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Bounded learning and planning in public goods games
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A previously developed agent model, based on bounded rational planning, is extended by introducing learning,
with bounds on the memory of the agents. The exclusive impact of learning, especially in longer games, is
investigated. Based on our results, we provide testable predictions for experiments on repeated public goods
games (PGG) with synchronized actions. We observe that noise in player contributions can have a positive
impact of group cooperation in PGG. We theoretically explain the experimental results on the impact of group
size as well as mean per capita return (MPCR) on cooperation.
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I. INTRODUCTION

With the looming climate crisis, limited planetary re-
sources, and the associated challenges to human societies,
predicting human collective behavior in resource allocation is
a problem of increasing importance [1–3]. Essential for such
predictions is the development of models of human economic
interactions which are both reliable and suitable for modeling
entire societies.

A classical paradigm for achieving such modeling is game
theory. It has lately grown into a mature field of research,
with extensions toward collective behavior having emerged
in recent years [4–9]. The capability of predicting human
behavior in controlled environments such as games allows
not only to test models of intelligence but also potentially
allows policy makers to make more robust decisions [10,11] in
situations of societal relevance. A frequently studied example
is the so-called public goods game (PGG), in which players
contribute resources to a common (public) pot, from which
disbursements are paid back to all players equally [7,12–14].

However, human behavior in games lies in a much smaller
dimensional space (game trajectories), than the physical sys-
tem (agent + environment) that generates the behavior. This
then leads to creation of a large number of ad-hoc models
which account for human behavior in very limited settings
only [15]. Such approaches may provide some predictive
power in very specific scenarios but are likely to fail in
predicting human behavior in different environments. Addi-
tionally, they do not have much potential in providing insight
into the mechanisms of intelligent behavior.
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In order to circumvent these problems, one needs to de-
velop and systematically study models that are applicable in
more general environments, with parameters which can be
related to measurable human behavioral preferences [2]. To
this end, we have demonstrated [16] that a general bounded
rational planning agent is able to reproduce human behavior
in public goods games (PGG). In particular, this was possible
without needing to invoke any mechanisms of learning. This
is not to say that humans do not learn when playing iterative
PGG for 10 rounds. All this communicates is that learning is
not necessary to reproduce human behavior in these games.
Therefore as a next natural step we introduce learning in our
model to see for what behaviors is it necessary to invoke
mechanisms of learning. In other words, in this article we wish
to observe the exclusive impact of learning on bounded ratio-
nal agents, which couldn’t have been generated by bounded
rational agency alone. As in our previous work [16], we
base our model on the specific case of playing PGG and
compare the behavior of agents to known experimental results.
Before we proceed with developing our model, we briefly
describe the well known PGG.

The PGG is played with N players over a total of known
T periods. In each period the players are given a fixed integer
number of tokens τ , which they can anonymously invest into
a public pot. Following a widely followed convention in the
field [16,17], we use τ = 20 throughout this article. In any pe-
riod t � T if the contribution of the kth player is fk,t ∈ [0, τ ]
then the immediate reward of the player in that period is given
by

Gk,t = α(N − 1)μk,t − (1 − α) fk,t , (1)

where α < 1 is multiplying factor which is known to all the

players and μk,t =
∑

i �=k fi,t

N−1 is the average contribution of other
players. The total gain for the kth player can then be defined
as Gk = ∑T

t Gk,t .
It has been argued in artificial general intelligence (AGI)

research that a minimal model of an intelligent agent em-
bedded in an arbitrary environment (for instance, playing
a game) has two main ingredients, learning and planning
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(AIXI [18]). At any point of time, an intelligent agent looks
at the past trajectory of the environment (past game states
and actions) to learn about the dynamics of the environment
(modeling other players in the game). This knowledge of
the dynamics is then used to simulate future trajectories of
the environment (game), in order to choose the action which
leads to the best trajectory, i.e., the trajectory maximizing a
previously defined utility function. That is to say, learning
is a mapping from observed behavior to mental models and
planning is a mapping from mental models to actions. The
readers should note that the notion of learning put forward
is distinct from ”social learning” as is common in evolution-
ary game theory [19,20], where the agents learn from other
agents by comparing their strategy’s fitness with that of oth-
ers in the population and then imitating the better strategy
with a finite probability. In our approach the agents learn
of the other player behavior by creating a model of other
agents.

