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POLARIZED REAL TORI
JAE-HYUN YANG

ABSTRACT. For a fixed positive integer g, we let Py = {Y e R(9:9) Y =
Y >0 } be the open convex cone in the Euclidean space R9(9+1)/2 Then
the general linear group GL(g, R) acts naturally on Py by AxY = AY 'A
(A€ GL(g,R), Y € Py). We introduce a notion of polarized real tori. We
show that the open cone Py parametrizes principally polarized real tori of
dimension g and that the Minkowski modular space T4 = GL(g,Z)\Py
may be regarded as a moduli space of principally polarized real tori of
dimension g. We also study smooth line bundles on a polarized real torus
by relating them to holomorphic line bundles on its associated polarized
real abelian variety.

1. Introduction
For a given fixed positive integer g, we let
H, = {QeC¥9| Q="1Q, ImQ > 0}
be the Siegel upper half plane of degree g and let
Sp(9,R) = {M € RC929) | AJ,M = J,)

be the symplectic group of degree g, where F(*! denotes the set of all k x [
matrices with entries in a commutative ring F' for two positive integers k and
I, 'M denotes the transpose matrix of a matrix M and

0 I
Jy = ).
= (0

Then Sp(g,R) acts on H,, transitively by
(1.1) M-Q=(AQ+ B)(CQ+ D)1,
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270 JAE-HYUN YANG
where M = (4 B) € Sp(g,R) and Q € H,,. Let

Iy =5p(g,Z) = {(é, g) € Sp(g,R) ‘ A,B,C,D integral}

be the Siegel modular group of degree g. This group acts on H, properly
discontinuously. C. L. Siegel investigated the geometry of H, and automorphic
forms on Hj systematically. Siegel [23] found a fundamental domain F, for
I',\H, and described it explicitly. Moreover he calculated the volume of F,.
We also refer to [10, 14, 23] for some details on F,. The Siegel modular variety
Ay :=T,\H, is one of the important arithmetic varieties in the sense that it is
regarded as the moduli of principally polarized abelian varieties of dimension
g. Suggested by Siegel, 1. Satake [18] found a canonical compactification, now
called the Satake compactification of A,. Thereafter W. Baily [3] proved that
the Satake compactification of A, is a normal projective variety. This work was
generalized to bounded symmetric domains by W. Baily and A. Borel [4] around
the 1960s. Some years later a theory of smooth compactification of bounded
symmetric domains was developed by Mumford school [2]. G. Faltings and
C.-L. Chai [7] investigated the moduli of abelian varieties over the integers and
could give the analogue of the Eichler-Shimura theorem that expresses Siegel
modular forms in terms of the cohomology of local systems on A,. 1 want to
emphasize that Siegel modular forms play an important role in the theory of
the arithmetic and the geometry of the Siegel modular variety A,.
We let
sz{YeR@’gM Y = tY>O}

be an open convex cone in RY with N = g(g + 1)/2. The general linear group
GL(g,R) acts on P, transitively by

(1.2) AoY = AY'A, Ae€GL(g,R), Y €P,.

We observe that the action (1.2) is naturally induced from the symplectic action
(1.1). Thus P, is a symmetric space diffeomorphic to GL(g,R)/O(g). Let

GL(g,Z) = {y € GL(g,R) |  is integral}

be an arithmetic discrete subgroup of GL(g,R). Using the reduction theory
Minkowski [16] found a fundamental domain 9R,, the so-called Minkowski fun-
damental domain for the action (1.2) of GL(g,Z) on Py. In fact, using the
Minkowski fundamental domain 2R, Siegel found his fundamental domain F,.
As in the case of H,, automorphic forms on P, for GL(g,Z) and geometry on
P, have been studied by many people, e.g., Selberg [20], Maass [14] et al.
The aim of this article is to study arithmetic-geometric meaning of the
Minkowski fundamental domain 9. First we introduce a notion of polar-
ized real tori by relating special real tori to polarized real abelian varieties. We
realize that P, parametrizes principally polarized real tori of dimension g and
also that the Minkowski modular space T, := GL(g,Z)\ P, may be regarded as
a moduli space of principally polarized real tori of dimension g. We also study
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smooth line bundles over a polarized real torus by relating to holomorphic line
bundles over the associated polarized abelian variety. Those line bundles over
a polarized real torus play an important role in investigating some geometric
properties of a polarized real torus.
We let
GM .= GL(g,R) x RY
be the semidirect product of GL(g,R) and RY with multiplication law
(A,a)- (B,b) :== (AB,a'B™* +b), A ,BeGL(g9,R), a,beRY.

Then we have the natural action of GM on the Minkowski-Euclid space P, x RY
defined by

(13) (4,a)-(Y,¢):= (AY'4, (C+a)'4), (Aa) € GM, Y € Py, R

We let

GM(z) = GL(g,Z) x 79
be the discrete subgroup of GM. Then GM(Z) acts on P, x RY properly dis-
continuously. We show that by associating a principally polarized real torus of
dimension g to each equivalence class in T4, the quotient space

GM(Z)\(Py x RY)

may be regarded as a family of principally polarized real tori of dimension
g. To each equivalence class [Y] € GL(g,Z)\P, with Y € P, we associate a
principally polarized real torus Ty = R9/Ay, where Ay = Y79 is a lattice in
RY.

Let Y7 and Y5 be two elements in P, with [Y7] # [Ya], that is, Y2 # AY; ‘A
forall A€ GL(g,Z). Weput A; = Y;Z9 fori =1,2. Then a torus T3 = RI/A;
is diffeomorphic to To = RY/A5 as smooth manifolds but 7} is not isomorphic
to T> as polarized real tori.

The Siegel modular variety A, has three remarkable properties: (a) it is the
moduli space of principally polarized abelian varieties of dimension g, (b) it has
the structure of a quasi-projective complex algebraic variety which is defined
over QQ, and (c) it has a canonical compactification, the so-called Satake-Baily-
Borel compactification which is defined over Q. Unfortunately the Minkowski
modular space ¥, does not admit the structure of a real algebraic variety.
Moreover T, does not admit a compactification which is defined over Q. Sil-
hol [26] constructs the moduli space of real principally poarized abelian vari-
eties and he shows that it is a topological ramified covering of ;. Further-
more Silhol constructs a compactification of this moduli space analogous to
the Satake-Baily-Borel compactification. However, neither the moduli space
nor this compactification has an algebraic structure. On the other hand, by
considering real abelian varieties with a suitable level structure Goresky and
Tai [8] show that the moduli space of real principally polarized abelian va-
rieties with level 4m structure (m > 1) coincides with the set of real points
of a quasi-projective algebraic variety defined over Q and consists of finitely
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many copies of the quotient &,(4m)\P, with a discrete subgroup &,(4m) of
GL(g,Z), where &,(4m) = {y € GL(g9,Z) | v = I, (mod4m)}.

This paper is organized as follows. In Section 2, we collect some basic prop-
erties about the symplectic group Sp(g,R) to be used frequently in the subse-
quent sections. In Section 3, we give basic definitions concerning real abelian
varieties and review some properties of real abelian varieties. In Section 4, we
discuss a moduli space for real abelian varieties and recall some basic properties
of a moduli for real abelian varieties. In Section 5 we discuss compactifications
of the moduli space for real abelian varieties and review some results on this
moduli space obtained by Silhol [26], Goresky and Tai [8]. In Section 6 we
introduce a notion of polarized real tori and investigate some properties of po-
larized real tori. We give several examples of polarized real tori. In Section 7
we study smooth line bundles over a real torus, in particular a polarized real
torus by relating those smooth line bundles to holomorphic line bundles over
the associated complex torus. To each smooth line bundle on a real torus we
naturally attach a holomorphic line bundle over the associated complex torus.
Conversely to a holomorphic line bundle over a polarized abelian variety we
associate a smooth line bundle over the associated polarized real torus. Using
these results on line bundles, we embed a real torus in a complex projective
space and hence in a real projective space smoothly. We also review briefly
holomorphic line bundles over a complex torus. In Section 8 we study the
moduli space for polarized real tori. We first review basic geometric properties
on the Minkowski fundamental domain 9,. We show that P, parameterizes
principally polarized real tori of dimension g and that ¥, can be regarded as
the moduli space of principally polarized real tori of dimension g. We show
that the quotient space GM(Z)\(P, x RY) may be considered as a family of
principally polarized real tori of dimension g. In Section 9 we discuss real semi-
abelian varieties corresponding to the boundary points of a compactification of
a moduli space for real abelian varieties. We recall that a semi-abelian variety
is defined to be an extension of an abelian variety by a group of multiplica-
tive type. In Section 10 we discuss briefly real semi-tori corresponding to the
boundary points of a moduli space for polarized real tori. In the final section
we present some problems related to real polarized tori which should be inves-
tigated in the near future. In the appendix we collect and review some results
on non-abelian cohomology to be needed necessarily in this article. We give
some sketchy proofs for the convenience of the reader.

Finally T would like to mention that this work was motivated and initiated
by the works of Silhol [26] and Goresky-Tai [8].

Notations. We denote by Q, R and C the field of rational numbers, the field
of real numbers and the field of complex numbers respectively. We denote by Z
and Z* the ring of integers and the set of all positive integers respectively. The
symbol “:=" means that the expression on the right is the definition of that
on the left. For two positive integers k and I, F(*!) denotes the set of all k x [
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matrices with entries in a commutative ring F. For a square matrix A € F(k:F)
of degree k, o(A) denotes the trace of A. For any M € F®! M denotes
the transpose matrix of M. I, denotes the identity matrix of degree n. For a
matrix Z, we denote by Re Z (resp. Im Z) the real (resp. imaginary) part of
Z. For A€ F®U and B € F**)  we set B[A] = *ABA. For a complex matrix
A, A denotes the complex conjugate of A. For A € C*D and B € C*F) | we
use the abbreviation B{A} = *ABA. We denote C; = {¢ € C| |¢] = 1}. Let

Ig= {’Y € 72929) | Ty Jgv = Jg}
denote the Siegel modular group of degree g, where
_(0 I
b= )
is the symplectic matrix of degree 2¢g. For a positive integer IV, we let

Iy(N)= {yeTy|vy= Iz (mod N)}

denote the principal congruence subgroup of I'y of level NV and for a positive
integer m, we let

(1.4)

A B . .
ry22m=1(5 p)ers ’ A, D=1, (mod 2), B,C =0 (mod 2m)}.
Let &, := GL(g,Z) and for a positive integer N let
(15) 8,(N) = {1 € GL(g,2)| 7 = I, (mod N)}

2. The symplectic group
For a given fixed positive integer g, we let let
Sp(g,R) = {M € R®929) | ‘A J M = J,}

be the symplectic group of degree g.
If M =(45) e Sp(g,R) with A, B,C, D € R(99 then it is easily seen that

(2.1) A'D-B'C=1,, A'B=B'A, C'D=D'C
or
(2.2) 'YAD-'CB =1, 'AC="'CA, 'BD="'DB.
The inverse of such a symplectic matrix M is given by
M=M= <_tf)C _t;B) :
We identify GL(g,R) < Sp(g, R) with its image under the embedding

A

0
A'—>(0 tAfl

) , Ae GL(g,R).
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A Cartan involution 6 of Sp(g,R) is given by 6(z) = ngJg’l, x € Sp(g,R),
in other words,

ey o(g p)=(% 4) (& D) esn.

The fixed point set K of 6 is given by

K= {(‘;13 ]j) € S’p(g,R)}.

We may identify K with the unitary group U(g) of degree g via

A B ;
K> (B A)n—)A—i— iB e U(g).

Let
Hy = {QeCl¥9|Q="0Q ImQ >0}

be the Siegel upper half plane of degree g. Then Sp(g,R) acts on H, transitively
by

(2.4) M-Q=(AQ+ B)(CQ+ D)™

where M = (4 5) € Sp(¢9,R) and Q € H,. The stabilizer at il, is given by
the compact subgroup K = U(g) of Sp(g,R). Thus H, is biholomorphic to the
Hermitian symmetric space Sp(g,R)/K via

Sp(g,R)/K — H!]a :CK i (7’]9)7 S Sp(gaR)

We note that the Siegel modular group I'y of degree g acts on H, properly
discontinuously.

Now we let
(1 O
(2.5) I = < 0 Ig) .
We define the involution 7 : Sp(g,R) — Sp(g,R) by
(2.6) 7(x) = L.xl., x € Sp(g,R).

Precisely 7 is given by

en QD) -( ) (8 D) esom
Lemma 2.1. (1) 7(z) =z, z € Sp(g,R) if and only if x € GL(g,R).

(2) 70 =01. So 7(K) = K.
(3) If A+ iB € U(g) with A,B € R(9:9) | then 7(A+iB) = A —iB.

Proof. Tt is easy to prove the above lemma. We leave the proof to the reader.
O
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We note that 7 : Sp(g,R) — Sp(g,R) passes to an involution (which we
denote by the same letter) 7 : H, — H such that

(2.8) T(x- Q)= 7(x)7(Q) for all z € Sp(g,R), Q € Hy.

In fact, we can see easily that the involution 7 : H, — Hy is the antiholomor-
phic involution given by

(2.9) 7(Q) =-0, QeH,.
Its fixed point set is the orbit

iPy = GL(g,R) - (il,) C C#)
of GL(g,R), where

Py={Y eROI |y = 'y >0}

is the open convex cone of positive definite symmetric real matrices of degree
¢ in the Euclidean space R9(91)/2,

For z € Sp(g,R) and Q2 € H,, we define the set
(2.10) H*:= {QecH, | z-Q=7(Q) = -0}

be the locus of z-real points. If ' C Sp(g,R) is an arithmetic subgroup of
Sp(g,R) such that 7(T') =T, we define

T T
(2.11) Hi' = | H.
~el

Lemma 2.2. Let x € Sp(g,R) and Hf be the set of points in H, which are
fized under the action of x. Then the set Hy NPy is a proper real algebraic
variety of i Py if x # 1, € GL(g,R).

Proof. Tt is easy to prove the above lemma. We omit the proof. [

3. Real abelian varieties

In this section we review basic notions and some results on real principally
polarized abelian varieties (cf. [8, 21, 24, 25, 26]).

Definition. A pair (2, S) is said to be a real abelian variety if 2 is a complex
abelian variety and S is an anti-holomorphic involution of 2 leaving the origin
of 2 fixed. The set of all fixed points of S is called the real point of (2,.5) and
denoted by (A, S)(R) or simply 2A(R). We call S a real structure on 2.

Definition. (1) A polarization on a complex abelian variety 2 is defined to
be the Chern class ¢;(D) € H?(2,Z) of an ample divisor D on 2. We can
identify H2(2A,Z) with A\ H'(,Z). We write A = V/L, where V is a finite
dimensional complex vector space and L is a lattice in V. So a polarization
on 2 can be defined as an alternating form E on L = H;(2,Z) satisfying the
following conditions (E1) and (E2):
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(E1) The Hermitian form H : V x V — C defined by
(3.1) H(u,v) = E(iu,v) + i E(u,v), u,veV

is positive definite. Here F can be extended R-linearly to an alternating form
on V.

(E2) E(L x L) C Z, i.e., E is integral valued on L x L.

(2) Let (U, S) be a real abelian variety with a polarization F of dimension
g. A polarization F is said to be real or S-real if

(3.2) E(S.(a),S«(b)) = —E(a,b), a,be H(2,Z).

