = ω0ϕ + (1 − a)θ . (B2)

The cycle averages of the following expressions [see defi-
nition Eq. (B1)] are useful

sin[Ψ1(a1)] sin[Ψ1(a2)]|η=0 =
1

2
cos[(a1 − a2)θ], (B3)

cos[Ψ1(a1)] cos[Ψ1(a2)]|η=0 =
1

2
cos[(a1 − a2)θ], (B4)

sin[Ψ1(a1)] cos[Ψ1(a2)]|η=0 =
1

2
sin[(a1 − a2)θ] . (B5)

The average power transmitted through the xy plane
at η = 0 is given by the cycle-averaged Poynting vector
flux

Pave =

∫
dxdy ExBy − EyBx

∣∣
η=0

. (B6)

In the simulations presented in Section V, ω0σ0 = 6π,
thus only the leading order terms ∝ (ω0σ0)n are con-
sidered. The leading-order term has n = 2, there is no
contribution with n = 1, and any terms with n ≤ 0 are
neglected. Ultimately, the leading contribution to the
beam power comes from

T1(2)T1(1)
∣∣∣
η=0

≈ −1

2
ω2
0 . (B7)

After performing the integration over the transverse co-
ordinates the final expression for the average power reads

Pave =
π

4
A2

0

[
ω2
0σ

2
0 + O(1)

]
≈ 21.5[GW]

(
ξ0

σ0

λ0

)2 (B8)

and is identical to the conventional LG10 beam. The
numerical value in the last expression is given for the
field strength ξ0 scaled to electron (positron) mass and
charge. In the cases considered here, σ0 = 3λ0, which
means that the pulses with tint = 20 ps and ξ0 = 5 have
a power of about 5 TW and a total energy of about 200
J, see Eq. (10).

Appendix C: Transverse ponderomotive force

A formula for the transverse ponderomotive force act-
ing on a charged particle in the FF pulse is derived in this
appendix. Radiation-reaction is neglected for this deriva-
tion. In terms of the vector four-potential, the Lorentz
equation is

d

dτ
(muµ) = q(∂µAν − ∂νAµ)uν . (C1)

Since uν∂
ν = d/dτ along the particle trajectory, the sec-

ond term on the RHS can be combined with the proper
time derivative on the LHS. The remaining product uνA

ν

on the RHS can be expressed in lightcone coordinates,
yielding

d

dτ
(muµ + qAµ)

=
q

2
(u−∂

µA+ + u+∂
µA−) − qu⊥ · ∂µA⊥ .

(C2)

In this expression the definition of the dot product of two
four-vectors aµ and bµ in the lightcone coordinates

aµb
µ =

1

2
(a+b− + a−b+) − a⊥ · b⊥ , (C3)
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was used. Finally, the lightcone components a+ and a−
are defined as

a+ = a0 + az, a− = a0 − az . (C4)

In the gauge used here A+ vanishes, and therefore the
first term on the RHS of Eq. (C2) does not contribute.
From the constraint u2 = 1 on the four-velocity, u+ can
be expressed as

u+ =
1 + u2

⊥
u−

≈ 1

2γ
(C5)

provided that the perpendicular velocity is small (ξ0 ≪
γ), and the particle moves with ultra-relativistic velocity
in the negative z direction (u− ≈ 2γ). This allows the
second term on the RHS of Eq. (C2) to be neglected com-
pared to the third term. Employing this approximation,
one finds

d

dτ
(muµ + qAµ) ≈ −qu⊥ · ∂µA⊥ . (C6)

In the perpendicular direction, the ansatz

u⊥ = − q

m
A⊥ + δu⊥ (C7)

can be made, where the first term is the exact solution
of perpendicular motion in a plane wave [28], and the
second term represents a deviation from this motion due
to nontrivial transverse structure of the field. Upon sub-
stituting this ansatz in to both sides of Eq. (C6), the
leading-order correction to the perpendicular component
of the four-velocity reads

d

dτ
δu⊥ ≈ − q2

2m2
∇⊥A

2
⊥ , (C8)

where the identity A⊥ ·∇iA⊥ = ∇iA
2
⊥/2 was used. In a

plane wave, A⊥ does not depend on the transverse coor-
dinates and this correction vanishes as expected. Finally,
the proper-time derivative can be written in terms of the
derivative with respect to the laboratory time because
d/dτ = γd/dt along the particle trajectory.

