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ABSTRACT: In molecular dynamics simulations in the NPT ensemble at
constant pressure, the size and shape of the periodic simulation box fluctuate with
time. For particle images far from the origin, the rescaling of the box by the
barostat results in unbounded position displacements. Special care is thus required
when a particle trajectory is unwrapped from a projection into the central box
under periodic boundary conditions to a trajectory in full three-dimensional space,
e.g., for the calculation of translational diffusion coefhicients. Here, we review and
compare different schemes in use for trajectory unwrapping. We also specify the
corresponding rewrapping schemes to put an unwrapped trajectory back into the
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central box. On this basis, we then identify a scheme for the calculation of diffusion

coefficients from NPT simulations, which is a primary application of trajectory unwrapping. In this scheme, the wrapped and
unwrapped trajectory are mutually consistent and their statistical properties are preserved. We conclude with advice on best practice
for the consistent unwrapping of constant-pressure simulation trajectories and the calculation of accurate translational diffusion

coefficients.

1. INTRODUCTION

Molecular dynamics (MD) simulations are performed by
numerically solving the classical equations of motion for every
particle in a given system. For systems in the condensed phase,
such as proteins in water, these simulations are usually
conducted in volumes of finite size subject to periodic boundary
conditions (PBCs). In constant-volume simulations, one can
think of the periodic system either as a single box in which
opposite faces are identified under what are also referred to as
toroidal boundary conditions, or as an infinite periodic lattice of
replicates of the central simulation box. In the toroidal view, a
particle leaving the central simulation box placed at the
coordinate origin re-enters the box at the opposing face, as it
would when moving around on a torus. In the lattice view, each
particle corresponds to a collection of infinitely many points on a
periodic lattice, whose lattice constants are determined by the
box size and shape. The toroidal view naturally leads to so-called
wrapped trajectories, where particles at every instance in time
are contained within the central box (and positions outside the
box do not make mathematical sense). By contrast, in the lattice
view each individual marked point on the lattice representing a
particular particle can traverse the full three-dimensional space,
resulting in an associated unwrapped trajectory. For simulation
boxes of constant volume in constant-energy (NVE) and
constant-temperature (NVT) ensembles, the task of unwrap-
ping a trajectory therefore corresponds to transforming from the
toroidal view to the lattice view.

In constant-pressure (NPT) simulations, however, the task of
unwrapping becomes somewhat ambiguous, because the
barostat constantly modifies the size and shape of the simulation
box to keep the average pressure fixed. The positions of the
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particles within the box thereby get rescaled." In the lattice view
of PBCs, the periodic lattice is now fluctuating. Importantly, the
motion of particles purely as a result of the barostat action
depends on their distance from the central simulation box and is
thus unbounded (see Figure 1). By contrast, in the toroidal view
particles stay in the box with effectively bounded displacements
caused by barostat position rescaling. These differences between
the toroidal and lattice views seem to have caused some
confusion, as there are at least three different algorithms
currently in use to unwrap trajectories of constant-pressure MD
simulations.

Here, we review and compare the different schemes proposed
for trajectory unwrapping at constant pressure (section 2). We
use analytic calculations and numerical examples to demonstrate
that lattice-preserving unwrapping schemes give rise to
unwrapped trajectories with exaggerated fluctuations when
used to unwrap NPT simulation data. In extreme cases, the
dynamics of these unwrapped trajectories differs sharply from
the dynamics of the associated wrapped trajectories (sections 3
and S). As a consequence, diffusion coefficient estimates are
compromised, an effect that becomes apparent already for bulk
water at ambient conditions simulated in the NPT ensemble
over a microsecond time scale. By contrast, we find that a
recently proposed off-lattice unwrapping scheme” preserves the
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Figure 1. Barostat box rescaling in lattice view of PBCs. In the lattice
view, the displacement resulting from barostat-induced rescaling of the
box volume grows with the distance from the reference box centered at
the coordinate origin. The central boxes before and after barostat action
are indicated by gray and black squares, respectively, and the
corresponding periodic images of a particle by circles with faint and
solid colors. As a result of barostat rescaling alone, particle images (red)
away from the central box move farther than the reference particle
(blue), as indicated by the arrows.

statistical properties of the wrapped trajectory and should
therefore be preferred for the calculation of translational
diffusion coeflicients. However, because the scheme does not
adhere to the lattice view, it does not preserve distances.’
Molecules should thus first be made “whole” and then
unwrapped, e.g., according to their center of mass. We conclude
by giving guidance to practitioners on how to extract reliable
diffusion coeflicient estimates from constant-pressure MD
simulations (sections 5.5 and 6).