Here S, : H1(A,Z) — H1(A,Z) is the map induced by a real structure S.
If a polarization FE is real, the triple (2, E,S) is called a real polarized abelian
variety. A polarization E on 2l is said to be principal if for a suitable basis (i.e.,
a symplectic basis) of Hy(21,7Z) = L, it is represented by the symplectic matrix
Jg (cf. see Notations in the introduction). A real abelian variety (%, .S) with a
principal polarization FE is called a real principally polarized abelian variety.
(3) Let (2, F) be a principally polarized abelian variety of dimension g and
let {a; | 1 <i < 2g} be a symplectic basis of Hy(,Z). It is known that there
is a basis {w1,...,wy} of the vector space H°(A, Q') of holomorphic 1-forms

on 2 such that
</ wi> = (Q,1;) for some 2 € H,.
aj;

The g x 2¢ matrix (2, I,) or simply Q is called a period matriz for (2, E).

The definition of a real polarized abelian variety is motivated by the following
theorem.

Theorem 3.1. Let (2,.S) be a real abelian variety and let E be a polarization
on A. Then there exists an ample S-invariant (or S-real) divisor with Chern
class E if and only if E satisfies the condition (3.2).

Proof. The proof can be found in [25, Theorem 3.4, pp. 81-84]. O

Now we consider a principally polarized abelian variety of dimension g with a
level structure. Let N be a positive integer. Let (2 = C9/L, E) be a principally
polarized abelian variety of dimension g. From now on we write 2l = CY9/L,
where L is a lattice in C9. A level N structure on 2 is a choice of a basis
{Ui, V;} (1 < i,j < g) for a N-torsion points of 2 which is symplectic, in the
sense that there exists a symplectic basis {u;,v;} of L such that

;= % (modL) and V;= UNJ (mod L), 1<i,j<g.
For a given level NV structure, such a choice of a symplectic basis {u;,v;} of L
determines a mapping
F:RIGRI — CY
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such that F(Z9 ¢ Z9) = L by F(e;) = u; and F(f;) = v;, where {e;, f;} (1 <
i,7 < g) is the standard basis of RY @ RY. The choice {u;,v;} (or equivalently,
the mapping F') will be referred to as a lift of the level N structure. Such a
mapping F is well defined modulo the principal congruence subgroup I'g(IV),
that is, if F’ is another lift of the level structure, then F’ o F~! € T'y(N). A
level N structure {U;, V;} is said to be compatible with a real structure S on
(2, E) if, for some (and hence for any) lift {u;,v;} of the level structure,
Ui\ _ Uy Ui\ _ U5 .

S(N) =-x (modL) and S (N) =~ (mod L), 1<i,j<g.
Definition. A real principally polarized abelian variety of dimension g with a
level N structure is a quadruple A = (U, E, S,{U;,V;}) with 2 = C9/L, where
(2, E,S) is a real principally polarized abelian variety and {U;,V;} is a level
N structure compatible with a real structure S. An isomorphism

A= L,E,S{U;,V;}) = (A, E, S {U,V!})=A

iV

is a complex linear mapping ¢ : C9 — C9 such that

(33) o(L) = L',
(3.5) $.(S) = &', thatis, goSo¢~' =5,

; ! ) !
(36) o ()= 5 (modl) and o(3) =5 (modL)), 1<ij<g
for some lift {u;,v;} and {u}, ’U;— of the level structures.

Now we show that a given positive integer NV and a given §2 € H, determine
naturally a principally polarized abelian variety (g, Eq) of dimension g with
a level N structure. Let Ey be the standard alternating form on RY @ RY with
the symplectic matrix J,; with respect to the standard basis of RY @ RY. Let
Fo : RI @ RY — C9 be the real linear mapping with matrix (£, I,), that is,

(3.7) Fo (;) =Qz+y, z,yeRI.

We define Eq := (FQ)*(EO) and Lq := FQ(ZQ@ZQ). Then (Q[Q = (Cg/LQ, EQ)
is a principally polarized abelian variety. The Hermitian form Hg on CY9 cor-
responding to Eq is given by

(3.8) Ho(u,v) = 'u(ImQ)~'5, Eq=ImHgq, u,veCY.

If z1,..., 24 are the standard coordinates on CY, then the holomorphic 1-forms
dz1,...,dz, have the period matrix (Q,I,). If {e;, f;} is the standard basis of
RY9 ® RY, then {Fa(e;/N), Fa(f;/N)}.
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(mod Lgq) is a level N structure on (g, Eq), which we refer to as the
standard N structure. Assume that Q; and 2y are two elements of H, such
that

¥ (Ao, =CY/La,, Eq,) — (Uq, = CY/La,, Eq,)
is an isomorphism of the corresponding principally polarized abelian varieties,
ie., ¥(La,) = Lo, and ¢« (Eq,) = Eq,. We set

- A B
h="(F,ovoFy,) = (C D>.

Then we see that h € I';. And we have

(3.9) Q= h-Qy= (AQ + B)(CQy + D) *
and
(3.10) PY(Z)=YC% +D)Z, ZecCY.

Let Q € Hy such that v-Q = 7(Q) = —Q for some v = (4 8) € ;. We
define the mapping S, o : C9 — CY by

(3.11) S,a(Z):="CQ+D)Z, ZecC".
Then we can show that S, o is a real structure on (2q, Eq) which is compatible
with the polarization Eq (that is, Eq(Sy,a(u),Sy,.0(v)) = —Eq(u,v) for all

u,v € CY9). Indeed according to Comessatti’s Theorem (see Theorem 3.1),

S,.0(Z)= Z,ie., Sy q is a complex conjugation. Therefore we have
Eq(Sy.a(u),Sy.0(v) = Eo(u,?) = —Eq(u,v)

for all w,v € C9. From now on we write simply oq = 5, q.

Theorem 3.2. Let (A, E,S) be a real principally polarized abelian variety of
dimension g. Then there exists Q = X + iY € H, such that 2X € 799 and
there exists an isomorphism of real principally polarized abelian varieties

(ma Ea S) = (mﬂa EQa UQ)a
where oq is a real structure on 2Aq induced by a complex conjugation o : C9 —»
C9.

The above theorem is essentially due to Comessatti [6]. We refer to [24, 25]
for the proof of Theorem 3.2.
Theorem 3.2 leads us to define the subset .7 of H, by

(3.12) Hy = {Q€H, | 2Re €209},

Assume Q = X 4+ Y € 5. Then according to Theorem 3.2, (2q, Eq,0q)
is a real principally polarized abelian variety of dimension g. The matrix M,
for the action of a complex conjugation o on the lattice Lo = QZ9 4 Z9 with
respect to the basis given by the columns of (2, ;) is given by

— 719 0
a9 w3 )
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-1, 2X -1, 0
t _ g g = _
Mo Jg My = ( 0 Ig) Tg (2X Ig) = o

the canonical polarization J, is o-real.

Since

Theorem 3.3. Let Q and §, be two elements in F;. Then §) and Q. represent
(real) isomorphic triples (A, E, o) and (s, Ex, 0x) if and only if there exists an
element A € GL(g,7Z) such that

(3.14) 2Re Q, = 24 (Re Q) *A (mod 2)
and
(3.15) Im Q, = A(Im Q) *A.

Proof. Suppose (A, E,0) and (U, Ey, 04) are real isomorphic. Then we can
find an element v = (4 B) € I'y such that

Q. = (AQ+ B)(CQ+ D).
The map
w:C9/Lqg, = Aq, — Aqg = CI9/Lg
induced by the map
$:CY—CY Z+— 'CU+D)Z

is a real isomorphism. Since @ o g, = 0 0 @, i.e., ¥ commutes with complex
conjugation on CY9, we have C' = 0. Therefore

0. = (AQ+ B)'A = (AX'A+ B'A) + i AY ‘A,

where = X + Y. Hence we obtain the desired results (3.14) and (3.15).
Conversely we assume that there exists A € GL(g,Z) satisfying the condi-
tions (3.14) and (3.15). Then

O, =7-Q=(A0+B)'A

for some v = (’3 1) €Ty with B € 7(9:9) with B'A = A'B. The map
P Aq — Aq, induced by the map

V:CI—CY, Zr—sA'Z

is a complex isomorphism commuting complex conjugation o. Therefore v is
a real isomorphism of (2, F, o) onto (s, Ex,0x). O

According to Theorem 3.3, we are led to define the subgroup I'; of I'; by

. A B
(3.16) Iy = {(0 tAl) €Ty | Bez99, A'B= BtA}.

It is easily seen that I'; acts on 7 properly discontinuously by
(3.17) v-Q= AQ'A + B'A,
where v = (‘3 ,,AB,l) € I'; and Q € J7;.
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4. Moduli spaces for real abelian varieties

In Section 3, we knew that I'; acts on J7; properly discontinuously by the

formula (3.17). So the quotient space
g = T\

inherits a structure of stratified real analytic space from the real analytic struc-
ture on .. The stratified real analytic space 2} classifies, up to real isomor-
phism, real principally polarized abelian varieties (2, E,S) of dimension g.
Thus 2% is called the (real) moduli space of real principally polarized abelian
varieties (2, E,S) of dimension g.

To study the structure of 23, we need the following result of A. A. Albert

[1].

Lemma 4.1. Let S4(Z/2) be the set of all g x g symmetric matrices with
coefficients in Z./2. We note that GL(g,7/2) acts on S4(Z/2) by N — AN 'A
with A € GL(g,Z/2) and N € S4(Z/2). We put

a(N) =[]0 = nwx) for N = (ni;) € Sy(Z/2).
k=1

Then N € S4(Z/2) is equivalent mod GL(g,Z/2) to a matriz of the form:
(I) <I)‘ 0> if M(N) =0 and rank(N) = X or

0 0
0o .- 1
H/\ 0 . . . . (M)
(II) 0 0 with Hy := : e : e 7\ Zfﬂ'(N) = 1 and rank (N)
1 - 0

N € 54(Z/2) is said to be diasymmetric in Case (I) and to be orthosymmetric
in Case (II).

Theorem 4.1. Let (A, E) be a principally polarized abelian variety of dimen-
sion g. Then there exists a real structure S on %A such that E is S-real if and
only if (A, E) admits a period matriz of the following form

(Ig,%M—i— iY), YeP,

where M is one of the forms (1) and (II) in Lemma 4.1.

The above theorem is essentially due to Comessatti [6]. We refer to [24] or
[25, Theorem 2.3, pp. 78-80 and Theorem 4.1, pp. 86-88] for the proof of the
above theorem.

Lemma 4.2. Let Q1 and Qo be two elements of € such that

1
Q= Xi+iYi, M; €299, Y; € Py, i=1,2.
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Then Q1 and Qo have images, under the natural projection mq = Ay — X,
in the same connected component of 23, if and only if rank (M, mod 2) =
rank (Mz mod 2) and 7w(M; mod 2) = w(Mz mod 2).

Theorem 4.2. 2} is a real analytic manifold of dimension g(g+ 1)/2 and
has g + 1+ [%] connected components. Moreover 23 is semi-algebraic, i.e.,
2y is defined by a finite number of polynomial equalities and inequalities.

Proof. The proof can be found in [21, Theorem 6.1, p. 161]. O

Remark 4.1. Let Q= 1M + iY € 5, with M = *M € 299 If
rank (M mod 2) = A,

then 2Aq(R) has 29~* connected components (cf. [21, 24]). The other invariant
m(Mzmod 2) is an invariant related to the polarization.

Recall that by Lemma 4.1, the connected components of 23 correspond
to the different possible values of (A, i) = (rank (M mod 2),7(M mod 2)) on
which we have the restriction:

(4.1) 0<A<g, i=0o0rl, and ¢i=0 if Aisodd, i=1if A =0.
We denote by c%”(i,i) the connected components of 2} corresponding to the
invariants (A, 4).

Definition. Let M € Z(99 be a g x g symmetric integral matrix. We say
that M is of the standard form if M is of one of the forms in Lemma 4.1 (we
observe that for fixed (), ) this form is unique).

Now we can prove the following.
Lemma 4.3. Let M € 799 be a symmetric integral matriz which is of the
standard form with invariants (A, 7). Let

F?)\ 5 = {AeGL(g,Z)] AM'A =M (mod 2)}.
Then
283 = Ty \Po:
Proof. Let [Q)] be a class in %i s+ By Lemma 4.1 and Lemma 4.2, there exist
a symmetric integral matrix M € Z(99) with invariants (),i) of the standard
form and an element ¥ € P, such that %M 4+ 1Y is a representative for the
class [Q]. If Y, € P, is such that %M + Y, is also a representative for the
class [Q], according to Theorem 3.2,
M=AM'A (mod2) and Y.=AY'A

for some A € GL(g,Z). O

Theorem 4.3. %f\ 0 s a connected semi-algebraic set with a real analytic
structure.
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Proof. The proof can be found in [21, p. 160]. O

Let (U, E, S) be a real polarized abelian variety and —S be the real structure
obtained by composing S with the involution z —— —z of 2. We see that
(2, B, —S) is also a real polarized abelian variety. In general (2, E, —S) is not
real isomorphic to (2, F, S). Therefore the following correspondence

(4.2) S 29— 28, (A E,S)— (A E,—S)

defines a non-trivial involution of 27 .
Let M € Z(99) be a symmetric integral matrix which is of the standard form
with invariants (), 4). It is easily checked that M3 = M. We put

-M 1,
4.3 Y= g> .
(43) M (—(Ig+M2) M
It is easy to see the following facts (4.4) and (4.5).

(4.4) Swely and (Sa) = —Ea

. (s (G ) sa= (B, 0.

Now we assume that ) = %M + iY € S, represents (AU, E, S). By (3.13), the
matrices of S and —S are given by

(-1, 0 R 0
(46) Ms— (M Ig) and M—S— (M Ig)

respectively with respect to the R-basis given by the columns of (,1,). By
the formulas (4.5) and (4.6) we see that X/(£2) represents the real polarized
abelian variety.

Lemma 4.4. Let M € 799 be a symmetric integral matriz which is of the
standard form with invariants (A,i) and Y € Py. Then we have

1 1 I, o ir 0\ '
- ; P 2 =1 ({24
(4.7) Zup <2M+ zY) S M+ < 0 I» Y 0 1)

Proof. Using the fact that M3 = M, by a direct computation, we get

1 - 1 —
(4.8) Zu (§M + iy) = ML+ M) i (I = M) Y (I + M)
It is easily checked that
2 0 Igf)\
The formula (4.7) follows immediately from (4.8) and (4.9). O

_ 1 L
(4.9) (L +M?) =1, a2 = (2IA 0 )
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Proposition 4.1. The map ¥ : 2 — 2} defined by

is a real analytic involution of %3 . For each connected component %f(iﬁi), we

g _ 99
(28) = 284
Hence ¥ leaves the connected components of 2y globally fized.

have

Proof. Let M € Z(9:9) be a symmetric integral matrix which is of the standard
form with invariants (7). We denote by ¢, (M) the connected component
of J¢, containing the matrices of the form %M + 1Y € S with Y € Pg.
According to (4.5) and Lemma 4.4, we see that ¥ defines an involution of
Hy(M). Since s, (M) is mapped onto 2”&1.), we obtain the desired result. [

5. Compactifications of the moduli space 2}

In this section we review the compactification ?Rg of 2 obtained by R.
Silhol [26] and the Baily-Borel compactification of I'y(4m)\H, which is related
to the moduli space of real abelian varieties with level 4m structure.

First of all we recall the Satake compactification of the Siegel modular variety
Ay =T, \H,. Let
(5.1) D, = {W eCOD | W="tw, I, -WW > o}
be the generalized unit disk of degree g which is a bounded realization of H,.
In fact, the Cayley transform ®, : D, — H, defined by
(5.2) QW)= i(I,+W)(I, - W)™, Web,

is a biholomorphic mapping of D, onto Hy which gives the bounded realization
of H, by D, [23, pp. 281-283]. The inverse ¥, of ®, is given by

(5.3) T, ()= (Q—il)Q+il)™t, QeH,.

