Supporting Information

Does Serial Femtosecond Crystallography Depict State-Specific Catalytic Intermediates of the Oxygen-Evolving Complex?

Maria Drosou,^a Gerard Comas-Vilà,^b Frank Neese,^a Pedro Salvador,^b* Dimitrios A. Pantazis^a*

^a Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany

^b Institute of Computational Chemistry and Catalysis, Chemistry Department, University of Girona, Montilivi Campus, Girona, Catalonia 17003, Spain

E-mail: pedro.salvador@udg.edu E-mail: dimitrios.pantazis@kofo.mpg.de

Additional Methodological Details

The coordinates of the OEC models were extracted from the crystallographic coordinates (pdb files) of each XFEL structure and, subsequently, H atoms were added manually. Geometry optimization was performed only for the hydrogen atoms using the charge and multiplicity of the S_1 , S_2 , and S_3 states for the 0F, 1F, and 2F models, respectively. Hydrogen optimizations were performed with W2 in its aquo form, and in the high-spin state, therefore the imposed charge and multiplicity were (1, 15) for 0F models, (2, 14) for 1F models and (2, 13) for 2F models. For the EOS analysis of the XFEL structures in the S_0 state, additional hydrogen optimizations were performed with protonated O5 or O4 using charge and multiplicity (1, 16).

$$\widehat{H} = -2 \sum_{i < j} J_{ij} \, \widehat{S}_i \, \widehat{S}_j$$

Figure S1. Key bond lengths of XFEL models (monomer B) of the S₁ and S₂ states; Okayama models include the **6JLJ** (0F) and **6JLK** (1F) reported by Suga et al.¹ in 2019, and the **7COU** (0F) and **7CJJ** (1F) reported by Li et al.² in 2021. Berkeley models include the **6DHE** (0F) and **6DHF** (1F) reported by Kern et al. in 2018,³ and **6W1O** (0F) and **6W1P** (1F) reported by Ibrahim et al.⁴ in 2020.

Figure S2. RMSD of the inorganic core (Mn_4CaO_5) of 1F XFEL models from QM models of the S_1 and S_2 states.

0F			Okay	/ama		Berkeley				
		6JLJ		7C	OU	6W	10	6DHE		
		А	В	А	В	А	В	А	В	
Mn1	r_1-r_3	0.335	0.339	0.320	0.333	0.326	0.448	0.343	0.418	
	$r_1 - r_2$	0.279	0.272	0.261	0.274	0.214	0.225	0.192	0.203	
Mn2	$r_1 - r_3$	0.059	0.064	0.026	0.024	0.155	0.049	0.049	0.055	
	$r_1 - r_2$	0.025	0.035	0.001	0.012	0.047	0.022	0.016	0.015	
Mn3	$r_1 - r_3$	0.075	0.081	0.059	0.071	0.107	0.068	0.089	0.061	
	$r_1 - r_2$	0.041	0.035	0.024	0.040	0.057	0.018	0.060	0.020	
Mn4	$r_1 - r_3$	0.128	0.130	0.135	0.128	0.063	0.226	0.137	0.134	
	$r_1 - r_2$	0.125	0.120	0.133	0.105	0.035	0.142	0.081	0.074	

Table S1. Axial elongation descriptors r_1 - r_3 and r_1 - r_2 for Mn ions of all XFEL models.

1F			Okay	/ama		Berkeley				
		6J]	LK	70	JJ	6W	/1P	6DHF		
		А	A B		В	А	В	А	В	
Mn1	$r_1 - r_3$	0.331	0.359	0.322	0.342	0.298	0.431	0.295	0.346	
	$r_1 - r_2$	0.279	0.257	0.271	0.285	0.152	0.231	0.172	0.177	
Mn2	<i>r</i> ₁ – r ₃	0.033	0.050	0.038	0.038	0.029	0.104	0.020	0.043	
	$r_1 - r_2$	0.021	0.046	0.013	0.010	0.006	0.089	0.002	0.024	
Mn3	$r_1 - r_3$	0.060	0.049	0.065	0.066	0.064	0.090	0.060	0.033	
	$r_1 - r_2$	0.055	0.015	0.025	0.026	0.038	0.077	0.020	0.012	
Mn4	<i>r</i> ₁ – r ₃	0.143	0.102	0.136	0.105	0.175	0.221	0.104	0.169	
	$r_1 - r_2$	0.079	0.070	0.096	0.081	0.146	0.153	0.104	0.104	

0F		Oka	yama						
	6JLJ		7COU		6W1O		6DHE		QM
	А	В	А	В	А	В	А	В	\mathbf{S}_1
Mn1	3.389	3.406	3.105	3.245	2.649	4.658	3.489	4.113	2.886
Mn2	3.792	3.733	3.559	3.617	4.506	4.038	4.292	3.988	3.836
Mn3	3.111	3.160	3.180	3.165	4.248	3.076	3.645	3.605	3.784
Mn4	1.929	1.917	1.945	2.098	3.513	3.068	3.018	2.867	2.939

Table S2. Bond valence sum Mn OSs for all 0F and 1F XFEL models and for the QM models of the S_1 and S_2 states.

