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Accurate artificial-intelligence models are key to accelerate the discovery of new functional materi-
als with optimal properties for various applications. Examples include superconductivity, catalysis,
and thermoelectricity. Advancements in this field are often hindered by the scarcity and quality of
available data and the significant effort required to acquire new data. For such applications, reli-
able surrogate models that help guide materials space exploration using easily accessible materials
properties are urgently needed. Here, we present a general, data-driven framework that provides
quantitative predictions as well as qualitative rules for steering data creation for all datasets via
a combination of symbolic regression and sensitivity analysis. We demonstrate the power of the
framework by generating an accurate analytic model for the lattice thermal conductivity using only
75 experimentally measured values. By extracting the most influential material properties from this
model, we are then able to hierarchically screen 732 materials and find 80 ultra-insulating materials.

I. INTRODUCTION

Artificial-intelligence (AI) techniques have the poten-
tial to significantly accelerate the search for novel, func-
tional materials, especially for applications where differ-
ent physical mechanisms compete with each other non-
linearly, e.g., quantum materials [1], and where the cost
of characterizing the materials makes a large-scale search
intractable, e.g., thermoelectrics [2]. Due to this inherent
complexity, only limited amounts of data are currently
available for such applications, which in turn severely
limits the applicability and reliability of AI techniques [3].
Using thermal transport as an example, we here pro-
pose a route to overcome this hurdle by presenting an
AI framework that is applicable to scarce datasets and
that provides heuristics able to steer further data creation
into materials-space regions of interest.

Heat transport, as measured by the temperature-
dependent thermal conductivity, κL, is an ubiquitous
property of materials and plays a vital role for numer-
ous scientific and industrial applications including energy
conversion [4], catalysis [5], thermal management [6], and
combustion [7]. Finding new crystalline materials with
either an exceptionally low or high thermal conductivity
is a prerequisite for improving these and other technolo-
gies or making them commercially viable at all. Accord-
ingly, finding new thermally insulating materials and un-
derstanding where in materials space to search for such
compounds is an important open challenge in this field.
From a theory perspective, thermal transport depends on
a complex interplay of different mechanisms, especially
in thermal insulators, for which strongly anharmonic,
higher-order effects can be at play [8]. Despite signifi-
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cant progress in the computational assessment of κL in
solids [9, 10], these ab initio approaches are too costly for
a large-scale exploration of material space. For this rea-
son, computational high-throughput approaches have so
far covered only a small subset of materials [11–13]. Ex-
perimentally, an even smaller number of materials have
had their thermal conductivities measured, and less than
150 thermal insulators identified [14, 15].

Recently, increased research efforts have been devoted
to leveraging AI frameworks to extend our knowledge in
this field. In particular, various regression techniques
have been proven to successfully interpolate between
the existing data and approximate κL using only sim-
pler properties [11, 14, 16, 17]; however, using these
techniques to extrapolate into new areas of materials
space is a known challenge. Physically motivated, semi-
empirical models, e.g. the Slack model [18], perform
slightly better in this regard because they encapsulate
information about the actuating mechanism. Recent ef-
forts have used AI to extend the capabilities of these
models [2, 16, 19, 20] to increase their accuracy in esti-
mating κL. However, applicability of such models is still
limited by the physical assumptions entering the original
expressions. [2, 19]. A general model that removes these
assumptions and achieves the quantitative accuracy of AI
approaches, while retaining the qualitative interpretabil-
ity of analytical models, is, however still lacking.

In this work, we tackle this challenge by using a sym-
bolic regression technique to quantitatively learn κL, us-
ing easily calculated materials properties. As demon-
strated using a global sensitivity analysis method, this
enables us to distill out the key material properties that
are most important for modelling κL and find the condi-
tions necessary for obtaining an ultra-low thermal con-
ductivity. From these heuristics we can then establish
qualitative design principles that lend themselves to gen-
eral application across material space and use them to
find 80 materials with an ultra-low κL.
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II. RESULTS

A. Symbolic Regression Models for Thermal
Conductivity

For this study, we use the sure-independence screen-
ing and sparsifying operator (SISSO) method as imple-
mented in the SISSO++ code [21]. This method has
been used to successfully describe multiple applications
including the stability of materials [22], catalysis [23],
and glass transition temperatures [24]. To find the best
low-dimensional models for a specific target property, in
our case the room temperature, lattice thermal conduc-
tivity, κL (300K), SISSO first builds an exhaustive set
of analytical, non-linear functions, i.e. trillions of can-
didate descriptors, from a set of mathematical operators
and primary features, the set of user-provided properties
that will be used to model the target property. For this
application the primary features are both the structural
and dynamical features for seventy-five materials with
experimentally measured κL (300K) (see Section VI C for
more details) [17, 25–42].