Also note that this distinction between learning and plan-
ning is not commonly made in most agent based models.
Instead, learning is conceived to refer to figuring out which
action leads to better immediate rewards, with the agent being
oblivious to other agents (i.e., has no models of them) [12,21],
i.e., to say that in these works learning is a mapping directly
from observed behavior to actions. In contrast, by making a
clear distinction between learning and planning, we can study,
and potentially control, the distinct qualitative behaviors intro-
duced by either of them.

The main problem in implementing AIXI to predict hu-
man behavior in games is that it is not computable [22].
Nonetheless, the idealized model can still be viewed as a
guiding principle to generate models of human behavior
in slightly less general environments by introducing spe-
cific approximations, whereby trading off the generality with
computability of the model. Therefore, in this article our ap-
proach would be to introduce learning to our bounded rational
agent model [16], while at the same time making use of
context specific approximations that allow our model to be
computable.

II. PLANNING AND LEARNING WITH BOUNDS

A. The planning mechanism

As aforementioned the planning mechanism is a mapping
from mental models to actions (in this case, a policy). There-
fore in this subsection we assume a mental model of the agent
(given by the transition function) and seek to find the optimal
policy of the agent. We describe the planning mechanism from
the perspective of the kth agent and this extends to all k.
We model the agent’s decision making problem as a Markov
decision process (MDP), with the transition function Q given
by

Q(μk,t |μk,t−1, fk,t−1) = T G(μk,t ; m, σ ). (2)

Here, T G is the truncated Gaussian distribution on the interval
[0, τ ] (τ = 20), fk,t is the contribution of the kth agent in

round t , and μk,t =
∑

i �=k fi,t

N−1 is the average contribution of other
players in round t . m is the peak position of the distribution

given by

m =
{

μk,t−1 + ξ+|μk,t−1 − fk,t−1|, μk,t−1 − fk,t−1 < 0

μk,t−1 − ξ−|μk,t−1 − fk,t−1|, μk,t−1 − fk,t−1 > 0.

(3)

As the kth agent can influence others actions through its
contributions alone (because players play anonymously and
do not interact otherwise), the parameters ξ+ and ξ− describe
to which degree the agent believes to be able to encourage or
discourage other agents to contribute. In that sense, ξ± is a
model the agent has of its environment (i.e., the other agents)
and represents its transition function. In so far as planning
is concerned, we do not bother about how the agent comes
up with a particular model (i.e., particular values of ξ±), but
rather what decisions (policy) does the agent come up with,
given a model of its environment.

The bounded rational decision making problem in period
t � T as defined in Ref. [16] is described by a Bellman
equation given by

V ∗
t = max

P( f T
t )

∑
fk,t ,μk,t

P( fk,t | f̄t−1)

[
Q · Gk,t ( fk,t , μk,t )

− 1

β
log

P( fk,t | f̄t−1)

P0( fk,t | f̄t−1)
+ γ Q · Vt+1

]
, (4)

where ∗ is to indicate a maximized quantity, f̄t = ( f1,t . . . fN,t )
is the state of the game in period t , and β is a
Lagrange parameter along with an additional constraint
1
β

(DKL(P∗( fk,t | f̄t−1)||P0( fk,t | f̄t−1)) − K ) = 0, with K the
computational capability of the agent. Intuitively speaking,
K represents the maximum deviation (in policy space), from
the prior policy, that the agent can afford in search of a better
policy. For instance, setting K = 0 would mean that P∗ = P0,
thereby the agent is maximally bounded and is going to play
only according to its prior strategy P0. On the other hand,
if K = ∞, then one can see from the above constraint that
1
β

= 0, and hence Eq. (4) reduces to the completely rational
case. All intermediate values of K span policies between the
completely rational policy and the prior policy. Additionally,
we consider another parameter γ ∈ [0, 1] appearing in Eq. (4).
It represents a foresight which exponentially “decays” into
the future [16]. The solution of the optimization problem in
Eq. (4) then provides us with the (bounded optimal) policy
P∗( f T

t ) = ∏T
t ′=t P∗( fk,t ′ | f̄t ′−1) of the agent, which is the out-

put of the planning mechanism.