1F		Okay	yama		Berkeley					
	6JLK		7CJJ		6W1P		6DHF		QM	
	А	В	А	В	А	В	А	В	S_2	
Mn1	3.191	3.584	3.098	3.202	3.859	4.262	3.659	3.965	2.929	
Mn2	3.752	3.756	3.621	3.683	4.717	3.688	4.290	4.000	3.819	
Mn3	3.114	3.533	3.228	3.234	4.514	3.402	3.759	3.562	3.885	
Mn4	2.541	2.516	2.499	2.467	3.274	3.725	3.396	3.152	3.738	

Table S3. Bond valence sum Mn OSs for four reported QM models of the S2 state.

	Ref. 5	Ref. 6	Ref. 7	Ref. 8
Mn1	2.929	3.126	3.184	3.137
Mn2	3.819	4.087	4.055	4.019
Mn3	3.885	4.022	4.032	4.138
Mn4	3.738	3.934	3.923	3.889

Table S4. Bond valence sum values calculated using equation (1) in the main text, for a range of bond distances (across each row) and for a range of axial distortion degrees, as quantified by the ratio of the averaged axial Mn–O bond lengths to the averaged equatorial Mn–O bond lengths. Each color represents the predicted Mn oxidation state, i.e. green for Mn(IV), yellow for Mn(III) and orange for Mn(II). The first table (**a**) is computed using the parameters for Mn(III), $R_0 = 1.823$ Å and B = 0.247 Å and the second table (**b**) is computed using the parameters for Mn(IV) ions $R_0 = 1.750$ Å and B = 0.374 Å.

1	•)
(a	1)
`	

	$\sum_{i=1}^{6} R_i$																
A/E	11.4	11.5	11.6	11.7	11.8	11.9	12	12.1	12.2	12.3	12.4	12.5	12.6	12.7	12.8	12.9	13
0.70	9.34	8.83	8.36	7.91	7.48	7.08	6.70	6.34	6.00	5.68	5.38	5.09	4.82	4.56	4.32	4.09	3.87
0.72	8.46	7.99	7.55	7.14	6.74	6.37	6.02	5.69	5.38	5.08	4.81	4.54	4.29	4.06	3.84	3.63	3.43
0.74	7.72	7.28	6.87	6.48	6.12	5.77	5.45	5.14	4.85	4.58	4.32	4.08	3.85	3.64	3.43	3.24	3.06
0.76	7.08	6.67	6.29	5.92	5.58	5.26	4.96	4.68	4.41	4.15	3.92	3.69	3.48	3.28	3.09	2.92	2.75
0.78	6.54	6.16	5.79	5.45	5.13	4.83	4.55	4.28	4.03	3.79	3.57	3.36	3.17	2.98	2.81	2.65	2.49
0.80	6.08	5.72	5.38	5.06	4.75	4.47	4.20	3.95	3.71	3.49	3.28	3.09	2.91	2.73	2.57	2.42	2.27
0.82	5.70	5.35	5.03	4.72	4.43	4.16	3.91	3.67	3.45	3.24	3.04	2.86	2.69	2.52	2.37	2.23	2.09
0.84	5.38	5.05	4.74	4.44	4.17	3.91	3.67	3.44	3.23	3.03	2.85	2.67	2.51	2.35	2.21	2.07	1.94
0.86	5.12	4.80	4.50	4.22	3.95	3.70	3.47	3.26	3.05	2.86	2.68	2.51	2.36	2.21	2.07	1.94	1.82
0.88	4.91	4.59	4.30	4.03	3.78	3.54	3.31	3.10	2.91	2.72	2.55	2.39	2.24	2.10	1.96	1.84	1.72
0.90	4.74	4.43	4.15	3.88	3.64	3.40	3.19	2.98	2.79	2.61	2.45	2.29	2.14	2.01	1.88	1.76	1.65
0.92	4.60	4.31	4.03	3.77	3.53	3.30	3.09	2.89	2.70	2.53	2.37	2.21	2.07	1.94	1.81	1.70	1.59
0.94	4.51	4.22	3.94	3.69	3.45	3.22	3.02	2.82	2.64	2.47	2.31	2.16	2.02	1.89	1.76	1.65	1.54
0.96	4.44	4.15	3.88	3.63	3.39	3.17	2.97	2.77	2.59	2.42	2.27	2.12	1.98	1.85	1.73	1.62	1.51
0.98	4.40	4.12	3.85	3.60	3.36	3.14	2.94	2.75	2.57	2.40	2.24	2.10	1.96	1.83	1.71	1.60	1.50
1.00	4.39	4.11	3.84	3.59	3.35	3.14	2.93	2.74	2.56	2.39	2.24	2.09	1.95	1.83	1.71	1.60	1.49
1.02	4.40	4.12	3.85	3.60	3.36	3.14	2.94	2.75	2.57	2.40	2.24	2.10	1.96	1.83	1.71	1.60	1.50
1.04	4.44	4.15	3.88	3.63	3.39	3.17	2.96	2.77	2.59	2.42	2.26	2.12	1.98	1.85	1.73	1.62	1.51
1.06	4.49	4.20	3.92	3.67	3.43	3.21	3.00	2.81	2.62	2.45	2.29	2.15	2.01	1.88	1.75	1.64	1.53
1.08	4.56	4.26	3.99	3.73	3.49	3.26	3.05	2.86	2.67	2.50	2.34	2.19	2.04	1.91	1.79	1.67	1.56
1.10	4.64	4.35	4.07	3.80	3.56	3.33	3.12	2.92	2.73	2.55	2.39	2.23	2.09	1.96	1.83	1.71	1.60
1.12	4.75	4.44	4.16	3.89	3.64	3.41	3.19	2.99	2.80	2.62	2.45	2.29	2.15	2.01	1.88	1.76	1.65
1.14	4.86	4.55	4.26	3.99	3.74	3.50	3.28	3.07	2.87	2.69	2.52	2.36	2.21	2.07	1.94	1.81	1.70
1.16	5.00	4.68	4.38	4.11	3.85	3.60	3.37	3.16	2.96	2.77	2.60	2.43	2.28	2.14	2.00	1.87	1.76
1.18	5.14	4.82	4.51	4.23	3.96	3.71	3.48	3.26	3.06	2.86	2.68	2.52	2.36	2.21	2.07	1.94	1.82
1.20	5.30	4.97	4.65	4.36	4.09	3.84	3.60	3.37	3.16	2.96	2.78	2.60	2.44	2.29	2.15	2.01	1.89
1.22	5.47	5.13	4.81	4.51	4.23	3.97	3.72	3.49	3.27	3.07	2.88	2.70	2.53	2.38	2.23	2.09	1.96
1.24	5.65	5.30	4.97	4.66	4.38	4.11	3.85	3.62	3.39	3.18	2.99	2.80	2.63	2.47	2.32	2.17	2.04
1.26	5.84	5.48	5.14	4.83	4.53	4.26	4.00	3.75	3.52	3.31	3.10	2.91	2.74	2.57	2.41	2.26	2.13
1.28	6.04	5.67	5.33	5.00	4.70	4.41	4.14	3.89	3.66	3.43	3.23	3.03	2.85	2.67	2.51	2.36	2.22
1.30	6.26	5.88	5.52	5.19	4.87	4.58	4.30	4.04	3.80	3.57	3.35	3.15	2.96	2.78	2.62	2.46	2.31