2. UNWRAPPING ALGORITHMS

2.1. Heuristic Lattice-View (HLAT) Scheme. Some MD
simulation and visualization software packages implement a
lattice-preserving unwrapping scheme (see, e.§., trjconv in
GROMACS" and cpptraj in Ambertools’), which in one
dimension (1D) can be cast into the following form:

HLAT
Wie1 — U
L

HLAT _ _
U1 = Wi
i+1

(1)

Here, w; denotes the wrapped position of a particle inside the
simulation box of width L; at integration step i corresponding to
time t, ul*T is the corresponding unwrapped position
predicted by the HLAT scheme (called the “heuristic scheme”
in refs 2 and 3), and | - | denotes the floor function. This scheme
defines the unwrapped position at time i + 1 as the particular
lattice image of the wrapped position that minimizes the
unwrapped displacement from time i to i + 1, making it
intuitively appealing. In ref 2, however, it was shown that in
simulations at constant pressure the above scheme occasionally
unwraps particles into the wrong box, which results in an
artificial speed up of the particles. This observation was later
confirmed in ref 3.

2.2. Toroidal-View-Preserving (TOR) Scheme. After
exposing the shortcomings of the HLAT scheme, three of the
authors of the present paper proposed an alternative unwrapping
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scheme, which resolves the issues of eq 1 and translates to the
following evolution equation in 1D:”

TOR _ , TOR | ( _
Uiy =4 Wir1 — Wi

)_[Wi“—wi 1

)

Taking a toroidal view of PBCs, the TOR scheme considers
minimal displacement vectors within the simulation box, which
are added together to form an unwrapped trajectory. By design,
it therefore preserves the dynamics of the wrapped trajectory.
However, the TOR scheme should only be used to unwrap the
trajectories of single particles, such as the center of mass of a
molecule or a well-chosen reference atom. If the scheme is
applied separately to multiple atoms of the same molecule,
whose intramolecular bonds cross the periodic boundaries, then
the atoms in question get incorrectly displaced with respect to
each other, resulting in an unphysical stretching of the bonds
connecting them together.3 Therefore, molecules should first be
made “whole” and then unwrapped.

We note that the TOR scheme (eq 2) appeals to the theory of
diffusion coefficients D in terms of the autocorrelation function
of the velocity v(t), which in one dimension leads to the Green—
Kubo relation® D = lim, o /§°dt exp(—et) (v(t)v(0)). From this
expression, one obtains the Einstein relation D = lim,_, . ([u(t)—
u(0)]?)/(2t) by writing the position u(t) as a sum of
infinitesimal displacements, u(t) = u(0) + [{dt'v(¢'). In analogy,
the TOR scheme (eq 2) adds up the minimal displacements
between saved configurations to construct an unwrapped
trajectory u(t).

2.3. Modern Lattice-View (LAT) Scheme. An alternative
to the HLAT scheme, which takes a lattice view of PBCs without
succumbing to the known shortcomings of HLAT, is
implemented in the qwrap” software package. To our knowl-
edge, this scheme was never explicitly documented in the
literature prior to implementation, but the LAMMPS simulation
software” uses it to write out unwrapped coordinates.

In the lattice view, crossing the periodic boundaries
corresponds to shifting the identity of the particle in the central
box to one of its lattice images. The LAT unwrapping scheme
keeps track of these shifts using integer image numbers #; that
indicate how many periodic images the current wrapped
coordinates are away from the original, unwrapped particle.
The image number n; can be obtained either by explicit
bookkeeping of image changes due to wrapping (as done by the
remap function of LAMMPS), or by detecting large jumps in
the wrapped coordinates (as done by the qunwrap feature of
qwrap). In both cases, the unwrapped coordinate can be
obtained as a lattice image of its wrapped counterpart, i.e.,

LAT

u; =w, — nL,
i
= 3L
i+l =
ol b2 (3)

This is done in qwrap, and in LAMMPS whenever unwrapped
coordinates are necessary, such as for output or for use by the
Colvars library.”