We let
T — 1 Iy I,
V2 \il, —ily

be the 2¢g x 2g matrix represented by ®,. Then
P
TSp(g,R)T = {(— %) € C(29:29)

'PP-1'QQ =1,, 'PQ = t@P} .

Q
Indeed, if M = (& B) € Sp(g,R), then
o (P Q
T 'MT = <@ ﬁ),
where
(5.4) P:%{(A+D)+¢(B—C)}
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and

(5.5) Q-

For brevity, we set

{(A-D)— i(B+CO)}.

N | —

G.=T""5p(g,R)T.
Then G, is a subgroup of SU(g, g), where

SU(g,9) = {h c C(29:29) | 'hiy gh =1,,, deth = 1}, Iy g = < Iy 0 > .
In the case g = 1, we observe that

T7'Sp(1,R)T = T~ 'SLy(R)T = SU(1,1).

If g > 1, then G, is a proper subgroup of SU (g, ¢). In fact, since ‘T J, T = —i J,,
we get
G, ={h e SU(g,9)| "hJgh = Jg} .

P+{<Ié’ IZ) ’Z: tZe(C@vg)}
g

be the PT-part of the complexification of G. C SU(g, g).

Since the Harish-Chandra decomposition of an element

(5 Q)_(Ig Qﬁl) P-QP 'Q 0 ( I, 0)
Q P) \o 1 0 PI\P'Q 1,)°

the PT-component of the following element

P Q I, W
95 1) we

of the complexification of G is given by

((Iog (PW + Q)(I?W +?)1)> _

Let

in G/ is

Ql'v
k)
~——

We note that Q?A € Dy. We get the Harish-Chandra embedding of D, into
Pt (cf.[12, p.155] or [19, pp. 58-59]). Therefore we see that G, acts on D,
transitively by

(5.6) (5 %)'WZ(PW+Q)(@W+F)—1, (P Q

0 ﬁ)eG*, W e D,.

The isotropy subgroup at the origin o is given by

k={(Z 9) | pevw).

Thus G./K is biholomorphic to D,. The action (2.4) is compatible with the
action (5.6) via the Cayley transform (5.2).
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In summary, Sp(g,R) acts on D, transitively by
(5.7)
A B — = _ A B
(& p) w=wr@v+Pt (4 p)esuar. weD,

where P and @ are given by (5.4) and (5.5). This action extends to the closure
Dy of Dy in CI9+D/2,
For an integer s with 0 < s < g, we let

(5.8) Fy = {W <m61 IO ) ’ Wi E]D)S} c D,
g—s

We say that % is the standard boundary component of degree s. If there exists
an element v € Sp(g, Q) (equivalently v € I',) with # = ~ (%) C Dy, then
Z is said to be a rational boundary component of degree s. The Siegel upper
half plane H is attached to Hy as a limit of matrices in C9:9) by

Q 0

Q; — lim (0 iy

Y —o0

) ’ Q1 EHS; Yelpgfsa
meaning that all the eigenvalues of Y converge to oo.
For a rational boundary component .# C Dg, we let
P(F) = {a € Sp(g,Q)| (F) = F}

be the normalizer in Sp(g,Q) of # (or the parabolic subgroup of Sp(g,Q)
associated to .%) and let

Z(F) = {a € Sp(g,Q) | a(W) =W for all W € F}
be the centralizer of #. We put
G(F):= P(7)/2(F) = Sp(s,Q).

Obviously G(%) acts on %. We choose the standard boundary component
F = F,. An element v of P(#) is of the form

Al 0 Bl *
* U %k

(5.9) =1, 0 b € Sp(g,Q),
0 0 0 tut

(

The unipotent radical U(.%) of P(%) is given by

I, 0 0 ‘tu
G10) u)={ | 3 Toe B n | | AueQu, ke quie
0 0 0 I,
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and the centralizer Zy (%) of U(F) is given by

I, 0 0 0
0 I,—s O K

T\ — (9—s,9—s)
(5.11) Zy(F) = 0 0 I 0 keQ
0 0 0 I;—s
We have inclusions of normal subgroups
Zy(F) CcU(ZF) C P(%).
The Levi factor L(.%#) of P(.%) is given by
(5.12) L(7) = Gn(F) Gi(F)
with
(5.13)
A1 0 B 0
0 I,- 0 0 A B
g\ — g—s ar
aa=t o o [er@| (& B) essw
0 0 0 I,
and
I, 0 O 0
(G.14) G =4[ o f | ep#)| secLe- s
0 0 o ts!

The subgroup U(.%)Gp(-%) is normal in P(.#). The map P(.%) — Sp(s, Q),
v +— 1 is surjective and induces the isomorphism Gp(%s) = Sp(s,Q). We
note that the map f : P(%,) N Sp(g,Z) — Sp(s,Z), v+ 7 is obtained via
(Vg ngs) — W, in the sense that if v € P(.%;), then

i (V([)/ Igo_s) - (71((?/) Igo_s>'

]D);t = H F

0<s<g

=[] Z,

F:rational

We define
and

where .% runs over all rational boundary components. Via the Cayley transform
@, (cf. (5.2)), we identify

Dyt = Hy' = J] H..

0<s<g
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Definition. Let u > 1. We denote by 20, (u) the set of all matrices @ = X+iY
in H, with X = (2;;) € R(99) satisfying the conditions (1) and (92):
(Ql) |.TU| <Uu;
(Q2) if Y = *WDW is the Jacobi decomposition of Y with W = (w;;)
strictly upper triangular and D = diag(ds, ..., d,) diagonal, then we have
|wij|<u, 1 <uds, di<udi+1, 1=1,...,9—1.

It is well known that for sufficiently large u > 0, the set 2, (u) is a funda-
mental set for the action of I'y on Hy, that is, I'y - 20, (u) = H,, and

{yelygly- Wy(u) N Wy(u) # 0}
is a finite set. We observe that if Q = (%1 33) € W, (u) with Q; € C(s:9)
3 2
then Oy € 20, (u).
Definition. We can choose a sufficiently large ug > 0 such that for all 0 <

s < g, W,(up) is a fundamental set for the action of I'; on H,. In this case we
simply write 20, = W, (up) with 0 < s < g. We define

W, = H 20,.
0<s<g

For €}, € 2,_,, we let U be a neighborhood of €, in Q,_, and v a positive
real number. For 0 < s < 7, we let W, (U, v) be the set of all

_ ([ Qs : (9—r,g—7)
Q= (tﬂs Qg) €W, with Q; €C

satisfying the conditions (201) and (201):

(Qﬁl) O eU;

(202) if Y = *W DW is the Jacobi decomposition of Y with W strictly upper
triangular and D = diag(dy,...,d,) diagonal, then we have dg_,4+1 > v.

A fundamental set of neighborhoods of Q. € 20,_, for the Satake topology
on 2, is given by the collection {Uogsgr W (U, v)}’s, where U runs through
neighborhoods of Q, in 20,_, and v ranges in R*. We regard

* st~ st
W, C HY = Dy
as a subset of .

The Satake topology on Dj is characterized as the unique topology 7 ex-
tending the ordinary matrix topology on D, and satisfying the following prop-
erties (ST1)—(ST4):

(ST1) 7 induces on W the topology defined in Definition 5.2;

(ST2) Sp(g,Q) acts continuously on Dj;

(ST3) A; = T'y\Dj is a compact Hausdorff space;

(ST4) For any Q2 € D}, there exists a fundamental set of neighborhoods {U'}
of Qsuchthat v- U =Uify€Ty(Q) = {yely| v Q=Q}, andy-UNU =0
if v ¢ Ty (02).
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For a proof of these above facts we refer to [4].

Now we are ready to investigate the compactification of the moduli space
2 of real principally polarized abelian varieties of dimension g obtained by
R. Silhol.

Definition. Let v > 1. We let F,(u) be the set of all @ = X 4+ iY € 47, with
X = ReQ = (z;;) satisfying the following conditions (a) and (b):
(a) z;; =0 or &;
(b) if Y = ‘W DW is the Jacobi decomposition of Y with W strictly upper

triangular and D = diag(ds,...,d,) diagonal, then we have
lwij] <uw and 0<d; <udiy.

We define F(u) to be the set of matrices in J7; satisfying the condition |z;;| <

1 and the above condition (b). Let up > be as in Definition 5.2. We put

2
Fy:= Fy(uop).
It is well known that Fj is a fundamental set for the action of 1"; on 3.

For two nonnegative integers s and ¢, we define two subsets .%; ; and Fj ; of
D7 as follows.

—I; 0 0
(515) y‘g’t = 0 W 0 S ID);; W S ID)g*(Sth)
0 0 L
and
—I; 0 0
(5.16) Foy = 0 W 0| eF| WeF,
0 0 I

For M € Z(9:9)  we set
Fy o= {QEFg| 2Re() = M}

In particular, Fop = {Q € F,; | Re2 = 0}, where 0 denotes the g x g zero matrix.
We let

M = {M:(mij)GZ(g’g” M ="M, m;; =0 or 1}.
For any M € M, we set

1
Bi= (7 2 ese. 0.

g
By the definition we have
Fg = U B]\/[(F()) and Fg = U B]\/[(FO).
MeM MeM

We can show that % = I‘; -Fg.
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Now we embed 77 into D} via the Cayley transform (5.3). We let H; be
the closure of J7; in ID);;. Then the action of 1"; extends to an action of 1";

on #, (see (3.16), (3.17), (ST2)). R. Silhol proved that the quotient space
F;\@ is a connected, compact Hausdorff space (cf. [26, pp. 173-177]). Let
7 Hy — I;\ Ay be the canonical projection. For M € M, we define

1

We let 77, be the closure of % in %. Then without difficulty we can see
that

(5.17) In\Ay= | U (#(Bu(Zer)UHy)).
0<s+t<g MeM

Let {Z;|1<i< N}with N=g+1+ [%] be the connected components of
Zg CTy\Ay and let ¥; be the restriction to Z; of the fundamental involution
¥ (cf. Proposition 4.1). We note that ¥ does not extend to a global involution
of I';\%;. But ¥; extends to an involution of the closure 27; of 27 in I';\.7;.
We observe that for each 1 <1i < N, we have 27; = I';(M;)\ y;, for some
M; € M. Here T (M, 7{7€F*|7(%M):%Mi}.

Definition. Let z; € 27; and 25 € %j. We say that z; and 29 are Y-equivalent
and write z1 ~ 2o if X;(z1) = X;(22).

Silhol [26, p. 185] showed that ~ defines an equivalence relation in I'} \jf .

By a direct computation, we obtain

v 0 0 0 0 v
* A 0 0 By x
HEMER Y € Sp(9.Q) ¢+
C 0 0 D
vig 0 0 0 0 v
where

— Al Bl ) B
n= (Cl Dl)ESp(gT,@) Wlth 7’*5+t

and

U= (“1 “12) €GL(r,Q), V= (”1 “21) =ty

U1 U2 V12 V2
Now we define
(5.18) %ﬂg(s,t) = (I‘; NP(Fs 1))\ (st ﬂ%).
It is easily checked that
F;mp(y§7t) = Fg (s+t) and yétm% % (s+t)-
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We define
(5.19) 2 = Ti\Hy ) ~ .
Silhol [26, Theorem 8.17] proved the following theorem.

Theorem 5.1. 2} is a connected compact Hausdorff space containing 2y as
a dense open subset. As a set,

2i= JI 260

0<s+t<g

We recall that HY denotes the Satake partial compactification of H, that
is obtained by attaching all rational boundary components with the Satake
topology. We know that Sp(g,Q) acts on H, the involution 7 : H, — Hy
(cf. (2.9)) extends to H; and 7(a - x) = 7(a)7(x) for all @ € Sp(g,Q) and
x € Hy.

Let N = 4m with m a positive integer. We write

X(N):=Ty(N)\Hy; and V(N):= 'y (N)\Hj.
We let
(5.20) mpp : Hy — V(N) = T'y(N)\Hj

be the canonical projection of H to the Baily-Borel compactification of X (N).
The involution 7 passes to complex conjugation 7 : V(N) — V(N), whose
fixed points we denote by V(N )g. Obviously the 7-fixed set

X(N)g = {x € X(N)| 7(z) =z}

is a subset of V(NN)r. We let X (N)g denote the closure of X (N)g in V/(N)r.

Theorem 5.2. There exists a natural rational structure on V(N) which is
compatible with the real structure defined by T.

Proof. 1t follows from Shimura’s result [22] that the I';(N)-automorphic forms
on H, are generated by those automorphic forms with rational Fourier coeffi-
cients. 0

If v € I'y(N) and F is a rational boundary component of H such that
7(F) = F, we define the set of y-real points of F to be

(5.21) Fi={eeF|1(x)=v- x}.

Then 7pp (j'r'y) - V(N)]R

Definition. Let N = 4m. A T'y(N)-real boundary pair (%,v) of degree s
consists of a rational boundary component % of degree s and an element
v € T'y(N) such that F77 # (. We say that two I'g(N)-real boundary com-

ponents (F,v) and (F.,v«) are equivalent if the resulting loci of real points
7pp(F™7) = mpp(F:") coincide.
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We observe that if (F#,7) is a I'j(N)-real boundary pair and if o € I'y(V),
we see that 7(F) = v(F) and (a(F), 7(a)ya~1) is an equivalent I'y(N)-real
boundary pair.

Fix a positive integer s with 1 < s < g. We define the map ® : H; — HJ
by

(o T
(522) (I)(Ql) = Yh—r)noo ( 0 ’LY) R 0 € Hg, Y € Pg—s-

Obviously ®(H,) = % is the standard boundary component of degree s (cf.

(5.8)).
Let

vs 1 P(Fs) — Gp(%s)
be the projection to the quotient. It is easily seen that v, commutes with 7.
Therefore .7 is preserved by 7. The set

FI={01Y)|Y € P}

is the set of 7-fixed points in %, and may be canonically identified with Ps.
We denote by i I, its canonical base point. Then .%; is attached to Hy so that
the cone ®(i Py) is contained in the closure of the cone i Py.

Proposition 5.1. Let (%,) be a I'y(N)-real boundary pair of degree s. Then
there exists v, € 'y such that v.(Fs) = .F and

_ A B
(%) "Iy Y = (0 tAl) € ker (vs).

Moreover, we may take B = 0, i.e., there exist v' € T'g(4dm) and o € T'y so
that F7' = F™, vo(F,) = .F, and so that

_ A 0
(7)Y 0 = <0 tA_1> € ker (vs).
Proof. The proof can be found in [8, pp. 19-21]. 0

As an application of Proposition 5.1, we get the following theorem.

Theorem 5.3. Let m > 1 be a positive integer. Let .F be a proper rational
boundary component of Hy of degree g — 1. Let v € T'y(4m) such that

Fh={zve F|1(x)=~ -z} #0.

Then Z77 is contained in the closure of H;Fg(4m) in H, where
H;F9(4m) = {QeHy| 7(Q)=-Q=1~-Q for somey €Ty(4m)}
denotes the set of T g(4m)-real points of Hy.

Proof. The proof can be found in [8, p. 23]. O
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Theorem 5.4. Let k be a positive integer with k > 2. Let (F,v) be a T'y(2%)-
real boundary pair. Then there exists y1 € T'y(2%) such that F™7 = ﬂ”l and

FT is contained in the closure Hg " of HZ™ in HE.
Proof. The proof can be found in [8, pp. 23-26]. O

We may summarize the above results as follows. The Baily-Borel compact-
ification V() = T'y(N)\H} with N = 4m is stratified by finitely many strata
of the form npp (%), where Z is a rational boundary component. Each such
strata is isomorphic to the standard rational boundary component %, = Hi;.
The stratum 7pp(.#) is called a boundary stratum of degree s. Let V(N)"
denote the union of all boundary strata of rank g — r. We define

V(N)g == V(N)"NV(N)g.
According to Theorem 5.4, we have
V(N)RUV(N)g € X(N)r C V(N)g,
where X (N)g denotes the closure of X (N)g in V(N).