1	• `
1	h١
۰.	UI.
· ·	·- /

	$\sum_{i=1}^{6} R_i$																
A/E	11.4	11.5	11.6	11.7	11.8	11.9	12	12.1	12.2	12.3	12.4	12.5	12.6	12.7	12.8	12.9	13
0.70	5.66	5.45	5.24	4.85	4.67	4.50	4.33	4.16	4.01	3.86	3.71	3.57	3.44	3.31	3.19	3.07	3.07
0.72	5.40	5.19	4.99	4.61	4.44	4.26	4.10	3.94	3.79	3.65	3.51	3.37	3.24	3.12	3.00	2.89	2.89
0.74	5.17	4.96	4.77	4.40	4.23	4.06	3.90	3.75	3.60	3.46	3.33	3.20	3.07	2.95	2.84	2.73	2.73
0.76	4.96	4.76	4.57	4.22	4.05	3.89	3.73	3.58	3.44	3.30	3.17	3.05	2.93	2.81	2.70	2.59	2.59
0.78	4.78	4.59	4.40	4.05	3.89	3.73	3.58	3.44	3.30	3.16	3.04	2.91	2.80	2.68	2.58	2.47	2.47
0.80	4.63	4.44	4.26	3.91	3.75	3.60	3.45	3.31	3.17	3.04	2.92	2.80	2.69	2.58	2.47	2.37	2.37
0.82	4.50	4.31	4.13	3.79	3.64	3.49	3.34	3.20	3.07	2.94	2.82	2.70	2.59	2.48	2.38	2.28	2.28
0.84	4.39	4.20	4.02	3.69	3.54	3.39	3.25	3.11	2.98	2.85	2.74	2.62	2.51	2.41	2.30	2.21	2.21
0.86	4.29	4.11	3.93	3.61	3.45	3.31	3.17	3.03	2.91	2.78	2.66	2.55	2.44	2.34	2.24	2.15	2.15
0.88	4.21	4.03	3.86	3.54	3.39	3.24	3.10	2.97	2.84	2.72	2.61	2.49	2.39	2.29	2.19	2.10	2.10
0.90	4.15	3.97	3.80	3.48	3.33	3.19	3.05	2.92	2.79	2.67	2.56	2.45	2.34	2.24	2.15	2.05	2.05
0.92	4.10	3.92	3.75	3.44	3.29	3.14	3.01	2.88	2.75	2.64	2.52	2.41	2.31	2.21	2.11	2.02	2.02
0.94	4.06	3.89	3.72	3.40	3.25	3.11	2.98	2.85	2.73	2.61	2.49	2.39	2.28	2.18	2.09	2.00	2.00
0.96	4.04	3.86	3.69	3.38	3.23	3.09	2.96	2.83	2.71	2.59	2.48	2.37	2.26	2.17	2.07	1.98	1.98
0.98	4.02	3.85	3.68	3.37	3.22	3.08	2.94	2.82	2.69	2.58	2.46	2.36	2.25	2.16	2.06	1.97	1.97
1.00	4.02	3.84	3.68	3.36	3.22	3.08	2.94	2.81	2.69	2.57	2.46	2.35	2.25	2.15	2.06	1.97	1.97
1.02	4.02	3.85	3.68	3.37	3.22	3.08	2.94	2.82	2.69	2.58	2.46	2.36	2.25	2.16	2.06	1.97	1.97
1.04	4.04	3.86	3.69	3.38	3.23	3.09	2.96	2.83	2.70	2.59	2.47	2.37	2.26	2.16	2.07	1.98	1.98
1.06	4.06	3.88	3.71	3.40	3.25	3.11	2.97	2.84	2.72	2.60	2.49	2.38	2.28	2.18	2.08	1.99	1.99
1.08	4.08	3.91	3.74	3.42	3.27	3.13	3.00	2.87	2.74	2.62	2.51	2.40	2.30	2.20	2.10	2.01	2.01
1.10	4.12	3.94	3.77	3.45	3.30	3.16	3.03	2.89	2.77	2.65	2.54	2.43	2.32	2.22	2.13	2.03	2.03
