Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Reinforcement Learning with Simple Sequence Priors

MPG-Autoren
/persons/resource/persons263619

Saanum,  T
Research Group Computational Principles of Intelligence, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons242765

Éltetö,  N       
Department of Computational Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons217460

Dayan,  P       
Department of Computational Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons256660

Binz,  M       
Research Group Computational Principles of Intelligence, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons139782

Schulz,  E
Research Group Computational Principles of Intelligence, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Saanum, T., Éltetö, N., Dayan, P., Binz, M., & Schulz, E. (2024). Reinforcement Learning with Simple Sequence Priors. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, & S. Levine (Eds.), Advances in Neural Information Processing Systems 36: 37th Conference on Neural Information Processing Systems (NeurIPS 2023) (pp. 61985-62005). Red Hook, NY, USA: Curran.


Zitierlink: https://hdl.handle.net/21.11116/0000-000D-3A4B-F
Zusammenfassung
In reinforcement learning (RL), simplicity is typically quantified on an action-by-action basis -- but this timescale ignores temporal regularities, like repetitions, often present in sequential strategies. We therefore propose an RL algorithm that learns to solve tasks with sequences of actions that are compressible. We explore two possible sources of simple action sequences: Sequences that can be learned by autoregressive models, and sequences that are compressible with off-the-shelf data compression algorithms. Distilling these preferences into sequence priors, we derive a novel information-theoretic objective that incentivizes agents to learn policies that maximize rewards while conforming to these priors. We show that the resulting RL algorithm leads to faster learning, and attains higher returns than state-of-the-art model-free approaches in a series of continuous control tasks from the DeepMind Control Suite. These priors also produce a powerful information-regularized agent that is robust to noisy observations and can perform open-loop control.