In practice, we model the log (κL (300K)) instead of
κL (300K) itself to better handle the wide range of pos-
sible thermal conductivities. The correlation plot in
Figure 1(a) illustrates the performance of the identified
SISSO model when the entire dataset is used (see Sec-
tion VI A for more details). The resulting expression is
characterized by f0 and f1

log
(
κSISSO (300K)

)
= c0 + a0f0 + a1f1

f0 =
(mavg + 200.3 Da)

2

√
µ
(
Vm + 218.9 Å

3
)3

ΘD,∞σA

f1 = σA Vmρ

mavg
+ e

−ωΓ,max
27.11 THz + eσ

A

(1)

where c0 = 6.327, a0 = −8.219 × 104, and a1 = −1.704
are constants found by least-square regression and all
variables are defined in Table II. We find that this model
has a training root-mean squared error (RMSE) of 0.14,
with an R2 of 0.98 for log

(
κSISSO (300K)

)
. To better un-

derstand how these error terms translate to κL (300K),
we also use the average factor difference (AFD)

AFD = 10x (2a)

x =
1

n

n∑

i

∣∣∣log (κL)− log
(
κpred

L

)∣∣∣ , (2b)

where n is the number of training samples. Here, we
find an AFD of 1.30 that is on par if not superior to the
models previously found by other methods (e.g. 1.38 for
a Gaussian Process Regression model [17] and 1.48 for a
semi-empirical Debye-Callaway Model [2]). However, dif-
ferences in the training sets and cross-validation scheme
prevent a fair comparison of these studies.

To get a better estimate on the prediction error, we use
a nested cross-validation scheme further defined in Sec-
tion VI D. Overall the prediction error is slightly higher
than the training error with an RMSE of 0.22± 0.02, R2

of 0.91 ± 0.01, and AFD of 1.45 ± 0.03. As shown in
Fig. 1(b), these errors are comparable to those of a ker-
nel ridge regression (KRR) model trained on the same
data. This substantiates that our symbolic regression
approach performs as well as interpolative methods and
outperform the Slack model. Interestingly, offering the
features of the Slack model to SISSO does not improve
the model, and even some primary features often thought
to be decisive, e.g., the Grüneisen parameter, γ. are not
even selected by SISSO (see Supplementary Note 3).

In contrast to the interpolative models, the SISSO
models not only yield reliable quantitative predictions,
but also allows for a qualitative inspection of the under-
lying mechanisms. To get a better understanding of how
the thermal conductivity changes across materials space
we map the model in Figure 1c. From this map we can
see that the thermal conductivity of a material is mostly
controlled by f1 with f0 providing only a minor correc-
tion. While these observed trends are already helpful,
the complex non-linearities in both f0 and f1 impedes
the generation of qualitative design rules. Furthermore,
some primary features such as Vm and σA enter both f0

and f1, with contrasting trends, e.g., σA lowers f0 but
increases f1. To accelerate the exploration of materials
space, one must first be able to disentangle the contra-
dicting contributions of the involved primary features.

B. Extracting Physical Understanding by
identifying the Most Physically Relevant Features

via Sensitivity Analysis

The difficulties in interpreting the “plain” SISSO de-
scriptors described above can be overcome by performing
a sensitivity analysis to identify the most relevant pri-
mary features that build f0 and f1. For this purpose,
we employ the Sobol indices, i.e., the first order sensi-
tivity index Si and the total sensitivity index STi , us-
ing an algorithm that includes correlative effects first de-
scribed by Kucherenko et al. [43], and later implemented
in UQLab [44, 45]. The main advantage of this approach
is its ability to include correlative effects between the in-
puts, which if ignored can largely bias or even falsify the
sensitivity analysis results [46]. Qualitatively, the first
order sensitivity index, Si, quantifies how much the vari-
ance of log (κL (300K)) correlates with the variance of a
primary feature, x̂i, and the total sensitivity index, STi
quantifies how much the variance of log (κL (300K)) cor-
relates with x̂i including all interactions between x̂i and
the other primary features. For example, Sobol indices of
0.0 indicate that log (κL (300K)) is fully independent of
x̂i, whereas a value of 1.0 indicates that log (κL (300K))
can be completely represented by changes in x̂i [45].
Moreover, STi < Si implies that correlative effects are
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FIG. 1. a) Comparison of the predicted κSISSO (300K) against the measured κL (300K) for the model trained against all data.
The gray shaded region corresponds to 95% confidence interval. b) Violin plots of the mean prediction error of all samples
for both the SISSO and KRR models using all features (red, left) and a reduced set including only the features bolded in
Table I (blue, right) and the Slack model. Gray lines are the median, white circles are the mean of the distributions, the boxes
represent the quartiles, and the whiskers are the minimum and 95% absolute error. For all calculations the rung and dimension
determined by cross-validation on each training set. The red stars and blue hexagons are the outliers for the box plots. c) A
map of the two-dimensional SISSO model, where the features on the x− and y−axes correspond to the two features selected
by SISSO. The labeled points represent the convex-hull of the scatter plot and related points.

significant, with an STi = 0 indicating that a primary
feature is perfectly correlated to the other inputs [45].

