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POLARIZED REAL TORI

Jae-Hyun Yang

Abstract. For a fixed positive integer g, we let Pg =
{

Y ∈ R(g,g) | Y =
tY > 0

}

be the open convex cone in the Euclidean space Rg(g+1)/2. Then

the general linear group GL(g,R) acts naturally on Pg by A⋆Y = AY tA

(A ∈ GL(g,R), Y ∈ Pg). We introduce a notion of polarized real tori. We
show that the open cone Pg parametrizes principally polarized real tori of
dimension g and that the Minkowski modular space Tg = GL(g,Z)\Pg

may be regarded as a moduli space of principally polarized real tori of
dimension g. We also study smooth line bundles on a polarized real torus
by relating them to holomorphic line bundles on its associated polarized
real abelian variety.

1. Introduction

For a given fixed positive integer g, we let

Hg = {Ω ∈ C(g,g) | Ω = tΩ, ImΩ > 0}
be the Siegel upper half plane of degree g and let

Sp(g,R) = {M ∈ R(2g,2g) | tMJgM = Jg}
be the symplectic group of degree g, where F (k,l) denotes the set of all k × l
matrices with entries in a commutative ring F for two positive integers k and
l, tM denotes the transpose matrix of a matrix M and

Jg =

(
0 Ig

−Ig 0

)
.

Then Sp(g,R) acts on Hg transitively by

(1.1) M · Ω = (AΩ +B)(CΩ +D)−1,
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where M = (A B
C D ) ∈ Sp(g,R) and Ω ∈ Hg. Let

Γg = Sp(g,Z) =

{(
A B
C D

)
∈ Sp(g,R)

∣∣ A,B,C,D integral

}

be the Siegel modular group of degree g. This group acts on Hg properly
discontinuously. C. L. Siegel investigated the geometry of Hg and automorphic
forms on Hg systematically. Siegel [23] found a fundamental domain Fg for
Γg\Hg and described it explicitly. Moreover he calculated the volume of Fg.
We also refer to [10, 14, 23] for some details on Fg. The Siegel modular variety
Ag := Γg\Hg is one of the important arithmetic varieties in the sense that it is
regarded as the moduli of principally polarized abelian varieties of dimension
g. Suggested by Siegel, I. Satake [18] found a canonical compactification, now
called the Satake compactification of Ag. Thereafter W. Baily [3] proved that
the Satake compactification of Ag is a normal projective variety. This work was
generalized to bounded symmetric domains by W. Baily and A. Borel [4] around
the 1960s. Some years later a theory of smooth compactification of bounded
symmetric domains was developed by Mumford school [2]. G. Faltings and
C.-L. Chai [7] investigated the moduli of abelian varieties over the integers and
could give the analogue of the Eichler-Shimura theorem that expresses Siegel
modular forms in terms of the cohomology of local systems on Ag. I want to
emphasize that Siegel modular forms play an important role in the theory of
the arithmetic and the geometry of the Siegel modular variety Ag.

We let

Pg =
{
Y ∈ R(g,g) | Y = tY > 0

}

be an open convex cone in RN with N = g(g + 1)/2. The general linear group
GL(g,R) acts on Pg transitively by

(1.2) A ◦ Y := AY tA, A ∈ GL(g,R), Y ∈ Pg.

We observe that the action (1.2) is naturally induced from the symplectic action
(1.1). Thus Pg is a symmetric space diffeomorphic to GL(g,R)/O(g). Let

GL(g,Z) = {γ ∈ GL(g,R) | γ is integral}
be an arithmetic discrete subgroup of GL(g,R). Using the reduction theory
Minkowski [16] found a fundamental domain Rg, the so-called Minkowski fun-
damental domain for the action (1.2) of GL(g,Z) on Pg. In fact, using the
Minkowski fundamental domain Rg Siegel found his fundamental domain Fg.
As in the case of Hg, automorphic forms on Pg for GL(g,Z) and geometry on
Pg have been studied by many people, e.g., Selberg [20], Maass [14] et al.

The aim of this article is to study arithmetic-geometric meaning of the
Minkowski fundamental domain Rg. First we introduce a notion of polar-
ized real tori by relating special real tori to polarized real abelian varieties. We
realize that Pg parametrizes principally polarized real tori of dimension g and
also that the Minkowski modular space Tg := GL(g,Z)\Pg may be regarded as
a moduli space of principally polarized real tori of dimension g. We also study
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smooth line bundles over a polarized real torus by relating to holomorphic line
bundles over the associated polarized abelian variety. Those line bundles over
a polarized real torus play an important role in investigating some geometric
properties of a polarized real torus.

We let

GM := GL(g,R)⋉Rg

be the semidirect product of GL(g,R) and Rg with multiplication law

(A, a) · (B, b) := (AB, a tB−1 + b), A,B ∈ GL(g,R), a, b ∈ Rg.

Then we have the natural action of GM on the Minkowski-Euclid space Pg×Rg

defined by

(1.3) (A, a) · (Y, ζ) :=
(
AY tA, (ζ + a) tA

)
, (A, a) ∈ GM , Y ∈ Pg, ζ ∈ Rg.

We let

GM (Z) = GL(g,Z)⋉ Zg

be the discrete subgroup of GM . Then GM (Z) acts on Pg × Rg properly dis-
continuously. We show that by associating a principally polarized real torus of
dimension g to each equivalence class in Tg, the quotient space

GM (Z)\
(
Pg × Rg

)

may be regarded as a family of principally polarized real tori of dimension
g. To each equivalence class [Y ] ∈ GL(g,Z)\Pg with Y ∈ Pg we associate a
principally polarized real torus TY = Rg/ΛY , where ΛY = Y Zg is a lattice in
Rg.

Let Y1 and Y2 be two elements in Pg with [Y1] 6= [Y2], that is, Y2 6= AY1
tA

for all A ∈ GL(g,Z).We put Λi = Yi Z
g for i = 1, 2. Then a torus T1 = Rg/Λ1

is diffeomorphic to T2 = Rg/Λ2 as smooth manifolds but T1 is not isomorphic
to T2 as polarized real tori.

The Siegel modular variety Ag has three remarkable properties : (a) it is the
moduli space of principally polarized abelian varieties of dimension g, (b) it has
the structure of a quasi-projective complex algebraic variety which is defined
over Q, and (c) it has a canonical compactification, the so-called Satake-Baily-
Borel compactification which is defined over Q. Unfortunately the Minkowski
modular space Tg does not admit the structure of a real algebraic variety.
Moreover Tg does not admit a compactification which is defined over Q. Sil-
hol [26] constructs the moduli space of real principally poarized abelian vari-
eties and he shows that it is a topological ramified covering of Tg. Further-
more Silhol constructs a compactification of this moduli space analogous to
the Satake-Baily-Borel compactification. However, neither the moduli space
nor this compactification has an algebraic structure. On the other hand, by
considering real abelian varieties with a suitable level structure Goresky and
Tai [8] show that the moduli space of real principally polarized abelian va-
rieties with level 4m structure (m ≥ 1) coincides with the set of real points
of a quasi-projective algebraic variety defined over Q and consists of finitely
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many copies of the quotient Gg(4m)\Pg with a discrete subgroup Gg(4m) of
GL(g,Z), where Gg(4m) = {γ ∈ GL(g,Z) | γ ≡ Ig (mod 4m)}.

This paper is organized as follows. In Section 2, we collect some basic prop-
erties about the symplectic group Sp(g,R) to be used frequently in the subse-
quent sections. In Section 3, we give basic definitions concerning real abelian
varieties and review some properties of real abelian varieties. In Section 4, we
discuss a moduli space for real abelian varieties and recall some basic properties
of a moduli for real abelian varieties. In Section 5 we discuss compactifications
of the moduli space for real abelian varieties and review some results on this
moduli space obtained by Silhol [26], Goresky and Tai [8]. In Section 6 we
introduce a notion of polarized real tori and investigate some properties of po-
larized real tori. We give several examples of polarized real tori. In Section 7
we study smooth line bundles over a real torus, in particular a polarized real
torus by relating those smooth line bundles to holomorphic line bundles over
the associated complex torus. To each smooth line bundle on a real torus we
naturally attach a holomorphic line bundle over the associated complex torus.
Conversely to a holomorphic line bundle over a polarized abelian variety we
associate a smooth line bundle over the associated polarized real torus. Using
these results on line bundles, we embed a real torus in a complex projective
space and hence in a real projective space smoothly. We also review briefly
holomorphic line bundles over a complex torus. In Section 8 we study the
moduli space for polarized real tori. We first review basic geometric properties
on the Minkowski fundamental domain Rg. We show that Pg parameterizes
principally polarized real tori of dimension g and that Tg can be regarded as
the moduli space of principally polarized real tori of dimension g. We show
that the quotient space GM (Z)\(Pg × Rg) may be considered as a family of
principally polarized real tori of dimension g. In Section 9 we discuss real semi-
abelian varieties corresponding to the boundary points of a compactification of
a moduli space for real abelian varieties. We recall that a semi-abelian variety
is defined to be an extension of an abelian variety by a group of multiplica-
tive type. In Section 10 we discuss briefly real semi-tori corresponding to the
boundary points of a moduli space for polarized real tori. In the final section
we present some problems related to real polarized tori which should be inves-
tigated in the near future. In the appendix we collect and review some results
on non-abelian cohomology to be needed necessarily in this article. We give
some sketchy proofs for the convenience of the reader.

Finally I would like to mention that this work was motivated and initiated
by the works of Silhol [26] and Goresky-Tai [8].

Notations. We denote by Q, R and C the field of rational numbers, the field
of real numbers and the field of complex numbers respectively. We denote by Z
and Z+ the ring of integers and the set of all positive integers respectively. The
symbol “:=” means that the expression on the right is the definition of that
on the left. For two positive integers k and l, F (k,l) denotes the set of all k × l
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matrices with entries in a commutative ring F . For a square matrix A ∈ F (k,k)

of degree k, σ(A) denotes the trace of A. For any M ∈ F (k,l), tM denotes
the transpose matrix of M . In denotes the identity matrix of degree n. For a
matrix Z, we denote by ReZ (resp. ImZ) the real (resp. imaginary) part of
Z. For A ∈ F (k,l) and B ∈ F (k,k), we set B[A] = tABA. For a complex matrix
A, A denotes the complex conjugate of A. For A ∈ C(k,l) and B ∈ C(k,k), we
use the abbreviation B{A} = tABA. We denote C∗

1 = { ξ ∈ C | |ξ| = 1}. Let

Γg =
{
γ ∈ Z(2g,2g) | tγ Jgγ = Jg

}

denote the Siegel modular group of degree g, where

Jg =

(
0 Ig

−Ig 0

)

is the symplectic matrix of degree 2g. For a positive integer N , we let

Γg(N) = {γ ∈ Γg | γ ≡ I2g (mod N)}
denote the principal congruence subgroup of Γg of level N and for a positive
integer m, we let
(1.4)

Γg(2, 2m) =

{(
A B
C D

)
∈ Γg

∣∣∣ A,D ≡ Ig (mod 2), B, C ≡ 0 (mod 2m)

}
.

Let Gg := GL(g,Z) and for a positive integer N let

(1.5) Gg(N) = {γ ∈ GL(g,Z) | γ ≡ Ig (mod N)} .

2. The symplectic group

For a given fixed positive integer g, we let let

Sp(g,R) =
{
M ∈ R(2g,2g) | tMJgM = Jg

}

be the symplectic group of degree g.
IfM = (A B

C D ) ∈ Sp(g,R) with A,B,C,D ∈ R(g,g), then it is easily seen that

(2.1) A tD −B tC = Ig, A tB = B tA, C tD = D tC

or

(2.2) tAD − tCB = Ig,
tAC = tCA, tBD = tDB.

The inverse of such a symplectic matrix M is given by

M−1 =M =

(
tD −tB
−tC tA

)
.

We identify GL(g,R) →֒ Sp(g,R) with its image under the embedding

A 7−→
(
A 0
0 tA−1

)
, A ∈ GL(g,R).
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A Cartan involution θ of Sp(g,R) is given by θ(x) = Jg xJ
−1
g , x ∈ Sp(g,R),

in other words,

(2.3) θ

(
A B
C D

)
=

(
D −C

−B A

)
,

(
A B
C D

)
∈ Sp(g,R).

The fixed point set K of θ is given by

K =

{(
A B

−B A

)
∈ Sp(g,R)

}
.

We may identify K with the unitary group U(g) of degree g via

K ∋
(

A B
−B A

)
7−→ A+ iB ∈ U(g).

Let

Hg =
{
Ω ∈ C(g,g) | Ω = tΩ, ImΩ > 0

}

be the Siegel upper half plane of degree g. Then Sp(g,R) acts onHg transitively
by

(2.4) M · Ω = (AΩ +B)(CΩ +D)−1,

where M = (A B
C D ) ∈ Sp(g,R) and Ω ∈ Hg. The stabilizer at iIg is given by

the compact subgroup K ∼= U(g) of Sp(g,R). Thus Hg is biholomorphic to the
Hermitian symmetric space Sp(g,R)/K via

Sp(g,R)/K −→ Hg, xK 7−→ x · (iIg), x ∈ Sp(g,R).

We note that the Siegel modular group Γg of degree g acts on Hg properly
discontinuously.

Now we let

(2.5) I∗ :=

(
−Ig 0
0 Ig

)
.

We define the involution τ : Sp(g,R) −→ Sp(g,R) by

(2.6) τ(x) := I∗ x I∗, x ∈ Sp(g,R).

Precisely τ is given by

(2.7) τ

(
A B
C D

)
=

(
A −B

−C D

)
,

(
A B
C D

)
∈ Sp(g,R).

Lemma 2.1. (1) τ(x) = x, x ∈ Sp(g,R) if and only if x ∈ GL(g,R).
(2) τθ = θτ. So τ(K) = K.
(3) If A+ iB ∈ U(g) with A,B ∈ R(g,g), then τ(A + iB) = A− iB.

Proof. It is easy to prove the above lemma. We leave the proof to the reader.
�
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We note that τ : Sp(g,R) −→ Sp(g,R) passes to an involution (which we
denote by the same letter) τ : Hg −→ Hg such that

(2.8) τ(x · Ω) = τ(x) τ(Ω) for all x ∈ Sp(g,R), Ω ∈ Hg.

In fact, we can see easily that the involution τ : Hg −→ Hg is the antiholomor-
phic involution given by

(2.9) τ(Ω) = −Ω, Ω ∈ Hg.

Its fixed point set is the orbit

iPg = GL(g,R) · (iIg) ⊂ C(g,g)

of GL(g,R), where

Pg =
{
Y ∈ R(g,g) | Y = tY > 0

}

is the open convex cone of positive definite symmetric real matrices of degree
g in the Euclidean space Rg(g+1)/2.

For x ∈ Sp(g,R) and Ω ∈ Hg, we define the set

(2.10) Hτx
g :=

{
Ω ∈ Hg | x · Ω = τ(Ω) = −Ω

}

be the locus of x-real points. If Γ ⊂ Sp(g,R) is an arithmetic subgroup of
Sp(g,R) such that τ(Γ) = Γ, we define

(2.11) HτΓ
g :=

⋃

γ∈Γ

Hτγ
g .

Lemma 2.2. Let x ∈ Sp(g,R) and Hx
g be the set of points in Hg which are

fixed under the action of x. Then the set Hx
g ∩ iPg is a proper real algebraic

variety of iPg if x 6= ±Ig ∈ GL(g,R).

Proof. It is easy to prove the above lemma. We omit the proof. �

3. Real abelian varieties

In this section we review basic notions and some results on real principally
polarized abelian varieties (cf. [8, 21, 24, 25, 26]).

Definition. A pair (A, S) is said to be a real abelian variety if A is a complex
abelian variety and S is an anti-holomorphic involution of A leaving the origin
of A fixed. The set of all fixed points of S is called the real point of (A, S) and
denoted by (A, S)(R) or simply A(R). We call S a real structure on A.

Definition. (1) A polarization on a complex abelian variety A is defined to
be the Chern class c1(D) ∈ H2(A,Z) of an ample divisor D on A. We can

identify H2(A,Z) with
∧2

H1(A,Z). We write A = V/L, where V is a finite
dimensional complex vector space and L is a lattice in V . So a polarization
on A can be defined as an alternating form E on L ∼= H1(A,Z) satisfying the
following conditions (E1) and (E2):
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(E1) The Hermitian form H : V × V −→ C defined by

(3.1) H(u, v) = E(i u, v) + i E(u, v), u, v ∈ V

is positive definite. Here E can be extended R-linearly to an alternating form
on V .

(E2) E(L× L) ⊂ Z, i.e., E is integral valued on L× L.
(2) Let (A, S) be a real abelian variety with a polarization E of dimension

g. A polarization E is said to be real or S-real if

(3.2) E(S∗(a), S∗(b)) = −E(a, b), a, b ∈ H1(A,Z).

Here S∗ : H1(A,Z) −→ H1(A,Z) is the map induced by a real structure S.
If a polarization E is real, the triple (A, E, S) is called a real polarized abelian

variety. A polarization E on A is said to be principal if for a suitable basis (i.e.,
a symplectic basis) of H1(A,Z) ∼= L, it is represented by the symplectic matrix
Jg (cf. see Notations in the introduction). A real abelian variety (A, S) with a
principal polarization E is called a real principally polarized abelian variety.

(3) Let (A, E) be a principally polarized abelian variety of dimension g and
let {αi | 1 ≤ i ≤ 2g} be a symplectic basis of H1(A,Z). It is known that there
is a basis {ω1, . . . , ωg} of the vector space H0(A,Ω1) of holomorphic 1-forms
on A such that (∫

αj

ωi

)
= (Ω, Ig) for some Ω ∈ Hg.

The g × 2g matrix (Ω, Ig) or simply Ω is called a period matrix for (A, E).

The definition of a real polarized abelian variety is motivated by the following
theorem.

Theorem 3.1. Let (A, S) be a real abelian variety and let E be a polarization

on A. Then there exists an ample S-invariant (or S-real) divisor with Chern

class E if and only if E satisfies the condition (3.2).

Proof. The proof can be found in [25, Theorem 3.4, pp. 81–84]. �

Now we consider a principally polarized abelian variety of dimension g with a
level structure. LetN be a positive integer. Let (A = Cg/L,E) be a principally
polarized abelian variety of dimension g. From now on we write A = Cg/L,
where L is a lattice in Cg. A level N structure on A is a choice of a basis
{Ui, Vj} (1 ≤ i, j ≤ g) for a N -torsion points of A which is symplectic, in the
sense that there exists a symplectic basis {ui, vj} of L such that

Ui ≡
ui
N

(modL) and Vj ≡
vj
N

(modL), 1 ≤ i, j ≤ g.

For a given level N structure, such a choice of a symplectic basis {ui, vj} of L
determines a mapping

F : Rg ⊕ Rg −→ Cg
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such that F (Zg ⊕ Zg) = L by F (ei) = ui and F (fj) = vj , where {ei, fj} (1 ≤
i, j ≤ g) is the standard basis of Rg ⊕Rg. The choice {ui, vj} (or equivalently,
the mapping F ) will be referred to as a lift of the level N structure. Such a
mapping F is well defined modulo the principal congruence subgroup Γg(N),
that is, if F ′ is another lift of the level structure, then F ′ ◦ F−1 ∈ Γg(N). A
level N structure {Ui, Vj} is said to be compatible with a real structure S on
(A, E) if, for some (and hence for any) lift {ui, vj} of the level structure,

S
(ui
N

)
≡ −ui

N
(modL) and S

(vj
N

)
≡ vj
N

(modL), 1 ≤ i, j ≤ g.