1.12	4.16	3.98	3.81	3.49	3.34	3.20	3.06	2.93	2.80	2.68	2.57	2.46	2.35	2.25	2.15	2.06	2.06
1.14	4.21	4.03	3.86	3.53	3.38	3.24	3.10	2.97	2.84	2.72	2.60	2.49	2.38	2.28	2.18	2.09	2.09
1.16	4.26	4.08	3.91	3.58	3.43	3.28	3.14	3.01	2.88	2.76	2.64	2.53	2.42	2.32	2.22	2.13	2.13
1.18	4.32	4.14	3.97	3.64	3.48	3.33	3.19	3.06	2.93	2.80	2.69	2.57	2.46	2.36	2.26	2.16	2.16
1.20	4.39	4.20	4.03	3.69	3.54	3.39	3.25	3.11	2.98	2.85	2.73	2.62	2.51	2.40	2.30	2.20	2.20
1.22	4.46	4.27	4.09	3.76	3.60	3.45	3.30	3.16	3.03	2.91	2.78	2.67	2.56	2.45	2.35	2.25	2.25
1.24	4.53	4.34	4.16	3.82	3.66	3.51	3.36	3.22	3.09	2.96	2.84	2.72	2.61	2.50	2.39	2.29	2.29
1.26	4.61	4.42	4.24	3.89	3.73	3.58	3.43	3.29	3.15	3.02	2.90	2.78	2.66	2.55	2.45	2.34	2.34
1.28	4.70	4.50	4.32	3.97	3.80	3.65	3.50	3.35	3.22	3.08	2.96	2.83	2.72	2.61	2.50	2.40	2.40
1.30	4.78	4.59	4.40	4.05	3.88	3.72	3.57	3.42	3.28	3.15	3.02	2.90	2.78	2.67	2.56	2.45	2.45

0F			Okay	yama		Berkeley				
		6J	LJ	7C	OU	6W	/10	6D	HE	
		А	В	А	В	А	В	А	В	
Mn1	A	2.444	2.443	2.438	2.449	2.466	2.463	2.398	2.461	
	E	1.907	1.908	1.929	1.918	1.993	1.874	1.931	1.918	
Mn2	A	1.993	2.007	1.974	1.978	1.921	1.931	1.916	1.954	
	Ε	1.920	1.920	1.954	1.946	1.868	1.928	1.859	1.893	
Mn3	A	2.006	2.011	2.005	1.997	1.805	2.039	1.874	1.898	
	Ε	2.011	2.002	1.995	2.005	1.942	2.011	1.977	1.988	
Mn4	A	2.271	2.272	2.280	2.293	2.069	2.297	2.167	2.184	
	Ε	2.050	2.052	2.046	2.089	1.983	1.975	1.976	2.002	
1F			Okay	/ama			Berk	celey		
		6JI	LK	70	CJJ	6W	/1P	6D	HF	
		А	В	А	В	А	В	А	В	
Mn1	A	2.457	2.436	2.453	2.470	2.360	2.490	2.343	2.378	
	Ε	1.923	1.897	1.934	1.922	1.966	1.910	1.935	1.920	
Mn2	A	1.978	2.004	1.987	1.978	1.864	1.913	1.856	1.871	
	Ε	1.931	1.920	1.942	1.936	1.848	1.979	1.890	1.926	
Mn3	A	1.978	1.997	2.002	2.002	1.860	2.080	1.874	1.931	
	Ε	2.022	1.941	1.990	1.990	1.870	1.934	1.961	1.977	
Mn4	A	2.214	2.183	2.227	2.201	2.201	2.193	2.114	2.185	
	Ε	2.021	2.033	2.024	2.038	1.920	1.865	1.932	1.946	

Table S5. Averaged axial and equatorial bond lengths for the Mn ions of the 0F and 1F XFELstructures.