6. Polarized real tori

In this section we introduce the notion of polarized real tori.

First we review the properties of real tori briefly. We fix a positive integer
g in this section. Let T = RY9/A be a real torus of dimension g, where A
is a lattice in R9. T has a unique structure of a smooth (or real analytic)
manifold such that the canonical projection p : RY — T is smooth (or real
analytic). We fix the standard basis {e1,...,es} for R9. We see that A = I1Z9
for some II € GL(g,R). A matrix II is called a period matriz for T. Let
C; = {z € C| |z| = 1} be a circle. Since T is homeomorphic to C} x - - - x C§ (g-
times), the fundamental group is

m(T) 2w (CY) x -+ x m (C}) = 7Z9.
We see that
Hy(T,7) = 7 = HYT,7), k=0,1,...,9

and
HY(T,z) = \H'(T,2) = \2°.
Thus the Euler characteristic of T is zero. The mapping class group MCG(T)
is
MCG(T) = Aut(m(T)) = Aut(Z9) = GL(g,7).

It is known that any connected compact real manifold can be embedded into
the Euclidean space R? with large d. Thus a torus T can be embedded in a
real projective space P4(R). Any connected compact abelian real Lie group is a
real torus. Any two real tori of dimension g are isomorphic as real Lie groups.

We easily see that if S is a connected closed subgroup of a real torus 7', then
S and T'/S are real tori and T'= S x T'/S.
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Let T=V/A and T = V' /A’ be two real tori. A homomorphism ¢ : T —
T’ is a real analytic map compatible with the group structures. It is easily
seen that a homomorphism ¢ : T — T" can be lifted to a uniquely determined
R-linear map ® : V. — V’. This yields an injective homomorphism of abelian
groups

7o : Hom(T, T") — Homg(V, V'), ¢ +— @,
where Hom (T, T") is the abelian group of all homomorphisms of T into 7" and
Hompg(V,V’) is the abelian group of all R-linear maps of V' into V. The above
7a 18 called a real analytic representation of Hom(7,T"). The restriction ® 5
of ® to A is Z-linear. ®, determines ® and ¢ completely. Thus we get an
injective homomorphism

7 : Hom(T,T") — Homgz(A,A'), ¢+ Py,
called the rational representation of Hom(7',T").

Lemma 6.1. Let ¢ : T — 1" be a homomorphism of real tori. Then

(1) the image Im ¢ is a real subtorus of T";

(2) the kernel ker ¢ of ¢ is a closed subgroup of T and the identity component
(ker ¢)o of ker ¢ is a real subtorus of T of finite index in ker ¢.

Proof. Tt follows from the fact that a connected compact abelian real Lie group
is a real torus. Since ker ¢ is compact, ker ¢ has only a finite number of con-
nected components. (I

A surjective homomorphism ¢ : T — T of real tori with finite kernel is
called a real isogeny or simply an isogeny. The exponent e(¢) of an isogeny
¢ is defined to be the exponent of the finite group ker ¢, that is, the smallest
positive integer e such that e-x = 0 for all = € ker ¢. Two real tori are said to be
isogenous if there is an isogeny between them. It is clear that a homomorphism
¢ : T — T’ is an isogeny if and only if it is surjective and dim7T = dimT".
We can see that if I' C T is a finite subgroup, the quotient space T'/T is a real
torus and the natural projection pr : T — T'/T" is an isogeny.

For a homomorphism ¢ : T — T" of real tori, we define the degree of ¢ to
be

deg 61— {ord (ker ¢) if ker qb'is finite ;
0 otherwise.
Let T'= V/A be a real torus of dimension g. For any nonzero integer n € Z,
we define the isogeny ny : T — T by nr(z) := n-z for all z € T. The
kernel T'(n) of np is called the group of n-division points of T. Tt is easily
seen that T'(n) & (Z/nZ)” because kerny = LA/A =2 A/nA = (Z/nZ)’. So
degnr = nd.
We put
Homg(T,T") := Hom(T,T') ®z Q
and
End(T') := Hom(7,T), Endg(T):= End(T) ®z Q.
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For any a € Q and ¢ € Hom(T,T"), we define the degree of a ¢ € Homg(T,T")
by
deg (a @) := o deg ¢.

Lemma 6.2. For any isogeny ¢ : T — T" of real tori with exponent e, there
exists an isogeny 1 : T — T, unique up to isomorphisms, such thatop = er
and ¢ o) = err.

Proof. Since ker ¢ C ker er, there exists a unique map v : T/ — T such that
Y o¢=er. It is easy to see that 1 is also an isogeny and that ker C kerer.
Therefore there is a unique isogeny ¢’ : T — T such that ¢’ o ) = eqv. Since

¢'oer =¢'otpop=erodp=doer

and e is surjective, we have ¢’ = ¢. Hence we obtain 1) o ¢ = er and ¢p o) =
err. [

According to Lemma 6.2, we see that isogenies define an equivalence relation
on the set of real tori, and that an element in End(7T') is an isogeny if and only
if it is invertible in Endg(T).

For a real torus T'= V/A of dimension g, we put V* := Homg(V,R). Then
the following canonical R-bilinear form

(, VXV —R, {Lvyr:=LW), eV, veV
is non-degenerate. Thus the set
A= {LeV*| (t,Np CZ}
is a lattice in V*. The quotient
T:=V* / A
is a real torus of dimension g which is called the dual real torus of T'. Identifying
V' with the space of R-linear forms V* — R by double duality, the non-

degeneracy of ( , ) implies that A is the lattice in V' dual to A. Therefore we
get

-~
~

T="T.

Let ¢ : Ty — T5 be a homomorphism of real tori with T; = V;/A; (i = 1, 2)
and with real analytic representation ® : V; — V5. Since the dual map ®* :
Vy¥ — Vi satisfies the condition ®* (Ag) C A4, ®* induces a homomorphism,
called the dual map
(;5 : fQ — fl.

If ¢ : T5 — T3 is another homomorphism of real tori, then we get

Yoo = goi.
If ¢ : Ty —> T3 is an isogeny of real tori, then dual map (E . Ty — T} is also
an isogeny.



POLARIZED REAL TORI 295

Definition. A real torus 7' = RY/A with a lattice A in RY is said to be polarized
if the associated complex torus 2 = C9/L is a polarized real abelian variety,
where L = Z9 + i A is a lattice in C9. Moreover if 2 is a principally polarized
real abelian variety, T is said to be principally polarized. Let ® : T — A be
the smooth embedding of T" into A defined by

(6.1) S(v+A):=iv+ L, oveRI.

Let £ be a polarization of 2, that is, an ample line bundle over . The pullback
®*£ is called a polarization of T. We say that a pair (T, ®*£) is a polarized
real torus.

Example 6.1. Let Y € P, be a g x g positive definite symmetric real matrix.
Then Ay = Y79 is a lattice in RY9. Then the g-dimensional torus Ty = R9/Ay
is a principally polarized real torus. Indeed,

Ay = CI/Ly, Ly =79+ iAy

is a princially polarized real abelian variety. Its corresponding hermitian form
Hy is given by

HY(x7y> = EY('LZ',y) + ’LEY(Z',y) = tzyilya T,y € (Cga

where Fy denotes the imaginary part of Hy. It is easily checked that Hy is
positive definite and Ey (Ly x Ly) C Z (cf. [17, pp. 29-30]). The real structure
oy on 2y is a complex conjugation.

Example 6.2. Let Q = ( g 7‘\//_35) be a 2x2 symmetric real matrix of signature

(1,1). Then Ag = QZ? is a lattice in R?. Then the real torus Ty = R?*/Ag
is not polarized because the associated complex torus g = C?/L¢ is not an
abelian variety, where Lo = Z? + i Ag is a lattice in C2.

Definition. Two polarized tori T3 = R9/A; and To = RI/A5 are said to be
isomorphic if the associated polarized real abelian varieties 2; = C9/L; and
Ao = C9/Ly are isomorphic, where L; = Z9 + i A; (i = 1,2), more precisely,
if there exists a linear isomorphism ¢ : C¢9 — C9 such that

(6.2) (L) = La,
(6.3) e« (Er) = B,
(6.4) pe(01) = pooiop™ = oy

where F; and F, are polarizations of 2; and 2, respectively, and o; and
o2 denotes the real structures (in fact complex conjugations) on 24; and s
respectively.

Example 6.3. Let Y7 and Y5 be two g X g positive definite symmetric real
matrices. Then A; := Y;Z9 is a lattice in RY (i = 1,2). We let

T, := RI/A;, i=1,2
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be real tori of dimension g. Then according to Example 6.1, T} and T5 are
principally polarized real tori. We see that T} is isomorphic to 75 as polarized
real tori if and only if there is an element A € GL(g,Z) such that Yo = AY; ‘A.

Example 6.4. Let Y = (g \/‘/55) Let Ty = RQ/AY be a two dimensional

principally polarized torus, where Ay = YZ? is a lattice in R?. Let T be the
torus in Example 6.2. Then Ty is diffeomorphic to Tg. But T is not polarized.
Ty admits a differentiable embedding into a complex projective space but T
does not.

Let Y € Py be a g x g positive definite symmetric real matrix. Then Ay =
Y79 is a lattice in RY9. We already showed that the g-dimensional torus Ty =
RY9/Ay is a principally polarized real torus (cf. Example 6.1). We know that
the following complex torus

Ay :(Cg/Ly, Ly =79+ i Ay
is a princially polarized real abelian variety. We define a map @y : Ty — 2y
by

(I)y(a-i-/\y) :=14a + Ly, acRY.
Then &y is well defined and is an injective smooth map. Therefore Ty is
smoothly embedded into a complex projective space and hence into a real
projective space because 2y can be holomorphically embedded into a complex
projective space (cf. [17, pp. 29-30]).

Let 2 = C9/L and A’ = CY' /L’ be two abelian complex tori of dimension g
and dimension ¢’ respectively, where L (resp. L') is a lattice in C9 (resp. C9).
A homomorphism f : 2 — U’ lifts to a uniquely determined C-linear map
F:C9 — CY'. This yields an injective homomorphism

pa : Hom(2A, ') — Home(CY,CY) = CY9) | fr— F = pu(f).
Its restriction F'|z to the lattice L is Z-linear and determines F and f com-
pletely. Therefore we get an injective homomorphism
pr : Hom(24,2") — Homgz (L, L"), f+— F|L.
Let IT € C9:29) and I € C'"29) be period matrices for 2 and 2’ respectively.

With respect to the chosen bases, p,(f) (resp. p-(f)) can be considered as a
matrix in C9°9) (resp. Z(2929)). We have the following diagram:

729 LN Cy
[or() [pa)
729 —E—> cY |

that is, by the equation
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Conversely any two matrices A € C¢"9) and R € Z(29'29) satisfying the equa-
tion AIl = II'R define a homomorphism 2 —» 2.

For two real tori T7 and 75 of dimension g; and dimension go respectively,
we let Ext(T%,T1) be the set of all isomorphism classes of extensions of T5 by
77 up to real analytic isomorphism. Since any two real tori of dimension g; + g
are isomorphic as real analytic real Lie groups, Ext(T%,T7) is trivial. This leads
us to consider polarized real tori Ty and Th with T; = R9% /A, (i = 1,2). Here
A; is a lattice in R9 for i = 1,2. Let 2; and 2, be the polarized real abelian
varieties associated to T7 and T5 respectively, that is,

A = C%/L;, Ly =7% + NZ9%, i=1,2.

Let Ext(T5,T1)pt be the set of all isomorphism classes of extensions of 2y by
20;. We can show that a homomorphism ¢ : A5 — 25 such that 2[5 is the real
abelian variety associated to a polarized real torus T4 induces a map

(6.5) ¢ Ext(Ty, Th )pr — Ext(T3,T1)ps

and that a homomorphism ¢ : 2y — A} such that 2| is the real abelian
variety associated to a polarized real torus T induces a map

(66) ’L/)* : EXt(TQ,Tl)pt — EXt(TQ,T{)pt.
Indeed, if
(6.7) e: 0—A AL A —0

is an extension in Ext(T%, T )pt, the image ¢*(e) is defined to be the identity
component of the kernel of the homomorphism C), 4 : A x A5 — 2y defined
by

Cpo(x,y) = p(r) = d(y), €A yeA.

The dualization of the exact sequence (6.7) gives an element é € Ext(gll, Q{g)
We define

(6.8) PYile) == ¢*(€) € Ext(Ts, T7)pe = Ext(Aa, A).

Therefore Ext( , )pt is a functor which is contravariant in the first and covariant
in the second argument.

We can equip the set Ext(T%,T1)ps with the canonical group structure as
follows: Let e and e, be the extensions in Ext(T5,T1)pt which are represented
by the exact sequence (6.7) and the following exact sequence

ee 1 0—A — A —> Ay — 0.
The product e x e, is represented by the exact sequence
e X ey 0—>Ql1XQ[1—)Q[XQ[O—>Ql2XQLQ—>O.

If A: Ay — Ay x Ay is the diagonal map, z — (z,z), x € Az and p :
Ty x Ty — T4 is the addition map, (s,t) —> s+ ¢, s,t € 2y, the sum e + e,
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is defined to be the image of e x e, under the composition

Ext(Ty x Ta, Tt x T1)pe — Ext(Ty, Ty x T1)pt -5 Bxct(Th, T )t
that is,
(6.9) e+ e = pA%(e X es).

We can show that Ext (75, Tl)pt is an abelian group with respect to the addition
(6.9) (ct. [5]).

Now we describe the group Ext(T5,T1)pt in terms of period matrices. First
we fix period matrices II; and Il for T} and T5 respectively, that is, A; = II;Z9%
for i = 1,2. We know that II; € GL(g;,R) for i = 1,2. To each extension

e: 0—A —A—2A —0
in Ext(T%, T1)ps, there is associated a period matrix for 2 of the form

(6.10) L o , I = (I, IL;) for i = 1,2, o € Cl91:292)
0 Il

Conversely it is obvious that for any o € C(91:292) | the matrix of the form (6.10)
is a period matrix defining an extension of 2y by 21 in Ext(T%, T1)pt-

Lemma 6.3. Let o and o’ be elements in C91:292) Suppose that I1; and Il are
period matrices for polarized real tori Ty and Ts respectively. Then the period
matrices

~ I ~ T / ~
o, = (M 7)) g, = (M 2 @m= (I, 1) for i=1,2
0 H2 0 H2

define isomorphic extensions of Us by Aq in Ext(Ts, T1)pt if and only if
(6.11) o' =0+ LM + All,
with some M € 7(291:292) gnd A € C91:92),

Proof. Let ﬁg and ﬁg/ define isomorphic extensions e and e’ of s by ;:

e: 0 — 22y — A — A — O
| Lf |
e : 0 — 2 — A — Ay — 0

Then we have the following commutative diagram:

it
Z291+292 7 o (Cg1tg2

[ty [pa)

o

7291+292 " C91+92
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Therefore there are A € C(91:92) and M € Z(291:292) that satisfy the following
equation

I, A\~ =~ (I, —-M
(6.12) (0 Ig2>H0HU/<O ; >

g2
We obtain the equation (6.11) from the equation (6.12).
Conversely if we have o and ¢’ in C(91-92) satisfying the equation (6.11), then
we see easily that I, and II,s define isomorphic extensions of (s by ;. [l

Proposition 6.1. Let o and o’ be elements in C91:292) Suppose that I1; and
II5 are period matrices for real tori Ty and To respectively. Assume that the
following period matrices

~ | ~ T !/ ~

i, = (M ) g, = (M 7)), = (I, IL) for i=1,2
0 I 0 I,

define extensions e and €' of Ay by Ay in Ext(Ts,T1)pe. Then the period matriz

- T ’
oo = I oto
0 II,

defines the extension e + €' in Ext(T, Th)pt.
Proof. We denote
A = CNF92/11,220+292  and A = CO+92 /1L, 720 202,
Then we have the extensions
e: 0—A —A—As—0

and
e 0—A —A — A, —0
in Ext(T%,T1)pt- The complex torus A x A’ defined by the extension e x ¢’ in

Ext(A2 x s, A7 x ;) is given by the period matrix

I, 0 o O

0 Hl 0 O'/

0 0 II O

0 0 0 Il

Let A : 205 — 25 x 2s be the diagonal map. Then we have the induced map
A* EXt(QlQ X 52[2,9[1 X 52[1) — EXt(ng,Qll X 52[1) If

Aflexe): 0—A xA — 5 — Ay —0

0, =

is given, the complex torus S is given by a period matrix of the form

H1 0 (6%
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with o € C91:292) and B € C91:292), The homomorphism
EXt(ng X ng,Qll X Qll) — EXt(ng,Qll X Qll), e X 6/ — A*(e X 6/)

corresponds to a homomorphism S —— 2 x 2l" of real tori given by the equation

Ly 0 M I, 0 A
0 Ly M| |0 I, A

R Ly | |0 0 I, Da.
0 0 Iy 0 0 I,

Thus we have the equations
o =0 + ﬁlMl — Alﬁg and ﬂ = O'I + ﬁlMg — Agﬁg.