Definition. A real principally polarized abelian variety of dimension g with a
level N structure is a quadruple A = (A, E, S, {Ui, Vj}) with A = Cg/L, where
(A, E, S) is a real principally polarized abelian variety and {Ui, Vj} is a level
N structure compatible with a real structure S. An isomorphism

A = (A, E, S, {Ui, Vj}) ∼= (A′, E′, S′, {U ′
i , V

′
j }) = A′

is a complex linear mapping φ : Cg −→ Cg such that

(3.3) φ(L) = L′,

(3.4) φ∗(E) = E′,

(3.5) φ∗(S) = S′, that is, φ ◦ S ◦ φ−1 = S′,

(3.6) φ
(ui
N

)
≡ u′i
N

(modL′) and φ
(vj
N

)
≡
v′j
N

(modL′), 1 ≤ i, j ≤ g

for some lift {ui, vj} and {u′i, v′j} of the level structures.

Now we show that a given positive integer N and a given Ω ∈ Hg determine
naturally a principally polarized abelian variety (AΩ, EΩ) of dimension g with
a level N structure. Let E0 be the standard alternating form on Rg ⊕Rg with
the symplectic matrix Jg with respect to the standard basis of Rg ⊕ Rg. Let
FΩ : Rg ⊕ Rg −→ Cg be the real linear mapping with matrix (Ω, Ig), that is,

(3.7) FΩ

(
x
y

)
:= Ωx+ y, x, y ∈ Rg.

We define EΩ := (FΩ)∗(E0) and LΩ := FΩ(Zg⊕Zg). Then (AΩ = Cg/LΩ, EΩ)
is a principally polarized abelian variety. The Hermitian form HΩ on Cg cor-
responding to EΩ is given by

(3.8) HΩ(u, v) =
tu (ImΩ)−1 v, EΩ = ImHΩ, u, v ∈ Cg.

If z1, . . . , zg are the standard coordinates on Cg, then the holomorphic 1-forms
dz1, . . . , dzg have the period matrix (Ω, Ig). If {ei, fj} is the standard basis of
Rg ⊕ Rg, then {FΩ(ei/N), FΩ(fj/N)}.
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(mod LΩ) is a level N structure on (AΩ, EΩ), which we refer to as the
standard N structure. Assume that Ω1 and Ω2 are two elements of Hg such
that

ψ : (AΩ1 = Cg/LΩ1 , EΩ1) −→ (AΩ2 = Cg/LΩ2 , EΩ2)

is an isomorphism of the corresponding principally polarized abelian varieties,
i.e., ψ(LΩ1) = LΩ2 and ψ∗(EΩ1 ) = EΩ2 . We set

h = t
(
F−1
Ω2

◦ ψ ◦ FΩ1

)
=

(
A B
C D

)
.

Then we see that h ∈ Γg. And we have

(3.9) Ω1 = h · Ω2 = (AΩ2 +B)(CΩ2 +D)−1

and

(3.10) ψ(Z) = t(CΩ2 +D)Z, Z ∈ Cg.

Let Ω ∈ Hg such that γ · Ω = τ(Ω) = −Ω for some γ = (A B
C D ) ∈ Γg. We

define the mapping Sγ,Ω : Cg −→ Cg by

(3.11) Sγ,Ω(Z) :=
t(CΩ +D)Z, Z ∈ Cg.

Then we can show that Sγ,Ω is a real structure on (AΩ, EΩ) which is compatible
with the polarization EΩ (that is, EΩ(Sγ,Ω(u), Sγ,Ω(v)) = −EΩ(u, v) for all
u, v ∈ Cg). Indeed according to Comessatti’s Theorem (see Theorem 3.1),
Sγ,Ω(Z) = Z, i.e., Sγ,Ω is a complex conjugation. Therefore we have

EΩ(Sγ,Ω(u), Sγ,Ω(v)) = EΩ(u, v) = −EΩ(u, v)

for all u, v ∈ Cg. From now on we write simply σΩ = Sγ,Ω.

Theorem 3.2. Let (A, E, S) be a real principally polarized abelian variety of

dimension g. Then there exists Ω = X + i Y ∈ Hg such that 2X ∈ Z(g,g) and

there exists an isomorphism of real principally polarized abelian varieties

(A, E, S) ∼= (AΩ, EΩ, σΩ),

where σΩ is a real structure on AΩ induced by a complex conjugation σ : Cg −→
Cg.

The above theorem is essentially due to Comessatti [6]. We refer to [24, 25]
for the proof of Theorem 3.2.

Theorem 3.2 leads us to define the subset Hg of Hg by

(3.12) Hg :=
{
Ω ∈ Hg | 2ReΩ ∈ Z(g,g)

}
.

Assume Ω = X + i Y ∈ Hg . Then according to Theorem 3.2, (AΩ, EΩ, σΩ)
is a real principally polarized abelian variety of dimension g. The matrix Mσ

for the action of a complex conjugation σ on the lattice LΩ = ΩZg + Zg with
respect to the basis given by the columns of (Ω, Ig) is given by

(3.13) Mσ =

(
−Ig 0
2X Ig

)
.
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Since
tMσ JgMσ =

(
−Ig 2X
0 Ig

)
Jg

(
−Ig 0
2X Ig

)
= −Jg,

the canonical polarization Jg is σ-real.

Theorem 3.3. Let Ω and Ω∗ be two elements in Hg. Then Ω and Ω∗ represent

(real) isomorphic triples (A, E, σ) and (A∗, E∗, σ∗) if and only if there exists an

element A ∈ GL(g,Z) such that

(3.14) 2Re Ω∗ = 2A (Re Ω) tA (mod 2)

and

(3.15) Im Ω∗ = A (Im Ω) tA.

Proof. Suppose (A, E, σ) and (A∗, E∗, σ∗) are real isomorphic. Then we can
find an element γ = (A B

C D ) ∈ Γg such that

Ω∗ = (AΩ +B)(CΩ +D)−1.

The map

ϕ : Cg/LΩ∗
= AΩ∗

−→ AΩ = Cg/LΩ

induced by the map

ϕ̃ : Cg −→ Cg, Z 7−→ t(CΩ +D)Z

is a real isomorphism. Since ϕ̃ ◦ σ∗ = σ ◦ ϕ̃, i.e., ϕ̃ commutes with complex
conjugation on Cg, we have C = 0. Therefore

Ω∗ = (AΩ +B) tA = (AX tA+B tA) + i AY tA,

where Ω = X + i Y. Hence we obtain the desired results (3.14) and (3.15).
Conversely we assume that there exists A ∈ GL(g,Z) satisfying the condi-

tions (3.14) and (3.15). Then

Ω∗ = γ · Ω = (AΩ +B) tA

for some γ =
(
A B
0 tA−1

)
∈ Γg with B ∈ Z(g,g) with B tA = A tB. The map

ψ : AΩ −→ AΩ∗
induced by the map

ψ̃ : Cg −→ Cg, Z 7−→ A−1Z

is a complex isomorphism commuting complex conjugation σ. Therefore ψ is
a real isomorphism of (A, E, σ) onto (A∗, E∗, σ∗). �

According to Theorem 3.3, we are led to define the subgroup Γ⋆
g of Γg by

(3.16) Γ⋆
g :=

{(
A B
0 tA−1

)
∈ Γg

∣∣ B ∈ Z(g,g), A tB = B tA

}
.

It is easily seen that Γ⋆
g acts on Hg properly discontinuously by

(3.17) γ · Ω = AΩ tA + B tA,

where γ =
(
A B
0 tA−1

)
∈ Γ⋆

g and Ω ∈ Hg .
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4. Moduli spaces for real abelian varieties

In Section 3, we knew that Γ⋆
g acts on Hg properly discontinuously by the

formula (3.17). So the quotient space

X
g
R := Γ⋆

g\Hg

inherits a structure of stratified real analytic space from the real analytic struc-
ture on Hg. The stratified real analytic space X

g
R classifies, up to real isomor-

phism, real principally polarized abelian varieties (A, E, S) of dimension g.
Thus X

g
R is called the (real) moduli space of real principally polarized abelian

varieties (A, E, S) of dimension g.
To study the structure of X

g
R , we need the following result of A. A. Albert

[1].

Lemma 4.1. Let Sg(Z/2) be the set of all g × g symmetric matrices with

coefficients in Z/2. We note that GL(g,Z/2) acts on Sg(Z/2) by N 7−→ AN tA
with A ∈ GL(g,Z/2) and N ∈ Sg(Z/2). We put

π(N) :=

g∏

k=1

(1 − nkk) for N = (nij) ∈ Sg(Z/2).

Then N ∈ Sg(Z/2) is equivalent mod GL(g,Z/2) to a matrix of the form:

(I)

(
Iλ 0
0 0

)
if π(N) = 0 and rank (N) = λ or

(II)

(
Hλ 0
0 0

)
with Hλ :=



0 · · · 1
... . .

. ...
1 · · · 0


 ∈ Z(λ,λ) if π(N) = 1 and rank (N)

= λ.

N ∈ Sg(Z/2) is said to be diasymmetric in Case (I) and to be orthosymmetric

in Case (II).

Theorem 4.1. Let (A, E) be a principally polarized abelian variety of dimen-

sion g. Then there exists a real structure S on A such that E is S-real if and
only if (A, E) admits a period matrix of the following form

(
Ig,

1

2
M + i Y

)
, Y ∈ Pg,

where M is one of the forms (I) and (II) in Lemma 4.1.

The above theorem is essentially due to Comessatti [6]. We refer to [24] or
[25, Theorem 2.3, pp. 78–80 and Theorem 4.1, pp. 86–88] for the proof of the
above theorem.

Lemma 4.2. Let Ω1 and Ω2 be two elements of Hg such that

Ωi =
1

2
Xi + i Yi, Mi ∈ Z(g,g), Yi ∈ Pg, i = 1, 2.
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Then Ω1 and Ω2 have images, under the natural projection πg : Hg −→ X
g
R ,

in the same connected component of X
g
R , if and only if rank (M1 mod 2) =

rank (M2 mod2) and π(M1 mod 2) = π(M2 mod 2).

Theorem 4.2. X
g
R is a real analytic manifold of dimension g(g + 1)/2 and

has g + 1 +
[
g
2

]
connected components. Moreover X

g
R is semi-algebraic, i.e.,

X
g
R is defined by a finite number of polynomial equalities and inequalities.

Proof. The proof can be found in [21, Theorem 6.1, p. 161]. �

Remark 4.1. Let Ω = 1
2M + i Y ∈ Hg with M = tM ∈ Z(g,g). If

rank (M mod 2) = λ,

then AΩ(R) has 2g−λ connected components (cf. [21, 24]). The other invariant
π(M2 mod 2) is an invariant related to the polarization.

Recall that by Lemma 4.1, the connected components of X
g
R correspond

to the different possible values of (λ, i) =
(
rank (M mod 2), π(M mod 2)

)
on

which we have the restriction :

(4.1) 0 ≤ λ ≤ g, i = 0 or 1, and i = 0 if λ is odd, i = 1 if λ = 0.

We denote by X
g
(λ,i) the connected components of X

g
R corresponding to the

invariants (λ, i).

Definition. Let M ∈ Z(g,g) be a g × g symmetric integral matrix. We say
that M is of the standard form if M is of one of the forms in Lemma 4.1 (we
observe that for fixed (λ, i) this form is unique).

Now we can prove the following.

Lemma 4.3. Let M ∈ Z(g,g) be a symmetric integral matrix which is of the

standard form with invariants (λ, i). Let

Γg
(λ,i) :=

{
A ∈ GL(g,Z) | AM tA ≡M (mod 2)

}
.

Then

X
g
(λ,i)

∼= Γg
(λ,i)\Pg.

Proof. Let [Ω] be a class in X
g
(λ,i). By Lemma 4.1 and Lemma 4.2, there exist

a symmetric integral matrix M ∈ Z(g,g) with invariants (λ, i) of the standard
form and an element Y ∈ Pg such that 1

2M + i Y is a representative for the

class [Ω]. If Y∗ ∈ Pg is such that 1
2M + i Y∗ is also a representative for the

class [Ω], according to Theorem 3.2,

M ≡ AM tA (mod 2) and Y∗ = AY tA

for some A ∈ GL(g,Z). �

Theorem 4.3. X
g
(λ,i) is a connected semi-algebraic set with a real analytic

structure.
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Proof. The proof can be found in [21, p. 160]. �

Let (A, E, S) be a real polarized abelian variety and −S be the real structure
obtained by composing S with the involution z 7−→ −z of A. We see that
(A, E,−S) is also a real polarized abelian variety. In general (A, E,−S) is not
real isomorphic to (A, E, S). Therefore the following correspondence

(4.2) Σ : X
g
R −→ X

g
R , (A, E, S) 7−→ (A, E,−S)

defines a non-trivial involution of X
g
R .

LetM ∈ Z(g,g) be a symmetric integral matrix which is of the standard form
with invariants (λ, i). It is easily checked that M3 =M. We put

(4.3) ΣM :=

(
−M Ig

−(Ig +M2) M

)
.

It is easy to see the following facts (4.4) and (4.5).

(4.4) ΣM ∈ Γg and
(
ΣM

)−1
= −ΣM .

(4.5)
(
tΣM

)−1
(
−Ig 0
M Ig

)
tΣM =

(
Ig 0
−M −Ig

)
.

Now we assume that Ω = 1
2M + i Y ∈ Hg represents (A, E, S). By (3.13), the

matrices of S and −S are given by

(4.6) MS =

(
−Ig 0
M Ig

)
and M−S =

(
Ig 0
−M −Ig

)

respectively with respect to the R-basis given by the columns of (Ω, Ig). By
the formulas (4.5) and (4.6) we see that ΣM (Ω) represents the real polarized
abelian variety.

Lemma 4.4. Let M ∈ Z(g,g) be a symmetric integral matrix which is of the

standard form with invariants (λ, i) and Y ∈ Pg. Then we have

(4.7) ΣM

(
1

2
M + i Y

)
=

1

2
M + i

(
1
2 Iλ 0
0 Ig−λ

)
Y −1

(
1
2 Iλ 0
0 Ig−λ

)−1

.

Proof. Using the fact that M3 =M , by a direct computation, we get

(4.8) ΣM

(
1

2
M + i Y

)
= M

(
Ig +M2

)−1
+ i

(
Ig −

1

2
M2
)
Y −1

(
Ig +M2

)−1
.

It is easily checked that

(4.9)
(
Ig +M2

)−1
= Ig −

1

2
M2 =

(
1
2 Iλ 0
0 Ig−λ

)
.

The formula (4.7) follows immediately from (4.8) and (4.9). �
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Proposition 4.1. The map Σ : X
g
R −→ X

g
R defined by

(4.10) Σ ([(A, E, S)]) := [(A, E,−S)], [(A, E, S)] ∈ X
g
R

is a real analytic involution of X
g
R . For each connected component X

g
(λ,i), we

have

Σ
(
X

g
(λ,i)

)
= X

g
(λ,i).

Hence Σ leaves the connected components of X
g
R globally fixed.

Proof. Let M ∈ Z(g,g) be a symmetric integral matrix which is of the standard
form with invariants (λ, i). We denote by Hg(M) the connected component
of Hg containing the matrices of the form 1

2M + i Y ∈ Hg with Y ∈ Pg.
According to (4.5) and Lemma 4.4, we see that ΣM defines an involution of
Hg(M). Since Hg(M) is mapped onto X

g
(λ,i), we obtain the desired result. �

5. Compactifications of the moduli space X
g

R

In this section we review the compactification X
g
R of X

g
R obtained by R.

Silhol [26] and the Baily-Borel compactification of Γg(4m)\Hg which is related
to the moduli space of real abelian varieties with level 4m structure.

First of all we recall the Satake compactification of the Siegel modular variety
Ag := Γg\Hg. Let

(5.1) Dg :=
{
W ∈ C(g,g) | W = tW, Ig −WW > 0

}

be the generalized unit disk of degree g which is a bounded realization of Hg.
In fact, the Cayley transform Φg : Dg −→ Hg defined by

(5.2) Φg(W ) := i (Ig +W )(Ig −W )−1, W ∈ Dg

is a biholomorphic mapping of Dg onto Hg which gives the bounded realization
of Hg by Dg [23, pp. 281–283]. The inverse Ψg of Φg is given by

(5.3) Ψg(Ω) = (Ω− i Ig)(Ω + i Ig)
−1, Ω ∈ Hg.

We let

T =
1√
2

(
Ig Ig
iIg −iIg

)

be the 2g × 2g matrix represented by Φg. Then

T−1Sp(g,R)T =

{(
P Q
Q P

)
∈ C(2g,2g)

∣∣∣ tPP − tQQ = Ig,
tPQ = tQP

}
.

Indeed, if M = (A B
C D ) ∈ Sp(g,R), then

T−1MT =

(
P Q
Q P

)
,

where

(5.4) P =
1

2
{(A+D) + i (B − C)}
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and

(5.5) Q =
1

2
{(A−D)− i (B + C)} .

For brevity, we set

G∗ = T−1Sp(g,R)T.

Then G∗ is a subgroup of SU(g, g), where

SU(g, g) =
{
h ∈ C(2g,2g) | thIg,gh = Ig,g, deth = 1

}
, Ig,g =

(
Ig 0
0 −Ig

)
.

In the case g = 1, we observe that

T−1Sp(1,R)T = T−1SL2(R)T = SU(1, 1).

If g > 1, then G∗ is a proper subgroup of SU(g, g). In fact, since tTJgT = − i Jg,
we get

G∗ =
{
h ∈ SU(g, g) | thJgh = Jg

}
.

Let

P+ =

{(
Ig Z
0 Ig

) ∣∣∣ Z = tZ ∈ C(g,g)

}

be the P+-part of the complexification of G∗ ⊂ SU(g, g).

Since the Harish-Chandra decomposition of an element
(

P Q

Q P

)
in GJ

∗ is

(
P Q
Q P

)
=

(
Ig QP

−1

0 Ig

)(
P −QP

−1
Q 0

0 P

)(
Ig 0

P
−1
Q Ig

)
,

the P+-component of the following element
(
P Q
Q P

)
·
(
Ig W
0 Ig

)
, W ∈ Dg

of the complexification of GJ
∗ is given by

((
Ig (PW +Q)(QW + P )−1

0 Ig

))
.

We note that QP
−1 ∈ Dg.We get the Harish-Chandra embedding of Dg into

P+ (cf. [12, p. 155] or [19, pp. 58–59]). Therefore we see that G∗ acts on Dg

transitively by

(5.6)

(
P Q

Q P

)
·W = (PW +Q)(QW + P )−1,

(
P Q

Q P

)
∈ G∗, W ∈ Dg.

The isotropy subgroup at the origin o is given by

K =

{(
P 0
0 P

) ∣∣∣ P ∈ U(g)

}
.