B. The learning mechanism

1. A subspace of all partial functions

In AIXI [18], learning for an agent from past data happens
through Solomonoff induction [23], which considers the space
of all partial functions [24] on {0, 1}∗ [25], i.e., the space of
all allowed “explanations” for the past trajectory. Although
this form of learning guarantees convergence to the true dis-
tribution, it is not computable as a consequence of the halting
problem [26]. In practice however, one might want to reduce
the search space from the space of all partial functions on
{0, 1}∗ to a smaller space.
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In AIXItl [22] it is proposed to consider only programs
up to length l and computation time t . AIXItl does this by
running a brute force search over all the programs. Although
this brute force search is computable, it still takes enormous
computing power to compute. While this is not a problem for
AIXItl, which is focused on describing intelligence in an ar-
bitrary environment, it seems unreasonable to model humans
as brute force searchers which take enormous computing time
in a specific environment such as PGG as they have context
specific pre-play awareness of the game [17].

Another common way to reduce the search space is by
creating a model class and then performing regression or max-
imum likelihood estimate to find the best model in the model
class. The latter approach is not only easier to implement but
also allows the opportunity to introduce easily interpretable
parameters in the model as compared to AIXItl. Therefore, it
is the latter approach that we will take in this article.

As we intend to model human behavior in PGG, we exploit
this context specificity and consider the model class intro-
duced in Ref. [16], as it has been successful in explaining
observed human behavior [17]. Therefore we only consider
Markovian transition functions, given by truncated Gaussian
distributions, parameterized via ξ±.

2. The model

In the learning problem we are concerned with the agent
learning the transition function Q from its past experiences
in the game. As the transition function is parameterized by
ξ±, learning mechanism is then concerned with finding the ξ±
values that are the most representative of the past experiences,
i.e., those values of ξ± that have the highest likelihood of
generating the past game trajectory.

Additionally, quite like the exponentially decaying fore-
sight given by γ , we also introduce another parameter γp ∈
[0, 1], which represents a hindsight decaying exponentially
into the past (equivalently called “recency-bias” in Ref. [27])
of the agent. It signifies that when an agent evaluates the
behavior of its environment, recent experiences guide its
model more than earlier experiences. This is then achieved
by weighting the maximum likelihood estimation with γp as
below:

ξ ∗
±(t ) = arg maxξ±

[ 2∑
i=t−1

γ t−i
p log Q(μi|μi−1, fk,i−1)

− (1 − γp)(ξ±(t ) − ξ±(t − 1))2

]
, (5)

where the last summand captures the tendency of the agent to
not update its model. Therefore γp = 0 would correspond to
not updating the model given a past trajectory (no learning)
and γp = 1 would correspond to learning from arbitrarily far
back in the past.

C. An updated agent model

We now combine the planning and the learning mecha-
nism into one agent which is described now by the tuple
(m, K, γ , γp). In every period 2 < t � T the agent:

(i) plans: by considering the game state at t − 1, making
use of the current model (ξ± (t )) and solving Eq. (4) and
evaluating the policy P( f T

t ),
(ii) acts: by sampling a bet from the evaluated policy, and
(iii) learns: after observing the state of the game in the

current period t and finding the ξ±(t ) by making use of Eq. (5).
In period t = 1 the bets of the agent are sampled from its prior
distribution P0( fk,t ) and the agent is provided with a model
ξ+, ξ−(0) = (0.1, 0.5). In period t = 2 there is certainly plan-
ning and acting based on the model, but there is no learning,
as the agent has not yet observed a transition.

III. BEHAVIOR SPACE OF THE MODEL

With the model being defined, in this section we explore
the behavior space of the agent by considering two types of se-
tups. Namely, considering contribution dynamics in groups of
identical agents and groups of randomly chosen agents. In the
former setup the agent parameters in a game are identical to
each other. This setup is chosen to demonstrate the qualitative
effects of the agent parameters on average contributions. In the
latter setup the agent parameters are chosen randomly from
a uniform distribution over the parameter space. This setup
is chosen to observe the behavior of agents in a well-mixed
population.

To the end of understanding the exclusive aspects of the
dynamics introduced by learning and its interplay with plan-
ning, we only consider the computational bound K and the
hindsight γp as the parameters of importance. For simplicity,
the other parameters, namely, m and γ are fixed throughout
the rest of the paper to 10 and 0.9 respectively [16,28]. Addi-
tionally throughout this section we consider games of length
T = 100 and groups of size N = 4.