According to Lemma 6.3,

ﬁl 0 g
0 H1 0'/
0 0 I

is also a period matrix for S respectively A*(e x ¢’). We denote
et+e : 0—A — B — Ay — 0.
A period matrix for B is of the form
ﬁl T
Iy := ~ |, TeRW9),
» ( 0 H2>

The homomorphism . : A*(exe’) — e+e¢’ defines a homomorphism S — B
which is given by the equation

1I ~
o (5 M0 n o) = (T ) (e e )
0 0 192 0 0 ﬁ2 0 HQ 0 0 1292

with A € C9192) and M € Z(29:292) . Comparing both sides in the equation
(6.13), we obtain
T=0+0 — 1M + All,.

According to Lemma 6.3, we see that

~ T !
oo = I, oto
0 11,

is a period matrix for 9B, respectively e + ¢€’. O

Let T4, 15,11, 115, ﬁl,ﬁg, o, o’,ﬁg and II,/ be as above in Proposition 6.1.
We note that the assignment

o— C91+92/ﬁ02291+292, o € Clor:292)
induces a surjective homomorphism of abelian groups
(6.14) ®pp, 1, - C9292) s Bxt (T, Th ) pe.-
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According to Lemma 6.3, we see that the kernel of ®ry, 11, is given by
ker @rp, 11, = 11, Z(291:292) 4 Clon.92)T],,

Obviously the homomorphism @11, 11, depends on the choice of the period ma-
trices II; and Ils.

Proposition 6.2. Let T1 and T| be polarized real tori of dimension g1 and
dimension g| with period matrices 111 and I} respectively. Let To and T4 be
polarized real tori of dimension go and dimension g5 with period matrices Ilg
and 11, respectively. Then

(a) for a homomorphism f : Ay — As such that Al is the polarized real
abelian variety associated to a polarized real torus Ty, the following diagram

RIDY

C(91.292) —> Ext(T>,T1),

[ o) jf*
’ (Pnl’né
Clov292) 5 Ext(T5,Th)pt
commutes and
(b) for a homomorphism h : 2y — A} such that A} is the polarized real
abelian variety associated to a polarized real torus Ty, the following diagram

1y 11y

C(91,292) - Ext Tg, T1

pa(h) - l lh

’ ¢H{l,n2
Clah.202) —  Ext(T%,T7)pt

commutes.

Proof. (a) For an extension e € Ext(Ty,T1)p we choose o € C91:292) with

@, 1m,(0) = e and o € C(91:292) with @, my(0’) = f*(e). We see that the
following diagram with exact rows

ffe): 0 — 2% — A — A, — 0
| L |
e: 0 — A7 — A — Ay — 0

commutes. Thus o and ¢’ are related by the equation

(6.15) (Igl 4 ) o) _ (I o (1291 M )
0 pa(f))\ 0 11 0 II 0 pr(f)
with A € C:92) and M € Z(291:292)  Comparing both sides in the equation
(6.15), we get
o'=oc-p-(f) + ILM — ATILS.

According to Lemma 6.3, we have

P, (o) = Py (0 - o (f) = f*(e).
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This completes the proof of (a).

(b) For an extension e, € Ext(T>,T1)px we choose o, € Cl91:292)
with ®11,.1m,(00) = €, and o, € C91.292) with Q1 1, (05) = ha(es). We see
that the following diagram with exact rows

ee 1 0 — 24 — A — A — 0
Lh Lhs |
e: 0 — A — A — A — 0

commutes. Thus o, and ¢ are related by the equation

(6.16) M o\ (pr(h) Mo\ _ (pa(h) A\ (L oo

’ 0 T, 0 Iag, 0 1, 0 I/~
with A, € C91:92) and M, € Z(291:292) Comparing both sides in the equation
(6.16), we get

b = pa(h) - 00 + Aolly — I M.
According to Lemma 6.3, we get
hi(eo) = hu(®Pm, 1m,(06)) = Pz 1, (pa(h) - 00).
This completes the proof of (b). O
Corollary 6.1. For e € Ext(T2,T1)pt and n € Z, we have
ny,(e) = n-e = (na,)«(e).

Proof. We consider the following commutative diagram:

@y,
C(91,292) &) Ext(T2, T1)pt
'Pr(nmz)l l(n‘lb)*
@y,
C(91,292) _ Ext(Ty, T1)pt

Since pr(na,) = nlag,, we get
(na,)*(e) = @y m,(no) = n- @y m,(0) = n-e.
By a similar argument, we get
(ng, )«(e) = n-e. 0

Proposition 6.3. We have an isomorphism of abelian groups

II
clo /(1 1)z 2 (12

g2

> = EXt(TQ, Tl)pt-

Proof. Let 0 = (01,02) € C(91:292) with 01,02 € Cl91,92) corresponding to the
extension e = @y, 11,(0) € Ext(Ts,T1)pt- By Lemma 6.3, the matrix

g — Ulﬁg = (0’1,0’2)— Ul(Igz,Hg) = (0,0’2—0’11_[2)
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corresponds to the same extension e. This shows that every extension in
Ext(Ty, T1)pt can be represented by a matrix ¢ = (0,a) with a € C91:92),
Hence we get a surjective homomorphism of abelian groups

Cclong2) Ext(T2,T1)pt-

According to Lemma 6.3, the matrices o and o € C(91:92) define the same
extension if and only if

My M,
Mz My

with (17 32 ) € Z(291:292) and A € C'9-92), From the equation (6.17) we get
A= —M, — I, Ms.

(6.17) 0,0 —) = II, ( ) + Ally

Thus we have

« —Oél = H1M4 — H1M3H2 + M2 — M1H2

_ —M; M\ (I,
_( 915H1) (M3 M4) (192)'
This completes the proof of the above proposition. [

7. Line bundles over a polarized real torus

Before we investigate complex line bundles over a real torus, we need a
knowledge of holomorphic line bundles on a complex torus. We briefly review
some results on holomorphic line bundles on a complex torus (cf. [13, 17, 27,
28)).

Let X = CY9/L be a complex torus, where L is a lattice in C9. The ex-
ponential sequence 0 — Z — Ox — O% — 1 induces the long exact
sequence

o — HY(X,Z) — HY(X,0x) — HY(X,0%) - H*(X,Z) — ---
We recall that the Néron-Severi group NS(X) (resp. Pic(X)) is defined to be
the image of ¢; (resp. the kernel of ¢;). For a hermitian form H on CY9 whose
imaginary part Ey := Im (H) is integral on L x L, a semi-character for H is
defined to be a map « : L — C7 is defined to be a map such that
a(ﬂl +f2) = a(fl)a(fg)ewiEH(el’ez), fl,fg c L.

We let Her(L) be the set of all hermitian forms on C9 whose imaginary parts
are integral on L x L. For any H € Her(L), we denote by SC(H) the set of all
semi-characters for H. To each pair (H,«) with H € Her(L) and o € SC(H),
we associate the automorphic factor Jg o : L x C9 — C* defined by

(7.1) Jia(l,z) == a(f) e HEOFTHEO -y e, 2 e,
A lattice L acts on the trivial line bundle C9 x C on CY freely by
(7.2) 0-(2,8) = (240, Jua(l,2)), teLl, zeCY, £cC.
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The quotient
(7.3) L£(H,a):= (CI xC)/L
obtained by the action (7.2) of L has a natural structure of a holomorphic line
bundle over X. We note that for each such pairs (Hy,a1) and (Ha,aq), we
have
JHl,Otl : JH2,Ot2 = JH1+H270410t2 and S(Hla al) Y S(HQa 042) :E(Hl + HQ; aq OéQ)-
Let B(L) be the set of all pairs (H, a) with H € Her(L) and o € SC(H). Then
B(L) has a group structure equipped with multiplication law
(Hl,Oél) . (HQ,O[Q) = (Hl + HQ,Oél 042), Hz S Her(L), o; € SC(HZ), 1= 1,2
Appell-Humbert Theorem says that we have the following canonical isomor-
phism of exact sequences:

0 — Hom(L,Cy*) — B(L) — NSX) — 0

L | 1 i

0 —  Pic®(X) — Pie(X) — NSX) — 0
Here 81, : B(L) — Pic(X) = H'(X,O%) is the group isomorphism defined
by

ﬂL((Haa)) = ,S(H,Oé), (H,Oé) G%(L)

and ¢y, is the isomorphism induced by 8. It is known that NS(X) is a free
abelian group of rank p(X) < g%, where p(X) is the Picard number of X. By
Appell-Humbert Theorem, N.S(X) is realized in several ways as follows:
NS(X) = Pic(X)/Pic®(X) = o1 (H'(X,0%))

={H :CI x CY — C hermitian, Im (H)(L x L) C Z}

={F:C9 x CY — R alternating, E(L x L)C Z, E(i-,-) symmetric} .

Let X = Pic°(X) be the dual complex torus of X. There exists the holomorphic
line bundle & over X x X uniquely determined up to isomorphism, the so-called
Poincaré bundle satisfying the following properties (PB1) and (PB2):

(PBl) Z|xx1 = Lforall L € X, and

(PB2) ‘@|{0}><)A( is trivial on X.

We can see that H9(X, &) = C and HY(X, &) =0 for all ¢ # g.

Let Tpo = V/A be a real torus of dimension g, where V 22 RY is a real vector
space of dimension g and A is a lattice in V. Let p : A — C* be a character
of A. Let B:V xV — R be a real valued symmetric bilinear form on V. We
define the map Ip,, : A x V — C* by
(7.4) Ig,(\v) = p(\) e BON+2mBON T N e A eV, neC.

It is easily checked that I , satisfies the following equation

IB,p()\l + )\2,1}) = IB7P()\1,)\2 +’U)IB,p()\2,’U), A, A €A, veEV.
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Then A acts on the trivial line bundle V' x C over V freely by

(7.5) A-(v,n) = 0+ A I (A o)n), Aed veV, neC
Thus the quotient space
(7.6) L(B,p) = (VxC)/A

has a natural structure of a smooth (or real analytic) line bundle over a real
torus T'x.

Lemma 7.1. Suppose B:V xV — R is a positive definite bilinear form on
V. We define the function g, :V — C by

(77) oB,p(v) _ ZP(A)—l e—wB(k,)\)—QwB(v,)\), vevV.
AEA

Then map ©p,,: V — V x C defined by

(7.8) Op,(v) = (v,0p,(v)), veV

defines a smooth (or real analytic) global section of the line bundle L(B, p).
Proof. For any A € A and v € V, we have

0B,p(A+v)
- Z plp) e ™ B(p,p) =27 B(Av,p)
HEA
— p()\)e” B(A\\) + 27 B(v,\) Z p()\ + ,u)_l e B(Ap, A +p) — 27 B(v,A\+p)
nEA
= Ip,(\v)0p,,(v).
Therefore ©p,, is a smooth global section of L(B, p). O

Lemma 7.2. Suppose B : V xV — R is a positive definite bilinear form
on V. Assume B is integral on A x A, that is, B(A x A) C Z. Then for any
character p : A — C, the function fg,:V — C defined by

(7.9) fB,v) = Zp()\) e BON 2T BN ey
A€A

is invariant under the action of A. Therefore fg , may be regarded as a function
on Th.

Proof. 1t follows immediately from the definition. O

We see that
La=79 +iACCY
is a lattice in C9. We consider the complex torus
Tn= CI/Ly.
We define the R-linear map Sp : C9 x C9 — R and Ep : C9 x C9 — R by
(7.10) Sp(x,y) = Blz1,y1) + Bla2,y2)
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and
(7.11) Ep(z,y) = B(x2,9y1) — B(x1,92),

where £ = x1 + w0 € CY and y = y1 + iys € CI with z1, 22, y1,y2 € RY.
It is easily seen that Sp is symmetric and Ep is alternating. We note that
Sp(x,y) = Ep(iz,y) for all z,y € C9. We define the hermitian form Hp :
C9 x C9 — C by

(712) HB(:an) = SB(:an) + iEB('Tay)a T,y € cs.

Moreover we assume that Ep is integral on Ly x Ly. Let o : Ly — C7 be a
semi-character of Ly for Hp such that

a(ﬂl +f2) = a(fl) a(fg) €7TiEB(€1’€2), by, bs € L.
Then the mapping Jp,o : Lan x C9 — C* defined by
(7.13) Jp.all,z) = a(l) ez HoWO+mHa =0 =y e, »eCY

is an automorphic factor for Ly on C9. Clearly L, acts on the trivial line bundle
C9 x C over CY freely by

(714) E(Z,E) = (€+zaJB,a(£aZ)§)a EGLA; ZE(Cg, €E(C

The quotient

£(B,a) = (CY x C)/Lx
of C9 x C by Ly has a natural structure of a holomorphic line bundle over a
complex torus Ty.

In summary, to each pair (B, «) with s symmetric R-bilinear form B on V
such that Ep is integral on Ly x La and a semi-character a for Hp there is
associated the holomorphic line bundle £(B, a) over Tj.

We assume that B is non-degenerate of signature (r, s) with r + s = g. Then
the hermitian form Hp is also non-degenerate of signature (r, s). Moreover we
assume that Ep is integral on Ly x Ly. Under these assumptions, Matsushima
[15] proved that the cohomology group HY(%x, £(B,«)) = 0 for all ¢ # s and
that H*(%s, L(B,«)) is identified with the complex vector space of all C'*°
functions f on CY satisfying the following conditions:

(a) f is a differentiable theta functions for the automorphic factor Jp q;
namely we have

FUl+2z) =Jdpall,2) f(z), L€ Ly, z€CY,
(b) aa_zfi =0 forallie{1,2,...,r} and

of

(’)zi

where (z1,...,24) is the coordinate of C9 determined by a privileged basis
of CY9 for the hermitian form Hp. We can show that the cohomology group
Hs (EA, £(B, a)®3) defines a smooth embedding of T4 into the projective space

+ 7z, f =0 forallie{r+1,...,g},
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P4(C) with d + 1 = dim H*(Ty, £(B, @)®3) which is holomorphic in z1,..., 2,

and anti-holomorphic in z,41,. .., 24 (cf. [15] and [17]).
We consider the canonical semi-character ya g of La defined by
(7.15) Ya.p(k+ iN) = T ER(mIN e 79 N e AL

Then va,p defines the holomorphic line bundle £(B,va,5) over a complex torus
T a. For any z € T we denote by T, the translation of ¥y by z. Let mp : C9 —
%a be the natural projection. Then there exists an element cy g o of C9 such
that

(7.16) &(B.a) = T}, (or . S(B.7aB)-

cA,B,o s called a characteristic of the holomorphic line bundle £(B,«a). We
refer to [13] for detail.