Thus G∗/K is biholomorphic to Dg. The action (2.4) is compatible with the
action (5.6) via the Cayley transform (5.2).
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In summary, Sp(g,R) acts on Dg transitively by
(5.7)(

A B
C D

)
·W = (PW +Q)(QW + P )−1,

(
A B
C D

)
∈ Sp(g,R), W ∈ Dg,

where P and Q are given by (5.4) and (5.5). This action extends to the closure
Dg of Dg in Cg(g+1)/2.

For an integer s with 0 ≤ s ≤ g, we let

(5.8) Fs :=

{
W =

(
W1 0
0 Ig−s

) ∣∣∣ W1 ∈ Ds

}
⊂ Dg.

We say that Fs is the standard boundary component of degree s. If there exists
an element γ ∈ Sp(g,Q) (equivalently γ ∈ Γg) with F = γ (Fs) ⊂ Dg, then
F is said to be a rational boundary component of degree s. The Siegel upper
half plane Hs is attached to Hg as a limit of matrices in C(g,g) by

Ω1 7−→ lim
Y−→∞

(
Ω1 0
0 i Y

)
, Ω1 ∈ Hs, Y ∈ Pg−s,

meaning that all the eigenvalues of Y converge to ∞.
For a rational boundary component F ⊂ Dg, we let

P (F ) = {α ∈ Sp(g,Q) | α(F ) = F}
be the normalizer in Sp(g,Q) of F (or the parabolic subgroup of Sp(g,Q)
associated to F ) and let

Z(F ) = {α ∈ Sp(g,Q) | α(W ) =W for all W ∈ F}
be the centralizer of F . We put

G(F ) := P (F )/Z(F ) ∼= Sp(s,Q).

Obviously G(F ) acts on F . We choose the standard boundary component
F = Fs. An element γ of P (F ) is of the form

(5.9) γ =




A1 0 B1 ∗
∗ u ∗ ∗
C1 0 D1 ∗
0 0 0 tu−1


 ∈ Sp(g,Q),

where

γ1 =

(
A1 B1

C1 D1

)
∈ Sp(s,Q) and u ∈ GL(g − s,Q).

The unipotent radical U(F ) of P (F ) is given by

(5.10) U(F )=








Is 0 0 tµ
λ Ig−s µ κ
0 0 Is − tλ
0 0 0 Ig−s




∣∣∣∣∣ λ, µ ∈ Q(g−s,s), κ ∈ Q(g−s,g−s)




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and the centralizer ZU (F ) of U(F ) is given by

(5.11) ZU (F ) =








Is 0 0 0
0 Ig−s 0 κ
0 0 Is 0
0 0 0 Ig−s




∣∣∣∣∣ κ ∈ Q(g−s,g−s)




.

We have inclusions of normal subgroups

ZU (F ) ⊂ U(F ) ⊂ P (F ).

The Levi factor L(F ) of P (F ) is given by

(5.12) L(F ) = Gh(F )Gl(F )

with
(5.13)

Gh(F )=








A1 0 B1 0
0 Ig−s 0 0
C1 0 D1 0
0 0 0 Ig−s


 ∈ P (F )

∣∣∣∣∣

(
A1 B1

C1 D1

)
∈ Sp(s,Q)





and

(5.14) Gl(F ) =








Is 0 0 0
0 S 0 0
0 0 Is 0
0 0 0 tS−1


 ∈ P (F )

∣∣∣∣∣ S ∈ GL(g − s,Q)




.

The subgroup U(F )Gh(F ) is normal in P (F ). The map P (F ) −→ Sp(s,Q),
γ 7→ γ1 is surjective and induces the isomorphism Gh(Fs) ∼= Sp(s,Q). We
note that the map f : P (Fs) ∩ Sp(g,Z) −→ Sp(s,Z), γ 7→ γ1 is obtained via(
W 0
0 Ig−s

)
7−→W , in the sense that if γ ∈ P (Fs), then

γ ·
(
W 0
0 Ig−s

)
=

(
γ1(W ) 0

0 Ig−s

)
.

We define

Dst
g :=

∐

0≤s≤g

Fs

and

D∗
g :=

∐

F :rational

F ,

where F runs over all rational boundary components. Via the Cayley transform
Φg (cf. (5.2)), we identify

Dst
g = Hst

g =
∐

0≤s≤g

Hs.
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Definition. Let u > 1.We denote byWg(u) the set of all matrices Ω = X+ i Y

in Hg with X = (xij) ∈ R(g,g) satisfying the conditions (Ω1) and (Ω2) :
(Ω1) |xij | < u ;
(Ω2) if Y = tWDW is the Jacobi decomposition of Y with W = (wij)

strictly upper triangular and D = diag(d1, . . . , dg) diagonal, then we have

|wij | < u, 1 < ud1, di < udi+1, i = 1, . . . , g − 1.

It is well known that for sufficiently large u > 0, the set Wg(u) is a funda-
mental set for the action of Γg on Hg, that is, Γg ·Wg(u) = Hg, and

{γ ∈ Γg | γ ·Wg(u) ∩Wg(u) 6= ∅}

is a finite set. We observe that if Ω =
(

Ω1 Ω3
tΩ3 Ω2

)
∈ Wg(u) with Ω1 ∈ C(s,s),

then Ω1 ∈ Ws(u).

Definition. We can choose a sufficiently large u0 > 0 such that for all 0 ≤
s ≤ g, Ws(u0) is a fundamental set for the action of Γs on Hs. In this case we
simply write Ws = Ws(u0) with 0 ≤ s ≤ g. We define

W∗
g :=

∐

0≤s≤g

Ws.

For Ω∗ ∈ Wg−r, we let U be a neighborhood of Ω∗ in Wg−r and v a positive
real number. For 0 ≤ s ≤ r, we let Ws(U, v) be the set of all

Ω =

(
Ω1 Ω3
tΩ3 Ω2

)
∈ Wg−s with Ω1 ∈ C(g−r,g−r)

satisfying the conditions (W1) and (W1):
(W1) Ω1 ∈ U ;
(W2) if Y = tWDW is the Jacobi decomposition of Y withW strictly upper

triangular and D = diag(d1, . . . , dg) diagonal, then we have dg−r+1 > v.

A fundamental set of neighborhoods of Ω∗ ∈ Wg−r for the Satake topology

on W∗
g is given by the collection

{⋃
0≤s≤rWs(U, v)

}
’s, where U runs through

neighborhoods of Ω∗ in Wg−r and v ranges in R+. We regard

W∗
g ⊂ Hst

g
∼= Dst

g

as a subset of D∗
g.

The Satake topology on D∗
g is characterized as the unique topology T ex-

tending the ordinary matrix topology on Dg and satisfying the following prop-
erties (ST1)–(ST4):

(ST1) T induces on W∗
g the topology defined in Definition 5.2;

(ST2) Sp(g,Q) acts continuously on D∗
g;

(ST3) A∗
g = Γg\D∗

g is a compact Hausdorff space;
(ST4) For any Ω ∈ D∗

g, there exists a fundamental set of neighborhoods {U}
of Ω such that γ ·U = U if γ ∈ Γg(Ω) := {γ ∈ Γg | γ ·Ω = Ω}, and γ ·U ∩U = ∅
if γ /∈ Γg(Ω).
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For a proof of these above facts we refer to [4].

Now we are ready to investigate the compactification of the moduli space
X

g
R of real principally polarized abelian varieties of dimension g obtained by

R. Silhol.

Definition. Let u > 1. We let Fg(u) be the set of all Ω = X + i Y ∈ Hg with
X = ReΩ = (xij) satisfying the following conditions (a) and (b):

(a) xij = 0 or 1
2 ;

(b) if Y = tWDW is the Jacobi decomposition of Y with W strictly upper
triangular and D = diag(d1, . . . , dg) diagonal, then we have

|wij | ≤ u and 0 < di ≤ u di+1.

We define F ′
g(u) to be the set of matrices in Hg satisfying the condition |xij | ≤

1
2 and the above condition (b). Let u0 > be as in Definition 5.2. We put

Fg := Fg(u0).

It is well known that Fg is a fundamental set for the action of Γ⋆
g on Hg.

For two nonnegative integers s and t, we define two subsets Fs,t and Fs,t of
D∗

g as follows.

(5.15) Fs,t :=







−Is 0 0
0 W 0
0 0 It


 ∈ D∗

g

∣∣∣ W ∈ Dg−(s+t)





and

(5.16) Fs,t :=







−Is 0 0
0 W 0
0 0 It


 ∈ Fs,t

∣∣∣ W ∈ Fg−(s+t)



 .

For M ∈ Z(g,g), we set

FM := {Ω ∈ Fg | 2ReΩ = M} .
In particular, F0 = {Ω ∈ Fg | ReΩ = 0}, where 0 denotes the g×g zero matrix.
We let

M :=
{
M = (mij) ∈ Z(g,g) | M = tM, mij = 0 or 1

}
.

For any M ∈ M, we set

BM :=

(
Ig

1
2 M

0 Ig

)
∈ Sp(g,Q).

By the definition we have

Fg =
⋃

M∈M
BM (F0) and F g =

⋃

M∈M
BM (F 0).

We can show that Hg = Γ⋆
g · F g.



POLARIZED REAL TORI 289

Now we embed Hg into D∗
g via the Cayley transform (5.3). We let Hg be

the closure of Hg in D∗
g. Then the action of Γ⋆

g extends to an action of Γ⋆
g

on Hg (see (3.16), (3.17), (ST2)). R. Silhol proved that the quotient space

Γ⋆
g\Hg is a connected, compact Hausdorff space (cf. [26, pp. 173–177]). Let

π : Hg −→ Γ⋆
g\Hg be the canonical projection. For M ∈ M, we define

HM =

{
1

2
M + i Y ∈ Hg

}
.

We let H M be the closure of HM in Hg. Then without difficulty we can see
that

(5.17) Γ⋆
g\Hg =

⋃

0≤s+t≤g

⋃

M∈M

(
π
(
BM (Fs,t) ∪ H 0

))
.

Let {Xi | 1 ≤ i ≤ N} with N = g+1+
[
g
2

]
be the connected components of

X
g
R ⊂ Γ⋆

g\Hg and let Σi be the restriction to Xi of the fundamental involution
Σ (cf. Proposition 4.1). We note that Σ does not extend to a global involution

of Γ⋆
g\Hg. But Σi extends to an involution of the closure X i of Xi in Γ⋆

g\Hg.

We observe that for each 1 ≤ i ≤ N , we have X i = Γ⋆
g(Mi)\H Mi

for some

Mi ∈ M. Here Γ⋆
g(Mi) =

{
γ ∈ Γ⋆

g | γ (HMi
) = HMi

}
.

Definition. Let z1 ∈ X i and z2 ∈ X j . We say that z1 and z2 are Σ-equivalent
and write z1 ∼ z2 if Σi(z1) = Σj(z2).

Silhol [26, p. 185] showed that ∼ defines an equivalence relation in Γ⋆
g\Hg.

By a direct computation, we obtain

P (Fs,t) =








v1 0 0 0 0 v21
∗ A1 0 0 B1 ∗
∗ ∗ u2 −u21 ∗ ∗
∗ ∗ −u12 u1 ∗ ∗
∗ C1 0 0 D1 ∗
v12 0 0 0 0 v2




∈ Sp(g,Q)





,

where

γ1 =

(
A1 B1

C1 D1

)
∈ Sp(g − r,Q) with r = s+ t

and

U =

(
u1 u12
u21 u2

)
∈ GL(r,Q), V =

(
v1 v21
v12 v2

)
= tU−1.

Now we define

(5.18) X
g
R (s, t) := (Γ⋆

g ∩ P (Fs,t))\(Fs,t ∩ Hg).

It is easily checked that

Γ⋆
g ∩ P (Fs,t) ∼= Γ⋆

g−(s+t) and Fs,t ∩ Hg
∼= H g−(s+t).
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We define

(5.19) X
g
R := Γ⋆

g\Hg/ ∼ .

Silhol [26, Theorem 8.17] proved the following theorem.

Theorem 5.1. X
g
R is a connected compact Hausdorff space containing X

g
R as

a dense open subset. As a set,

X
g
R =

∐

0≤s+t≤g

X
g
R (s, t).

We recall that H∗
g denotes the Satake partial compactification of Hg that

is obtained by attaching all rational boundary components with the Satake
topology. We know that Sp(g,Q) acts on H∗

g, the involution τ : Hg −→ Hg

(cf. (2.9)) extends to H∗
g and τ(α · x) = τ(α) τ(x) for all α ∈ Sp(g,Q) and

x ∈ H∗
g.

Let N = 4m with m a positive integer. We write

X(N) := Γg(N)\Hg and V (N) := Γg(N)\H∗
g.

We let

(5.20) πBB : H∗
g −→ V (N) = Γg(N)\H∗

g

be the canonical projection of H∗
g to the Baily-Borel compactification of X(N).

The involution τ passes to complex conjugation τ : V (N) −→ V (N), whose
fixed points we denote by V (N)R. Obviously the τ -fixed set

X(N)R := {x ∈ X(N) | τ(x) = x}
is a subset of V (N)R. We let X(N)R denote the closure of X(N)R in V (N)R.

Theorem 5.2. There exists a natural rational structure on V (N) which is

compatible with the real structure defined by τ .

Proof. It follows from Shimura’s result [22] that the Γg(N)-automorphic forms
on Hg are generated by those automorphic forms with rational Fourier coeffi-
cients. �

If γ ∈ Γg(N) and F is a rational boundary component of H∗
g such that

τ(F ) = F , we define the set of γ-real points of F to be

(5.21) F
τγ := {x ∈ F | τ(x) = γ · x} .

Then πBB

(
F τγ

)
⊂ V (N)R.

Definition. Let N = 4m. A Γg(N)-real boundary pair (F , γ) of degree s
consists of a rational boundary component F of degree s and an element
γ ∈ Γg(N) such that F τγ 6= ∅. We say that two Γg(N)-real boundary com-
ponents (F , γ) and (F∗, γ∗) are equivalent if the resulting loci of real points
πBB(F

τγ) = πBB(F
τγ
∗ ) coincide.
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We observe that if (F , γ) is a Γg(N)-real boundary pair and if α ∈ Γg(N),
we see that τ(F ) = γ(F ) and (α(F ), τ(α) γ α−1) is an equivalent Γg(N)-real
boundary pair.

Fix a positive integer s with 1 ≤ s ≤ g. We define the map Φ : Hs −→ H∗
g

by

(5.22) Φ(Ω1) = lim
Y−→∞

(
Ω1 0
0 i Y

)
, Ω1 ∈ Hs, Y ∈ Pg−s.

Obviously Φ(Hs) = Fs is the standard boundary component of degree s (cf.
(5.8)).

Let

νs : P (Fs) −→ Gh(Fs)

be the projection to the quotient. It is easily seen that νs commutes with τ .
Therefore Fs is preserved by τ . The set

F
τ
s = {Φ(i Y ) | Y ∈ Ps}

is the set of τ -fixed points in Fs and may be canonically identified with Ps.
We denote by i Is its canonical base point. Then Fs is attached to Hg so that
the cone Φ(iPs) is contained in the closure of the cone iPg.

Proposition 5.1. Let (F , γ) be a Γg(N)-real boundary pair of degree s. Then

there exists γ∗ ∈ Γg such that γ∗(Fs) = F and

τ(γ∗)
−1γ γ∗ =

(
A B
0 tA−1

)
∈ ker (νs).

Moreover, we may take B = 0, i.e., there exist γ′ ∈ Γg(4m) and γ0 ∈ Γg so

that F τγ′

= F τγ , γ0(Fs) = F , and so that

τ(γ0)
−1γ′ γ0 =

(
A 0
0 tA−1

)
∈ ker (νs).

Proof. The proof can be found in [8, pp. 19–21]. �

As an application of Proposition 5.1, we get the following theorem.

Theorem 5.3. Let m ≥ 1 be a positive integer. Let F be a proper rational

boundary component of Hg of degree g − 1. Let γ ∈ Γg(4m) such that

F
τγ = {x ∈ F | τ(x) = γ · x} 6= ∅.

Then F τγ is contained in the closure of H
τΓg(4m)
g in H∗

g, where

HτΓg(4m)
g =

{
Ω ∈ Hg | τ(Ω) = −Ω = γ · Ω for some γ ∈ Γg(4m)

}

denotes the set of Γg(4m)-real points of Hg.

Proof. The proof can be found in [8, p. 23]. �
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Theorem 5.4. Let k be a positive integer with k ≥ 2. Let (F , γ) be a Γg(2
k)-

real boundary pair. Then there exists γ1 ∈ Γg(2
k) such that F τγ = F τγ1 and

F τγ is contained in the closure Hτγ1
g of Hτγ1

g in H∗
g.

Proof. The proof can be found in [8, pp. 23–26]. �

We may summarize the above results as follows. The Baily-Borel compact-
ification V (N) = Γg(N)\H∗

g with N = 4m is stratified by finitely many strata
of the form πBB(F ), where F is a rational boundary component. Each such
strata is isomorphic to the standard rational boundary component Fs

∼= Hs.
The stratum πBB(F ) is called a boundary stratum of degree s. Let V (N)r

denote the union of all boundary strata of rank g − r. We define

V (N)rR := V (N)r ∩ V (N)R.

According to Theorem 5.4, we have

V (N)0R ∪ V (N)1R ⊂ X(N)R ⊂ V (N)R,

where X(N)R denotes the closure of X(N)R in V (N).

6. Polarized real tori

In this section we introduce the notion of polarized real tori.
First we review the properties of real tori briefly. We fix a positive integer

g in this section. Let T = Rg/Λ be a real torus of dimension g, where Λ
is a lattice in Rg. T has a unique structure of a smooth (or real analytic)
manifold such that the canonical projection p : Rg −→ T is smooth (or real
analytic). We fix the standard basis {e1, . . . , eg} for Rg. We see that Λ = ΠZg

for some Π ∈ GL(g,R). A matrix Π is called a period matrix for T . Let
C∗

1 = {z ∈ C | |z| = 1} be a circle. Since T is homeomorphic to C∗
1×· · ·×C∗

1 (g-
times), the fundamental group is

π1(T ) ∼= π1(C
∗
1)× · · · × π1(C

∗
1)

∼= Zg.

We see that

Hk(T,Z) ∼= ZgCk ∼= Hk(T,Z), k = 0, 1, . . . , g

and
H∗(T,Z) ∼=

∧
H1(T,Z) ∼=

∧
Zg.

Thus the Euler characteristic of T is zero. The mapping class group MCG(T )
is

MCG(T ) = Aut(π1(T )) = Aut(Zg) = GL(g,Z).

It is known that any connected compact real manifold can be embedded into
the Euclidean space Rd with large d. Thus a torus T can be embedded in a
real projective space Pd(R). Any connected compact abelian real Lie group is a
real torus. Any two real tori of dimension g are isomorphic as real Lie groups.
We easily see that if S is a connected closed subgroup of a real torus T , then
S and T/S are real tori and T ∼= S × T/S.
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Let T = V/Λ and T ′ = V ′/Λ′ be two real tori. A homomorphism φ : T −→
T ′ is a real analytic map compatible with the group structures. It is easily
seen that a homomorphism φ : T −→ T ′ can be lifted to a uniquely determined
R-linear map Φ : V −→ V ′. This yields an injective homomorphism of abelian
groups

τa : Hom(T, T ′) −→ HomR(V, V
′), φ 7−→ Φ,

where Hom(T, T ′) is the abelian group of all homomorphisms of T into T ′ and
HomR(V, V

′) is the abelian group of all R-linear maps of V into V ′. The above
τa is called a real analytic representation of Hom(T, T ′). The restriction ΦΛ

of Φ to Λ is Z-linear. ΦΛ determines Φ and φ completely. Thus we get an
injective homomorphism

τr : Hom(T, T ′) −→ HomZ(Λ,Λ
′), φ 7−→ ΦΛ,

called the rational representation of Hom(T, T ′).