A. Groups of identical agents

In this subsection we explore cooperation in groups of
identical agents playing a PGG for different values of K, γp.
In Fig. 1 we show the average contribution 〈A〉 as a function
γp for various values of K , where A =

∑
k

∑
t fk,t

NT and the 〈·〉 is
to denote an ensemble average over multiple simulation runs
(1350 simulation runs for each datum).

Quite expectedly in groups of agents with K = 0, 〈A〉 is
not impacted by learning. For K > 0 we see that introduction
of learning monotonically decreases the contribution levels in
groups of identical agents. Additionally, the rates at which
〈A〉 decreases with respect to γp depend on the value of K .
Therefore we perform exponential fits on 〈A〉 with respect to
γp in the small memory regime given by the interval [0,0.2].
I.e., we consider the ansatz 〈A〉 = 〈A〉0ed (K )γp and find the
coefficient d (K ) for different values of K . In the inset we
plot d (K ) as function K and see the decay rate is linearly
proportional to K . Here 〈A〉0 is the average group contribution
without learning (i.e., γp = 0).

d (K ) tells us the susceptibility of agents with a given
computational budget K to learning. Note that the higher the
value of K the faster the rate at which the learning mechanism
bring you towards defection, which corresponds to the Nash
equilibrium of the PGG. This observation highlights that ra-
tionality alone is not sufficient to produce Nash equilibrium
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FIG. 1. Average contributions 〈A〉 as a function of learning
strength γp for various values of K . Inset depicts the dependence of
the decay rate of 〈A〉 with respect to K .

behavior. A rational agent also needs to develop predictive
models of other rational agents to play the Nash equilibrium.
This is reminiscent of the standard knowledge that rationality
and mutual knowledge of rationality lead to Nash equilibrium
[29] in games of more than two players. Our results in Figs. 1
and 2 then seem to indicate that through learning the behavior
of other agents, some sort of a mutual knowledge of rationality
is developed in a group of all rational agents.

Finally, in Fig. 2 one can see that the impact of K on 〈A〉
differs qualitatively for different values of γp. For lower γp,
〈A〉 increases with K and decreases for higher γp. This further
highlights the exclusive impact that learning has on bounded
rational agents. In so far as how such a qualitative difference is
brought about in our model is concerned, we refer the reader
to Sec. IV B 1, where the issue is explored in more detail.

FIG. 2. Average contributions 〈A〉 as a function of computational
budget K for various values of γp.

FIG. 3. Conditional expected gains 〈G|K, γp〉 (colorbar) and con-
tours (solid grey curves) at 〈G|K, γp〉 = 3, 3.5, 4, 4.5, 4.8.

B. Groups of random agents

In this section we consider groups of agents where the
K, γp are i.i.d. (independent and identically distributed) with
the uniform distribution P(K, γp) = U over the domain D =
[0, 5] × [0, 1]. We are interested in the question: “In a random
group of agents playing PGG, which agents gain the most?”

In order to do that, we create 5 × 105 groups and
we consider the conditional expected reward 〈G|K, γp〉
defined as

〈G|K, γp〉 =
∫
D

GP(G|K, γp)dG. (6)

The gain of a particular agent is defined in Sec I. The con-
ditional expected reward is as shown in Fig. 3. Much in line
with our intuition, the conditional gain is maximized by higher
values of K, γp, i.e., agents with higher computational budget
and lesser recency bias earn the most reward when playing
against a group of randomly chosen agents.

It is interesting to note that the data in Fig. 3 suggest
that there is a trade-off between learning (γp) and planning
(K). This shows up as a negative slope of the contours and
a strong bend towards low γp (solid grey curves). Hence,
in order to maintain a constant amount of gain, one can
trade off the planning computational budget (K) with the
learning memory (γp). Similar behavior has been observed
before [30], although a different planning and learning algo-
rithm was used. The authors defined a total computational
budget that is to be allocated to learning and planning and
find that optimal rewards are achieved at intermediate val-
ues of budget allocation toward planning (and consequently
learning).

One can view γp also as a measure of computational re-
sources allocated towards learning, as higher values of γp

require the agent to have more memory and also perform
a computationally intensive optimization over the ξ± space.
Therefore, one can view the total computational budget of the
agent as some linear combination of K and γp. In Fig. 3 this
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FIG. 4. Average contributions as a function of group size N and
the variance (errorbars) for constant α. Inset shows P(rξ < 0.1) and
MPCR α as a function of group size N .

would be represented by straight lines with negative slope.
Due to the bend in the contour lines of 〈G|K, γp〉, it can be
anticipated that there is a maximum gain for some interme-
diate values of γp and K . This further indicates a potential
universality in the trade-off between learning and planning
and must be a direction for future research in so far as ob-
serving it in human players is concerned.