0F		Okay	yama		Berkeley					
	6JLJ		7COU		6W1O		6D	HE		
	А	В	А	В	А	В	А	В		
Mn1	3.009	2.994	2.766	2.885	2.157	3.405	2.783	2.878		
Mn2	3.586	3.541	3.416	3.453	4.183	3.720	4.274	3.887		
Mn3	2.998	3.036	3.088	3.056	4.122	2.912	3.618	3.464		
Mn4	2.291	2.278	2.300	2.083	2.997	2.658	2.843	2.666		

Table S6. Bond valence sum Mn OSs derived from equation 1 using the averaged axial and equatorial bond lengths.

1F		Okay	yama		Berkeley				
	6JLK		7CJJ		6W1P		6DHF		
	А	В	А	В	А	В	А	В	
Mn1	2.817	3.132	2.706	2.825	2.467	2.947	2.787	2.911	
Mn2	3.556	3.556	3.457	3.520	4.548	3.462	4.260	3.949	
Mn3	3.021	3.436	3.124	3.126	4.392	3.274	3.714	3.414	
Mn4	2.518	2.507	2.481	2.451	3.141	3.551	3.213	2.995	

Figure S3. Mn OSs for the 0F XFEL structures derived from bond valence sum analysis using the parameters optimized for Mn(III) on Mn1 and Mn4 and the parameters optimized for Mn(IV) for Mn2 and Mn3 ions.

0F		Okay	yama		Berkeley				
	6J	LJ	7C	OU	6W	/10	6D	HE	
	А	В	А	В	А	В	А	В	
Mn1	3.89	3.90	3.92	3.90	3.99	3.79	3.91	3.84	
Mn2	2.93	2.94	3.00	2.96	2.88	2.84	2.93	2.94	
Mn3	3.16	3.14	3.13	3.13	2.83	3.22	3.06	3.13	
Mn4	4.07	4.08	4.06	4.12	3.82	3.88	3.86	3.90	

Table S7. Calculated Mulliken Mn spin populations for the 0F XFEL models assuming the total charge and spin multiplicity of the S_1 state and for the 1F XFEL models assuming the charge and multiplicity of the S_2 state.

1F		Okay	yama		Berkeley				
	6J]	LK	70	CJJ	6W	/1P	6D	HF	
	А	В	А	В	А	В	А	В	
Mn1	3.86	3.81	3.86	3.86	3.83	3.81	3.85	3.80	
Mn2	2.98	2.96	3.00	2.99	2.84	3.01	2.94	2.98	
Mn3	3.08	3.02	3.06	3.07	2.84	3.08	2.99	3.05	
Mn4	3.74	3.69	3.81	3.76	3.37	3.13	3.22	3.32	

0F		Oka	yama		Berkeley					
	6J	LJ	7C	OU	6W	/10	6D	HE		
	А	В	А	В	А	В	А	В		
Mn1	3.61	3.62	3.65	3.63	3.73	3.53	3.64	3.59		
Mn2	2.74	2.75	2.82	2.78	2.70	2.68	2.74	2.76		
Mn3	2.98	2.96	2.96	2.95	2.67	3.04	2.88	2.96		
Mn4	3.85	3.85	3.84	3.90	3.59	3.67	3.65	3.68		

Table S8. Calculated QTAIM Mn spin populations for the 0F XFEL models assuming the total charge and spin multiplicity of the S_1 state and for the 1F XFEL models assuming the charge and multiplicity of the S_2 state.

1F		Okay	yama		Berkeley				
	6J]	LK	70	CJJ	6W	/1P	6D	HF	
	А	В	А	В	А	В	А	В	
Mn1	3.58	3.52	3.59	3.58	3.58	3.56	3.58	3.53	
Mn2	2.79	2.78	2.83	2.80	2.66	2.83	2.75	2.79	
Mn3	2.91	2.85	2.90	2.91	2.69	2.90	2.81	2.87	
Mn4	3.51	3.47	3.58	3.53	3.16	2.94	3.03	3.12	

Figure S4. Calculated Mn QTAIM spin populations of: **a**) 0F XFEL models in the S_1 state, **b**) the 1F XFEL models in the S_2 state, and **c**) the QM models in the S_1 and S_2 states.

Figure S5. Calculated Mn OSs and the corresponding R(%) values derived from EOS analysis of the crystal structures QABHAC (left) and QABGUV (right).⁹

Table S9. R(%) values for the EOS calculated using combinations of charge and multiplicity combinations that correspond to different S-states for the 0F and 1F XFEL structures.