Lemma 6.1. Let φ : T −→ T ′ be a homomorphism of real tori. Then

(1) the image Imφ is a real subtorus of T ′;
(2) the kernel kerφ of φ is a closed subgroup of T and the identity component

(kerφ)0 of kerφ is a real subtorus of T of finite index in kerφ.

Proof. It follows from the fact that a connected compact abelian real Lie group
is a real torus. Since kerφ is compact, kerφ has only a finite number of con-
nected components. �

A surjective homomorphism φ : T −→ T ′ of real tori with finite kernel is
called a real isogeny or simply an isogeny. The exponent e(φ) of an isogeny
φ is defined to be the exponent of the finite group kerφ, that is, the smallest
positive integer e such that e·x = 0 for all x ∈ kerφ. Two real tori are said to be
isogenous if there is an isogeny between them. It is clear that a homomorphism
φ : T −→ T ′ is an isogeny if and only if it is surjective and dimT = dimT ′.
We can see that if Γ ⊂ T is a finite subgroup, the quotient space T/Γ is a real
torus and the natural projection pΓ : T −→ T/Γ is an isogeny.

For a homomorphism φ : T −→ T ′ of real tori, we define the degree of φ to
be

degφ :=

{
ord (kerφ) if kerφ is finite ;

0 otherwise.

Let T = V/Λ be a real torus of dimension g. For any nonzero integer n ∈ Z,
we define the isogeny nT : T −→ T by nT (x) := n ·x for all x ∈ T . The
kernel T (n) of nT is called the group of n-division points of T . It is easily

seen that T (n) ∼=
(
Z/nZ

)g
because kernT = 1

nΛ/Λ
∼= Λ/nΛ ∼=

(
Z/nZ

)g
. So

degnT = ng.
We put

HomQ(T, T
′) := Hom(T, T ′)⊗Z Q

and
End(T ) := Hom(T, T ), EndQ(T ) := End(T )⊗Z Q.
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For any α ∈ Q and φ ∈ Hom(T, T ′), we define the degree of αφ ∈ HomQ(T, T
′)

by

deg (αφ) := αg degφ.

Lemma 6.2. For any isogeny φ : T −→ T ′ of real tori with exponent e, there
exists an isogeny ψ : T ′ −→ T , unique up to isomorphisms, such that ψ◦φ = eT
and φ ◦ ψ = eT ′ .

Proof. Since kerφ ⊆ ker eT , there exists a unique map ψ : T ′ −→ T such that
ψ ◦ φ = eT . It is easy to see that ψ is also an isogeny and that kerψ ⊆ ker eT ′ .
Therefore there is a unique isogeny φ′ : T ′ −→ T such that φ′ ◦ ψ = eT ′ . Since

φ′ ◦ eT = φ′ ◦ ψ ◦ φ = eT ′ ◦ φ = φ ◦ eT
and eT is surjective, we have φ′ = φ. Hence we obtain ψ ◦ φ = eT and φ ◦ ψ =
eT ′ . �

According to Lemma 6.2, we see that isogenies define an equivalence relation
on the set of real tori, and that an element in End(T ) is an isogeny if and only
if it is invertible in EndQ(T ).

For a real torus T = V/Λ of dimension g, we put V ∗ := HomR(V,R). Then
the following canonical R-bilinear form

〈 , 〉T : V ∗ × V −→ R, 〈ℓ, v〉T := ℓ(v), ℓ ∈ V ∗, v ∈ V

is non-degenerate. Thus the set

Λ̂ := {ℓ ∈ V ∗ | 〈ℓ,Λ〉T ⊆ Z}
is a lattice in V ∗. The quotient

T̂ := V ∗/Λ̂

is a real torus of dimension g which is called the dual real torus of T . Identifying
V with the space of R-linear forms V ∗ −→ R by double duality, the non-

degeneracy of 〈 , 〉T implies that Λ is the lattice in V dual to Λ̂. Therefore we
get

̂̂
T = T.

Let φ : T1 −→ T2 be a homomorphism of real tori with Ti = Vi/Λi (i = 1, 2)
and with real analytic representation Φ : V1 −→ V2. Since the dual map Φ∗ :

V ∗
2 −→ V ∗

1 satisfies the condition Φ∗(Λ̂2

)
⊆ Λ̂1, Φ

∗ induces a homomorphism,
called the dual map

φ̂ : T̂2 −→ T̂1.

If ψ : T2 −→ T3 is another homomorphism of real tori, then we get

ψ̂ ◦ φ = φ̂ ◦ ψ̂.
If φ : T1 −→ T2 is an isogeny of real tori, then dual map φ̂ : T̂2 −→ T̂1 is also
an isogeny.
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Definition. A real torus T = Rg/Λ with a lattice Λ in Rg is said to be polarized
if the associated complex torus A = Cg/L is a polarized real abelian variety,
where L = Zg + iΛ is a lattice in Cg. Moreover if A is a principally polarized
real abelian variety, T is said to be principally polarized. Let Φ : T −→ A be
the smooth embedding of T into A defined by

(6.1) Φ(v + Λ) := i v + L, v ∈ Rg.

Let L be a polarization of A, that is, an ample line bundle over A. The pullback
Φ∗L is called a polarization of T . We say that a pair (T,Φ∗L) is a polarized

real torus.

Example 6.1. Let Y ∈ Pg be a g× g positive definite symmetric real matrix.
Then ΛY = Y Zg is a lattice in Rg. Then the g-dimensional torus TY = Rg/ΛY

is a principally polarized real torus. Indeed,

AY = Cg/LY , LY = Zg + iΛY

is a princially polarized real abelian variety. Its corresponding hermitian form
HY is given by

HY (x, y) = EY (i x, y) + i EY (x, y) = txY −1 y, x, y ∈ Cg,

where EY denotes the imaginary part of HY . It is easily checked that HY is
positive definite and EY (LY ×LY ) ⊂ Z (cf. [17, pp. 29–30]). The real structure
σY on AY is a complex conjugation.

Example 6.2. LetQ =
(√

2
√
3√

3 −
√
5

)
be a 2×2 symmetric real matrix of signature

(1, 1). Then ΛQ = QZ2 is a lattice in R2. Then the real torus TQ = R2/ΛQ

is not polarized because the associated complex torus AQ = C2/LQ is not an
abelian variety, where LQ = Z2 + iΛQ is a lattice in C2.

Definition. Two polarized tori T1 = Rg/Λ1 and T2 = Rg/Λ2 are said to be
isomorphic if the associated polarized real abelian varieties A1 = Cg/L1 and
A2 = Cg/L2 are isomorphic, where Li = Zg + iΛi (i = 1, 2), more precisely,
if there exists a linear isomorphism ϕ : Cg −→ Cg such that

ϕ(L1) = L2,(6.2)

ϕ∗(E1) = E2,(6.3)

ϕ∗(σ1) = ϕ ◦ σ1 ◦ ϕ−1 = σ2,(6.4)

where E1 and E2 are polarizations of A1 and A2 respectively, and σ1 and
σ2 denotes the real structures (in fact complex conjugations) on A1 and A2

respectively.

Example 6.3. Let Y1 and Y2 be two g × g positive definite symmetric real
matrices. Then Λi := Yi Zg is a lattice in Rg (i = 1, 2). We let

Ti := Rg/Λi, i = 1, 2
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be real tori of dimension g. Then according to Example 6.1, T1 and T2 are
principally polarized real tori. We see that T1 is isomorphic to T2 as polarized
real tori if and only if there is an element A ∈ GL(g,Z) such that Y2 = AY1

tA.

Example 6.4. Let Y =
(√

2
√
3√

3
√
5

)
. Let TY = R2/ΛY be a two dimensional

principally polarized torus, where ΛY = Y Z2 is a lattice in R2. Let TQ be the
torus in Example 6.2. Then TY is diffeomorphic to TQ. But TQ is not polarized.
TY admits a differentiable embedding into a complex projective space but TQ
does not.

Let Y ∈ Pg be a g × g positive definite symmetric real matrix. Then ΛY =
Y Zg is a lattice in Rg. We already showed that the g-dimensional torus TY =
Rg/ΛY is a principally polarized real torus (cf. Example 6.1). We know that
the following complex torus

AY = Cg/LY , LY = Zg + iΛY

is a princially polarized real abelian variety. We define a map ΦY : TY −→ AY

by

ΦY (a+ ΛY ) := i a + LY , a ∈ Rg.

Then ΦY is well defined and is an injective smooth map. Therefore TY is
smoothly embedded into a complex projective space and hence into a real
projective space because AY can be holomorphically embedded into a complex
projective space (cf. [17, pp. 29–30]).

Let A = Cg/L and A′ = Cg′

/L′ be two abelian complex tori of dimension g

and dimension g′ respectively, where L (resp. L′) is a lattice in Cg (resp. Cg′

).
A homomorphism f : A −→ A′ lifts to a uniquely determined C-linear map
F : Cg −→ Cg′

. This yields an injective homomorphism

ρa : Hom(A,A′) −→ HomC(C
g,Cg′

) = C(g′,g), f 7−→ F = ρa(f).

Its restriction F |L to the lattice L is Z-linear and determines F and f com-
pletely. Therefore we get an injective homomorphism

ρr : Hom(A,A′) −→ HomZ(L,L
′), f 7−→ F |L.

Let Π̃ ∈ C(g,2g) and Π̃′ ∈ C(g′,2g′) be period matrices for A and A′ respectively.
With respect to the chosen bases, ρa(f) (resp. ρr(f)) can be considered as a

matrix in C(g′,g)
(
resp. Z(2g′,2g)

)
. We have the following diagram:

Z2g
Π̃

−−−−−→ Cgyρr(f)
yρa(f)

Z2g′ Π̃′

−−−−−→ Cg′

,

that is, by the equation

ρa(f) Π̃ = Π̃′ ρr(f).
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Conversely any two matrices A ∈ C(g′,g) and R ∈ Z(2g′,2g) satisfying the equa-

tion A Π̃ = Π̃′R define a homomorphism A −→ A′.
For two real tori T1 and T2 of dimension g1 and dimension g2 respectively,

we let Ext(T2, T1) be the set of all isomorphism classes of extensions of T2 by
T1 up to real analytic isomorphism. Since any two real tori of dimension g1+g2
are isomorphic as real analytic real Lie groups, Ext(T2, T1) is trivial. This leads
us to consider polarized real tori T1 and T2 with Ti = Rgi/Λi (i = 1, 2). Here
Λi is a lattice in Rgi for i = 1, 2. Let A1 and A2 be the polarized real abelian
varieties associated to T1 and T2 respectively, that is,

Ai = Cgi/Li, Li = Zgi + ΛiZ
gi , i = 1, 2.

Let Ext(T2, T1)pt be the set of all isomorphism classes of extensions of A2 by
A1. We can show that a homomorphism φ : A′

2 −→ A2 such that A′
2 is the real

abelian variety associated to a polarized real torus T ′
2 induces a map

(6.5) φ∗ : Ext(T2, T1)pt −→ Ext(T ′
2, T1)pt

and that a homomorphism ψ : A1 −→ A′
1 such that A′

1 is the real abelian
variety associated to a polarized real torus T ′

1 induces a map

(6.6) ψ∗ : Ext(T2, T1)pt −→ Ext(T2, T
′
1)pt.

Indeed, if

(6.7) e : 0 −→ A1
ι−→ A

p−→ A2 −→ 0

is an extension in Ext(T2, T1)pt, the image φ∗(e) is defined to be the identity
component of the kernel of the homomorphism Cp,φ : A × A′

2 −→ A2 defined
by

Cp,φ(x, y) := p(x)− φ(y), x ∈ A, y ∈ A′
2.

The dualization of the exact sequence (6.7) gives an element ê ∈ Ext(Â1, Â2).
We define

(6.8) ψ∗(e) :=
̂̂
ψ∗(ê) ∈ Ext(T2, T

′
1)pt = Ext(A2,A

′
1).

Therefore Ext( , )pt is a functor which is contravariant in the first and covariant
in the second argument.

We can equip the set Ext(T2, T1)pt with the canonical group structure as
follows : Let e and e⋄ be the extensions in Ext(T2, T1)pt which are represented
by the exact sequence (6.7) and the following exact sequence

e⋄ : 0 −→ A1 −→ A⋄ −→ A2 −→ 0.

The product e× e⋄ is represented by the exact sequence

e× e⋄ : 0 −→ A1 × A1 −→ A× A⋄ −→ A2 × A2 −→ 0.

If ∆ : A2 −→ A2 × A2 is the diagonal map, x 7−→ (x, x), x ∈ A2 and µ :
T1 × T1 −→ T1 is the addition map, (s, t) 7−→ s+ t, s, t ∈ A1, the sum e + e⋄
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is defined to be the image of e× e⋄ under the composition

Ext(T2 × T2, T1 × T1)pt
∆∗

−→ Ext(T2, T1 × T1)pt
µ∗−→ Ext(T2, T1)pt,

that is,

(6.9) e+ e⋄ := µ∗∆
∗(e× e⋄).

We can show that Ext(T2, T1)pt is an abelian group with respect to the addition
(6.9) (cf. [5]).

Now we describe the group Ext(T2, T1)pt in terms of period matrices. First
we fix period matrices Π1 and Π2 for T1 and T2 respectively, that is, Λi = ΠiZ

gi

for i = 1, 2. We know that Πi ∈ GL(gi,R) for i = 1, 2. To each extension

e : 0 −→ A1 −→ A −→ A2 −→ 0

in Ext(T2, T1)pt, there is associated a period matrix for A of the form

(6.10)

(
Π̃1 σ

0 Π̃2

)
, Π̃i = (Igi ,Πi) for i = 1, 2, σ ∈ C(g1,2g2).

Conversely it is obvious that for any σ ∈ C(g1,2g2), the matrix of the form (6.10)
is a period matrix defining an extension of A2 by A1 in Ext(T2, T1)pt.

Lemma 6.3. Let σ and σ′ be elements in C(g1,2g2). Suppose that Π1 and Π2 are

period matrices for polarized real tori T1 and T2 respectively. Then the period

matrices

Π̃σ =

(
Π̃1 σ

0 Π̃2

)
and Π̃σ′ =

(
Π̃1 σ′

0 Π̃2

)
, Π̃i = (Igi ,Πi) for i = 1, 2

define isomorphic extensions of A2 by A1 in Ext(T2, T1)pt if and only if

(6.11) σ′ = σ + Π̃1M + A Π̃2

with some M ∈ Z(2g1,2g2) and A ∈ C(g1,g2).

Proof. Let Π̃σ and Π̃σ′ define isomorphic extensions e and e′ of A2 by A1:

e : 0 −→ A1 −→ A −→ A2 −→ 0∣∣∣∣ yf
∣∣∣∣

e′ : 0 −→ A1 −→ A′ −→ A2 −→ 0

Then we have the following commutative diagram:

Z2g1+2g2
Π̃σ−−−−−→ Cg1+g2yρr(f)

yρa(f)

Z2g1+2g2
Π̃σ′

−−−−−→ Cg1+g2
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Therefore there are A ∈ C(g1,g2) and M ∈ Z(2g1,2g2) that satisfy the following
equation

(6.12)

(
Ig1 A
0 Ig2

)
Π̃σ = Π̃σ′

(
Ig1 −M
0 Ig2

)
.

We obtain the equation (6.11) from the equation (6.12).
Conversely if we have σ and σ′ in C(g1,g2) satisfying the equation (6.11), then

we see easily that Π̃σ and Π̃σ′ define isomorphic extensions of A2 by A1. �

Proposition 6.1. Let σ and σ′ be elements in C(g1,2g2). Suppose that Π1 and

Π2 are period matrices for real tori T1 and T2 respectively. Assume that the

following period matrices

Π̃σ =

(
Π̃1 σ

0 Π̃2

)
and Π̃σ′ =

(
Π̃1 σ′

0 Π̃2

)
, Π̃i = (Igi ,Πi) for i = 1, 2

define extensions e and e′ of A2 by A1 in Ext(T2, T1)pt. Then the period matrix

Π̃σ+σ′ =

(
Π̃1 σ + σ′

0 Π̃2

)

defines the extension e+ e′ in Ext(T2, T1)pt.

Proof. We denote

A = Cg1+g2/Π̃σZ
2g1+2g2 and A′ = Cg1+g2/Π̃σ′Z2g1+2g2 .

Then we have the extensions

e : 0 −→ A1 −→ A −→ A2 −→ 0

and
e′ : 0 −→ A1 −→ A′ −→ A2 −→ 0

in Ext(T2, T1)pt. The complex torus A × A′ defined by the extension e × e′ in
Ext(A2 × A2,A1 × A1) is given by the period matrix

�1 =




Π̃1 0 σ 0

0 Π̃1 0 σ′

0 0 Π̃2 0

0 0 0 Π̃2


 .

Let ∆ : A2 −→ A2 × A2 be the diagonal map. Then we have the induced map
∆∗ : Ext(A2 × A2,A1 × A1) −→ Ext(A2,A1 × A1). If

∆∗(e × e′) : 0 −→ A1 × A1 −→ S −→ A2 −→ 0

is given, the complex torus S is given by a period matrix of the form

�2 =



Π̃1 0 α

0 Π̃1 β

0 0 Π̃2



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with α ∈ C(g1,2g2) and β ∈ C(g1,2g2). The homomorphism

Ext(A2 × A2,A1 × A1) −→ Ext(A2,A1 × A1), e× e′ 7−→ ∆∗(e× e′)

corresponds to a homomorphism S 7−→ A×A′ of real tori given by the equation

�1 ·




I2g1 0 M1

0 I2g1 M2

0 0 I2g2
0 0 I2g2


 =




Ig1 0 A1

0 Ig1 A2

0 0 Ig2
0 0 Ig2


 ·�2.

Thus we have the equations

α = σ + Π̃1M1 − A1Π̃2 and β = σ′ + Π̃1M2 − A2Π̃2.

According to Lemma 6.3, 

Π̃1 0 σ

0 Π̃1 σ′

0 0 Π̃2




is also a period matrix for S respectively ∆∗(e × e′). We denote

e+ e′ : 0 −→ A1 −→ B −→ A2 −→ 0.

A period matrix for B is of the form

ΠB :=

(
Π̃1 τ

0 Π̃2

)
, τ ∈ R(g1,g2).

The homomorphism µ∗ : ∆∗(e×e′) 7−→ e+e′ defines a homomorphism S 7−→ B

which is given by the equation

(6.13)

(
Ig1 Ig1 A
0 0 Ig2

)


Π̃1 0 σ

0 Π̃1 σ′

0 0 Π̃2


 =

(
Π̃1 τ

0 Π̃2

)(
I2g1 I2g1 M
0 0 I2g2

)

with A ∈ C(g1,g2) and M ∈ Z(2g1,2g2). Comparing both sides in the equation
(6.13), we obtain

τ = σ + σ′ − Π̃1M + AΠ̃2.