TABLE I. Sensitivity Analysis results for the selected model

ρ ΘD,∞ Vm mavg σA ωΓ,max µ

Si 0.05 0.67 0.54 0.37 0.65 0.63 0.14

ST
i 0.03 0.01 0.02 0.01 0.04 0.01 0.01

Table I summarizes the Sobol indices for
κSISSO (300K). The results for Si show that σA,
Vm, ΘD,∞, and ωΓ,max predominately control the vari-
ance of κSISSO (300K). However, the low values of STi
also imply that there are significant correlative effects
in place between these inputs, and no single feature
can be singled out as primarily responsible for changes
in κSISSO (300K). For instance, because ωΓ,max and
ΘD,∞ are strong correlated to each other, only one of
them needs to be considered (see the Supplementary
Figure 2). The importance of these features is further
substantiated in Figure 1b, where we compare the
performance of the models calculated using the full
dataset and one that only includes the three features in
bold in Table I. For both the SISSO and KRR models,
we see only a slight deterioration in performance with
a predictive AFD of 1.87 and 1.77 for the SISSO and
KRR models, respectively, compared to 1.45 for the full
data models. This result highlights that the trends and
the underlying mechanisms describing the dependence
of κL (300K) in materials space are fully captured by
those features alone.

Even more importantly, our model captures the inter-
play between these features across materials, as demon-
strated in the maps in Figure 2. These maps showcase the

strong correlation between κSISSO (300K) and σA, Vm,
and ΘD,∞, and that materials with high anharmonicity,
low-energy vibrational modes, and a large molar volume
will be good thermal insulators. Figure 2 shows the ex-

pected value of κSISSO (300K), EX̂

(
κSISSO (300K)

∣∣ X̂
)

,

for different sets of input features, X̂ , shown on the axes
of each plot. We then overlay the maps with the ac-
tual values of each input for all materials in the training
set to evaluate the trends across different groups of ma-
terials. Figure 2c confirms that σA is already a good
indicator for finding new thermal insulators, with most
of the materials having κL (300K) within one standard
deviation of the expected value. For the more harmonic
materials with σA < 0.2, the vanishing degree of anhar-
monicity is, alone, not always sufficient for quantitative
predictions. In this limit, a combination of σA and Vm

can produce correct predictions for the otherwise under-
estimated white triangles with a σA < 0.2, as seen in
Figure 2a. In order to fully describe those low thermal
conductivity of the remaining highlighted materials ma-
terials both ΘD,∞ and Vm are needed as can be seen in
Figure 2b,d and e. Generally, this reflects that the three
properties σA, ΘD,∞, and Vm are the target properties
to optimize to obtain ultra-low thermal conductivities.

These results can also be rationalized within our cur-
rent understanding of thermal transport and showcases
which physical mechanisms determine κL in material
space. Qualitatively, it is well known that good ther-
mal conductors typically exhibit a high degree of symme-
try with a smaller number of atoms, e.g. diamond and
silicon, whereas thermal insulators, e.g., glass-like ma-
terials, are often characterized by an absence of crystal
symmetries and larger primitive cells. In our case, this
trend is quantitatively captured via Vm, which reflects
that larger unit cells have smaller thermal conductivities.
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FIG. 2. The expected value of κSISSO (300K), EX̂

(
κSISSO (300K)

∣∣ X̂), where X̂ is a)
{
σA, Vm

}
, b) {ΘD,∞, Vm}, c)

{
σA

}
,

d) {ΘD,∞}, and e) {Vm}. EX̂

(
κSISSO (300K)

∣∣ X̂) is calculated by sampling over the multivariate distributions used for the

sensitivity analysis, and binning the input data until there are at least 10 000 samples in each bin. The red line in c-e corresponds

to EX̂

(
κSISSO (300K)

∣∣ X̂) and the pink shaded region is one standard deviation on either side of the line. The gray shaded

regions represent where a thermal conductivity of 10 W/mK or lower is within one standard deviation of the expected value.
On all maps all materials in the training set are displayed. The green circles correspond to rock-salts, the blue diamonds are
zincblende, the light blue pentagons are wurtzites, and black triangles are all other materials. All points with a κL (300K) less
than one standard deviation below the expected value based on σA are highlighted in white. The points in c-e correspond to
the actual values of κL (300K) for each material. Additionally we include four new materials outside of the training set (yellow
stars) whose thermal conductivities we calculate using ab initio molecular dynamics.