0F	Protonation State	6J	LJ	7C	OU	6D	HE	6W	/10
	{W1, W2, O4, O5}	А	В	А	В	А	В	А	В
S_0	$\{H_2O,H_2O,OH,O\}$	77.6	75.4	67.5	82.7	59.7	81.8	76.9	77.0
(III, IV, III, III)	$\{H_2O,H_2O,O,OH\}$	73.3	70.6	72.2	66.4	81.0	80.1	74.1	81.2
\mathbf{S}_1	$\{H_2O, H_2O, O, O\}$	60.8	63.5	63.7	66.4	65.9	59.6	77.0	<50 ^a
(III, IV, IV, III)	$\{H_2O,OH,O,O\}$	56.6	59.0	62.9	64.2	65.9	59.4	72.2	<50 ^a

1F	Protonation State	6J.	LK	70	CJJ	6D	HF	6W	/1P
	{W1, W2, O4, O5}	А	В	А	В	А	В	А	В
S_0	$\{H_2O,H_2O,OH,O\}$	81.1	60.5	79.9	77.7	58.7	60.6	68.4	78.6
(III, IV, III, III)	$\{H_2O,H_2O,O,OH\}$	77.6	70.8	71.3	72.3	84.5	83.5	72.7	79.0
S ₁ (III, IV, IV, III)	$\{H_2O,H_2O,O,O\}$	61.0	75.0	64.7	71.2	69.7	64.4	80.5	66.9
S_2	$\{H_2O,H_2O,O,O\}$	<50 ^b	<50 ^b	<50°	<50°	57.4	54.8	55.4	67.6
(III, IV, IV, IV)	$\{H_2O,OH,O,O\}$	51.7	58.0	56.5	58.4	66.3	64.6	68.4	71.5

^a EOS assignment leads to Mn3(III) and oxyl O5(-1)

^b EOS assignment leads to Mn4(III) and oxyl O5(-1)

^c EOS assignment leads to Mn4(III) and oxyl O4(-1)

0F	EFO	6J	LJ	7C	OU	6D	HE	6W	/10
		А	В	А	В	А	В	А	В
S ₀ (III, IV, III, III)	LO	O5 (0.677)	O5 (0.678)	O4 (0.653)	O2 (0.707)	O2 (0.696)	O2 (0.705)	O5 (0.679)	O4 (0.699)
	FU	Mn4 (0.401)	Mn4 (0.424)	Mn4 (0.431)	Mn4 (0.380)	Mn2 (0.386)	Mn2 (0.387)	Mn3 (0.410)	Mn2 (0.387)
S ₁ (III, IV, IV, III)	LO	O5 (0.606)	O5 (0.622)	O5 (0.623)	O5 (0.643)	O5 (0.626)	O5 (0.593)	O5 (0.677)	Mn3 (0.550)
	FU	Mn3 (0.498)	Mn3 (0.487)	Mn3 (0.486)	Mn3 (0.479)	Mn3 (0.467)	Mn3 (0.497)	Mn3 (0.407)	O5 (0.530)

Table S10. Occupation numbers of frontier EFOs, the last occupied (LO) and first unoccupied (FU) EFOs for the EOS calculations, whose R(%) values are given in Table 1 and discussed in the main text.

1F	EFO	6J]	LK	70	CII	6D	HF	6W	/1P
		А	В	А	В	А	В	А	В
S ₀ (III, IV, III, III)	LO	O5 (0.707)	O4 (0.642)	O1 (0.697)	O2 (0.691)	O4 (0.707)	O2 (0.705)	O2 (0.692)	O2 (0.722)
	FU	Mn4 (0.396)	Mn4 (0.434)	Mn2 (0.398)	Mn2 (0.414)	Mn2 (0.362)	Mn3 (0.370)	Mn3 (0.465)	Mn1 (0.432)
S ₁ (III, IV, IV, III)	LO	O5 (0.606)	O5 (0.693)	O5 (0.632)	O5 (0.677)	O5 (0.647)	O5 (0.618)	O2 (0.691)	O1 (0.693)
	FU	Mn3 (0.496)	Mn3 (0.443)	Mn3 (0.485)	Mn3 (0.465)	Mn3 (0.450)	Mn3 (0.474)	Mn2 (0.386)	Mn2 (0.524)
S ₂ (III, IV, IV, IV)	LO	W2 (0.617)	O5 (0.656)	O5 (0.656)	W2 (0.657)	O5 (0.652)	O5 (0.667)	O5 (0.674)	O2 (0.679)
	FU	Mn4 (0.600)	Mn4 (0.576)	Mn4 (0.591)	Mn4 (0.573)	Mn4 (0.489)	Mn4 (0.521)	Mn4 (0.490)	Mn3 (0.464)

Table S11. R(%) values for the EOS calculated using combinations of charge and multiplicity that correspond to different S-states for reported QM models of the S₂ state. When EOS assignment does not correspond to the nominal values for the Mn center, the *R* value is below 50%.