According to Lemma 6.3, we see that

Π̃σ+σ′ =

(
Π̃1 σ + σ′

0 Π̃2

)

is a period matrix for B, respectively e+ e′. �

Let T1, T2,Π1,Π2, Π̃1, Π̃2, σ, σ
′, Π̃σ and Π̃σ′ be as above in Proposition 6.1.

We note that the assignment

σ 7−→ Cg1+g2/Π̃σZ
2g1+2g2 , σ ∈ C(g1,2g2)

induces a surjective homomorphism of abelian groups

(6.14) ΦΠ1,Π2 : C(g1,2g2) −→ Ext(T2, T1)pt.



POLARIZED REAL TORI 301

According to Lemma 6.3, we see that the kernel of ΦΠ1,Π2 is given by

kerΦΠ1,Π2 = Π̃1Z
(2g1,2g2) + C(g1,g2)Π̃2.

Obviously the homomorphism ΦΠ1,Π2 depends on the choice of the period ma-
trices Π1 and Π2.

Proposition 6.2. Let T1 and T ′
1 be polarized real tori of dimension g1 and

dimension g′1 with period matrices Π1 and Π′
1 respectively. Let T2 and T ′

2 be

polarized real tori of dimension g2 and dimension g′2 with period matrices Π2

and Π′
2 respectively. Then

(a) for a homomorphism f : A′
2 −→ A2 such that A′

2 is the polarized real

abelian variety associated to a polarized real torus T ′
2, the following diagram

C(g1,2g2)
ΦΠ1,Π2−−−−−→ Ext(T2, T1)pty·ρr(f)

yf∗

C(g1,2g
′
2)

ΦΠ1,Π′
2−−−−−→ Ext(T ′

2, T1)pt

commutes and

(b) for a homomorphism h : A1 −→ A′
1 such that A′

1 is the polarized real

abelian variety associated to a polarized real torus T ′
1, the following diagram

C(g1,2g2)
ΦΠ1,Π2−−−−−→ Ext(T2, T1)pt

ρa(h) ·
y

yh∗

C(g′
1,2g2)

ΦΠ′
1,Π2

−−−−−→ Ext(T2, T
′
1)pt

commutes.

Proof. (a) For an extension e ∈ Ext(T2, T1)pt we choose σ ∈ C(g1,2g2) with

ΦΠ1,Π2(σ) = e and σ′ ∈ C(g1,2g
′
2) with ΦΠ1,Π′

2
(σ′) = f∗(e). We see that the

following diagram with exact rows

f∗(e) : 0 −→ A1 −→ A′ −→ A′
2 −→ 0∣∣∣∣ yf∗ yf

e : 0 −→ A1 −→ A −→ A2 −→ 0

commutes. Thus σ and σ′ are related by the equation

(6.15)

(
Ig1 A
0 ρa(f)

)(
Π̃1 σ′

0 Π̃′
2

)
=

(
Π̃1 σ

0 Π̃2

)(
I2g1 M
0 ρr(f)

)

with A ∈ C(g1,g
′
2) and M ∈ Z(2g1,2g

′
2). Comparing both sides in the equation

(6.15), we get

σ′ = σ · ρr(f) + Π̃1M −A Π̃′
2.

According to Lemma 6.3, we have

ΦΠ1,Π′
2
(σ′) = ΦΠ1,Π′

2
(σ · ρr(f)) = f∗(e).
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This completes the proof of (a).
(b) For an extension e⋄ ∈ Ext(T2, T1)pt we choose σ⋄ ∈ C(g1,2g2)

with ΦΠ1,Π2(σ⋄) = e⋄ and σ′
⋄ ∈ C(g′

1,2g2) with ΦΠ′
1,Π2

(σ′
⋄) = h∗(e⋄). We see

that the following diagram with exact rows

e⋄ : 0 −→ A1 −→ A⋄ −→ A2 −→ 0yh
yh∗

∣∣∣∣
e : 0 −→ A′

1 −→ A′
⋄ −→ A2 −→ 0

commutes. Thus σ⋄ and σ′
⋄ are related by the equation

(6.16)

(
Π̃′

1 σ′
⋄

0 Π̃2

)(
ρr(h) M⋄
0 I2g2

)
=

(
ρa(h) A⋄
0 Ig2

)(
Π̃1 σ⋄
0 Π̃2

)
.

with A⋄ ∈ C(g′
1,g

′
2) and M⋄ ∈ Z(2g′

1,2g
′
2). Comparing both sides in the equation

(6.16), we get

σ′
⋄ = ρa(h) · σ⋄ + A⋄Π̃2 − Π̃′

1M⋄.

According to Lemma 6.3, we get

h∗(e⋄) = h∗(ΦΠ1,Π2(σ⋄)) = ΦΠ′
1,Π2

(ρa(h) · σ⋄).
This completes the proof of (b). �

Corollary 6.1. For e ∈ Ext(T2, T1)pt and n ∈ Z, we have

n∗
A2

(e) = n · e = (nA1)∗(e).

Proof. We consider the following commutative diagram:

C(g1,2g2)
ΦΠ1,Π2−−−−−−−−→ Ext(T2, T1)pt

·ρr(nA2)
y

y(nA2 )
∗

C(g1,2g2)
ΦΠ1,Π2−−−−−−−−→ Ext(T2, T1)pt

Since ρr(nA2 ) = n I2g2 , we get

(nA2)
∗(e) = ΦΠ1,Π2(nσ) = n · ΦΠ1,Π2(σ) = n · e.

By a similar argument, we get

(nA1)∗(e) = n · e. �

Proposition 6.3. We have an isomorphism of abelian groups

C(g1,g2)/(Ig1 ,Π1)Z
(2g1,2g2)

(
Π2

Ig2

)
∼= Ext(T2, T1)pt.

Proof. Let σ = (σ1, σ2) ∈ C(g1,2g2) with σ1, σ2 ∈ C(g1,g2) corresponding to the
extension e = ΦΠ1,Π2(σ) ∈ Ext(T2, T1)pt. By Lemma 6.3, the matrix

σ − σ1Π̃2 = (σ1, σ2)− σ1(Ig2 ,Π2) = (0, σ2 − σ1Π2)
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corresponds to the same extension e. This shows that every extension in
Ext(T2, T1)pt can be represented by a matrix σ = (0, α) with α ∈ C(g1,g2).
Hence we get a surjective homomorphism of abelian groups

C(g1,g2) −→ Ext(T2, T1)pt.

According to Lemma 6.3, the matrices α and α′ ∈ C(g1,g2) define the same
extension if and only if

(6.17) (0, α− α′) = Π̃1

(
M1 M2

M3 M4

)
+ A Π̃2

with
(
M1 M2

M3 M4

)
∈ Z(2g1,2g2) and A ∈ C(g1,g2). From the equation (6.17) we get

A = −M1 − Π1M3.

Thus we have

α− α′ = Π1M4 − Π1M3Π2 + M2 − M1Π2

= (Ig1 ,Π1)

(
−M1 M2

−M3 M4

)(
Π2

Ig2

)
.

This completes the proof of the above proposition. �

7. Line bundles over a polarized real torus

Before we investigate complex line bundles over a real torus, we need a
knowledge of holomorphic line bundles on a complex torus. We briefly review
some results on holomorphic line bundles on a complex torus (cf. [13, 17, 27,
28]).

Let X = Cg/L be a complex torus, where L is a lattice in Cg. The ex-
ponential sequence 0 −→ Z −→ OX −→ O∗

X −→ 1 induces the long exact
sequence

· · · −→ H1(X,Z) −→ H1(X,OX) −→ H1(X,O∗
X)

c1−→ H2(X,Z) −→ · · · .
We recall that the Néron-Severi group NS(X) (resp. Pic0(X)) is defined to be
the image of c1 (resp. the kernel of c1). For a hermitian form H on Cg whose
imaginary part EH := Im (H) is integral on L × L, a semi-character for H is
defined to be a map α : L −→ C∗

1 is defined to be a map such that

α(ℓ1 + ℓ2) = α(ℓ1)α(ℓ2) e
π iEH(ℓ1,ℓ2), ℓ1, ℓ2 ∈ L.

We let Her(L) be the set of all hermitian forms on Cg whose imaginary parts
are integral on L×L. For any H ∈ Her(L), we denote by SC(H) the set of all
semi-characters for H . To each pair (H,α) with H ∈ Her(L) and α ∈ SC(H),
we associate the automorphic factor JH,α : L× Cg −→ C∗ defined by

(7.1) JH,α(ℓ, z) := α(ℓ) e
π
2 H(ℓ,ℓ) + π H(z,ℓ), ℓ ∈ L, z ∈ Cg.

A lattice L acts on the trivial line bundle Cg × C on Cg freely by

(7.2) ℓ · (z, ξ) = (z + ℓ, JH,α(ℓ, z)ξ), ℓ ∈ L, z ∈ Cg, ξ ∈ C.
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The quotient

(7.3) L(H,α) := (Cg × C)/L

obtained by the action (7.2) of L has a natural structure of a holomorphic line
bundle over X . We note that for each such pairs (H1, α1) and (H2, α2), we
have

JH1,α1 ·JH2,α2 =JH1+H2,α1α2 and L(H1, α1)⊗L(H2, α2)=L(H1 +H2, α1 α2).

Let B(L) be the set of all pairs (H,α) with H ∈ Her(L) and α ∈ SC(H). Then
B(L) has a group structure equipped with multiplication law

(H1, α1) · (H2, α2) = (H1 +H2, α1 α2), Hi ∈ Her(L), αi ∈ SC(Hi), i = 1, 2.

Appell-Humbert Theorem says that we have the following canonical isomor-
phism of exact sequences:

0 −→ Hom(L,C1
∗) −→ B(L) −→ NS(X) −→ 0y cL

yβL
y id

0 −→ Pic0(X) −→ Pic(X) −→ NS(X) −→ 0

Here βL : B(L) −→ Pic(X) = H1(X,O∗
X) is the group isomorphism defined

by

βL((H,α)) := L(H,α), (H,α) ∈ B(L)

and cL is the isomorphism induced by βL. It is known that NS(X) is a free
abelian group of rank ρ(X) ≤ g2, where ρ(X) is the Picard number of X . By
Appell-Humbert Theorem, NS(X) is realized in several ways as follows:

NS(X) = Pic(X)/P ic0(X) = c1
(
H1(X,O∗

X)
)

={H : Cg × Cg → C hermitian, Im (H)(L × L) ⊆ Z}
={E : Cg × Cg → R alternating, E(L× L)⊆ Z, E(i ·, ·) symmetric} .

Let X̂ = Pic0(X) be the dual complex torus ofX . There exists the holomorphic

line bundle P overX×X̂ uniquely determined up to isomorphism, the so-called
Poincaré bundle satisfying the following properties (PB1) and (PB2):

(PB1) P|X×L
∼= L for all L ∈ X̂, and

(PB2) P|{0}×X̂ is trivial on X̂.

We can see that Hg(X,P) = C and Hq(X,P) = 0 for all q 6= g.
Let TΛ = V/Λ be a real torus of dimension g, where V ∼= Rg is a real vector

space of dimension g and Λ is a lattice in V . Let ρ : Λ −→ C∗ be a character
of Λ. Let B : V ×V −→ R be a real valued symmetric bilinear form on V . We
define the map IB,ρ : Λ× V −→ C∗ by

(7.4) IB,ρ(λ, v) = ρ(λ) eπB(λ,λ) + 2 πB(v,λ), λ ∈ Λ, v ∈ V, η ∈ C.

It is easily checked that IB,ρ satisfies the following equation

IB,ρ(λ1 + λ2, v) = IB,ρ(λ1, λ2 + v)IB,ρ(λ2, v), λ1, λ2 ∈ Λ, v ∈ V.



POLARIZED REAL TORI 305

Then Λ acts on the trivial line bundle V × C over V freely by

(7.5) λ · (v, η) = (v + λ, IB,ρ(λ, v)η) , λ ∈ Λ, v ∈ V, η ∈ C.

Thus the quotient space

(7.6) L(B, ρ) = (V × C)/Λ

has a natural structure of a smooth (or real analytic) line bundle over a real
torus TΛ.

Lemma 7.1. Suppose B : V × V −→ R is a positive definite bilinear form on

V . We define the function θB,ρ : V −→ C by

(7.7) θB,ρ(v) =
∑

λ∈Λ

ρ(λ)−1 e−πB(λ,λ)− 2πB(v,λ), v ∈ V.

Then map ΘB,ρ : V −→ V × C defined by

(7.8) ΘB,ρ(v) = (v, θB,ρ(v)), v ∈ V

defines a smooth (or real analytic) global section of the line bundle L(B, ρ).

Proof. For any λ ∈ Λ and v ∈ V , we have

θB,ρ(λ+ v)

=
∑

µ∈Λ

ρ(µ)−1 e−πB(µ,µ)− 2 πB(λ+v,µ)

= ρ(λ)eπ B(λ,λ)+ 2πB(v,λ)
∑

µ∈Λ

ρ(λ+ µ)−1 e−πB(λ+µ,λ+µ)− 2πB(v,λ+µ)

= IB,ρ(λ, v) θB,ρ(v).

Therefore ΘB,ρ is a smooth global section of L(B, ρ). �

Lemma 7.2. Suppose B : V × V −→ R is a positive definite bilinear form

on V . Assume B is integral on Λ × Λ, that is, B(Λ × Λ) ⊂ Z. Then for any

character ρ : Λ −→ C, the function fB,ρ : V −→ C defined by

(7.9) fB,ρ(v) =
∑

λ∈Λ

ρ(λ) e−π B(λ,λ)+ 2π iB(v,λ), v ∈ V

is invariant under the action of Λ. Therefore fB,ρ may be regarded as a function

on TΛ.

Proof. It follows immediately from the definition. �

We see that
LΛ = Zg + iΛ ⊂ Cg

is a lattice in Cg. We consider the complex torus

TΛ = Cg/LΛ.

We define the R-linear map SB : Cg × Cg −→ R and EB : Cg × Cg −→ R by

(7.10) SB(x, y) = B(x1, y1) + B(x2, y2)
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and

(7.11) EB(x, y) = B(x2, y1) − B(x1, y2),

where x = x1 + i x2 ∈ Cg and y = y1 + i y2 ∈ Cg with x1, x2, y1, y2 ∈ Rg.
It is easily seen that SB is symmetric and EB is alternating. We note that
SB(x, y) = EB(i x, y) for all x, y ∈ Cg. We define the hermitian form HB :
Cg × Cg −→ C by

(7.12) HB(x, y) := SB(x, y) + i EB(x, y), x, y ∈ Cg.

Moreover we assume that EB is integral on LΛ × LΛ. Let α : LΛ −→ C∗
1 be a

semi-character of LΛ for HB such that

α(ℓ1 + ℓ2) = α(ℓ1)α(ℓ2) e
π iEB(ℓ1,ℓ2), ℓ1, ℓ2 ∈ LΛ.

Then the mapping JB,α : LΛ × Cg −→ C∗ defined by

(7.13) JB,α(ℓ, z) = α(ℓ) e
π
2 HB(ℓ,ℓ)+πHB(z,ℓ), ℓ ∈ LΛ, z ∈ Cg

is an automorphic factor for LΛ on Cg. Clearly LΛ acts on the trivial line bundle
Cg × C over Cg freely by

(7.14) ℓ · (z, ξ) = (ℓ+ z, JB,α(ℓ, z)ξ ), ℓ ∈ LΛ, z ∈ Cg, ξ ∈ C.

The quotient

L(B,α) := (Cg × C)/LΛ

of Cg × C by LΛ has a natural structure of a holomorphic line bundle over a
complex torus TΛ.

In summary, to each pair (B,α) with s symmetric R-bilinear form B on V
such that EB is integral on LΛ × LΛ and a semi-character α for HB there is
associated the holomorphic line bundle L(B,α) over TΛ.

We assume that B is non-degenerate of signature (r, s) with r+ s = g. Then
the hermitian form HB is also non-degenerate of signature (r, s). Moreover we
assume that EB is integral on LΛ×LΛ. Under these assumptions, Matsushima
[15] proved that the cohomology group Hq(TΛ,L(B,α)) = 0 for all q 6= s and
that Hs(TΛ,L(B,α)) is identified with the complex vector space of all C∞

functions f on Cg satisfying the following conditions:
(a) f is a differentiable theta functions for the automorphic factor JB,α ;

namely we have

f(ℓ+ z) = JB,α(ℓ, z) f(z), ℓ ∈ LΛ, z ∈ Cg,

(b) ∂f
∂zi

= 0 for all i ∈ {1, 2, . . . , r} and

∂f

∂zi
+ π zi f = 0 for all i ∈ {r + 1, . . . , g},

where (z1, . . . , zg) is the coordinate of Cg determined by a privileged basis
of Cg for the hermitian form HB. We can show that the cohomology group
Hs
(
TΛ,L(B,α)

⊗3
)
defines a smooth embedding of TΛ into the projective space
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Pd(C) with d+ 1 = dimHs
(
TΛ,L(B,α)

⊗3
)
which is holomorphic in z1, . . . , zr

and anti-holomorphic in zr+1, . . . , zg (cf. [15] and [17]).
We consider the canonical semi-character γΛ,B of LΛ defined by

(7.15) γΛ,B(κ+ i λ) := eπ iEB(κ, i λ), κ ∈ Zg, λ ∈ Λ.

Then γΛ,B defines the holomorphic line bundle L(B, γΛ,B) over a complex torus
TΛ. For any z ∈ TΛ we denote by Tz the translation of TΛ by z. Let πΛ : Cg −→
TΛ be the natural projection. Then there exists an element cΛ,B,α of Cg such
that

(7.16) L(B,α) = T ∗
πΛ(cΛ,B,α)L(B, γΛ,B).

cΛ,B,α is called a characteristic of the holomorphic line bundle L(B,α). We
refer to [13] for detail.

Now we let TΛ = V/Λ be a polarized real torus of dimension g. Its associated
polarized real abelian variety

AΛ = Cg/LΛ, LΛ = Zg + iΛ

admits a positive definite hermitian form HΛ on Cg whose imaginary part
Im (HΛ) is integral on Λ× Λ (cf. [17, p. 35]). We write

HΛ(x, y) = SΛ(x, y) + i EΛ(x, y), x, y ∈ Cg,

where SΛ and EΛ are the real part (resp. imaginary part) of HΛ respectively.
We know that SΛ is a real valued symmetric bilinear form on V and EΛ is a
real valued alternating bilinear form on V . Let αΛ : LΛ −→ C∗

1 be a canonical
semi-character of LΛ defined by

(7.17) αΛ(κ+ i λ) := eπ iEΛ(κ, i λ), κ ∈ Zg, λ ∈ Λ.

We let JHΛ,αΛ : LΛ × Cg −→ C∗ be the automorphic factor for Λ on V that is
canonically given by

(7.18) JHΛ,αΛ(ℓ, z) = αΛ(ℓ) e
π
2 HΛ(ℓ,ℓ)+ πHΛ(z,ℓ), ℓ ∈ LΛ, z ∈ Cg.

Obviously LΛ acts on Cg × C freely by

ℓ · (z, ξ) =
(
ℓ+ z, JHΛ,αΛ(ℓ, z) ξ

)
, ℓ ∈ LΛ, z ∈ Cg, ξ ∈ C.