Upon applying the cycle-averaging procedure [defined
in Eq. (B1)] at focus (η = 0) to Eq. (C7), the oscillatory
plane wave term vanishes [see its prescription in Eq. (1)]
and one obtains

u⊥ = δu⊥ . (C9)

In order to carry out the cycle-averaging integration, the
functions r(t) and θ(t), corresponding to the polar co-
ordinates of the charge at the time t on the xy plane,
are considered to be changing on a much slower scale
and effectively constant in the averaging over one cycle.
This result implies that the cycle-averaged perpendicular
velocity is solely given by the term describing the devia-
tion from the plane wave motion. Therefore performing
a cycle average of Eq. (C8) yields

du⊥

dt
≈ − q2

2m2γ0
∇⊥A2

⊥|η=0 , (C10)

where it was assumed that the relativistic gamma factor
of the particle remains approximately unchanged and can
be taken out of the average, which is correct up to terms
on the order of O(1/γ0) [44].

Appendix D: Normalized transverse emittance

The transverse emittance is defined as a quantity pro-
portional to the phase-space area of a bunch in the trans-
verse direction. For computational purposes, the statisti-
cal definition of normalized transverse emittance is more
useful [45]. By generalizing the standard definition of the
emittance to two-dimensional vectors, one obtains

ε⊥ =
1

m

√
σ2
rσ

2
p⊥

− σ4
r,p⊥

. (D1)

The variance σ2
r of the transverse position vector r =

(x, y) is defined as

σ2
r = ⟨r · r⟩ − ⟨r⟩ · ⟨r⟩ , (D2)

where, in polar coordinates,

⟨r · r⟩ = ⟨r2⟩ . (D3)

The relativistic transverse momentum is p⊥ =
mγ(βx, βy). Its variance σ2

p⊥
is

σ2
p⊥

= ⟨p⊥ · p⊥⟩ − ⟨p⊥⟩ · ⟨p⊥⟩ , (D4)

where

p⊥ · p⊥ = m2γ2(r′2 + r2θ′2) . (D5)

Finally, the cross variance σr,p⊥ is given by

σ2
r,p⊥

= ⟨r · p⊥⟩ − ⟨r⟩ · ⟨p⊥⟩ , (D6)

where

⟨r · p⊥⟩ = m⟨γxβx + γyβy⟩ = m⟨γrr′⟩ . (D7)

Now, since the average transverse position ⟨r⟩ and aver-
age transverse momentum ⟨p⊥⟩ are approximately zero
throughout the evolution of the bunch due to cylindrical
symmetry, the normalized emittance can be re-written as

ε⊥ =
1

m

√
⟨r · r⟩⟨p⊥ · p⊥⟩ − ⟨r · p⊥⟩2 . (D8)

After substitution from Eqs. (D3), (D5), and (D7) one
finds

ε⊥ =
√

⟨r2⟩⟨γ2r′2 + γ2r2θ′2⟩ − ⟨γrr′⟩2 . (D9)

Finally, the approximations that the motion is ultra-
relativistic, that radiation reaction is neglected, and that
the fields are relatively weak , i.e., ξ0 ≪ γ0, can be made.
With these approximations, the relativistic Lorentz fac-
tor γ is approximately constant, has very little spread,
and can be taken out of the ensemble averages. This
gives the normalized transverse emittance

ε⊥ ≈ γ
√
⟨r2⟩⟨r′2 + r2θ′2⟩ − ⟨rr′⟩2 , (D10)

which appears in Eq. (31) for the evolution of the RMS
radius.
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Appendix E: Coulomb repulsion among particles

In this appendix, an estimate of the Coulomb repul-
sion force is presented, and the conditions for which this
force can be neglected compared to the ponderomotive
force are established. The charged particle bunches are
modeled analytically by the charge distribution in Eqs.
(39) and (40). As was shown in Ref. [34], the electric
field generated in the rest frame of this distribution can
be computed exactly.