Furthermore, it is well known that phonon group veloc-
ities determine how fast energy is transported through
the crystal in a harmonic picture [47], and that it is lim-
ited by scattering events arising due to anharmonicity. In
our model, these processes are captured by ΘD,∞, which
describes degree of dispersion in the phonon band struc-
ture, and the anharmonicity measure, σA respectively.
In this context, it is important to note that, in spite
of the fact that these qualitative mechanisms were long
known, there had hitherto been no agreement which ma-
terial property would quantitatively capture these mech-
anisms best across material space. For instance, both
the γ, the lattice thermal expansion coefficient, and now
σA, have been used to describe the anharmonicity of a
material. However, when both γ and σA are included as
primary features, only σA is chosen (see Supplementary
Note 3 for more details). This result indicates that the
σA measure is the more sensitive choice for modeling the

strength of anharmonic effects. While γ also depends on
anharmonic effects, they are also influenced by the bulk
modulus, the density, and the specific heat.

C. Discovering Improved and Novel Thermal
Insulators

Using the information gained from the sensitivity anal-
ysis and statistical maps of the model, we are now able
to design a hierarchical and efficient high-throughput
screening protocol split into three stages: structure opti-
mization, harmonic model generation, and anharmonic-
ity quantification. We demonstrate this procedure by
identifying possible thermal insulators within a set of 732
materials, within those compounds available in the ma-
terials project [48] that feature the same crystallographic
prototypes [49, 50] as the ones used for training. Once
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the geometry is optimized we remove all materials with
Vm < 35.5 Å(60 materials) and all (almost) metallic ma-
terials (bandgap < 0.2 eV), and are left with 302 candi-
date compounds. We then generate the converged har-
monic model for the remaining materials and screen out
all materials with ΘD,∞ > 547 K or an unreliable har-
monic model, e.g. materials with imaginary harmonic
modes, leaving 148 candidates. Finally we evaluate the
anharmonicity, σA, for the remaining materials (see Sec-
tion VI C) and exclude all materials with σA < 0.206,
and obtain 110 candidate thermal insulators. To avoid
unnecessary calculations, we first estimate σA via σA

OS
and then refine it via aiMD when σA

OS > 0.4 [8]. For
these candidate materials, we evaluate κSISSO (300K) us-
ing Eq. 1. Of the 110 materials that passed all checks,
96 are predicted to have have a κSISSO (300K) below 10
W/mK l, illustrating the success of this method.
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FIG. 3. The convergence of the calculated thermal conductiv-
ity of a) CaF2, b) BrBaCl, c) GaLiO2 d) LiScS2. All aiGK cal-
culations were done using the average of three 75 ps (ClBaBr
and GaLiO2) or 100 ps (CaF2 and LiScS2) molecular dynam-
ics trajectories. The dashed lines are the values of the thermal
conductivities predicted by Equation 1 and the shaded region
is the 95% confidence interval of the prediction based on the
RMSE obtained in Figure 1b.

To confirm that our approach is not just consistent
with the SISSO model, but also produces physically
meaningful predictions, we validate the estimated ther-
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FIG. 4. A scatter plot of of the prediction of both the SISSO
and KRR generated models for an additional 227 materials
from the same classes as the training set. σA is estimated via
σA

OS for all materials with a σA
OS ≤ 0.4 in this screening. The

dataset is split up into four subsets based on if the Vm test
failed (top, green), ΘD,∞ test failed (second from top, yellow),
σA test failed (third from top, blue), or none of the tests failed
(bottom, purple). The outlets correspond to the histogram of
all predictions using the same break down. The darker shaded
region represents where both predictions are within a factor
of 2 of each other and the lighter shaded region where both
predictions are within a factor of 5 of each other.

mal conductivity of four materials using the ab initio
Green-Kubo method (aiGK) [10]. For details of how
we calculate κL see the methodology in Section VI G.
For this purpose, we chose BrBaCl, LiScS2, CaF2, and
GaLiO2, since these materials represent a broad region
of the relevant feature space that also test the boundary
regions of the heuristics found by the sensitivity analy-
sis and mapping, as demonstrated by the yellow stars in
Figure 2. Figure 3 shows the convergence of the ther-
mal conductivity of the selected materials, as calculated
from three aiMD trajectories. All of the calculated ther-
mal conductivities fall within the 95% confidence inter-
val of the model, with the predictions for both CaF2 and
ClBaBr being particularly accurate. The better perfor-
mance of the model for these materials is expected, as
they are more similar to the training data than the hexag-
onal Caswellsilverite like materials. Overall these results
demonstrate the predictive power of the new model.