IV. COOPERATION AMONGST LEARNING
AND PLANNING AGENTS

In this section we focus on certain computational experi-
ments which are relevant to experimentally observed behavior
in human players playing PGG. In Sec. IV A we observe the
impact of group size on cooperation and in Sec. IV B we
study how noise in game trajectories might impact the average
contributions.

A. Impact of group size on cooperation

Experiments on PGG reveal different kinds of impacts that
group size has on cooperation. Where some studies observe
that group size positively impacts cooperation [31], some
claim that cooperation is harder in larger groups whereas oth-
ers claim a nonmonotonic impact of group size on cooperation
[32,33].

In order to investigate the effect of group size on coopera-
tion, we run simulations of randomly chosen bounded rational
agents ( i.e., K, γp are again i.i.d. with the uniform distribution
as in Sec. III B ), playing PGG for T = 100 periods [34].
Figures 4 and 5 show the ensemble average contribution
〈A〉 as a function of group size. In Fig. 4 we keep α = 0.4
as a constant and we see that the cooperation is impacted
nonmonotonically by group size. Cooperation peaks for in-
termediately sized groups. However, as can be seen from the
size of the error bars, this is only the mean behavior of the
ensemble, and the behavior of an individual group could vary
substantially from the mean.

FIG. 5. Average contributions as a function of group size N and
the variance (errorbars) for α ∼ 1/N . Inset shows P(rξ < 0.1) and
MPCR α as a function of group size N .

In order to explore reasons why cooperation may behave
nonmonotonically, we first look at the values of ξ± for groups
of each size, for all time. More specifically we look at the
cumulative probability of having small values of rξ (taken
to be less than 0.1 here), given by P(rξ < 0.1) (see inset
Fig. 4). Here rξ = √

ξ 2
+ + ξ 2

−. We observe that 〈rξ 〉 monoton-
ically decreases with group size. Recall that ξ± is the degree
to which we believe we can encourage or discourage other
agents in their contributions. Lower values of rξ indicates that
the agents are decoupled and this seems to be natural for larger
groups, as an individual agent’s action tends to have lesser
impact on the group behavior as the group size increases. For
a detailed calculation see Appendix A 1.

If this were the only process at play, one would be lead to
believe that contributions monotonically decrease with group
size. But there is a competing tendency. As we increase group
size, cooperation is rewarded more steeply as the contributions
in the pot are multiplied by αN [see Eq. (1)]. This increases
linearly with N for constant α (see inset Fig. 4). Therefore
the increase in αN with group size leads to cooperation be-
ing more beneficial in larger groups. Combining both these
tendencies may lead to cooperation being maximized for in-
termediate sized groups.

To further verify this explanation we run simulations where
we have α ∝ 1

N such that αN = const . (see Fig. 5). Now as
expected, cooperation monotonically falls with group size N .
This then seems to indicate that cooperation as a function of
group size is influenced by two factors: the degree of control
an agent thinks it has on the group contributions and the
utility of cooperation. While the latter can be modulated by
a parameter of the game (α) the former is a consequence of
agent parameters. For instance, agents with smaller γp tend to
not update their models as much, therefore they assume that
they have similar control over larger groups as well. This then
leads 〈A〉 to become monotonically increasing with group size
(see Appendix A 3).
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FIG. 6. Average contribution of groups of identical agents with
K = 3. Inset shows the corresponding values of 〈l〉 and f as a
function of γp.

B. Noise induced cooperation

1. Anomalous behavior of K = 3 agents

In Fig. 1 what is also interesting to note is that for bounded
rational agents with K ≈ 3, intermediate values of γp lead
to an increase in cooperation, whereas for lower and higher
values of K increasing γp beyond ≈0.2 is inconsequential to
the average contribution. In the following we will explore why
this is the case.

For agents that learn and plan, the contribution is not only
impacted by their capability of choosing the best action (K),
but also by their model of other agents (ξ±). Certain models
encourage the agent to contribute more than other models.
More specifically, for the agent to contribute more than the
group average contribution, one needs ξ+, ξ− > 0 (see Ap-
pendix A 2).