Now we let To = V/A be a polarized real torus of dimension g. Its associated
polarized real abelian variety

QlAZ(Cg/LA, La=79+iA

admits a positive definite hermitian form Hj on CY whose imaginary part
Im (Hy) is integral on A x A (cf. [17, p. 35]). We write

Ha(z,y) = Sa(z,y) + 1 Ex(z,y), z,y€C,

where S) and F, are the real part (resp. imaginary part) of Hj respectively.
We know that Sy is a real valued symmetric bilinear form on V and Fj is a
real valued alternating bilinear form on V. Let ap : Ly — C} be a canonical
semi-character of L defined by

(7.17) ap(k+ i)) = ™ EAmIN g e 79\ € A

We let Jp, o, 1 La x C9 — C* be the automorphic factor for A on V' that is
canonically given by

(7.18) Jinon(l2) = ap(0) e BaGO+mHAGO - pe 15 e 9.
Obviously L acts on C9 x C freely by

0 (2,8) = (C+2, Juy,an(l,2)€), €Ly, 2€CY, £€C.
So the quotient space
(7.19) L£(Hp,op) := (CY x C)/La

has a natural structure of a holomorphic line bundle over an abelian variety
AA.
Now we define the map ®p : Ty — Ap by

(7.20) Pr(v+A):=idiv + Lp, veRY.
®, is a well defined injective mapping. It is well known that

Hq(QlA,S(HA,OéA)) =0
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for all ¢ # 0 and that the space of global holomorphic sections of £(Hy, cp)®"
for any positive integer n > 3 give a holomorphic embedding of 2, as a closed
complex manifold in a projective complex manifold P4(C) (cf. [17, pp. 29-33]).
Therefore we have a differentiable embedding of Ty into a complex projective
space P4(C) and hence into a real projective space PV (R) with large enough
N > 0.

We will characterize the pullback L(ayp) := @5 L(Ha,an). We first define
the automorphic factor I, : A x R9 — C* by

(7.21) Ioy (M 0) i= ap(iN) e3 HaQN+HmHAWN =y e Ay e RY,

This automorphic factor I, yields the smooth (or real analytic) line bundle
over Ty which is nothing but the pullback L(ap). We observe that if 0 is a
holomorphic theta function for £(Ha,ap), then the function fp : RY — C
defined by fy(v) := 0(iv), v € RY defines a global smooth (or real analytic)
section of L(ay).

Now we will show that a holomorphic line bundle £(Hy, ap) over 25 nat-
urally yields a smooth line bundle over a polarized torus Th. Let B be the
restriction of Sy to RY x RY. First we define the automorphic factor I, a, :
A X RI — C* by

(7.22)  Ipyar(Nv) = ap(2i ) e™PAAN+27BA0A) N e Ay e RY.
This automorphic factor Ig, o, (A, v) yields a smooth line bundle
(7.23) L(Bp,ap) := (RIx C)/A

over a polarized real torus Tx. Since B} is positive definite, according to Lemma
4.1, the space I'(Ty, L(Ba, ap)) of smooth (or real analytic) global sections of
L(Bp, ap) is not zero. If By is integral on A x A, according to Lemma 4.2, we
see that the function fa o, : RY — C defined by

fron(v) = ZaA(Qi)\) e BARAN) F2miBa(vA) g, e RY
AEA
is a function on T.

So far we have proved the following.

Theorem 7.1. Let Ty = V/A be a polarized real torus of dimension g. Then
there is a smooth line bundle L(Bp,an) over Ta which is constructed canoni-
cally by (7.23).

Example 7.1. Let Y € P, be a g X g positive definite symmetric real matrix.
Then Ay = Y79 is a lattice in RY. Then the g-dimensional torus Ty = R9/Ay
is a principally polarized real torus. Indeed,

Ay :(Cg/Ly, Ly =79+ i Ay
is a princially polarized real abelian variety (cf. Example 6.1). Its corresponding
hermitian form Hy is given by

HY(.’L',y) = SY(.T,y) + ZEY(:an) = twy—ly’ T,y € (Cg,
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where Sy and Fy denote the real part and the imaginary part of Hy respec-
tively. Let o : Ly — Cj be a semi-character of Ly. To a pair (Hy,a) the
canonical automorphic factor Jy, : Ly x C9 — C is associated by

Jy,a(l,2) = a(l)ez™ YT I mitY T e Ly 4 e Y.
The associated automorphic factor Iy, : Ay x R9 — C* is given by
Ivo (M) = a2i ) em MY I 2T Y TIA N e Ay y e RS
We get the associated line bundle
L(By,a) = (R x C)/Ay

given by Iy, where By is the restriction of Sy to RY x R9. Then the function
Oy,o : R9 — C defined by

Oy o(v) = Z a(2i)\)e_’rt’\yfl’\_2”tvyfl”\, veRI
AEAy

yields a smooth global section of L(By, «) over a real torus Ty. The canonical
semi-character ay of Ly is given by

ay(k+iX) = e ™Y A L e79 N e Ay.

8. Moduli space for principally polarized real tori
We have the natural action of GL(g,R) on P, given by
(8.1) AxY = AY'A, A€ GL(g,R), Y € P,.

We put &, = GL(g,Z) (see Notations in the introduction). The fundamental
domain R, for P, with respect to &, which was found by H. Minkowski [16] is
defined as a subset of P, consisting of Y = (y;;) € P, satisfying the following
conditions (M.1)—(M.2) (cf. [10, p.191] or [14, p. 123]):

(M.1) aY ta > yu for every a = (a;) € Z9 in which ag, ..., a4 are relatively
prime for k =1,2,...,g.

(M.2) ypp+1 >0 fork=1,...,9— 1L

We say that a point of R, is Minkowski reduced or simply M-reduced. R,
has the following properties (R1)-(R6):

(R1) For any Y € P,, there exist a matrix A € GL(g,Z) and R € R, such
that Y = R[A] (cf. [10, p. 191] or [14, p. 139]). That is,

GL(g,Z) o Ry = Py.

(R2) M, is a convex cone through the origin bounded by a finite number of
hyperplanes. R, is closed in Py (cf. [14, p. 139]).

(R3) If Y and Y[A] lie in R, for A € GL(g,Z) with A # +I,, then Y lies on
the boundary OR, of R,. Moreover R, N (Ry[A]) # 0 for only finitely many
A€ GL(g,Z) (cf. [14, p. 139)]).
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(R4) If Y = (yi;) is an element of R, then

1 . .
y11 <yo2 <o <yg and |y1j|<§yu for1<i<j<g.

We refer to [10, p. 192] or [14, pp. 123-124].
For Y = (y;;) € Py, we put

dY = (dy;;) and 8% = <%%) .
For a fixed element A € GL(g,R), we put
Y,=AxY = AY'A, Y €P,.
Then

9 4,10
8Y*_A 8YA '

We consider the following differential operators

o k
(8.3) Dk0<<Ya—Y> ), k=1,2,...,9,

where o (M) denotes the trace of a square matrix M. By Formula (8.2), we get

9\ a\'
YVi—— ) =A4(Y—) A"
( am) ( aY)
for any A € GL(g,R). So each D; is invariant under the action (8.1) of

GL(g,R).
Selberg [20] proved the following.

(8.2) dY, = AdY'A and

Theorem 8.1. The algebra D(Py) of all differential operators on Py invariant
under the action (8.1) of GL(g,R) is generated by D1, Do, ..., Dy. Furthermore
Dy, Ds,...,Dy are algebraically independent and D(P,) is isomorphic to the
commutative ring Clz1, xa, ..., x4 with g indeterminates x1, T2, ..., x4

Proof. The proof can be found in [14, pp. 64-66]. O
We can see easily that
ds* = o((Y~1dY)?)

is a GL(g,R)-invariant Riemannian metric on P, and its Laplacian is given by
9 \2
A= Y — .

_g+1
dpig(Y) = (det V)~ %= [ ] dys

i<j

We also can see that
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is a GL(g, R)-invariant volume element on P,. The metric ds* on P, induces
the metric ds% on R,. Minkowski [16] calculated the volume of R, explicitly.
‘P, parameterizes principally polarized real tori of dimension g. The Minko-
wski modular space T, is the moduli space for isomorphism classes of principally
polarized real tori of dimension g. According to (R2) we see that T, is a semi-
algebraic set with real analytic structure. Unfortunately %, does not admit
the structure of a real algebraic variety and does not admit a compactification
which is defined over the rational number field Q. We see that T, is real
analytically isomorphic to the semi-algebraic subset t%”(gm of 2. We define
the embedding @, : P, — S, by
(8.4) o,(Y)=1iY, YeP,.

We have the following inclusions
Pg&m‘Pg — Hy — Hy C Hy.

B, acts on Py and i Py, I’ acts on 7, and I'y acts on H, and H. It might
be interesting to characterize the boundary points of the closure of i P, (or
Py) in H explicitly. In Section 5 we reviewed Silhol’s compactification yﬂf of
% which is analogous to the Satake-Baily-Borel compactification. The theory
of automorphic forms on P, for GL(g,Z) has been developed by Selberg [20],
Maass [14] et al. past a half century. According to Theorem 5.1, ?]R:q is a
connected compact Hausdorff space containing 23 as an open dense subset of

2. But 2y does not admit an algebraic structure.
For any positive integer h € ZT, we let

(8.5) GLg 1, := GL(g,R) x R"9)
be the semi-direct product of GL(g,R) and R"9) with the multiplication law
(8.6) (A,a)-(B,b) = (AB,a'B~' +b), A,BcGL(g,R), a,becRM,

Then we have the natural action of GLg4 j, on the Minkowski-Euclid space Py x
R("9) defined by

(8.7) (A,a)-(Y,¢) = (AY'A4, (¢+a)A), (A,a) € GLyp, Y € Py, ¢ € R,
For a variable (Y, V) € P, x R"9) with Y € P, and V € R"9) we put
Y = () With Yo = yop, V= (vr),
dY = (dyuw), dV = (dvw),

@] =[] dyuw,  [aV] =[] dvw,

k,l

n<v

0 (140, 0 e
)4 - 2 8yu,, ’ ov N 6vkl ’

where 1 < p,v, I <gand 1 <k < h.

and
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Lemma 8.1. For all two positive real numbers A and B, the following metric
ds;h;AB on Py x R9) defined by

(8.8) ds’ pap= Ac(Y 'dYY'dY) + Bo(Y ' H(dV)dV)

18 a Riemannian metric on Py X RM9) which is invariant under the action
(8.7) of GLyp. The Laplacian Ay a5 of (Py x RM9) ds? . 4.) is given by

1 2\ h 9\, 1 9\ .,(0
Bgiian =40 <<Y0_Y> )‘ﬂ a (Ya_Y) T2 ((W) Y <W>) -
k<p P
Moreover Ag h:a,B 1s a differential operator of order 2 which is invariant under
the action (8.7) of GLg .
Proof. For a fixed element (A, a) € GLg p, we set
(Y*7V*) = (Aaa) ’ (Yv V)
Then
Y*= AY'A, V*=(V+a)'A

The first statement follows immediately from the fact that

dY* = AdY'A and dV* =dV'A.
Using the formula (13) in [9, p. 245], we can compute the Laplacian Ay p. 4.5
of (P, x R, ds§7h;A7B). The last statement follows from the fact that

9 ta-1 0,1 9 9 -1
="AT"—=A =—" .
oY oy = 7 ove 9V O
Lemma 8.2. The following volume element dvg (Y, V) on Py x R("™9) defined
by
gtht1
(8.9) dvg (Y, V) = (det V)™= [dY][dV]

is invariant under the action (8.7) of GLg .
Proof. For a fixed element (A4,a) € GLg }, we set

(Y5, V*) = (A,a)- (Y,V) = (AY 'A,(V +a) " A).
Let 65;(/;”“;;) be the Jacobian determinant of the action (8.7) of GLy ) on
P, x RM9) Tt is known that the Jacobian determinant of the action Y s Y*
is given by

a(Y™)

oY)
Take the diagonal matrix g = (du, ..., d,) with distinct real numbers d;. Ob-
viously if @ = (axi), V = (vw) and V* = (v},), then v}, = (vp + aw)d; for all
k,l. Thus we have

= (det A)9L,

(8.10) = (dy -~ dy)" = (det A)".
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Since the set of all g x g real matrices whose eigenvalues are all distinct is

everywhere dense in GL(g,R), and 66,((‘/‘;)) is a rational function, the relation

(8.10) holds for any A € GL(g,R). It is easy to see that
aY*,v*) ax*) o)

oy,v)y oY) oWv)’
Thus we obtain
[dY*)[dV*] = |det A|9T" L [aY)[dV].
Since det Y* = (det A)?detY, we have

_gtht1 ht1

(detY* )2 [dY*][dV*] = (detY )~ "= [dY][dV].

Hence the volume element (8.9) is invariant under the action (8.7). O

It is known that
~ap

dpg(Y) := (detY) [dY]
is a volume element on P, invariant under the action (8.1) of GL(g,R) (cf.

[14, p. 23]). Let r be a positive integer with 0 < r < g. We define a bijective
transformation

Py — PrxPsxRET rps=g Y+ (FG H)
by

(8.11) Y = (5 g) Kéf ;’)] Y €Py, FEP,, GEP,, HeRG,

According to [14, pp. 24-26], we obtain
(8.12) [dY] = (det G)" [dF|[dH][dG],
equivalently
(8.13) dpg(Y) = (det F)~% (det G) % du,(F) dus(G) [dH].
Therefore we get
(8.14) dvg (Y, V) = (det F)_% (det G)% du-(F)dus(G) [dH] [dV].
Similarly if Y € Py, g =r+ s with 0 <r < g, we write

(8.15) Y = (P 0) [(I R)], Y eP,, PEP,, Q€ Ps, RERM.

0 @ 0 I
According to [14, p. 27], we obtain
(8.16) [dY] = (det P)* [dP][dQ][dR],
equivalently
(8.17) dpg(Y) = (det P) (det G) ™% duy(P) dpus (Q) [dR).

Therefore we get

(8.18)  dugn(Y,V) = (det P) =" (det G)~ =" dpp(P) dpis(Q) [dR] [dV].
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The coordinates (F, G, H) or (P,Q, R) are called the partial Iwasawa coordi-
nates on Py.

Theorem 8.2. Any geodesic through the origin (I4,0) is of the form

0= (A0, 2 ([ xi-sas) ).

where k is a fixed element of O(g), Z is a fized h X g real matriz, t is a real
variable, A1, g, ..., Ag are fized real numbers but not all zero and

A(t) := diag (eMF, ... ert).

Furthermore, the tangent vector ~'(0) of the geodesic ~v(t) at (I,0) is
(Dlk], Z), where D = diag (2X1, ..., 2\,).