Eventually, let us emphasize that the proposed strat-
egy is not limited to the discovery of thermal insulators,
but can be equally used to find, e.g., good thermal con-
ductors. This is demonstrated in Figure 4, in which we
predict the thermal conductivity of all non-metallic and
stable materials using the SISSO and KRR models. Gen-
erally, both the SISSO and KRR models agree with each
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other with only 28 of the 227 materials having a dis-
agreement larger than a factor of two and one (LiHF2)
with a disagreement larger than a factor of 5, further il-
lustrating the reliability of these predictions. We expect
that the large deviation for LiHF2 is a result of the large
σA value for that material (0.54), which is significantly
larger than the maximum the training data. We can
see from the outset histograms of both models that the
hierarchical procedure successfully finds the good ther-
mal insulators, with only 26 of the 122 materials with a
κL (300K) ≤ 10 W/mK and 10 of the 80 materials with
a κL (300K) ≤ 5 W/mK not passing all tests. Of these
eight only the thermal insulating behavior of CuLiF2 and
Sr2HN can not be described by the values of the other
two tests that passed. Conversely, materials that do not
pass the test show high conductivities. When one of the
tests fail the average estimated value of log (κL (300K))
increases 1.38±0.490 (24.0 W/mK), with a range of 0.95
W/mK to 741.3 W/mK. In particular, screening the ma-
terials by their molar volumes alone is a good marker for
finding strong thermal conductors as all of the 15 ma-
terials with κL (300K) ≥ 100 W/mK have a Vm ≤ 45
Å3.

III. DISCUSSION

We have developed an AI framework to facilitate and
accelerate material space exploration, and demonstrate
its capabilities for the urgent problem of finding new
thermally insulating materials. By combining symbolic
regression and sensitivity analysis, we are able to obtain
accurate predictions for a given property using relatively
easy to calculate materials properties, while retaining
strong physical interpretability. Most importantly, this
analysis enables us to create hierarchical high-throughput
frameworks, which we used to screen over a set of more
than 700 materials and find a group of ∼ 100 possi-
ble thermal insulators. Notably, almost all of the good
thermal conductors in the set of candidate materials are
discarded within the first iteration of the screening, in
which we only discriminate by molar volume, i.e., with
an absolutely negligible computational cost compared to
full calculations of κL. Accordingly, we expect this ap-
proach to be extremely useful in a wide range of materials
problems beyond thermal transport, especially whenever
(i) few reliable data are available, (ii) additional data
are hard to produce, and/or (iii) multiple physical mech-
anisms compete non-trivially, limiting the reliability of
simplified models.

Although the proposed approach is already extremely
useful for small dataset sizes, it is obviously getting more
reliable when applied to larger ones. Here, the identi-
fied heuristics can substantially help steer data creation
towards more interesting parts of material space. Along
these lines, it is possible to iteratively refine both the
SISSO model and the rules from the sensitivity analy-
sis during material space exploration while the dataset

grows. Furthermore, one can also apply the proposed
procedure to the most influential primary features in a
recursive fashion, learning new expressions for the com-
putationally expensive features, e.g. σA, using simpler
properties. In turn, this will further accelerate mate-
rial discovery, but also allow for gaining further physical
insights. Most importantly, this method is not limited
to just the thermal conductivity of a material, and can
be applied to any materials property. Further extending
this framework to include information about where the
underlying electronic structure calculations are expected
to fail, also provides a means of accelerating materials
discovery more generally [51].
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VI. ONLINE METHODS

A. SISSO

We use SISSO to discover new analytical expressions
for κL (300K) [52]. SISSO finds low-dimensional, analytic
expressions for a target property, P , by first generating
an exhaustive set of candidate features, Φ̂, for a given
set of primary features, Φ̂0, and operators Ĥm, and then
performing an `0-regularization over a subset of those fea-
tures to find the n-dimensional subset of features, whose
linear combination results in the most descriptive model.
Φ̂ is recursively built in rungs, F̂r, from Φ̂0 and Ĥm, by

applying all elements, ĥm, of Ĥm on all elements f̂i and

f̂j of F̂r−1

F̂r ≡ ĥ
m
[
f̂i, f̂j

]
,∀ ĥ

m ∈ Ĥm and ∀ f̂i, f̂j ∈ F̂r−1.

https://dx.doi.org/10.17172/NOMAD/2022.04.27-1
https://dx.doi.org/10.17172/NOMAD/2022.04.27-1
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Φ̂r is then the union of Φ̂r−1 and F̂r. Once Φ̂ is gener-
ated, the nSIS features most correlated to P are stored
in Ŝ1, and the best one-dimensional models are trivially
extracted from the top elements of Ŝ1. Then the nSIS

features most correlated to any of the residuals, ∆i
1, of

the nres best one-dimensional descriptors are stored in
Ŝ2. We define this projection as

s = max (s0, s1, ..., si, ..., snres
) (3)

si = R2
(
φ̂,∆i

1

)
, (4)

where φ̂ ∈ Φ̂, and R2 is the Pearson correlation func-
tion. We call this approach the multiple residual ap-
proach, which we first introduced by the authors [53].
From here, the best two dimensional models are found
by performing an `0-regularized optimization over Ŝ1∪Ŝ2

[54]. This process is iteratively repeated until the best
n-dimensional descriptor is found [52].