So the quotient space

(7.19) L(HΛ, αΛ) :=
(
Cg × C

)
/LΛ

has a natural structure of a holomorphic line bundle over an abelian variety
AΛ.

Now we define the map ΦΛ : TΛ −→ AΛ by

(7.20) ΦΛ(v + Λ) := i v + LΛ, v ∈ Rg.

ΦΛ is a well defined injective mapping. It is well known that

Hq(AΛ,L(HΛ, αΛ)) = 0
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for all q 6= 0 and that the space of global holomorphic sections of L(HΛ, αΛ)
⊗n

for any positive integer n ≥ 3 give a holomorphic embedding of AΛ as a closed
complex manifold in a projective complex manifold Pd(C) (cf. [17, pp. 29–33]).
Therefore we have a differentiable embedding of TΛ into a complex projective
space Pd(C) and hence into a real projective space PN (R) with large enough
N > 0.

We will characterize the pullback L(αΛ) := Φ∗
ΛL(HΛ, αΛ). We first define

the automorphic factor IαΛ : Λ× Rg −→ C∗ by

(7.21) IαΛ(λ, v) := αΛ(i λ) e
π
2 HΛ(λ,λ)+ πHΛ(v,λ), λ ∈ Λ, v ∈ Rg.

This automorphic factor IαΛ yields the smooth (or real analytic) line bundle
over TΛ which is nothing but the pullback L(αΛ). We observe that if θ is a
holomorphic theta function for L(HΛ, αΛ), then the function fθ : Rg −→ C
defined by fθ(v) := θ(i v), v ∈ Rg defines a global smooth (or real analytic)
section of L(αΛ).

Now we will show that a holomorphic line bundle L(HΛ, αΛ) over AΛ nat-
urally yields a smooth line bundle over a polarized torus TΛ. Let BΛ be the
restriction of SΛ to Rg × Rg. First we define the automorphic factor IBΛ,αΛ :
Λ× Rg −→ C∗ by

(7.22) IBΛ,αΛ(λ, v) := αΛ(2 i λ) e
πBΛ(λ,λ) + 2πBΛ(v,λ), λ ∈ Λ, v ∈ Rg.

This automorphic factor IBΛ,αΛ(λ, v) yields a smooth line bundle

(7.23) L(BΛ, αΛ) := (Rg × C)/Λ

over a polarized real torus TΛ. Since BΛ is positive definite, according to Lemma
4.1, the space Γ(TΛ, L(BΛ, αΛ)) of smooth (or real analytic) global sections of
L(BΛ, αΛ) is not zero. If BΛ is integral on Λ×Λ, according to Lemma 4.2, we
see that the function fΛ,αΛ : Rg −→ C defined by

fΛ,αΛ(v) =
∑

λ∈Λ

αΛ(2 i λ) e
−πBΛ(λ,λ) + 2π iBΛ(v,λ), v ∈ Rg

is a function on TΛ.
So far we have proved the following.

Theorem 7.1. Let TΛ = V/Λ be a polarized real torus of dimension g. Then

there is a smooth line bundle L(BΛ, αΛ) over TΛ which is constructed canoni-

cally by (7.23).

Example 7.1. Let Y ∈ Pg be a g× g positive definite symmetric real matrix.
Then ΛY = Y Zg is a lattice in Rg. Then the g-dimensional torus TY = Rg/ΛY

is a principally polarized real torus. Indeed,

AY = Cg/LY , LY = Zg + iΛY

is a princially polarized real abelian variety (cf. Example 6.1). Its corresponding
hermitian form HY is given by

HY (x, y) = SY (x, y) + i EY (x, y) = txY −1 y, x, y ∈ Cg,
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where SY and EY denote the real part and the imaginary part of HY respec-
tively. Let α : LY −→ C∗

1 be a semi-character of LY . To a pair (HY , α) the
canonical automorphic factor JY,α : LY × Cg −→ C is associated by

JY,α(ℓ, z) = α(ℓ) e
1
2 π i tℓ Y −1 ℓ + π i tzY −1 ℓ, ℓ ∈ LY , z ∈ Cg.

The associated automorphic factor IY,α : ΛY × Rg −→ C∗ is given by

IY,α(λ, v) = α(2 i λ) eπ
tλY −1λ+2π tv Y −1λ, λ ∈ ΛY , v ∈ Rg.

We get the associated line bundle

L(BY , α) = (Rg × C)/ΛY

given by IY,α, where BY is the restriction of SY to Rg×Rg. Then the function
θY,α : Rg −→ C defined by

θY,α(v) =
∑

λ∈ΛY

α(2 i λ) e−π tλY −1λ− 2π tv Y −1λ, v ∈ Rg

yields a smooth global section of L(BY , α) over a real torus TY . The canonical
semi-character αY of LY is given by

αY (κ+ i λ) = e−π i tκY −1λ, κ ∈ Zg, λ ∈ ΛY .

8. Moduli space for principally polarized real tori

We have the natural action of GL(g,R) on Pg given by

(8.1) A ∗ Y = AY tA, A ∈ GL(g,R), Y ∈ Pg.

We putGg = GL(g,Z) (see Notations in the introduction). The fundamental
domain Rg for Pg with respect to Gg which was found by H. Minkowski [16] is
defined as a subset of Pg consisting of Y = (yij) ∈ Pg satisfying the following
conditions (M.1)–(M.2) (cf. [10, p. 191] or [14, p. 123]):

(M.1) aY ta ≥ ykk for every a = (ai) ∈ Zg in which ak, . . . , ag are relatively
prime for k = 1, 2, . . . , g.

(M.2) yk,k+1 ≥ 0 for k = 1, . . . , g − 1.
We say that a point of Rg is Minkowski reduced or simply M-reduced. Rg

has the following properties (R1)-(R6):
(R1) For any Y ∈ Pg, there exist a matrix A ∈ GL(g,Z) and R ∈ Rg such

that Y = R[A] (cf. [10, p. 191] or [14, p. 139]). That is,

GL(g,Z) ◦Rg = Pg.

(R2) Rg is a convex cone through the origin bounded by a finite number of
hyperplanes. Rg is closed in Pg (cf. [14, p. 139]).

(R3) If Y and Y [A] lie in Rg for A ∈ GL(g,Z) with A 6= ±Ig, then Y lies on
the boundary ∂Rg of Rg. Moreover Rg ∩ (Rg[A]) 6= ∅ for only finitely many
A ∈ GL(g,Z) (cf. [14, p. 139]).
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(R4) If Y = (yij) is an element of Rg, then

y11 ≤ y22 ≤ · · · ≤ ygg and |yij | <
1

2
yii for 1 ≤ i < j ≤ g.

We refer to [10, p. 192] or [14, pp. 123–124].
For Y = (yij) ∈ Pg, we put

dY = (dyij) and
∂

∂Y
=

(
1 + δij

2

∂

∂yij

)
.

For a fixed element A ∈ GL(g,R), we put

Y∗ = A ⋆ Y = AY tA, Y ∈ Pg.

Then

(8.2) dY∗ = AdY tA and
∂

∂Y∗
= tA−1 ∂

∂Y
A−1.

We consider the following differential operators

(8.3) Dk = σ

((
Y

∂

∂Y

)k
)
, k = 1, 2, . . . , g,

where σ(M) denotes the trace of a square matrix M . By Formula (8.2), we get
(
Y∗

∂

∂Y∗

)i

= A

(
Y

∂

∂Y

)i

A−1

for any A ∈ GL(g,R). So each Di is invariant under the action (8.1) of
GL(g,R).

Selberg [20] proved the following.

Theorem 8.1. The algebra D(Pg) of all differential operators on Pg invariant

under the action (8.1) of GL(g,R) is generated by D1, D2, . . . , Dg. Furthermore

D1, D2, . . . , Dg are algebraically independent and D(Pg) is isomorphic to the

commutative ring C[x1, x2, . . . , xg] with g indeterminates x1, x2, . . . , xg.

Proof. The proof can be found in [14, pp. 64–66]. �

We can see easily that

ds2 = σ((Y −1dY )2)

is a GL(g,R)-invariant Riemannian metric on Pg and its Laplacian is given by

∆ = σ

((
Y

∂

∂Y

)2
)
.

We also can see that

dµg(Y ) = (det Y )−
g+1
2

∏

i≤j

dyij
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is a GL(g,R)-invariant volume element on Pg. The metric ds2 on Pg induces
the metric ds2R on Rg. Minkowski [16] calculated the volume of Rg explicitly.

Pg parameterizes principally polarized real tori of dimension g. The Minko-
wski modular space Tg is the moduli space for isomorphism classes of principally
polarized real tori of dimension g. According to (R2) we see that Tg is a semi-
algebraic set with real analytic structure. Unfortunately Tg does not admit
the structure of a real algebraic variety and does not admit a compactification
which is defined over the rational number field Q. We see that Tg is real
analytically isomorphic to the semi-algebraic subset X

g
(0,1) of X

g
R . We define

the embedding Φg : Pg −→ Hg by

(8.4) Φg(Y ) = i Y, Y ∈ Pg.

We have the following inclusions

Pg
Φg−→ iPg →֒ Hg →֒ Hg ⊂ H∗

g.

Gg acts on Pg and iPg, Γ
⋆
g acts on Hg, and Γg acts on Hg and H∗

g. It might
be interesting to characterize the boundary points of the closure of iPg (or

Pg) in H∗
g explicitly. In Section 5 we reviewed Silhol’s compactification X

g
R of

X
g
R which is analogous to the Satake-Baily-Borel compactification. The theory

of automorphic forms on Pg for GL(g,Z) has been developed by Selberg [20],

Maass [14] et al. past a half century. According to Theorem 5.1, X
g
R is a

connected compact Hausdorff space containing X
g
R as an open dense subset of

X
g
R . But X

g
R does not admit an algebraic structure.

For any positive integer h ∈ Z+, we let

(8.5) GLg,h := GL(g,R)⋉R(h,g)

be the semi-direct product of GL(g,R) and R(h,g) with the multiplication law

(8.6) (A, a) · (B, b) = (AB, a tB−1 + b), A,B ∈ GL(g,R), a, b ∈ R(h,g).

Then we have the natural action of GLg,h on the Minkowski-Euclid space Pg×
R(h,g) defined by

(8.7) (A, a)·(Y, ζ) =
(
AY tA, (ζ+a) tA

)
, (A, a) ∈ GLg,h, Y ∈ Pg, ζ ∈ R(h,g).

For a variable (Y, V ) ∈ Pg × R(h,g) with Y ∈ Pg and V ∈ R(h,g), we put

Y = (yµν) with yµν = yνµ, V = (vkl),

dY = (dyµν), dV = (dvkl),

[dY ] =
∏

µ≤ν

dyµν , [dV ] =
∏

k,l

dvkl,

and
∂

∂Y
=

(
1 + δµν

2

∂

∂yµν

)
,

∂

∂V
=

(
∂

∂vkl

)
,

where 1 ≤ µ, ν, l ≤ g and 1 ≤ k ≤ h.
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Lemma 8.1. For all two positive real numbers A and B, the following metric

ds2g,h;A,B on Pg × R(h,g) defined by

(8.8) ds2g,h;A,B = Aσ(Y −1dY Y −1dY ) + B σ(Y −1 t(dV ) dV )

is a Riemannian metric on Pg × R(h,g) which is invariant under the action

(8.7) of GLg,h. The Laplacian ∆g,h;A,B of (Pg × R(h,g), ds2g,h;A,B) is given by

∆g,h;A,B=
1

A
σ

((
Y

∂

∂Y

)2
)
− h

2A
σ

(
Y

∂

∂Y

)
+

1

B

∑

k≤p

((
∂

∂V

)
Y

t( ∂

∂V

))

kp

.

Moreover ∆g,h;A,B is a differential operator of order 2 which is invariant under

the action (8.7) of GLg,h.

Proof. For a fixed element (A, a) ∈ GLg,h, we set

(Y ∗, V ∗) = (A, a) · (Y, V ).

Then
Y ∗ = AY tA, V ∗ = (V + a) tA.

The first statement follows immediately from the fact that

dY ∗ = AdY tA and dV ∗ = dV tA.

Using the formula (13) in [9, p. 245], we can compute the Laplacian ∆g,h;A,B

of (Pg × R(h,g), ds2g,h;A,B). The last statement follows from the fact that

∂

∂Y ∗ = tA−1 ∂

∂Y
A−1,

∂

∂V ∗ =
∂

∂V
· A−1.

�

Lemma 8.2. The following volume element dvg,h(Y, V ) on Pg×R(h,g) defined

by

(8.9) dvg,h(Y, V ) = (det Y )−
g+h+1

2 [dY ][dV ]

is invariant under the action (8.7) of GLg,h.

Proof. For a fixed element (A, a) ∈ GLg,h, we set

(Y ∗, V ∗) = (A, a) · (Y, V ) = (AY tA, (V + a) tA).

Let ∂(Y ∗,V ∗)
∂(Y,V ) be the Jacobian determinant of the action (8.7) of GLg,h on

Pg×R(h,g). It is known that the Jacobian determinant of the action Y 7−→ Y ∗

is given by
∂(Y ∗)

∂(Y )
= ( detA )g+1.

Take the diagonal matrix g = (d1, . . . , dg) with distinct real numbers di. Ob-
viously if a = (akl), V = (vkl) and V

∗ = (v∗kl), then v
∗
kl = (vkl + akl)dl for all

k, l. Thus we have

(8.10)
∂(V ∗)

∂(V )
= (d1 · · · dg)h = (detA )h.
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Since the set of all g × g real matrices whose eigenvalues are all distinct is

everywhere dense in GL(g,R), and ∂(V ∗)
∂(V ) is a rational function, the relation

(8.10) holds for any A ∈ GL(g,R). It is easy to see that

∂(Y ∗, V ∗)

∂(Y, V )
=
∂(Y ∗)

∂(Y )
· ∂(V

∗)

∂(V )
.

Thus we obtain

[dY ∗][dV ∗] = | detA |g+h+1[dY ][dV ].

Since detY ∗ = (detA )2 detY, we have

( detY ∗ )−
g+h+1

2 [dY ∗][dV ∗] = ( detY )−
g+h+1

2 [dY ][dV ].

Hence the volume element (8.9) is invariant under the action (8.7). �

It is known that

dµg(Y ) := (det Y )−
g+1
2 [dY ]

is a volume element on Pg invariant under the action (8.1) of GL(g,R) (cf.
[14, p. 23]). Let r be a positive integer with 0 < r < g. We define a bijective
transformation

Pg −→ Pr × Ps × R(s,r), r + s = g, Y 7−→ (F,G,H)

by

(8.11) Y =

(
F 0
0 G

)[(
Ir 0
H Is

)]
, Y ∈ Pn, F ∈ Pr, G ∈ Ps, H ∈ R(s,r).

According to [14, pp. 24–26], we obtain

(8.12) [dY ] = (detG)r [dF ][dH ][dG],

equivalently

(8.13) dµg(Y ) = (detF )−
s
2 (detG)

r
2 dµr(F ) dµs(G) [dH ].

Therefore we get

(8.14) dvg,h(Y, V ) = (detF )−
h+s
2 (detG)

r−h
2 dµr(F ) dµs(G) [dH ] [dV ].

Similarly if Y ∈ Pg, g = r + s with 0 < r < g, we write

(8.15) Y =

(
P 0
0 Q

)[(
Ir R
0 Is

)]
, Y ∈ Pg, P ∈ Pr, Q ∈ Ps, R ∈ R(r,s).

According to [14, p. 27], we obtain

(8.16) [dY ] = (detP )s [dP ][dQ][dR],

equivalently

(8.17) dµg(Y ) = (detP )
s
2 (detG)−

r
2 dµr(P ) dµs(Q) [dR].

Therefore we get

(8.18) dvg,h(Y, V ) = (detP )
s−h
2 (detG)−

r+h
2 dµr(P ) dµs(Q) [dR] [dV ].
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The coordinates (F,G,H) or (P,Q,R) are called the partial Iwasawa coordi-
nates on Pg.

Theorem 8.2. Any geodesic through the origin (Ig, 0) is of the form

γ(t) =

(
λ(2t)[k], Z

(∫ t

0

λ(t− s)ds

)
[k]

)
,

where k is a fixed element of O(g), Z is a fixed h × g real matrix, t is a real

variable, λ1, λ2, . . . , λg are fixed real numbers but not all zero and

λ(t) := diag (eλ1t, . . . , eλgt).

Furthermore, the tangent vector γ′(0) of the geodesic γ(t) at (Ig, 0) is

(D[k], Z), where D = diag (2λ1, . . . , 2λg).

Proof. Let W = (X,Z) be an element of p with X 6= 0. Then the curve

α(t) = exp tW =

(
etX , Z

(∫ t

0

e−sXds

))
, t ∈ R

is a geodesic in GLg,h with α′(0) = W passing through the identity of GLg,h.
Thus the curve

γ(t) = α(t) · (Ig, 0) =
(
e2tX , Z

(∫ t

0

e−sXds

)
etX

)

is a geodesic in Pg × R(h,g) passing through the origin (Ig , 0). Since X is a
symmetric real matrix, there is a diagonal matrix Λ = diag (λ1, . . . , λg) with
λ1, . . . , λg ∈ R such that

X = tkΛk for some k ∈ O(g),

where λ1, . . . , λn are real numbers and not all zero. Thus we may write

γ(t) =

(
(δkle

2λkt)[k], Z

(∫ t

0

e(t−s)Λds

)
[k]

)
.

Hence this completes the proof. �

Theorem 8.3. Let (Y0, V0) and (Y1, V1) be two points in Pg ×R(h,g). Let g be

an element in GL(g,R) such that Y0[
tg] = Ig and Y1[

tg] is diagonal. Then the

length s
(
(Y0, V0), (Y1, V1)

)
of the geodesic joining (Y0, V0) and (Y1, V1) for the

GLg,h-invariant Riemannian metric ds2g,h;A,B is given by

(8.19)

s
(
(Y0, V0), (Y1, V1)

)
= A





g∑

j=1

(ln tj)
2





1/2

+B

∫ 1

0




g∑

j=1

∆j e
−(ln tj) t




1/2

dt,

where ∆j =
∑h

k=1 ṽ
2
kj (1 ≤ j ≤ g) with (V1 − V0)

tg = (ṽkj) and t1, . . . , tg
denotes the zeros of det(t Y0 − Y1).
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Proof. Without loss of generality we may assume that (Y0, V0) = (Ig , 0) and

(Y1, V1) = (T, Ṽ ) with T = diag(t1, . . . , tn) diagonal because the element
(g,−V0) ∈ GLg,h can be regarded as an isometry of Pg × R(h,g) for the Rie-
mannian metric ds2g,h;A,B (cf. Lemma 8.1). Letγ(t) =

(
α(t), β(t)

)
with 0 ≤

t ≤ 1 be the geodesic in Pg × R(h,g) joining two points γ(0) = (Y0, V0) and
γ(1) = (Y1, V1), where α(t) is the uniquely determined curve in Pg and β(t) is

the uniquely determined curve in R(h,g).
We now use the partial Iwasawa coordinates in Pg. Then if Y ∈ Pg, we

write for any positive integer r with 0 < r < g, r + s = g,

Y =

(
F 0
0 G

)[(
Ir 0
H Is

)]
, F ∈ Pr, G ∈ Ps, H ∈ R(h,g).