	Ref. 5	Ref. 6	Ref. 7	Ref. 8
S ₀ (III, IV, III, III)	<50 ^a	55.0	<50 ^b	<50 ^b
S_1 (III, IV, IV, III)	50.2	64.1	63.1	<50ª
S ₂ (III, IV, IV, IV)	78.4	79.4	81.0	75.8

^a EOS assignment leads to Mn2(III) and Mn4(IV)

^b EOS assignment leads to Mn2(III) and Mn3(IV)

Table S12. Calculated exchange coupling constants J_{ij} (cm⁻¹) and total spins S_{GS} of the ground state (GS) and S_{ES} for the first excited state (ES), and the energy difference ΔE (cm⁻¹) between these spin states.

Model	Mon.	J_{12}	J_{13}	J_{14}	J_{23}	J_{24}	J_{34}	$S_{ m GS}$	$S_{\rm ES}$	ΔE
6W1P	А	-13.54	5.89	23.44	23.65	15.18	12.02	11/2	13/2	3.1
	В	-8.68	6.72	12.50	28.36	4.82	20.21	13/2	11/2	6.5
6DHF	А	-20.30	1.75	29.68	14.99	3.78	-45.70	1/2	3/2	45.0
	В	-37.11	-3.51	32.83	13.24	4.56	-34.29	1/2	3/2	59.2

Mn ion	Model	$ ho_i$		DFT		$a_{i,\mathrm{iso}}$	$a_{i,\mathrm{aniso}}$
Mn1	6DHF-A	1.79	-245	-559	-592	-207	84
	6DHF-B	1.67	-242	-528	-583	-201	88
	QM, S_2	1.81	-67	-370	-408	-125	84
Mn2	6DHF-A	-0.99	389	405	410	238	-7
	6DHF-B	-0.97	399	410	431	245	-16
	QM, S ₂	-1.00	340	357	385	214	-21
Mn3	6DHF-A	-0.93	351	370	433	228	-43
	6DHF-B	-0.98	318	352	420	216	-50
	QM, S ₂	-0.93	301	317	358	193	-29
Mn4	6DHF-A	1.13	-404	-467	-480	-267	26
	6DHF-B	1.28	-390	-440	-482	-259	40
	QM, S_2	1.11	-384	-411	-465	-249	40

Table S13. Spin projection factors, ρ_i , and calculated projected ⁵⁵Mn hyperfine coupling constants in MHz, for the 6DHF 1F monomers A and B models, and for the QM model of the S₂ state.

Table S14. Experimental and calculated (TPSSh) projected ¹⁴N isotropic hyperfine coupling constants (MHz) for the N_{His332} ligating to Mn1.

	$ A_{\rm iso} $ (MHz)
6DHF-A	2.82
6DHF-B	1.65
QM, S ₂	5.98
Exp. ¹⁰	7.1

Figure S6. Mn OSs for the 2F XFEL structures derived from bond valence sum analysis using the parameters optimized for Mn(IV).

	O6 protonation	Mn1	Mn2	Mn3	Mn4	05	06	<i>R</i> (%)
6JLL-A	O6H	IV	IV	IV	III	-1	-1	69.9
6JLL-B		IV	IV	IV	III	-1	-1	70.6
6DHO-A		IV	IV	IV	IV	-2	-1	60.0
6DHO-B		IV	IV	IV	IV	-2	-1	63.6
6W1V-A		IV	IV	IV	IV	-2	-1	68.7
6W1V-B		IV	IV	IV	IV	-2	-1	64.6
6JLL-A	06	IV	IV	IV	III	-2	-1	65.9
6JLL-B		IV	IV	IV	III	-2	-1	64.7
6DHO-A		IV	IV	IV	III	-2	-1	52.2
6DHO-B		IV	IV	III	III	-1	-1	58.5
6W1V-A		IV	IV	IV	III	-2	-1	56.7
6W1V-B		IV	IV	IV	III	-2	-1	62.0

Table S15. R(%) values and OS assignments by the EOS method, using combinations of charge and multiplicity that correspond to state S₃ for the 2F XFEL structures.

Table S16. R(%) values for the EOS calculated using combinations of charge and multiplicity that correspond to states S₀, S₁ and S₂ for the 2F XFEL structures.

	6JLL-A	6JLL-B	6DHO-A	6DHO-B	6W1V-A	6W1V-B
S_0^a (III, IV, III, III)	76.2	78.9	81.7	78.6	79.2	76.6
S_1^{a} (III, IV, IV, III)	66.3	70.8	58.8	<50	65.4	66.9
S_2^{a} (III, IV, IV, IV)	54.1	<50	60.0	61.6	70.6	62.6

^aThe O6 atom, coordinated to Mn1, was removed from the structures.

References

(1) Suga, M.; Akita, F.; Yamashita, K.; Nakajima, Y.; Ueno, G.; Li, H.; Yamane, T.; Hirata, K.; Umena, Y.; Yonekura, S.; Yu, L.-J.; Murakami, H.; Nomura, T.; Kimura, T.; Kubo, M.; Baba, S.; Kumasaka, T.; Tono, K.; Yabashi, M.; Isobe, H.; Yamaguchi, K.; Yamamoto, M.; Ago, H.; Shen, J.-R. An oxyl/oxo mechanism for oxygen-oxygen coupling in PSII revealed by an x-ray free-electron laser. *Science* **2019**, *366*, 334-338.