For this application Ĥm contains: A + B, A − B,
A ∗ B, A

B , |A−B|, |A|, (A)
−1

, (A)
2
, (A)

3
,
√
A, 3
√
A,

exp (A), exp (−1.0 ∗A), and ln (A). Additionally to en-
sure the units of the primary features do not affect the
final results, we additionally include the following opera-
tors: (A+ β)

−1
, (A+ β)

2
, (A+ β)

3
,
√
αA+ β, 3

√
A+ β,

exp (αA), exp (−1.0 ∗ αA), and ln (αA+ β), where α and
β are scaling and bias constants used to adjust the input
data on the fly. We find the optimal α and β terms
using non-linear optimization for each of these opera-
tors [21, 55]. To ensure that the parameterization does
not result in mathematically invalid equations for new
data points outside of the training set, the domain of
each candidate feature is derived from the domain of the
primary features, and the upper and lower bounds for the
features are set appropriately. The domains of the pri-
mary features are set to be physically relevant for the sys-
tems we are studying and are listed in Table II. Hereafter,
we call the use of these operators parametric SISSO. For
more information please refer to Supplementary Note 1.

All hyperparameters were set following the cross-
validation procedures described in Section VI D.

B. KRR

To generate the kernel-ridge regression models we used
the utilities provided by scikit-learn [56], using a radial
basis function kernel with optimized regularization term
and kernel length scale. The hyperparameters were se-
lected using with a 141 by 141 point logarithmic grid
search with possible parameters ranging from 10−7 to
100. Before performing the analysis each input feature,
xi is standardized

xStand
i =

xi − µi

σi
(5)

where xstand
i is the standardized input feature, µi is the

mean of the input feature for the training data, and σi is

the standard deviation of the input feature for the train-
ing data.

C. Creating the Dataset

In this study we focus on only room-temperature data
for κL, since values for other temperatures are even
scarcer. However, we note that an explicit tempera-
ture dependence can be straightforwardly included us-
ing multi-task SISSO [53, 57], and it is at least par-
tially included via, the anharmonicity factor, σA [8]
(see below for more details). For κL (300K), we have
compiled a list of seventy-five materials from the liter-
ature, whose thermal conductivity has been experimen-
tally measured [17, 25–42]. This list was curated from an
initial set of over 100 materials, from which we removed
all materials that are either thermodynamically unstable
or are electrical conductors. This list of materials cov-
ers a diverse set of fourteen different binary and ternary
crystal structure prototypes [49, 50, 58].

With respect to the primary features, Φ̂0, compound
specific properties are provided for each material. All
primary features can be roughly categorized in two
classes: Structural parameters that describe the equi-
librium structure and dynamical parameters that char-
acterize the nuclear motion. For the latter case, both
harmonic properties and anharmonic have been taken
into account. As shown in Supplementary Note 3, addi-
tional features, such as the parameters entering the Slack
model, i.e., γ, Θa, and Va, can be included. However,
these features not benefit the model and when included
only Va, and not γ or Θa are selected. For a complete
list of all primary features, and their definitions refer to
Table II.

The structural parameters relate to either the mass of
the atoms (µ, mmin, mmax, mavg), the lattice parameters
of the primitive cell (Vm, Lmin, Lmax, Lavg), the density of
the materials (ρ), or the number of atoms in the primitive
cell (nat). For all systems a generalization of the reduced
mass, µ, is used so it can be extended to non-binary
systems,

µ =

(
nemp∑

i

1

mi

)−1

, (6)

where nemp is the number of atoms in the empirical for-
mula and mi is the mass of atom, i. Similarly, the molar
volume, Vm, is calculated by

Vm =
Vprim

Z
, (7)

where Vprim is the volume of the primitive cell and Z =
nat

nemp
. Finally, ρ is calculated by dividing the total mass

of the empirical cell by Vm

ρ =

nemp∑

i

mi

Vm
. (8)
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TABLE II. List of the primary features used in this calculation

Name Symbol Unit Domain

Anharmonicity Score (aiMD) [8] σA — [0.075, 1.0]

Anharmonicity Score (one-shot [8]) σA
OS — [0.075, 1.0]

Maximum Phonon Frequency

at the Γ-point
ωΓ,max THz [0.1, 200]

High-Temperature Limit of

the Debye Temperature
ΘD,∞ K [10, 1 000]

Average Phonon Temperature ΘP K [10, 10 000]

Heat Capacity CV J mol−1 K−1 [10, 5 000]

Speed of sound vs m s−1 [500, 10 000]

Density ρ Da Å−3 [0.25, 10]

Molar Volume Vm Å3 [2.5, 1 000]

Minimum Lattice Parameter Lmin Å [1, 100]

Maximum Lattice Parameter Lmax Å [1, 100]

Mean Lattice Parameter Lavg Å [1, 100]

Reduced Mass µ Da [0.2, 300]

Minimum Atomic Mass mmin Da [1, 300]

Maximum Atomic Mass mmax Da [1, 300]

Mean Atomic Mass mavg Da [1, 300]