For V ∈ R(h,g), we write

V = (R,S), R ∈ R(h,r), S ∈ R(h,s).

Now we express ds2g,h;A,B in terms of F,G,H,R and S.

Lemma 8.3.

ds2g,h;A,B = A ·
{
σ
(
(F−1dF )2

)
+ σ

(
(G−1dG)2

)
+ 2 σ

(
F−1t(dH)GdH

)}

+ B ·
{
σ
(
F−1 t(dR) dR

)
+ σ

(
(G−1 + F−1[ tH ]) t(dS) dS

)}

− 2B · σ
(
F−1 tH t(dS) dR

)
.

Proof. First we see that if Y ∈ Pg, then

Y −1 =

(
F−1 0
0 G−1

)[(
Ir −tH
0 Is

)]
=

(
F−1 −F−1 tH

−HF−1 G−1 + F−1[ tH ]

)
,

dY =

(
dF + dG [H ] + t(dH) ·GH + tHG · dH t(dH) ·G + tH · dG

dG ·H + G · dH dG

)

and dV = (dR, dS).
For brevity, we put

dY · Y −1 =

(
L0 L1

L2 L3

)

and

Y −1 t(dV ) dV =

(
M0 M1

M2 M3

)
.

Here L0, L1, L2 and L3 denote the r × r, r × s, s× r and s× s matrix valued
differential one forms respectively, and M0, M1, M2 and M3 denote the r × r,
r × s, s× r and s× s matrix valued differential two forms respectively.

By an easy computation, we get

L0 = dF · F−1 + tHG · dH · F−1,

L1 = −dF · F−1 tH − tHG · dH · F−1tH + t(dH) + tH · dG ·G−1,

L2 = G · dH · F−1,
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L3 = dG ·G−1 − G · dH · F−1 tH,

M0 = F−1 t(dR) dR − F−1 tH t(dS) dR,

M3 = −HF−1 t(dR) dS +
(
G−1 + F−1[ tH ]

)
t(dS) dS.

Therefore we have

ds2g,h;A,B = A · σ
(
(dY · Y −1)2

)
+ B · σ

(
Y −1 t(dV ) dV

)

= A ·
{
σ
(
L2
0 + L1L2

)
+ σ

(
L2L1 + L2

3

)}

+ B · {σ(M0) + σ(M3)}
= A ·

{
σ
(
(F−1dF )2

)
+ σ

(
(G−1dG)2

)
+ 2 σ

(
F−1t(dH)GdH

)}

+ B ·
{
σ
(
F−1 t(dR) dR

)
+ σ

(
(G−1 + F−1[ tH ]) t(dS) dS

)}

− 2B · σ
(
F−1 tH t(dS) dR

)
. �

Let s
(
(Y0, V0), (Y1, V1)

)
be the length of the geodesic γ(t) = (α(t), β(t)) with

0 ≤ t ≤ 1. We put

α(t) =

(
F (t) 0
0 G(t)

)[(
Ir 0
H(t) Is

)]
, β(t) = (R(t), S(t)), 0 ≤ t ≤ 1,

where F (t), G(t), H(t), R(t) and S(t) are the uniquely determined curves in
Pr, Ps, R(s,r), R(h,r) and R(h,s) respectively.

Then we have

s
(
(Y0, V0), (Y1, V1)

)

= A ·
∫ 1

0

{
σ

((
F−1 dF

dt

)2
)

+ σ

((
G−1 dG

dt

)2
)

+2σ

(
F−1

t(dH
dt

)
G
dH

dt

)}1/2

dt

+ B ·
∫ 1

0

{
σ

(
γ(t)−1

t(dV
dt

)
dV

dt

)}1/2

dt

≥ A ·
∫ 1

0

{
σ

((
F−1 dF

dt

)2
)

+ σ

((
G−1 dG

dt

)2
)}1/2

dt

+ B ·
∫ 1

0

{
σ

(
F−1

t(dR
dt

)
dR

dt

)
+ σ

(
G−1

t(dS
dt

)
dS

dt

)}1/2

dt.

The reason is that the quadratic form σ
(
F−1 t(dH)GdH

)
is positive definite.

Indeed, if M,N ∈ GL(g,R) such that F = tMM and G = tNN, then

σ
(
F−1 t(dH)GdH

)
= σ

(
tWW ), W := N · dH ·M−1.

If

σ

(
F−1

t(dH
dt

)
G
dH

dt

)
= 0,
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then dH
dt = 0 and hence H(t) is constant in the interval [0, 1]. Since H(0) =

0, H(t) = 0 (0 ≤ t ≤ 1).
Moreover the curve α(t) must be diagonal, that is,

α(t) =
(
δµν e

χν(t)
)
, χν(0) = 0, χν(1) = ln tν , 1 ≤ ν ≤ g,

where gν(t) (1 ≤ ν ≤ g) are continuously differentiable in [0,1]. Thus we have

dα

dt
=

(
δµν e

χν(t)
dχν

dt

)

and hence

α(t)−1 dα

dt
=

(
δµν

dχν

dt

)
.

Therefore we have

∫ 1

0

{
σ

((
α(t)−1 dα

dt

)2
)}1/2

dt

=

∫ 1

0

{
σ

((
F−1 dF

dt

)2
)

+ σ

((
G−1 dG

dt

)2
)}1/2

dt

=

∫ 1

0





n∑

j=1

(
dχj

dt

)2




1/2

dt.

The minimum value of
∑g

j=1

(
dχj

dt

)2
is obtained if the curve α(t) is the straight

line, i.e., χj(t) = t ln tj (1 ≤ j ≤ g), 0 ≤ t ≤ 1 in the (χ1, . . . , χg)-space. Thus
we get

∫ 1

0

{
σ

((
α(t)−1 dα

dt

)2
)}1/2

dt =





n∑

j=1

(ln tj)
2





1/2

.

We put

β(t) =
(
βkj(t)

)
with 0 ≤ t ≤ 1, 1 ≤ k ≤ h, 1 ≤ j ≤ g.

Then we obtain
∫ 1

0

{
σ

(
α(t)−1

t(dβ
dt

)
dβ

dt

)}1/2

dt

=

∫ 1

0

{
σ

(
F−1

t(dR
dt

)
dR

dt

)
+ σ

(
G−1

t(dS
dt

)
dS

dt

)}1/2

dt

=

∫ 1

0





g∑

j=1

h∑

k=1

e−t ln tj

(
dβkj
dt

)2




1/2

dt.
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Each curve βkj(t) (0 ≤ t ≤ 1) is a curve in R such that βkj(0) = 0 and
βkj(1) = ṽkj . Thus each curve βkj(t) must be a straight line, that is, for all
k, j with 1 ≤ k ≤ h and 1 ≤ j ≤ g,

βkj(t) = ṽkj t, 0 ≤ t ≤ 1.

Therefore we have
∫ 1

0

{
σ

(
α(t)−1

t(dβ
dt

)
dβ

dt

)}1/2

dt

=

∫ 1

0





n∑

j=1

e−t ln tj

(
h∑

k=1

ṽ2kj

)


1/2

dt

=

∫ 1

0




g∑

j=1

∆j e
−t ln tj




1/2

dt.

Finally we obtain
(8.20)

s
(
(Y0, V0), (Y1, V1)

)
= A





g∑

j=1

(ln tj)
2





1/2

+B

∫ 1

0




g∑

j=1

∆j e
−(ln tj) t




1/2

dt.

Hence we complete the proof. �

For a fixed element (A, a) ∈ GLg,h, we let ΘA,a : Pg×R(h,g) −→ Pg×R(h,g)

be the mapping defined by

ΘA,a(Y, V ) := (A, a) · (Y, V ), (Y, V ) ∈ Pg × R(h,g).

We consider the behaviour of the differential map dΘA,a of ΘA,a at (Ig , 0).
Then dΘA,a is given by

dΘA,a(u, v) = (Au tA, v tA),

where (u, v) is a tangent vector of Pg × R(h,g) at (Ig, 0).

We let θ̃ be the involution of GLg,h defined by

θ̃((A, a)) := ( tA−1,−a), (A, a) ∈ GLg,h.

Then the differential map of θ̃ at (Ig, 0), denoted by the same notation θ̃ is
given by

θ̃ : g −→ g, θ̃(X,Z) = (− tX,−Z),
where X ∈ R(g,g) and Z ∈ R(h,g). We note that k is the (+1)-eigenspace of θ̃
and

p =
{
(X,Z) | X ∈ R(g,g), X = tX, Z ∈ R(h,g)

}

is the (−1)-eigenspace of θ̃.
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Now we consider some differential forms on Pg × R(h,g) which are invariant

under the action of GL(g,Z)⋉ Z(h,g). We let

Gg,h := GL(g,Z)⋉ Z(h,g)

be the discrete subgroup of GLg,h. Let

α∗ =
∑

µ≤ν

fµν(Y, V ) dyµν +
h∑

k=1

g∑

l=1

φkl(Y, V ) dvkl

be a differential 1-form on Pg×R(h,g) that is invariant under the action of Gg,h.
We put

eµν =

{
1 if µ = ν
1
2 otherwise.

We let

f(Y, V ) = (eµνfµν(Y, V )) and φ(Y, V ) = t(φkl(Y, V )),

where f(Y, V ) is a g × g matrix with entries fµν(Y, V ) and φ(Y, V ) is a g × h
matrix with entries φkl(Y, V ). Then

α∗ = σ(f dY + φdV ).

If γ̃ = (γ, α) ∈ Gg,h with γ ∈ GL(g,Z) and α ∈ Z(h,g), then we have the
following transformation relation

(8.21) f(γY tγ, (V + α) tγ) = tγ−1f(Y, V ) γ−1

and

(8.22) φ(γY tγ, (V + α) tγ) = tγ−1φ(Y, V ).

We let
ω0 = dy11 ∧ dy12 ∧ · · · ∧ dynn ∧ dv11 ∧ · · · ∧ dvhg

be a differential form on Pg×R(h,g) of degree Ñ := g(g+1)
2 +gh. If ω = h(Y, V )ω0

is a differential form on Pg×R(h,g) of degree Ñ that is invariant under the action
of Gg,h. Then the function h(Y, V ) satisfies the transformation relation

(8.23) h(γY tγ, (V + α) tγ) = (det γ)−(g+h+1) h(Y, V )

for all γ ∈ GL(g,Z) and α ∈ Z(h,g).
We write

ω1 = dy11 ∧ dy12 ∧ · · · ∧ dygg and ω2 = dv11 ∧ · · · ∧ dvhg.
Now we define

ωab = ǫab
∧

1≤µ≤ν≤g

(µ,ν)6=(a,b)

dyµν ∧ ω2, 1 ≤ a ≤ b ≤ g

and
ω̃cd = ǫ̃cd ω1 ∧

∧

1≤k≤h, 1≤l≤g

(k,l)6=(c,d)

dvkl, 1 ≤ c ≤ h, 1 ≤ d ≤ g.
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Here the signs ǫab and ǫ̃cd are determined by the relations ǫab ωab ∧ dyab = ω0

and ǫ̃cd ωcd ∧ dvcd = ω0. We let

β∗ =
∑

µ≤ν

sµν(Y, V )ωµν +

h∑

k=1

g∑

l=1

ϕkl(Y, V ) ω̃kl

be a differential form on Pg×R(h,g) of degree Ñ − 1 that is invariant under the

action of Gg,h, where sµν(Y, V ) and ϕkl are smooth functions on Pg × R(h,g).
We set

s = (ǫµνsµν), ǫµν = ǫνµ, sµν = sνµ and ϕ = (ǫ̃klϕkl).

If we write

Ω(Y, V ) =

(
s(Y, V )
ϕ(Y, V )

)
,

then we obtain

β∗ ∧
(
dY
dV

)
= Ωω0.

If γ̃ = (γ, α) ∈ Gg,h, then we have the following transformation relations:

(8.24) s(γY tγ, (V + α) tγ) = (det γ)−(g+h+1) γ s(Y, V ) tγ

and

(8.25) ϕ(γY tγ, (V + α) tγ) = (det γ)−(g+h+1) ϕ(Y, V ) tγ.

Gg,h acts on Pg × R(h,g) properly discontinuously. The quotient space

(8.26) Gg,h\
(
Pg × R(h,g)

)

may be regarded as a family of principally polarized real tori of dimension gh.
To each equivalence class [Y ] ∈ Gg\Pg with Y ∈ Pg we associate a principally

polarized real torus T
[h]
Y = TY × · · · × TY with T = Rg/ΛY , where ΛY = Y Zg

is a lattice in Rg.
Let Y1 and Y2 be two elements in Pg with [Y1] 6= [Y2], that is, Y2 6= AY1

tA
for all A ∈ Gg. We put Λi = Yi Zg for i = 1, 2. Then a torus T1 = Rg/Λ1 is
diffeomorphic to T2 = Rg/Λ2 as smooth manifolds but T1 is not isomorphic to
T2 as polarized tori.

Lemma 8.4. The following set

(8.27) Rg,h :=
{
(Y, V ) | Y ∈ Rg, |vkj | ≤ 1, V = (vkj) ∈ R(h,g)

}

is a fundamental set for Gg,h\Pg × R(h,g).

Proof. It is easy to see that Rg,h is a fundamental set for Gg,h\Pg×R(h,g). We
leave the detail to the reader. �
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For two positive integers g and h, we consider the Heisenberg group

H
(g,h)
R = {(λ, µ;κ) | λ, µ ∈ R(h,g), κ ∈ R(h,h), κ+ µ tλ symmetric}

endowed with the following multiplication law

(λ, µ;κ) ◦ (λ′, µ′;κ′) = (λ+ λ′, µ+ µ′;κ+ κ′ + λ tµ′ − µ tλ′).

We define the semidirect product of Sp(g,R) and H
(g,h)
R

GJ = Sp(g,R)⋉H
(g,h)
R

endowed with the following multiplication law

(M, (λ, µ;κ)) · (M ′, (λ′, µ′;κ′)) = (MM ′, (λ̃+ λ′, µ̃+ µ′;κ+ κ′ + λ̃ tµ′ − µ̃ tλ′))

with M,M ′ ∈ Sp(g,R), (λ, µ;κ), (λ′, µ′;κ′) ∈ H
(g,h)
R and (λ̃, µ̃) = (λ, µ)M ′.

Then GJ acts on the Siegel-Jacobi space Hg × C(h,g) transitively by

(8.28) (M, (λ, µ;κ)) · (Ω, Z) = (M · Ω, (Z + λΩ + µ)(CΩ +D)−1),

where M = (A B
C D ) ∈ Sp(g,R), (λ, µ;κ) ∈ H

(g,h)
R and (Ω, Z) ∈ Hg × C(h,g). We

note that the Jacobi group GJ is not a reductive Lie group and also that the
space Hg ×C(h,g) is not a symmetric space. We refer to [29, 30, 31, 32, 33, 34]

for more detail on the Siegel-Jacobi space Hg × C(h,g).
We let

Γg,h := Γg ⋉H
(g,h)
Z

be the discrete subgroup of GJ , where

H
(g,h)
Z = {(λ, µ;κ) ∈ H

(g,h)
R | λ, µ ∈ Z(h,g), κ ∈ Z(h,h) }.

We define the map Φg,h : Pg × R(h,g) −→ Hg × C(h,g) by

(8.29) Φg,h(Y, ζ) := (i Y, ζ), (Y, ζ) ∈ Pg × R(h,g).

We have the following inclusions

Pg × R(h,g) Φg,h−→ Hg × C(h,g) →֒ Hg × C(h,g) →֒ H∗
g × C(h,g).

Gg,h acts on Pg × R(h,g), Γ⋆
g ⋉ H

(g,h)
Z acts on Hg × C(h,g) and Γg,h acts on

Hg×C(h,g) and H∗
g×C(h,g). It might be interesting to characterize the boundary

points of the closure of the image of Φg,h in H∗
g × C(h,g).

9. Real semi-abelian varieties

In this section we review the work of Silhol on semi-abelian varieties [26]
which is needed in the next section.

Definition. A complex semi -abelianvariety A is the extension of an abelian

variety Ã by a group of multiplicative type. A semi-abelian variety is said to
be real if it admits an anti-holomorphic involution which is a group homomor-
phism.
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Let T be a group of multiplicative type. We consider the exponential map
exp : t −→ T . The real structure S on T lifts to a real structure St on t.
Then Lt := ker exp is a free Z-module and St induces an involution on Lt. By
standard results (cf. [25, I. (3.5.1)]), we can find a basis of Lt with respect to
which the matrix for St is of the form




Is 0 0 · · · 0 0
0 B 0 · · · 0 0
0 0 B · · · 0 0

0 0 0
. . . 0 0

0 0 0 · · · B 0
0 0 0 · · · 0 −It




, B :=

(
0 1
1 0

)
.

Since fixing a basis of Lt is equivalent to fixing an isomorphism T ∼= (C∗)r ,
we get

T = T1 × T2 × T3, r = s′ + 2p+ t′,

where
(i) T1 = C∗×· · ·×C∗ (s′-times) and S induces on each factor the involution

z 7−→ z. In this case we write T1 = G0
m × · · · ×G0

m;
(ii) T2 = C∗×· · ·×C∗ (t′-times) and S induces on each factor the involution

z 7−→ z−1. In this case we write T1 = G∞
m × · · · ×G∞

m ;
(iii) T3 = (C∗ × C∗) × · · · × (C∗ × C∗) (p-times) and S induces on each

factor (C∗ × C∗) the involution (z1, z2) 7−→ (z2, z1). In this case we write
T3 = G2∗

m × · · · ×G2∗
m .

Let ∆ = {ζ ∈ C | |ζ| < 1} be the unit disk and let ∆∗ = {ζ ∈ C | 0 < |ζ| < 1}
be a punctured unit disk. Let ϕ : Z∗ −→ ∆∗ be a holomorphic family of
matrices ϕ−1(ζ) = Z(ζ) in Hg. We have the natural action of the lattice Z2g

on ∆∗ × Cg defined by

(9.1) (λ, µ) · (ζ, z) := (ζ, z + λ+ Z(ζ)µ), ζ ∈ ∆∗, λ, µ ∈ Zg, z ∈ Cg.

Then the quotient space

(9.2) A∗ :=
(
∆∗ × Cg

)
/Z2g

is a holomorphic family of principally polarized abelian varieties associated to
a holomorphic family ϕ : Z∗ −→ ∆∗.

Now we write

Z(ζ) = X(ζ) + i Y (ζ) ∈ Hg

and

Y (ζ) = tW (ζ)D(ζ)W (ζ) ∈ Pg (the Jacobi decomposition)

with diag(d1(ζ), . . . , dg(ζ)) ∈ R(g,g) is a diagonal matrix.
Now we assume the following conditions (F1)-(F3): for any ζ ∈ ∆∗

r := {ζ ∈
C | 0 < |ζ| < r},

(F1) There exists a positive number r > 0 such that for any ζ ∈ ∆∗
r , Z(ζ) ∈

Wg(u) for some u > 0, where ∆∗
r := {ζ ∈ C | 0 < |ζ| < r};
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(F2) X(ζ) converges in R(g,g) and W (ζ) converges in GL(g,R) as ζ → 0 ;
(F3) limζ→0 di(ζ) = di converges for 1 ≤ i ≤ g − t, and limζ→0 di(ζ) = ∞

for g − t < i ≤ g.
Let

Z(0) =




z11 · · · z1,g−t 0 · · · 0
...