Proof. Let W = (X, Z) be an element of p with X # 0. Then the curve

t
at) = exptW = (etx, Z (/ e_Sde)), teR
0

is a geodesic in GL, 5, with o/(0) = W passing through the identity of GLg 5.
Thus the curve

()= a)- (1,0 = (%, 2 [ t as) o)

is a geodesic in Py X R("™9) passing through the origin (I4,0). Since X is a
symmetric real matrix, there is a diagonal matrix A = diag (A,...,Ay) with
Aty ..., Ag € R such that

X = 'kAk for some k € O(g),

where A1, ..., A\, are real numbers and not all zero. Thus we may write
t
y(t) = ((5,6162%‘5)[14, zZ (/ e(t_S)Ads) (K] ) :
0
Hence this completes the proof. [

Theorem 8.3. Let (Yy,Vy) and (Y1, V1) be two points in P, x R9). Let g be
an element in GL(g,R) such that Yo['g] = I, and Y1['g] is diagonal. Then the
length s((YO,VO), (Y1, Vl)) of the geodesic joining (Yo, Vo) and (Y1,V1) for the
GLg -invariant Riemannian metric ds?;,h;A,B is given by

(8.19)
. 1/2 1/2

1 g
s((Yo, Vo), (Y1, V1)) = 44 S (lnt;)? +B/ S Ayt )
o \;43

j=1

where A = 2221 5%;‘ (1 < j <g) with (Vi —Vo)lg = (V) and tq,...,1,
denotes the zeros of det(t Yo — Y1).
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Proof. Without loss of generality we may assume that (Y, Vp) = (I,,0) and
(Y1,Vi) = (T,V) with T = diag(ty,...,t,) diagonal because the element
(g,—Vb) € GL,} can be regarded as an isometry of P, x R(™"™9) for the Rie-
mannian metric ds? ;. 4 p (cf. Lemma 8.1). Lety(t) = (a(t),5(t)) with 0 <
t < 1 be the geodesic in P, x R"9) joining two points v(0) = (Yo, Vp) and
~v(1) = (Y1, V1), where «(t) is the uniquely determined curve in P, and 3(t) is
the uniquely determined curve in R(9).

We now use the partial Iwasawa coordinates in Py. Then if Y € P,, we
write for any positive integer r with 0 <r <g, r+s =g,

_(F 0\ [(L o (h.g)
Y_(O G)KH Is):|’ FeP., GePs, HeR )

For V € R"™9)  we write
V=(R,S), ReR") §ecRrM",
Now we express ds? ;. 4 g in terms of F, G, H, R and S.
Lemma 8.3.
dsl pap=A-{o(F'dF)?) + o((G"'dG)*) + 20(F '(dH)GdH)}
+ B-{o(F'"dR)dR) + o((G™" + F7'[*'H])"(dS)dS)}
—2B-o(F~''H"(dS)dR).
Proof. First we see that if Y € Py, then

v-1_ F~1 0 I, —'H\| _ F-1 —Ftg
Lo Gt 0 I, )| \-HF' G '+F-'H])"
dy — dF +dG[H]+ (dH)-GH + *HG -dH YdH)-G + 'H -dG
o dG-H + G-dH dG
and dV = (dR,dS).
For brevity, we put

Lo L
vl 0 1
QY (L2 L3>

and

Y1 av)dv = <M0 Ml).

My M;
Here Lo, L1, Lo and L3 denote the r x r, r X s, s X r and s X s matrix valued
differential one forms respectively, and My, My, My and M3 denote the r x 7,
r X s, s x7rand s X s matrix valued differential two forms respectively.

By an easy computation, we get

Lo=dF-F~ ' +'HG-dH -F!,
Li=—dF-F''"H - 'HG-dH-FY"H + "dH) + 'H -dG - G,
Ly=G-dH -F 1,
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Ly =dG-G' — G-dH -F~''H,
My =F'"(dR)dR — F~*'"H"(dS)dR,
M;=—-HF '"(dR)dS + (G' + F~'["H]) '(dS) dS.
Therefore we have
ds? pap=A-0((dY -Y)?) + B-o(Y 1 (dV)dV)
=A-{o(L§ + L1Ls) + o(L2L1 + L3)}
+ B-{o(Mo) + o(M3)}
=A-{o((F'dF)?) + o((G7'dG)?) + 20(F~'(dH)GdH)}
+ B-{o(F'(dR)dR) + o((G™' + F~'["H])"(dS) dS) }
—2B-o(F~'"H'(dS)dR). O

Let s((Yo, Vo), (Y1, V1)) be the length of the geodesic v(t) = (a(t), 8(t)) with
0<t<1. We put

atr= (" ) (i )]+ o0 = @5, o<t

where F(t), G(t), H(t), R(t) and S(t) are the uniquely determined curves in
P, Ps, RET R and RU-3) respectively.
Then we have

s((Yo,V0), (Y1, V1))

o [ ) (%)
oo (e ()0 )}

[l (@ F) .

s [Le((5) ) e ((e5) )]

o [l (@) (e (@) F))

The reason is that the quadratic form o(F~!(dH)G dH) is positive definite.
Indeed, if M, N € GL(g,R) such that FF = *MM and G = NN, then

o(F ' (dH)GdH) = o('WW), W= N -dH M.

dH dH
F —_— =
U( (dt)Gdt) 0,

If
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then 2 = 0 and hence H(t) is constant in the interval [0,1]. Since H(0) =

0, Ht)=0 (0 <t <1).
Moreover the curve «(t) must be diagonal, that is,

at) = ((5“” eX"(t)) , x»(0)=0, x,(1) = Int,, 1<v<y,

where g, (t) (1 <v < g) are continuously differentiable in [0,1]. Thus we have

da dx
[ — ) v X () ZAV
dt ( v © dt

da dx
-1 o _ v
a(t) o ((5W e ) .
Therefore we have

[Pfersn)e
A 0)-( )

Py -

J=1

and hence

2
The minimum value of 3°%_, %) is obtained if the curve a(t) is the straight

line, i.e., x;(t) = tlnt; (1 <j<g), 0<t<1inthe (x1,...,xy)-space. Thus

we get
/01 { o ((a(t)l ‘i—‘j)j }1/2 dt = il (Int;)?

B(t) = (Bri(t)) with 0<t<1,1<k<h, 1<j<yg.
Then we obtain

[Eer @)
[ ) ) )

1/2

h
s ey
0

Jj=1k=1

/N

1/2

We put

Q
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Each curve f;(t) (0 < t < 1) is a curve in R such that §,j(0) = 0 and
Brj(1) = ;. Thus each curve B, (t) must be a straight line, that is, for all
k,jwithl1 <k<hand1<j <y,

Bri(t) = Ui t, 0<t <1

[{olo(@) D)

Therefore we have

1/2
1| n h
[ e (nn) o
0 1,j=1 k=1
1/2
1
- [T aer] e
o \ i3
Finally we obtain
(8.20)
1/2 1/2

s((Y0, Vo), (Y1,1)) = A

g 1 g9
(Int;)? +B/ Y Ajem i)t dt.
0 -
= ]:1

Jj=1

Hence we complete the proof. (I

For a fixed element (A,a) € GLg p, we let © 4 4 : Py x R — Py x R(M9)
be the mapping defined by

04,4(Y,V) = (4,a)- (Y,V), (Y,V)e Py xRMI.
We consider the behaviour of the differential map dO4,, of ©4,, at (I,,0).
Then dO4 , is given by
dOa o(u,v) = (Au'A, v'A),
where (u,v) is a tangent vector of P, x R(9) at (I,0).
We let 0 be the involution of GLg j defined by
0((A,a)) = (*A7' —a), (A,a) € GLyp.
Then the differential map of 6 at (I4,0), denoted by the same notation 6 is
given by
5:94)97 é(X7Z):(7tX,7Z)7
where X € R(9) and Z € R(™9. We note that ¢ is the (+1)-eigenspace of f
and

p:{(X’ZHXER(%g)’ X =X, ZeR(h,g)}

is the (—1)-eigenspace of 6.
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Now we consider some differential forms on P, x R("9) which are invariant
under the action of GL(g,7Z) x Z"9). We let

&, = GL(g,Z) x 29
be the discrete subgroup of GLg . Let
h g

Qy = Z fuu(K V) dyuu + Z Z (bkl(}/, V) dug;

n<v k=11=1

be a differential 1-form on P, x R(%9) that is invariant under the action of By h.

We put
{1 ifu=v
e;,w = .
otherwise.
We let
fYV) = (e fu (Y, V) and  o(Y,V) = “(ou(Y,V)),

where f(Y,V) is a g X g matrix with entries f,,(Y,V) and ¢(Y,V) isa g xh
matrix with entries ¢g; (Y, V). Then

oy =o(fdY + ¢dV).

If ¥ = (v,a) € &, with v € GL(g,Z) and o € Z9) then we have the
following transformation relation

(8.21) FOY 'y, (V+a)y) =y (Y, V) v

and

(8.22) p(YY 'y, (V +a)'y) ="y 1o(Y, V).
We let

wo:dyn/\dylg/\---/\dy,m/\dvu/\---/\dvhg

be a differential form on P, x R"9) of degree N := @ +gh. Ifw = h(Y,V)wo

is a differential form on Py x R(9) of degree N that is invariant under the action
of &, 1. Then the function h(Y, V) satisfies the transformation relation

(8.23) h(yY 'y, (V + @) ') = (det )~ n(y, v)
for all v € GL(g,7Z) and a € Z("9),
We write

w1 =dynn Adyiz A+~ Adygg and  we = dvip A+ A dopg.
Now we define

Wab = €ab /\ dy,uu/\w2; 1§a§b§g

1<p<v<g
(1, v)#(a,b)

and
Gea=FEcawt A [\ dow, 1<c<h 1<d<y

1<k<h,1<I<g
(k,1)#(c,d)
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Here the signs €, and €.4 are determined by the relations €, wap A dyap = wo
and €.qWeqg N dveqg = wp. We let

h g
ﬁ* = Z SMV(Y) V) Wyy + Z Z Pkl (K V) <IJkl
pn<v k=11=1

be a differential form on P4 x R(™9) of degree N —1 that is invariant under the

action of &, 5, where SW(Y, V) and ¢y are smooth functions on Py x R(9),
We set

S = (€uSuv); €uv = €vps Spw = Sup and @ = (Egpm).

Y, V) = (;(K V)> 7

dy
ﬁ* A\ (dv) = QWO.

If ¥ = (v,a) € By, then we have the following transformation relations:

If we write

then we obtain

(8.24) s(YY by, (V+a)ly) = (dety) " 5(Y, V) Iy
and
(8.25) (VY by, (V +a)ly) = (dety) "0 (v, V) 1.

&, 1 acts on Py X R("™9) properly discontinuously. The quotient space
(8.26) G\ (Py x R(h,g))

may be regarded as a family of principally polarized real tori of dimension gh.
To each equivalence class [Y] € 8,\P, with Y € P, we associate a principally
polarized real torus T/) = Ty x -+ x Ty with T = R9/Ay, where Ay = YZ9
is a lattice in RY.

Let Y7 and Y> be two elements in P, with [Y;] # [Yz], that is, Y2 # AY; ‘A
for all A € &,. We put A, = Y;Z9 for ¢ = 1,2. Then a torus T7 = RI/A; is
diffeomorphic to To = RY9/A5 as smooth manifolds but T3 is not isomorphic to
T5 as polarized tori.

Lemma 8.4. The following set
(8.27) Rop = (V)] Y €%y, fogl <1, V = (0gy) € RO}
is a fundamental set for B4\ Py X R(h9),

Proof. Tt is easy to see that R, is a fundamental set for &, ;\ Py x R("9) We
leave the detail to the reader. (I
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For two positive integers g and h, we consider the Heisenberg group
Hﬂg{g’h) ={(\wr)| \pe R e R k4 ptx symmetric}
endowed with the following multiplication law
A pik)o (N Wi k) = A+ N, p+ p's i+ 5+ X0 — p'X).
We define the semidirect product of Sp(g,R) and Hﬂ({] )
G’ = Sp(g.R) x HY
endowed with the following multiplication law
(M, (A s 0)) - (M7, (N5 1)) = (MM, (A4 X i s 5+ 1+ A — i)
with M, M’ € Sp(g,R), (A, s k), (N, ' 1) € HP™ and (A, 1) = (A, ) M.
Then G acts on the Siegel-Jacobi space H, x C9) transitively by
(828) (M, (\pin))-(22) = (M- (Z+ 2+ p)(CQ+ D)),
where M = (A B) € Sp(g,R), (\,5K) € Hﬂg{g’h) and (2, Z) € H, x C"9). We
note that the Jacobi group G is not a reductive Lie group and also that the
space Hy x C9) is not a symmetric space. We refer to [29, 30, 31, 32, 33, 34]
for more detail on the Siegel-Jacobi space H, x Cc9),
We let
T, =Ty x HYM
be the discrete subgroup of G, where
HYY = {0 i) € HEV | A pe 2000, s e 200 ).
We define the map @, , : P, x R"9) — H, x C"9) by
(8.29) D, 0(Y,0) = (1Y,0), (Y,C) € Py x RM9).

We have the following inclusions
Py x RWD 228 e ch9) oy H, x CR9 oy HY x C9),

Gg.h acts on Py x RO T i HY™ acts on # x C"9) and T, ), acts on
H, x C9) and T x C(9)_ Tt might be interesting to characterize the boundary
points of the closure of the image of @ in H X Ch9),

9. Real semi-abelian varieties

In this section we review the work of Silhol on semi-abelian varieties [26]
which is needed in the next section.

Definition. A complex semi-abelianvariety A is the extension of an abelian
variety A by a group of multiplicative type. A semi-abelian variety is said to
be real if it admits an anti-holomorphic involution which is a group homomor-
phism.
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Let T be a group of multiplicative type. We consider the exponential map
exp : t — T. The real structure S on T lifts to a real structure S on t.
Then L := kerexp is a free Z-module and S; induces an involution on L¢. By
standard results (cf. [25, I. (3.5.1)]), we can find a basis of L with respect to
which the matrix for S; is of the form

0 1
s (1Y),

Since fixing a basis of L, is equivalent to fixing an isomorphism 7" 2 (C*)",
we get

co o oo
cocoo omo
cocoo oo

oo ooo

oo ocoo

—1

T:T1XT2><T3, T:S/+2p+t/,

where

(i) Th = C*x---x C* (s'-times) and S induces on each factor the involution
z — 7. In this case we write T} = G2, x -+ x G ;

(if) Tp = C* x - -- x C* (¢'-times) and S induces on each factor the involution
z >z~ 1. In this case we write T} = G x -+ x G

(iii) T3 = (C* x C*) x -+ x (C* x C*) (p-times) and S induces on each
factor (C* x C*) the involution (z1,22) — (Z2,%Z1). In this case we write
Ty = G x --- x G2

Let A = {¢ € C||¢| < 1} be the unit disk and let A* = {( € C|0 < [¢| < 1}
be a punctured unit disk. Let ¢ : Z* — A* be a holomorphic family of
matrices p~1(¢) = Z(¢) in Hy. We have the natural action of the lattice Z29
on A* x CY defined by

(9.1) (A p)-(G2):=(Cz+ A+ Z(Qu), CeEA", N uelZ zeC.
Then the quotient space
(9.2) A* = (A" x C9) /7
is a holomorphic family of principally polarized abelian varieties associated to
a holomorphic family ¢ : Z* — A*.
Now we write
Z(¢) = X(¢)+iY(¢) € Hy
and
Y(¢) = "W()D(Q)W(¢) € Py (the Jacobi decomposition)

with diag(dy(¢),...,dy(¢)) € R99) is a diagonal matrix.

Now we assume the following conditions (F1)-(F3): for any ¢ € Af :={( €
Clo<|cl<r},

(F1) There exists a positive number r > 0 such that for any ¢ € A%, Z({) €
0, (u) for some u > 0, where A :={( € C|0<|(] <r};



POLARIZED REAL TORI 323

(F2) X (¢) converges in R(9:9) and W (() converges in GL(g,R) as ¢ — 0;
(F3) lime—o d;(¢) = d; converges for 1 < i < g — ¢, and lim;0 d;({) = o0
forg—t<i<g.

Let
211 21,9t O --- 0
0
Z(O) = Zg—t,1 " Zg—t,g—t 0 0 , Zij = lim Zij (C)

¢—0

2911 “ee Zg,gft 0 e 0

The action (9.1) extends to the action of Z29 on A x C9 by letting Z(0) be the
fibre at ¢ = 0. We take the quotient space

(9.3) A= (AxCY)/Z%.