Number of Atoms nat Z [1, 1 000]

All of the harmonic properties used in these calcula-
tions are calculated from a converged harmonic model
generated using phonopy [59]. For each material, the
phonon density of states of successively larger supercells
are compared using a Tanimoto similarity measure

S =
gp,L (ω) · gp,S (ω)

‖gp,L (ω)‖2 + ‖gp,S (ω)‖2 − gp,L (ω) · gp,S (ω)
, (9)

where S is the similarity score, gp,L (ω) is the phonon den-
sity of states of the larger supercell, gp,S (ω) is the phonon
density of states of the smaller supercell, A (ω) ·B (ω) =∫∞

0
A (ω)B (ω) dω, and ‖A (ω)‖2 =

∫∞
0
A2 (ω) dω. If

S > 0.80, then the harmonic model is considered con-
verged. From here CV is calculated from phonopy as a
weighted sum over the mode dependent heat capacities.
Both approximations to the Debye temperatures are cal-
culated from the moments of the phonon density of states

〈εn〉 =

∫
dε gp(ε) ε

n

∫
dεgp (ε)

(10)

ΘP =
1

kB
〈ε〉 (11)

ΘD,∞ =
1

kB

√
5

3
〈ε2〉, (12)

where gp (ε) is the phonon density of states at energy
ε [60]. Finally vs is approximated from the Debye fre-
quency, ωD, by [20]

vs =

(
Va

6π2

)1/3

ωD, (13)

where ωD is approximated as

ωD =
3

√
9nat

a
(14)

and a is found by fitting gp (ω) in the range
[
0,

ωΓ,max

8

]

to

gp,D (ω) = aω2. (15)

To measure the anharmonicity of the materials we use
σA as defined in [8]

σA(T ) =

√√√√√√√

∑
I,α

〈(
FI,α − F ha

I,α

)2
〉

(T )
∑
I,α

〈
F 2
I,α

〉
(T )

, (16)

in which 〈·〉(T ) denotes the thermodynamic average at a
temperature T , FI,α is the α component of the force cal-
culated from density functional theory (DFT) acting on
atom I, and F ha

I,α is the same force approximated by the

harmonic model [8]. First we calculate σA
OS, which uses

an approximation to the thermodynamic ensemble av-
erage using the one-shot method purposed by Zacharias
and Giustino [61]. In the one-shot approach the atomic
positions are offset from their equilibrium positions by a
vector ∆R,

∆RαI =
1√
MI

∑

s

ζs 〈As〉 eαsI , (17)

where I is the atom number, α is the component, es
are the harmonic eigenvectors, 〈As〉 =

√
2kBT/ωs is the
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mean mode amplitude in the classical limit [62], and
ζs = (−1)s−1 [61]. These displacements correspond to
the turning-points of the oscillation estimated from the
harmonic force constants, and is a good approximation
to σA in the harmonic limit. Because of this, if σA

OS < 0.2
we accept that value as the true σA. Otherwise we cal-
culate σA using ab initio molecular dynamics (aiMD)
in the canonical ensemble at 300 K for 10 ps, using
the Langevin thermostat. When performing the high-
throughput screening the threshold for when to use aiMD
is increased to 0.4 because that is the point that σA

OS be-
come qualitatively unreliable [8].

All electronic structure calculations are done using
FHI-aims [63]. All geometries are optimized with
symmetry-preserving, parametric constraints until all
forces are converged to a numerical precision better
than 10−3 eV/Å [64]. The constraints are generated us-
ing the AFlow XtalFinder Tool [58]. All calculations
use the PBEsol functional to calculate the exchange-
correlation energy and an SCF convergence criteria of
10−6 eV/Å and 5×10−4 eV/Å for the density and forces,
respectively. Relativistic effects are included in terms of
the scalar atomic ZORA approach and all other settings
are taken to be the default values in FHI-aims. For all
calculations we use the light basis sets and numerical set-
tings in FHI-aims. These settings were shown to ensure a
convergence in lattice constants of ±0.1 Å and a relative
accuracy in phonon frequencies of 3% [8].

D. Error Evaluation

To estimate the prediction error for the SISSO and
KRR models we perform a nested cross-validation, where
the data are initially separated into different training and
test sets using a ten-fold split. Two hyperparameters
(maximum dimension, parameterization depth) are then
optimized using a five-fold cross validation on each of the
training sets, and the overall performance of the model
is evaluated on the corresponding test set. The size of
the SIS subspace, number of residuals, and rung were all
set to 2 000, 10, and 3, respectively, because they did not
have a large impact on the final results. We then repeat
procedure three times and average over each iteration to
get a reliable estimate of prediction error for each sam-
ple [65].