. . .
... 0

. . .
...

zg−t,1 · · · zg−t,g−t 0 · · · 0
...

. . .
...

... · · ·
...

zg,1 · · · zg,g−t 0 · · · 0



, zij = lim

ζ→0
zij(ζ).

The action (9.1) extends to the action of Z2g on ∆×Cg by letting Z(0) be the
fibre at ζ = 0. We take the quotient space

(9.3) A :=
(
∆× Cg

)
/Z2g.

Then we see that A is an analytic variety fibred holomorphically over ∆, and
the fibre at 0 is a semi-abelian variety

(9.4) A0 = Cg/L0, L0 := ZgZ(0) + Zg ⊂ Cg

of the abelian variety

(9.5) Ã0 := Cg−t/L⋄, L⋄ := Zg−tZ⋄(0) + Zg−t ⊂ Cg−t

by (C∗)t, where

Z⋄(0) =




z11 · · · z1,g−t

...
. . .

...
zg−t,1 · · · zg−t,g−t


 ∈ Hg−t.

The extension
1 −→ (C∗)t −→ A0 −→ Ã0 −→ 0

is defined by the image of

z⋄g−k = (zg−k,1, . . . , zg−k,g−t) ∈ Cg−t, k = 0, . . . , t− 1

under the maps

Cg−t −→ Ã0 −→ Pic0(Ã0),

where the last map is the isomorphism defined by the polarization.
These above facts can be generalized as follows.

Proposition 9.1. Let ϕ : Z∗ −→ ∆∗ be a holomorphic family of matrices

ϕ−1(ζ) = Z(ζ) in Hg such that ϕ−1(ζ) = Z(ζ) converges in H∗
g as ζ → 0.

Then there exists an analytic variety A(Z∗) −→ ∆ such that

(i) the fibre at ζ(6= 0) ∈ ∆ is the principally polarized abelian variety Cg/Lζ

with the lattice Lζ = ZgZ(ζ) + Zg;
(ii) the zero fibre A(Z∗)0 is a semi-abelian variety.

Proof. The proof can be found in [26, p. 189]. �
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Theorem 9.1. Let ϕ : Z∗ −→ ∆∗ be a holomorphic family of matrices

ϕ−1(ζ) = Z(ζ) in Hg such that ϕ−1(ζ) = Z(ζ) converges in H∗
g as ζ → 0.

We assume that Z(ζ) = ϕ−1(ζ) ∈ Hg for ζ ∈ R ∩∆∗. Let (s, t) be such that

lim
ζ→0

Z(ζ) ∈ γ BM

(
Fs,t ∩ H0

)

for some M ∈ Z(g,g) and some γ ∈ Γ⋆
g. Then

(a) A(Z∗)0 has a natural real structure extending the real structures of the

A(Z∗)ζ
′
s for ζ ∈ R ∩∆∗;

(b) As a real variety, A(Z∗)0 is the extension of a real abelian variety

Ã(Z∗)0 by

(
G0

m

)s′ ×
(
G2∗

m

)p ×
(
G∞

m

)t′
, s = s′ + p, t = t′ + p;

(c) Let x ∈ X
g
R (s, t) ⊂ X

g
R be the image of limζ→0 Z(ζ) in X

g
R and let [x]

be the image of x under the isomorphism X
g
R (s, t) ∼= X

g−r
R with r = s + t.

Then [x] is the real isomorphism class of Ã(Z∗)0.

Proof. The proof can be found in [26, pp. 191–192]. �

Corollary 9.1. Let ϕ : Z∗ −→ ∆∗ be as in Theorem 9.1. Assume

lim
ζ−→0

Z(ζ) ∈ F0,t (resp. Fs,0).

Then the class of the extension

0 −→
(
G∞

m

)t → A(Z∗)0 −→ Ã(Z∗)0 −→ 0

(
resp. 0 −→

(
G0

m

)s −→ A(Z∗)0 −→ Ã(Z∗)0 −→ 0
)

is defined by t purely imaginary divisors on A(Z∗)0
(
resp. s real divisors

A(Z∗)0
)
.

10. Real semi-tori

A real semi-torus T of dimension g is defined to be an extension of a real

torus T̃ of dimension g − t by a real group (R∗)t of multiplicative type, where
R∗ = R− {0}.

Let I = {ξ ∈ R | − 1 < ξ < 1} be the unit interval and I∗ = I − {0} be
the punctured unit interval. Let ̟ : Y∗ −→ I∗ be a real analytic family of
matrices ̟−1(ξ) = Y (ξ) ∈ Pg. We have the natural action of the lattice Zg in
Rg on I∗ × Rg defined by

(10.1) α · (ξ, x) = (ξ, x+ Y (ξ)α), α ∈ Zg, ξ ∈ I∗, x ∈ Rg.

The quotient space

(10.2) T∗ := (I∗ × Rg)/Zg
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is a real analytic family of real tori of dimension g associated to a real analytic
family ̟ : Y∗ −→ I∗. We let

Y (ξ) = tW (ξ)D(ξ)W (ξ)

be the Jacobi decomposition of Y (ξ), where D(ξ) = diag(d1(ξ), . . . , dg(ξ)) is
a real diagonal matrix and W (ξ) is a strictly upper triangular real matrix of
degree g. Now we assume the following conditions (T1)-(T4):

(T1) There exists a positive number r with 0 < r < 1 such that for any
ξ ∈ I∗r , i Y (ξ) ∈ Wg(u) for some u > 0, where I∗r := {ξ ∈ R | − r < ξ < r};

(T2) W (ξ) converges in GL(g,R) as ξ → 0;
(T3) limξ→0 di(ξ) = di converges for 1 ≤ i ≤ g − t, and limξ→0 di(ξ) = ∞

for g − t < i ≤ g.
Let

Y (0) =




y11 · · · y1,g−t 0 · · · 0
...

. . .
... 0

. . .
...

yg−t,1 · · · yg−t,g−t 0 · · · 0
...

. . .
...

... · · ·
...

yg,1 · · · yg,g−t 0 · · · 0



, yij = lim

ξ→0
yij(ζ).

The action (10.1) extends to the action of Zg on I ×Rg by letting Y (0) be the
fibre at ξ = 0. We take the quotient space

(10.3) T :=
(
I × Rg

)
/Zg.

Then we see that T is a real analytic variety fibred real analytically over I,
and the fibre at 0 is a real semi-torus

(10.4) T0 = Rg/Λ0, Λ0 := ZgY (0) ⊂ Rg

of the real torus

T̃0 := Rg−t/Λ⋄, Λ⋄ := Zg−tY ⋄(0) is a lattice in Rg−t

by (C∗)t, where

Y ⋄(0) =




y11 · · · y1,g−t

...
. . .

...
yg−t,1 · · · yg−t,g−t


 ∈ Pg−t.

11. Open problems and remarks

In this final section we give some open problems related to polarized real
tori to be studied in the future.

Problem 1. Characterize the boundary points of the closure of iPg in H∗
g

explicitly.

Problem 2. Find the explicit generators of the ring D(g, h) of differential
operators on the Minkowski-Euclidean space Pg × R(h,g) which are invariant

under the action (8.7) of GLg,h = GL(g,R)⋉R(h,g).
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Problem 3. Find all the relations among a complete explicit list of generators
of D(g, h).

The orthogonal group O(g) of degree g acts on the subspace

p =
{
(X,Z) | X = tX ∈ R(g,g), Z ∈ R(h,g)

}

of the vector space R(g,g) × R(h,g) by

(11.1) k · (X,Z) = (kX tk, Z tk), k ∈ O(g), (X,V ) ∈ p.

The action (11.1) induces the action of O(g) on the polynomial ring Pol(p)
on p. We denote by I(p) the subring of Pol(p) consisting of polynomials on
p invariant under the action of O(g). We see that there is a canonical linear
bijection

Θ : I(p) −→ D(g, h)

of I(p) onto D(g, h). We refer to [9] and [35] for more detail.

Remark 11.1. M. Itoh [11] proved that I(p) is generated by αj (1 ≤ j ≤ g) and

β
(k)
pq (0 ≤ k ≤ g − 1, 1 ≤ p ≤ q ≤ h), where

(11.2) αj(X,Z) = tr
(
Xj
)
, 1 ≤ j ≤ g

and

(11.3) β(k)
pq (X,Z) =

(
Z Xk tZ

)
pq
, 0 ≤ k ≤ g − 1, 1 ≤ p ≤ q ≤ h.

Here Apq denotes the (p, q)-entry of a matrix A of degree h.

Remark 11.2. M. Itoh [11] found all the relations among the above generators

αj (1 ≤ j ≤ g) and β
(k)
pq (0 ≤ k ≤ g − 1, 1 ≤ p ≤ q ≤ h) of I(p).

Problem 4. Develop the theory of harmonic analysis on the Minkowski-
Euclidean space Pg ×R(h,g) with respect to a discrete subgroup of GL(g,Z)⋉
Z(h,g).

Problem 5. Characterize the boundary points of the closure of the image of
Φg,h in H∗

g × C(h,g) (cf. see (8.29)).

Problem 6. Find the explicit generators of the ring D
(
Hg × C(h,g)

)
of dif-

ferential operators on the Siegel-Jacobi space Hg × C(h,g) which are invariant

under the action (8.28) of the Jacobi group GJ = Sp(g,R)⋉H
(g,h)
R . We refer

to [34] for more detail.

Problem 7. Find all the relations among a complete list of generators of
D
(
Hg × C(h,g)

)
.

Problem 8. Develop the theory of harmonic analysis on the Siegel-Jacobi
space Hg × C(h,g) with respect to a congruent subgroup of Γg,h = Sp(g,Z) ⋉

H
(g,h)
Z . We refer to [32] for more detail.
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Appendix: Non-abelian cohomology

In this section we review some results on the first cohomology set H1(〈τ〉,Γ)
obtained by Goresky and Tai [8], where 〈τ〉 = {1, τ} is a group of order 2 and
γ is a certain arithmetic subgroup. These results are often used in this article.

First of all we recall the basic definitions. Let S be a group. A group M is
called a S-group if there exists an action of G on M, S×M −→M, (σ, a) 7−→
σ(a) such that σ(ab) = σ(a)σ(b) for all σ ∈ S and a, b ∈M . From now on we
let 1S (resp. 1M ) be the identity element of S (resp. M). We observe that if
M is a S-group, then σ(1M ) = 1M for all σ ∈ S.

Definition. Let M be a S-group, where S is a group. We define

H0(S,M) := {a ∈M | σ(a) = a for all σ ∈ S} .
A map f : S −→ M is called a 1-cocycle with values in M if f(στ) =
f(σ)σ(f(τ)) for all σ, τ ∈ S. We observe that if f is a 1-cocycle, then f(1S) =
1M . We denote by Z1(S,M) the set of all 1-cocycles of S with values in M .
Let f1 and f2 be two 1-cocycles in Z1(S,M). We say that f1 is cohomologous

to f2, denoted f1 ∼ f2, if there exists an element h ∈M such that

f2(σ) = h−1f1(σ)σ(h) for all σ ∈ S.

Let f♭ : S −→ M be the trivial map, i.e., f♭(σ) = 1M for all σ ∈ S. A map
f : S −→ M is called a 1-coboundary if f ∼ f♭, i.e., if there exists h ∈M such
that f(σ) = h−1σ(h) for all σ ∈ S.

Obviously a 1-coboundary is a 1-cocycle. It is easy to see that ∼ is an
equivalence relation on Z1(S,M). So we define the first cohomology set

H1(S,M) := Z1(S,M)/ ∼ .

Remark. In general,H1(S,M) does not admit a group structure. ButH1(S,M)
has an identity, that is, the cohomologous class containing the trivial 1-cocycle
f♭.

Example. Let L be a Galois extension of a number field K with Galois group
G. A linear algebraic group defined over K has naturally the structure of G-
group. It is known that H1(G,GL(n, L)) is trivial for all n ≥ 1. Using the
following exact sequence of G-groups

1 −→ SL(n, L) −→ GL(n, L) −→ L∗ −→ 1, L∗ = L− {0},
we can show that H1(G,SL(n, L)) is trivial.

We put G = Sp(g,R) and K = U(g). Then D = G/K is biholomorphic to
Hg. Let Sτ = {1, τ} be a group of order 2 as before. We define the Sτ -group
structure on G via the action (2.7) of Sτ on G. Let Γ be an arithmetic subgroup
of Sp(g,Q). We let

XΓ := Γ\G/K ∼= Γ\Hg
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and let πΓ : D −→ XΓ be the natural projection. For any γ ∈ Γ, we define the
map f : Sτ −→ Γ by

(1) fγ(1) = 1Γ and fγ(τ) = γ,

where 1Γ denotes the identity element of Γ.

Lemma 1. Let γ ∈ Γ. Then
(a) fγ is a 1-cocycle if and only if γ τ(γ) = 1Γ, equivalently, τ(γ) γ = 1Γ.
(b) A cocycle fγ is a 1-coboundary if and only if there exists h ∈ Γ such that

γ = τ(h)h−1.

Proof. The proof follows immediately form the definition. �

To each such a 1-cocycle fγ we associate the γ-twisted involution τγ : D −→
D and τγ : Γ −→ Γ. Indeed the involution τγ : D −→ D is defined by

(2) τγ(xK) = τ(γxK) = τ(γ)τ(x)K, x ∈ G

and the involution τγ : Γ −→ Γ is defined by

(3) τγ(γ1) = τ(γγ1γ
−1), γ1 ∈ Γ.

Let

Dτγ := {x ∈ D | (τγ)(x) = x}
and

Γτγ := {γ1 ∈ Γ | (τγ)(γ1) = γ1}
be the fixed point sets.

Lemma 2. Let x ∈ D. Then πΓ(x) ∈ Xτ
Γ if and only if there exists an element

γ ∈ Γ such that x ∈ Dτγ.

Proof. It is easy to prove this lemma. We leave the proof to the reader. �

Theorem A. Assume Γ is torsion free. Let CΓ be the set of all connected

components of the fixed point set Xτ
Γ. Then the map ΦΓ : H1(Sτ ,Γ) −→ CΓ

defined by

ΦΓ([fγ ]) := πΓ
(
Dτγ

)
= Γτγ\Dτγ

determines a one-to-one correspondence between H1(Sτ ,Γ) and CΓ.

Proof. The proof can be found in [8, pp. 3–4]. �

Theorem B. Let Sτ = {1, τ} be a group of order 2. Then Sp(g,R) has a

Sτ -group structure via the action (2.7) and hence U(g) also admits a Sτ -group

structure through the restriction of the action (2.7) to U(g). And H1(Sτ , U(g))
and H1(Sτ , Sp(g,R)) are trivial.
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Proof. The proof can be found in [8, pp. 8–9]. However I will give a sketchy
proof for the reader. Assume fk is a 1-cocycle in Z1(Sτ , U(g)) with k =(

A B
−B A

)
∈ U(g). Using the fact τ(k)k = Ig , we see that

A = tA, B = tB, AB = BA and A2 +B2 = Ig.

Therefore we can find h ∈ O(g) such that h(A+iB)h−1 = D ∈ U(g) is diagonal.

We take µ =
√
D ∈ U(g) by choosing a square root of each diagonal entry. We

set δ = h−1µh. Then k = τ(δ) δ−1. By Lemma 1, fk is a 1-coboundary. Hence
H1(Sτ , U(g)) is trivial.

Let G = Sp(g,R) as before. Suppose fM ∈ Z1(Sτ , G) withM = (A B
C D ) ∈ G.

Then we see that fM is a 1-coboundary with values in G if and only if HMτ
g 6= ∅.

We can find M1 ∈ G such that HM1τ
g 6= ∅ and fM ∼ fM1 ∼ f♭. Therefore

fM ∼ f♭, that is, fM is a 1-coboundary with values in G. Hence H1(Sτ , G) is
trivial. �

Theorem C. For all m ≥ 1, the mapping

H1(Sτ ,Γg(4m)) −→ H1(Sτ ,Γg(2, 2m))

is trivial.

Proof. The proof can be found in [8, pp. 7–10]. We will give a sketchy proof
for the reader. In order to prove this theorem, we need the following lemma.

Lemma 3. If τ(γ) γ ∈ Γg(4m) with γ ∈ Γg, then γ = βu for some β ∈
Γg(2, 2m) and for some u ∈ GL(g,Z).

Lemma 4. Let γ ∈ Γg(2) and suppose Ω ∈ Hg is not fixed by any element of

Γg other than ±Ig. Suppose τ(Ω) = γ ·Ω. Then there exists an element h ∈ Γg

such that γ = τ(h)h−1.

Lemma 4 is a consequence of the theorem of Silhol [26, Theorem 1.4] and
Comessatti. Suppose fγ is a cocycle in Z1(Sτ ,Γg(4m)) with γ ∈ Γg(4m).
According to Theorem B, its image in H1(Sτ , G)) is a coboundary and so there
exists h ∈ G with γ = τ(h)h−1. Thus Hτγ = h · (iPg). By Lemma 2.2, there
exists Ω ∈ Hτγ which are not fixed by any element of Γg other than ±I2g and
the set of such points is the complement of a countable union of proper real
algebraic subvarieties of Hτγ. According to Lemma 4, γ = τ(h)h−1 for some
h ∈ Γg. By Lemma 3, we may write h = β u for some β ∈ Γg(2, 2m) and
for some u ∈ GL(g,Z). Then γ = τ(h)h−1 = τ(β)β−1. By Lemma 1, the
cohomology class [fγ ] is trivial in H

1(Sτ ,Γg(2, 2m)). �

Theorem D. Let Γ0 = Γg(2, 2m) and Γ = Γg(4m). Then we have the follow-

ing results:
(a) Dτ = Gτ/Kτ ;
(b) For each cohomology class [fγ ] ∈ H1(Sτ ,Γ), there exists h ∈ Γ0 such

that γ = τ(h)h−1, in which case

Dτγ = hDτ and Γτγ = hΓτh−1.
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(c) The association fγ −→ h (cf. see (2)) determines a one-to-one corre-

spondence between H1(Sτ ,Γ) and Γ\Γ0/Γ
τ
0 .

(d)

Xτ
Γ :=

∐

h∈Γ\Γ0/Γτ
0

hΓτh−1\hDτ .

Proof. (a) follows from the fact that H1(Sτ , U(g)) is trivial (cf. Theorem B).
(b) follows from Theorem C.
(c) follows from Theorem C, and the facts that Γ is a normal subgroup of

Γ0 and that τ acts on Γ\Γ0 trivially.
(d) follows from Theorem C and the facts that Γ is a normal subgroup of

Γ0 and that τ acts on Γ\Γ0 trivially together with the fact that Γ s torsion
free. �

Corollary. Let m be a positive integer with m ≥ 1. Let Sτ be as in Theorem

A. Let Γ = Γg(4m) and X = Γ\Hg. The set XR of real points of X is given by

XR =
∐

h

Γ[h]\ h·(iPg) = Γ\HτΓ,

where h is indexed by elements

h ∈ Γg(4m)\Γg(2, 2m)/Γ[L]
g (2) = H1(Sτ ,Γg(4m))

and Γ[h] := hΓ
[L]
g (4m)h−1.

Proof. The proof follows from (c) and (d) in Theorem D. �
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