Then we see that A is an analytic variety fibred holomorphically over A, and
the fibre at 0 is a semi-abelian variety

(9.4) Ay=CY/Ly, Lo:=79Z(0)+7% CCY
of the abelian variety
(9.5) Ag:= CIY/L°, L°:=797'Z°(0)+ 729 Cc CI~!
by (C*)*, where
211 te Z1,9—t
Z°(0) = S : € Hy—s.
Zg—t,1 "' Rg—tg—t

The extension _
1— (C)' — Ay — Ay —0

is defined by the image of

Zg k= (Zg—k1s- s Zg—kyg—t) € C9t, k=0,...,t—1
under the maps

CI~t — Ay — Pic®(Ay),
where the last map is the isomorphism defined by the polarization.
These above facts can be generalized as follows.

Proposition 9.1. Let ¢ : Z* — A* be a holomorphic family of matrices
0o Y¢) = Z(¢) in Hy such that ¢~ 1({) = Z(C) converges in HS as ¢ — 0.
Then there exists an analytic variety A(Z*) — A such that

(1) the fibre at {(# 0) € A is the principally polarized abelian variety C9/L,
with the lattice Le = Z9Z(C) + Z9;

(ii) the zero fibre A(Z*)o is a semi-abelian variety.

Proof. The proof can be found in [26, p. 189]. O
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Theorem 9.1. Let ¢ : Z* — A* be a holomorphic family of matrices
o Y¢) = Z(¢) in Hy such that ¢ 1() = Z(¢) converges in HS as ¢ — 0.
We assume that Z(¢) = ¢~ 1(¢) € # for € RN A*. Let (s,t) be such that

%i_r}r}) Z(¢) € vyBum (ys,t N %)

for some M € Z.(99) and some v € I';. Then
(a) A(Z*)o has a natural real structure extending the real structures of the
A(Z*)C/s for ( e RN A*;
(b) As a real variety, A(Z*)o is the extension of a real abelian variety
A(Z7)o by
(G?n)s X (Gfrf)p X (Gfﬁ)t,, s=5+p, t=1t +p;

(c) Let x € 2;0(s,t) € 27 be the image of lime o Z(C) in 237 and let [x]
be the image of x under the isomorphism 2y (s,t) = 2§ " with r = s +t.
Then [z] is the real isomorphism class of A(Z*)o.

Proof. The proof can be found in [26, pp. 191-192]. O

Corollary 9.1. Let ¢ : Z* — A* be as in Theorem 9.1. Assume
lim Z(¢) € %o, (resp. Fsp).
¢—0

Then the class of the extension
0— (G;’j)t — A(Z%)g — A(Z")g — 0

(resp. 0 —» (G?n)s — A(Z") — ;i(Z*)o —0)

is defined by t purely imaginary divisors on A(Z*)o (resp. s real divisors

A(Z*)o).

10. Real semi-tori

A real semi-torus 7" of dimension g is defined to be an extension of a real
torus T of dimension g — ¢ by a real group (R*)? of multiplicative type, where
R* =R —{0}.

Let I = {¢ € R| —1 < & < 1} be the unit interval and I* = I — {0} be
the punctured unit interval. Let w : 9)* — I* be a real analytic family of
matrices w~1(§) = Y (£) € P,. We have the natural action of the lattice Z9 in
RY on I* x RY defined by

(10.1) a- ()= (Er+Y(€a), acZd eI, xR
The quotient space

(10.2) T* = (I* x R9)/Z9
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is a real analytic family of real tori of dimension g associated to a real analytic
family w : P* — I*. We let

Y(§) = "W(E)D(EW(E)

be the Jacobi decomposition of Y'(§), where D(§) = diag(di(§),...,dq(§)) is
a real diagonal matrix and W (€) is a strictly upper triangular real matrix of
degree g. Now we assume the following conditions (T1)-(T4):

(T1) There exists a positive number r with 0 < r < 1 such that for any
gell, iY(§) € W,(u) for some u > 0, where I :={{ e R| —r <& <7};

(T2) W (&) converges in GL(g,R) as & — 0;

(T3) lime—0d;(§) = d; converges for 1 < i < g —¢, and limg_,9 d;(§) = o0
forg—t<i<g.

Let
yll e yl,g—t 0 .« . 0
: . : 0 :
Y(0)= | yg—tq - Yg—tg—t O 01, wi= %ig(l)yz‘j(o-
yg11 “ . yg,gft 0 ... 0

The action (10.1) extends to the action of Z9 on I x R9 by letting Y (0) be the
fibre at ¢ = 0. We take the quotient space

(10.3) T:= (I xR9)/Z9.
Then we see that T is a real analytic variety fibred real analytically over I,
and the fibre at 0 is a real semi-torus
(10.4) To= RI/ANg, Ao:=2ZY(0) CRY
of the real torus
Ty := RII/A°,  A®:=ZI"'Y°(0) is a lattice in RI~*
by (C*)t, where
Y11 ce Yi,9—t
Ye(0) = : : € Pyt
Yg—t1 - Yg—t,g—t
11. Open problems and remarks

In this final section we give some open problems related to polarized real
tori to be studied in the future.
Problem 1. Characterize the boundary points of the closure of i Py in Hj
explicitly.
Problem 2. Find the explicit generators of the ring D(g, k) of differential
operators on the Minkowski-Euclidean space P, X R("9) which are invariant
under the action (8.7) of GL, , = GL(g,R) x R("9).
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Problem 3. Find all the relations among a complete explicit list of generators
of D(g, h).

The orthogonal group O(g) of degree g acts on the subspace
p={(X,2)| X=X eRE@I 7z cR"I}
of the vector space R(9:9) x R("9) by
(11.1) k- (X,2)= (kX'k,Z'k), ke O(g), (X,V)€Ep.

The action (11.1) induces the action of O(g) on the polynomial ring Pol(p)
on p. We denote by I(p) the subring of Pol(p) consisting of polynomials on
p invariant under the action of O(g). We see that there is a canonical linear
bijection

©:I(p) — D(g,h)
of I(p) onto D(g, h). We refer to [9] and [35] for more detail.

Remark 11.1. M. Itoh [11] proved that I(p) is generated by ¢; (1 < j < g) and
B (0<k<g—1,1<p<q<h), where

(11.2) a;(X,Z)=tr(X7), 1<j<g
and
(11.3)  BW(X,2)=(2Xx*'Z), ., 0<k<g-1,1<p<q<h

Here A,, denotes the (p, ¢)-entry of a matrix A of degree h.

Remark 11.2. M. Itoh [11] found all the relations among the above generators
a; (1<j<g)and B (0<k<g—1,1<p<q<h)of I(p).

Problem 4. Develop the theory of harmonic analysis on the Minkowski-
Euclidean space Py x R("9) with respect to a discrete subgroup of GL(g,Z) x
7,(h:9) |

Problem 5. Characterize the boundary points of the closure of the image of
Py, in H x CM9) (cf. see (8.29)).

Problem 6. Find the explicit generators of the ring ]D)(Hg X (C(hvg)) of dif-
ferential operators on the Siegel-Jacobi space H, x C™9) which are invariant
under the action (8.28) of the Jacobi group G’ = Sp(g, R) x Hﬂég’h). We refer
to [34] for more detail.

Problem 7. Find all the relations among a complete list of generators of
D(H, x C»9),

Problem 8. Develop the theory of harmonic analysis on the Siegel-Jacobi
space H, x C"9) with respect to a congruent subgroup of T'y 5, = Sp(g,Z) x
Hég’h). We refer to [32] for more detail.
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Appendix: Non-abelian cohomology

In this section we review some results on the first cohomology set H(({7),T')
obtained by Goresky and Tai [8], where (1) = {1, 7} is a group of order 2 and
v is a certain arithmetic subgroup. These results are often used in this article.

First of all we recall the basic definitions. Let S be a group. A group M is
called a S-group if there exists an action of G on M, Sx M — M, (o0,a) —
o(a) such that o(ab) = o(a)o(b) for all ¢ € S and a,b € M. From now on we
let 15 (resp. 1ps) be the identity element of S (resp. M). We observe that if
M is a S-group, then o(157) = 1) for all o € S.

Definition. Let M be a S-group, where S is a group. We define
HO(S,M):={a€ M|co(a)=a foralloeS}.

A map f : S — M is called a 1-cocycle with values in M if f(o7) =
flo)o(f()) for all o,7 € S. We observe that if f is a 1-cocycle, then f(lg) =
15 We denote by Z1(S, M) the set of all 1-cocycles of S with values in M.
Let f; and fy be two 1-cocycles in Z1(S, M). We say that f; is cohomologous
to fo, denoted f1 ~ fa, if there exists an element h € M such that

fa(o) = h 1 fi(0)o(h) forallo € S.

Let f, : S — M be the trivial map, i.e., f,(c) = 1p for all o € S. A map
f: S — M is called a 1-coboundary if f ~ f,, i.e., if there exists h € M such
that f(o) = h=to(h) for all o € S.

Obviously a 1-coboundary is a l-cocycle. It is easy to see that ~ is an
equivalence relation on Z1(S, M). So we define the first cohomology set

HY(S,M):= Z'(S,M)/ ~ .

Remark. In general, H' (S, M) does not admit a group structure. But H(S, M)
has an identity, that is, the cohomologous class containing the trivial 1-cocycle

fo-

Example. Let L be a Galois extension of a number field K with Galois group
G. A linear algebraic group defined over K has naturally the structure of G-
group. It is known that H'(G,GL(n, L)) is trivial for all n > 1. Using the
following exact sequence of G-groups

1— SL(n,L) — GL(n,L) — L* — 1, L*= L—{0},
we can show that H'(G, SL(n, L)) is trivial.

We put G = Sp(g,R) and K = U(g). Then D = G/K is biholomorphic to
H,. Let S; = {1,7} be a group of order 2 as before. We define the S -group
structure on G via the action (2.7) of S; on G. Let I" be an arithmetic subgroup
of Sp(g, Q). We let

Xr = I'\G/K ~T\H,
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and let mp : D — X7t be the natural projection. For any v € I'; we define the
map f:S5; — I' by

(1) (1) =1pr and fy(1) =",
where 1r denotes the identity element of T'.

Lemma 1. Let v €T'. Then
(a) fy is a 1-cocycle if and only if y7(y) = 1r, equivalently, T(v)y = 1r.
(b) A cocycle f is a 1-coboundary if and only if there exists h € I' such that
v = 7(h)h~L.

Proof. The proof follows immediately form the definition. (Il

To each such a 1-cocycle f,, we associate the y-twisted involution 7y : D —
D and 7y : ' — I'. Indeed the involution 7y : D — D is defined by

(2) ™ (xK) = 7(yvaK) = 7(y)r(2)K, z€G
and the involution 7y : I' — T" is defined by

(3) m(m)=7(my™Y), mel.
Let

D™ := {z € D| (m)(x) =z}
and

™= A{m e[ (m)(n) =n}
be the fixed point sets.

Lemma 2. Let x € D. Then np(z) € X{. if and only if there exists an element
v €T such that x € D77.

Proof. Tt is easy to prove this lemma. We leave the proof to the reader. (|

Theorem A. Assume I' is torsion free. Let 61 be the set of all connected
components of the fized point set Xf. Then the map ®r : H'(S,,T) — %t
defined by

or([f,]) == 7 (D7) = T7\D™”
determines a one-to-one correspondence between Hl(ST,F) and 6r.

Proof. The proof can be found in [8, pp. 3-4]. O

Theorem B. Let S, = {1,7} be a group of order 2. Then Sp(g,R) has a
Sr-group structure via the action (2.7) and hence U(g) also admits a Sy -group
structure through the restriction of the action (2.7) to U(g). And H*(S.,U(g))
and H(S;, Sp(g,R)) are trivial.
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Proof. The proof can be found in [8, pp. 8-9]. However I will give a sketchy
proof for the reader. Assume fi is a l-cocycle in Z(S,,U(g)) with k =
(5 8) € U(g). Using the fact 7(k)k = I,, we see that
A="'A, B='B, AB=BA and A?+ B?=1,.

Therefore we can find h € O(g) such that h(A+iB)h~! =D € U(g) is diagonal.
We take p = VD eU (g9) by choosing a square root of each diagonal entry. We
set § = h™'ph. Then k = 7(6) 6%, By Lemma 1, f; is a 1-coboundary. Hence
HY(S,,U(g)) is trivial.

Let G = Sp(g,R) as before. Suppose fi € Z'(S-,G) with M = (4 8) € G.
Then we see that fas is a 1-coboundary with values in G if and only if Hé” T .
We can find M; € G such that ]HIS/[” # 0 and far ~ fa, ~ fp. Therefore

fuv ~ fy, that is, fas is a 1-coboundary with values in G. Hence H(S;, Q) is
trivial. (|

Theorem C. For all m > 1, the mapping
HY(S,,Ty(4m)) — H'(S;,T,(2,2m))
is trivial.

Proof. The proof can be found in [8, pp. 7-10]. We will give a sketchy proof
for the reader. In order to prove this theorem, we need the following lemma.

Lemma 3. If 7(vy)vy € T'y(4m) with v € Ty, then v = PBu for some 8 €
I'y(2,2m) and for some u € GL(g,Z).

Lemma 4. Let v € I'y(2) and suppose 2 € Hy is not fived by any element of
Ty other than £I,. Suppose T(Q) =~ -Q. Then there exists an element h € T'
such that v = 7(h) h™1.

Lemma 4 is a consequence of the theorem of Silhol [26, Theorem 1.4] and
Comessatti. Suppose f, is a cocycle in Z'(S;,T'y(4m)) with v € T'y(4m).
According to Theorem B, its image in H!(S,, G)) is a coboundary and so there
exists h € G with v = 7(h)h~!. Thus H™” = h- (i P,). By Lemma 2.2, there
exists 0 € H™ which are not fixed by any element of I'; other than 415, and
the set of such points is the complement of a countable union of proper real
algebraic subvarieties of H™. According to Lemma 4, v = 7(h) h=! for some
h € Ty. By Lemma 3, we may write h = Su for some 8 € I'4(2,2m) and
for some u € GL(g,Z). Then v = 7(h)h™! = 7(8)37!. By Lemma 1, the
cohomology class [f,] is trivial in H'(S;,Ty(2,2m)). O

Theorem D. Let 'y = T'y(2,2m) and I' = T'y(4m). Then we have the follow-
ing results:

(a) D" = G"/K7;

(b) For each cohomology class [f,] € H'(S;,T), there exists h € Ty such
that v = 7(h)h™1, in which case

D™= hD” and I = AI"h L.
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(c) The association f, — h (cf see (2)) determines a one-to-one corre-
spondence between H'(S;,T') and T'\I'o/T.
(d)
Xr=[[ ArTRN\RD
RET\T'o/T

Proof. (a) follows from the fact that H*(S;,U(g)) is trivial (cf. Theorem B).

(b) follows from Theorem C.

(c) follows from Theorem C, and the facts that T is a normal subgroup of
Iy and that 7 acts on I'\I'g trivially.

(d) follows from Theorem C and the facts that ' is a normal subgroup of
Ty and that 7 acts on I'\I'g trivially together with the fact that I' s torsion
free. O

Corollary. Let m be a positive integer with m > 1. Let S; be as in Theorem
A. LetT' = T'y(4m) and X = T\H,. The set Xr of real points of X is given by

Xg = [[Tm\b-(iPy) = T\H',
h
where h is indexed by elements

h € Tg(4m)\Ty(2,2m)/T{(2) = H'(S7,Tg(4m))
and Tpyy == h T (4m) h.
Proof. The proof follows from (¢) and (d) in Theorem D. O
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