E. Calculating the inputs to the Slack model

The individual components for the Slack model were
the same as the ones used for the SISSO and KRR mod-
els, with the exception of γ, Va and Θa. For Θa, we first
calculate the Debye temperature, ΘD

ΘD =
~ωD

kB
(18)

where ωD is the same Debye frequency used for calculat-
ing vs (see Section VI C), kB is the Boltzmann constant,
and ~ is Planck’s constant. From here we calculate Θa

using

Θa =
ΘD

3
√
nat

. (19)

We use the phonopy definition of ΘD instead of ΘD,∞ be-
cause it is better aligned to the original definition of Θa.
However, it is not used in the SISSO training because
the initial fitting procedure to find ωD does not produce
a unique value for ΘD and it is already partially included
via vs. To calculate the thermodynamic Grüneisen pa-
rameter we use the utilities provided by phonopy [59].
The atomic volume was calculated by taking the volume
of the primitive cell and dividing it by the total number
of atoms.

F. Calculating the Sobol Indexes

Formally, the Sobol indices are defined as

Si =
Varx̂i

(
EX̃i

(log (κL (300K)) |x̂i)
)

Var (log (κL (300K)))
(20)

STi = 1−
VarX̃i

(
Ex̂i

(
log (κL (300K)) |X̃i

))

Var (log (κL (300K)))
(21)

where x̂i ∈ X̂ is one of the inputs to the model, Vara (B)
is the variance of B with respect to a, Ea (B) is the mean

of B after sampling over a, and X̃i is the set of all vari-
ables excluding x̂i.

Classically it is assumed that all elements of X̂ are
independent of each other. As a result of this, the vari-
ance of log

(
κSISSO (300K)

)
and the required expectation

values would be calculated from sampling over an nv-
dimensional hypercube covering the full input range, ig-
noring the correlation between the inputs variables. In
order to properly model the correlative effects between
elements of X̂ , Kucherenko et al. modify this sampling
approach [43, 45]. The first step of the updated algo-
rithm is to fit the input data to a set of marginal univari-
ate distributions coupled together via a copula [43, 45].
The algorithm then samples over an nv-dimensional unit-
hypercube and transforms these samples into the correct
variable space using a transform defined by the fitted
distributions and copulas (see Supplementary Note 2 for
more details). It was later demonstrated that when using
the approach proposed by Kucherenko and coworkers to
calculate the Sobol indices, Si includes effects from the

dependence of x̂i on those in X̃i, while STi is independent
of these effects [66].
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G. Calculating the Thermal Conductivity

To calculate κL, we use the ab initio Green Kubo
(aiGK) method [10, 67]. The aiGK method calculates
the αβ component of the thermal conductivity tensor,
καβ , of a material for a given volume V , pressure p, and
temperature T with

καβ (T, p) =
V

kBT 2
lim
τ→∞

∫ τ

0

〈G [J ]
αβ

(τ ′)〉(T,p)dτ ′ (22)

where kB is Boltzmann’s constant, 〈·〉(T,p) denotes an
ensemble average, J (t) is the heat flux, and G [J ] is the
time-(auto)correlation functions

G [J ]
αβ

= lim
t0→∞

1

t0

∫ t0−τ

0

Jα (t) Jβ (t+ τ) dt. (23)

The heat flux of each material is calculated from aiMD
trajectories using the following definition

J (t) =
∑

i

σIṘyI, (24)

where RI is the position of the ith-atom and σI is the
contribution of the ith atom to the stress tensor, σ =∑
I σI [10]. From here κL is calculated as

κL =
1

3
Tr [κ] (25)

All calculations were done using both FHI-vibes [68] and
FHI-aims with the same settings as the previous calcula-
tions [8] (see Section VI C for more details). The molec-
ular dynamics calculations were done using a 5 fs time
step in the NVE ensemble, with the initial structures
taken from a 10 ps NVT trajectory. Three MD calcula-
tions were done for each material and the κL was taken
to be the average of all three runs.
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F. Rosowski, R. Schlögl, A. Trunschke, and M. Scheffler,
MRS Bull. 46, 1016 (2021), arXiv:2102.08269.

[54] L. M. Ghiringhelli, J. Vybiral, E. Ahmetcik, R. Ouyang,
S. V. Levchenko, C. Draxl, and M. Scheffler, New J.
Phys. 19, 023017 (2017), arXiv:1612.04285.

[55] S. G. Johnson, “The NLopt nonlinear-optimization pack-
age,” http://github.com/stevengj/nlopt.

[56] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay, J.
Mach. Learn. Res. 12, 2825 (2011).

[57] R. Ouyang, E. Ahmetcik, C. Carbogno, M. Scheffler, and
L. M. Ghiringhelli, J. Phys. Mater. 2, 24002 (2019).

[58] D. Hicks, C. Toher, D. C. Ford, F. Rose, C. D. Santo,
O. Levy, M. J. Mehl, and S. Curtarolo, npj Comput.
Mater. 7, 30 (2021), arXiv:2010.04222.

[59] A. Togo and I. Tanaka, Scr. Mater. 108, 1 (2015).
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