At z = 0 (in the middle of the bunch), only a purely
radial field remains

E(r, θ, 0) = Err̂ =
1

4π

qN

Lr
f(r)r̂ , (E1)

where f(r) is given by

f(r) =
L√

L2/4 + r2
erf

(√
L2/4 + r2√

2σr

)

− 2e−r2/2σ2
rerf

(
L

2
√

2σr

)
.

(E2)

In the laboratory frame, this transverse electric field is
enhanced by a factor of γ0 because of the Lorentz trans-
formation. A magnetic field in the azimuthal direction is
also induced due to presence of a non-zero current in this
frame. Performing the Lorentz transformation explicitly
[46], the Cartesian components of the fields are

Elab(x, y, 0) = γ0Er

(x
r
x̂ +

y

r
ŷ
)
, (E3)

Blab(x, y, 0) = γ0β0Er

(
−y

r
x̂ +

x

r
ŷ
)
. (E4)

Using these fields, the laboratory frame four-force is given
by

Fµ = qFµνuν = qγ0γEr

×
[
βr,

x

r
(1 − β0βz),

y

r
(1 − β0βz), β0βr

]
.

(E5)

Assuming that the particle deviates only slightly from
the ultra-relativistic straight-line motion, i.e., β0 ≈ βz

and γ ≈ γ0 = (1 − β2
0)−1/2, the components of the force

in the laboratory frame are

F0 = qγ2
0Erβr, Fr = qEr,

Fθ = 0, Fz = qγ2
0Erβ0βr .

(E6)

Under the same approximations (neglecting time deriva-
tives of γ = γ0), the equation for the radial motion in the
absence of the fields of the FF pulse is

r′′ − L2
z

m2γ2
0r

3
=

qEr

mγ2
0

=
1

4π

q2N

mLrγ2
0

f(r) . (E7)

Notice that the dependence on the gamma factor γ0 is
the same as for the ponderomotive force Eq. (17).

Now, the acceleration arising from the ponderomotive
force [Eq. (17)] and the acceleration due to Coulomb
repulsion (E7) can be compared. Since both of these
forces are zero on axis and increase with radius up to a
certain point, it makes sense to compare the accelerations
at their respective maxima. For the ponderomotive force,
this is at the radius

rP,max =

√
5 −

√
17

2
rmax , (E8)

which can be derived by taking the second derivative of
the ponderomotive potential in Eq. (19) and solving for
the root in the interval (0, rmax). The acceleration due
to ponderomotive force at its maximum reads

aP (r = rP,max) = 0.21
ξ20

γ2
0σ0

. (E9)

The radius of the maximum Coulomb force rC,max must
be determined numerically. The electron bunch is typi-
cally much longer than it is wide L > σr, which allows
the error functions in Eq. (E2) to be approximated by
1. The remaining function σrf(r)/r has an upper bound
σrf(r)/r < 1 for any L > σr. Substituting this in to
the expression for the acceleration in Eq. (E7), one finds
that the Coulomb acceleration is less than

aC(r = rC,max) <
1

4π

q2N

mγ2
0Lσr

. (E10)

Thus, the ratio of the maximal accelerations is propor-
tional to

aC(r = rC,max)

aP (r = rP,max)
=

q2

4πm

σ0

Lσr

N

0.21ξ20

= 1.3 × 10−8[µm]
σ0

Lσr

N

ξ20
,

(E11)

where the numerical factor is given for electrons. For
the electron bunches considered here σ0/[L(0)σr(0)] =
0.4 µm−1 and the accelerations become comparable, for
example, when ξ0 = 10 and N = 2× 1010, corresponding
to a total bunch charge of 3 nC.
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