(2) Li, H.; Nakajima, Y.; Nomura, T.; Sugahara, M.; Yonekura, S.; Chan, S. K.; Nakane, T.; Yamane, T.; Umena, Y.; Suzuki, M.; Masuda, T.; Motomura, T.; Naitow, H.; Matsuura, Y.; Kimura, T.; Tono, K.; Owada, S.; Joti, Y.; Tanaka, R.; Nango, E.; Akita, F.; Kubo, M.; Iwata, S.; Shen, J.-R.; Suga, M. Capturing structural changes of the S₁ to S₂ transition of photosystem II using time-resolved serial femtosecond crystallography. *IUCrJ* **2021**, *8*, 431-443.

(3) Kern, J.; Chatterjee, R.; Young, I. D.; Fuller, F. D.; Lassalle, L.; Ibrahim, M.; Gul, S.; Fransson, T.; Brewster, A. S.; Alonso-Mori, R.; Hussein, R.; Zhang, M.; Douthit, L.; de Lichtenberg, C.; Cheah, M. H.; Shevela, D.; Wersig, J.; Seuffert, I.; Sokaras, D.; Pastor, E.; Weninger, C.; Kroll, T.; Sierra, R. G.; Aller, P.; Butryn, A.; Orville, A. M.; Liang, M.; Batyuk, A.; Koglin, J. E.; Carbajo, S.; Boutet, S.; Moriarty, N. W.; Holton, J. M.; Dobbek, H.; Adams, P. D.; Bergmann, U.; Sauter, N. K.; Zouni, A.; Messinger, J.; Yano, J.; Yachandra, V. K. Structures of the Intermediates of Kok's Photosynthetic Water Oxidation Clock. *Nature* **2018**, *563*, 421-425.

(4) Ibrahim, M.; Fransson, T.; Chatterjee, R.; Cheah, M. H.; Hussein, R.; Lassalle, L.; Sutherlin, K. D.; Young, I. D.; Fuller, F. D.; Gul, S.; Kim, I.-S.; Simon, P. S.; de Lichtenberg, C.; Chernev, P.; Bogacz, I.; Pham, C. C.; Orville, A. M.; Saichek, N.; Northen, T.; Batyuk, A.; Carbajo, S.; Alonso-Mori, R.; Tono, K.; Owada, S.; Bhowmick, A.; Bolotovsky, R.; Mendez, D.; Moriarty, N. W.; Holton, J. M.; Dobbek, H.; Brewster, A. S.; Adams, P. D.; Sauter, N. K.; Bergmann, U.; Zouni, A.; Messinger, J.; Kern, J.; Yachandra, V. K.; Yano, J. Untangling the sequence of events during the $S_2 \rightarrow S_3$ transition in photosystem II and implications for the water oxidation mechanism. *Proc. Natl. Acad. Sci. U. S. A.* **2020**, *117*, 12624-12635.

(5) Krewald, V.; Retegan, M.; Cox, N.; Messinger, J.; Lubitz, W.; DeBeer, S.; Neese, F.; Pantazis, D. A. Metal oxidation states in biological water splitting. *Chem. Sci.* **2015**, *6*, 1676-1695.

(6) Yang, K. R.; Lakshmi, K. V.; Brudvig, G. W.; Batista, V. S. Is Deprotonation of the Oxygen-Evolving Complex of Photosystem II during the $S_1 \rightarrow S_2$ Transition Suppressed by Proton Quantum Delocalization? *J. Am. Chem. Soc.* **2021**, *143*, 8324-8332.

(7) Kawashima, K.; Saito, K.; Ishikita, H. Mechanism of Radical Formation in the H-Bond Network of D1-Asn298 in Photosystem II. *Biochemistry* **2018**, *57*, 4997-5004.

(8) Corry, T. A.; O'Malley, P. J. Proton Isomers Rationalize the High- and Low-Spin Forms of the S₂ State Intermediate in the Water-Oxidizing Reaction of Photosystem II. *J. Phys. Chem. Lett.* **2019**, *10*, 5226-5230.

(9) Schäfer, K.-O.; Bittl, R.; Zweygart, W.; Lendzian, F.; Haselhorst, G.; Weyhermüller, T.; Wieghardt, K.; Lubitz, W. Electronic Structure of Antiferromagnetically Coupled Dinuclear Manganese (Mn^{III}Mn^{IV}) Complexes Studied by Magnetic Resonance Techniques. *J. Am. Chem. Soc.* **1998**, *120*, 13104-13120.

(10) Lohmiller, T.; Krewald, V.; Pérez Navarro, M.; Retegan, M.; Rapatskiy, L.; Nowaczyk, M. M.; Boussac, A.; Neese, F.; Lubitz, W.; Pantazis, D. A.; Cox, N. Structure, ligands and substrate coordination of the oxygen-evolving complex of photosystem II in the S₂ state: a combined EPR and DFT study. *Phys. Chem. Chem. Phys.* **2014**, *16*, 11877-11892.