〈A〉 then correlates with the occupation probability of the
said quadrant of the ξ± space (see Fig. 6). This can be defined
as f =

∑
t 〈It 〉
T where It is the indicator function given by

It =
{

1, ξ±(t ) � 0

0, else.
(7)

For γp = 0 we start and stay in the aforementioned quad-
rant as the agent’s model is not updated [Eq. (5)], as γp is
increased the agent starts performing a random walk in the
model space, with increasing mean step length l , thereby
decreasing the occupation probability of the said quadrant and
consequently decreasing the contribution (see Fig. 6). Here
the mean step length l is defined as

l = 1

T − 1

T∑
t=2

√
(ξ(t ) − ξ(t − 1))2, (8)

where ξ(t ) = (ξ+(t ), ξ−(t )) and the corresponding ensemble
average quantity is given by 〈l〉.

Upon further increasing γp and consequently the average
step length 〈l〉, occupation probability of the said quadrant

FIG. 7. Average contribution of groups of three randomly chosen
agents and one noisy agent with variance of contributions given by
σ . Inset shows the corresponding values of 〈l〉 and f as a function
of σ .

increases, similar to the manner in which increasing temper-
ature leads to an increase in the probability density in the
high potential energy regions. Finally when γp is close to 1,
〈l〉 reduces, because as the game length increases, every new
observation has a decreasing impact on the ξ± value as ob-
tained from Eq. (5). This then further reduces the occupation
probability and also the contribution 〈A〉 as a consequence.

2. Adding a noisy agent to a group

Given the arguments above, it would be natural to expect
that noise (i.e., greater 〈l〉) can enhance cooperation among
bounded rational agents playing PGG. Apart from keeping
γp in the intermediate region, 〈l〉 can be increased by adding
a noisy agent to the group and increasing the variance of
contributions of the noisy agent.

Hence in order to further explore the hypothesis above, we
consider to add one noisy agent with K = 0, a fixed mean
of contribution m = 10 and varying variances σ of the prior
distribution [P0( fk,t )], to a group of three other randomly
chosen agents, as done in Sec. III B. We then observe how the
group average contributions 〈A〉 are impacted as we increase
σ .

In Fig. 7 one can see that as the variance of the con-
tributions of the noisy player σ is increased, the average
contribution of the group increases. In the inset we also see
the corresponding increase in 〈l〉 and also f . Thereby adding
weight to the claim that cooperation can be induced by in-
creasing noise in the game behavior. Whether this behavior
is also observed in human players playing PGG, is yet to be
tested experimentally.

V. CONCLUSIONS

We have demonstrated the exclusive impact of learning
on the behavior of bounded rational agents in PGG. We
explore the impact of noise on cooperation. Specifically,
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we find that the introduction of an agent that contributes
in a noisy manner (i.e., with finite variance) to the pub-
lic pot positively impacts the average contribution. It is
found that this effect systematically increases as the vari-
ance is increased. This prediction remains to be tested via
experiments.

We also provide a theoretical explanation to the observed
impact of group size on cooperation, specifically we show
that the shape of the curve of average contributions 〈A〉 vs
group size N can be modulated by varying the MPCR and also
the agent parameters. More specifically, there are qualitative
differences in the contribution curves depending on whether
the agents are learning or not. This provides us a quantifiable
way of predicting cooperation in PGGs with varying number
of players.

Our results not only justify the bounded rational model of
human behavior but also show how rather simple assumptions
on human behavior can lead to a large variety of behaviors that
are also observed in experiments. This provides an alternative
to the ad hoc cellular automata (CA) type models that are
commonly found in literature. One criticism of this approach
could be that it is rather cumbersome as opposed to CA based
models. If there is any validity to the criticism then we suggest
that this model be treated as a more fine-grained model of
player behavior in games and one should then systematically
find more coarse-grained CA type models which are effective
descriptors of some coarse-grained observables.

While the presented model could be construed as a fine-
grained model in comparison to CA based models, it is still an
effective description of human decision making, as opposed to
a mechanistic one. That is to say, our model makes statements
such as “...humans behave in PGG as if they were solving
Eqs. (4) and (5)...”, as compared to a mechanistic model (such
as DDM [35]) which makes statements such as “...humans
play by enacting this procedure/algorithm...”. We therefore
do not make claims about how humans actually come up
with their decisions. To check the veracity of either type of
model of human decision making, it must first lend itself to
experimental tests, as we are aiming at in the present study.
Only then can a predictive simulation of human economic
interactions, as alluded to in the introduction, be tackled suc-
cessfully.
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APPENDIX: EFFECT OF ξ± ON COOPERATION

1. The limit of rξ → 0

In the limit rξ → 0 we can see that the transition function
becomes independent of player contribution fk,t [see from
Eq. (3) limrξ →0 m = μk,t−1]. This essentially (from the per-
spective of the kth agent) decouples the agent from other
players. We can see this effect more precisely in Eq. (4). For
simplicity we ignore the bounded rationality term and con-
sider that T = t + 1. Upon substituting for the value function

FIG. 8. Average contributions as a function of group size N
and the variance (errorbars) for constant α and γp = 0. Inset shows
P(rξ < 0.1) and MPCR α as a function of group size N .

and expanding we have

V ∗
t = max

P( f t+1
t )

∑
f̄t

Gk,t

[
[PQ]t + γ [PQ]t

∑
f̄t+1

Gk,t+1[PQ]t+1

]
,

(A1)

where [PQ]t is a short-hand notation for P( fk,t )Q(μk,t | f̄t−1).
We can perform the maximization over P( fk,t+1) directly over
the second summand as follows

max
P( fk,t+1 )

∑
f̄t+1

α(N − 1)μt+1[PQ]t+1 −
∑
f̄t+1

(1 − α) fk,t+1[PQ]t+1,

(A2)

which further simplifies to

max
P( fk,t+1 )

∑
μk,t+1

α(N − 1)μt+1Qt+1 −
∑
fk,t+1

(1 − α) fk,t+1Pt+1.

(A3)

The first summand has no fk,t+1 dependence, and the sec-
ond summand can be seen to be maximized at P( fk,t+1) =
δ( fk,t+1) (because α < 1) and therefore it vanishes upon max-
imization. Also, the first summand has no fk,t dependence,
therefore it essentially reduces to α(N − 1)〈μk,t+1|μk,t 〉. Sub-
stituting this in Eq. (A1) we get

V ∗
t = max

P( fk,t )

∑
f̄t

Gk,t [PQ]t + γ [PQ]t 〈μk,t+1|μk,t 〉α(N − 1).

(A4)

The second summand in this equation when summed over
fk,t gives a constant γ Qt 〈μk,t+1|μk,t 〉α(N − 1) independent
of P( fk,t ) and therefore it doesn’t participate in the maximiza-
tion. It then remains trivial to see that maximizing over P( fk,t )
gives P( fk,t ) = δ( fk,t ). Therefore, it was optimal to defect in
both the periods.

For T > t + 1 one can similarly see that at all periods the
conditional expected contribution of other players will not de-
pend on the player’s play ( fk,t ) and therefore the term will not

054140-7



PRAKHAR GODARA AND STEPHAN HERMINGHAUS PHYSICAL REVIEW E 107, 054140 (2023)

participate in the maximization. Also, upon the introduction of
the bounded rationality term for K ≈ 0, the maximization will
result in distributions similar to the prior and as K increases
the mean contributions decrease, until at a critical threshold
of computational budget Kcrit where DKL(δ( fk,t )||P0( fk,t )) =
Kcrit, it again resembles the solution for fully rational agents
that we see above.

2. The cooperation quadrant

When rξ is not close to 0, the second summand in Eq. (A4)
would be conditioned on fk,t as well, i.e., it would become
γ [PQ]t 〈μk,t+1|μk,t , fk,t 〉α(N − 1). In order for the optimal
action to not be defection it would be necessary (but not

sufficient) that ∂〈μk,t+1|μk,t , fk,t 〉
∂ fk,t

> 0. From Eq. (3) one can see
that this is the case when ξ± > 0. Therefore when ξ± > 0 the
agents contribute the most.

3. Constant rξ and changing N

In Fig. 8 we show average contributions as a function of
number of players in a group. Where agents in a group are
described γp = 0 and K chosen uniformly randomly on the
domain [0,5]. P(rξ < 0.1) = 0 for all values of N as can be
seen in the inset. Note that as P(rξ < 0.1) is constant w.r.t. N
and αN is increasing linearly in N the average contributions
increase with group size.
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