Recently, Kulke and Vermaas® proposed a correction to the
TOR scheme with the aim to preserve the underlying lattice
structure. Their scheme takes the following form in 1D:

https://doi.org/10.1021/acs.jctc.3c00308
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LAT LAT Wi — w1
Uy = 4 +(Wi+1_wi)_[ l l+_Li+1
i+1 2
w, — u-LAT 1
[ Rt + = (Li+1 _ Li)'
L 2 @)

However, in hindsight it turns out that eq 4 is equivalent to the
earlier LAT scheme (eq 3). This can be seen by substituting eq 3
into eq 4, giving

LAT

Wigr — W 1
Uipr

—nL, —

= Wik i

- ["i + %J(Lm - L)

Wi, — W 1
_ i+1 i
= Wi I + E i1 — MLl
i+1
=Wy — MLy

where we exploited the relation|x + n] = |x] + nwithn € Z
, an integer number in the second step. For this reason, we make
no distinction between eqs 3 and 4 and refer to them both as the
LAT scheme.

In what follows, we restrict our discussion to the comparison
of the TOR and LAT schemes, as the HLAT scheme has already
been established as faulty.

3. THEORY

Here, we describe a minimal stochastic model of a diffusive
particle inside a fluctuating box with PBCs, which we use to
generate numerical data and to highlight the differences between
the unwrapping schemes via analytic calculations. We also
develop and identify appropriate (re)wrapping schemes for the
TOR and LAT schemes, respectively. Finally, we derive an upper
bound for the frequency with which particle coordinates should
be sampled to make sure that all boundary crossings are
accounted for.

3.1. Minimal Stochastic Model. The 1D Gaussian model
was introduced in ref 2 and provides a minimal theoretical
description of constant-pressure MD simulations. It consists of a
Wiener process w that evolves between two periodic boundaries,
located at + L;/2 at time integration step i, which are themselves
modeled as Gaussian white noise. Due to box length
fluctuations, the value of the process gets rescaled in each time
step, after which a diffusive displacement is performed. The
model gives rise to the following wrapped trajectory:

_ Ly 1
Wi =w+ T —1lw +oR;
i
w; o R. 1
— | + & + = Li+ll
L L 2

Ly =L+ 0S5y Q)

where R;, S; ~ N(0, 1) denote uncorrelated normally distrib-
uted random variables with zero mean and unit variance, L is the
average length of the 1D simulation box, and o, and o
determine the noise amplitudes of the random processes driving

particle diffusion and box fluctuations, respectively.
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In the absence of wrapping events, the displacements resulting
from box rescaling and diffusion would give rise to a trajectory of
the following form:

i

_ (L,-H )
Ui =+ | —— — 1w+ qR,
L (6)
which can be regarded as the unwrapped partner trajectory to w
of eq 5. Note that the second term on the right-hand side of eq 6
represents multiplicative noise, as can best be seen in the limit o},
< L,wherewehave L., /L, — 1 = v2¢6;S,,,/L + O(c}/L?*)
with 8/, , = (S;4, — S.)/~2 ~ N(0, 1). Notably, this multi-
plicative-noise term is also present in eq 5, which makes both w
and u distinctively different from an ordinary Wiener process.
Yet, because the noise amplitude is only proportional to w; (and
not ), it remains bounded and does not overshadow the
diffusive process.

3.2. Differences Between Unwrapping Schemes.
Unwrapping the wrapped trajectory of eq S using the TOR
scheme results in an unwrapped trajectory that coincides with eq
6. This can be demonstrated by substituting eq S5 with
n=|w/L, + ¢, R, /L, + 1/2] € Z into eq 2, giving

L.
TOR TOR +1
Uy =4 + (1— - I]Wi +oRi
i
w; w, o R 1
- —‘——‘+ﬁ+—Li+l.
Li Li+l Li+1 2

The remaining floor function evaluates to zero as long as 6,, R,
<L andIL;,, — L]l <L;,,/2, which are reasonable assumptions
to make for MD simulations when the sampling interval is
sufficiently small. We therefore obtain

L
=u " + (I:—H - l]wi + 6,R,,,

i

TOR
Uity

in all practical cases.
By contrast, the LAT scheme evaluates to

L.
ui]:;-AlT = ”iLAT + {L—H - I]Wi + R,
w, — u-LAT 1
— l; + = (Li+1 — Li)
L 2 (7)

when applied to the process of eq S. Here, the last term can be
further simplified via eq 3, giving
Lisi 1
L

LAT

i+1
Uir1

L.
uiLAT I el
L

X nL

i

L.
u,.LAT + (—fl - l]uiLAT + o, Ry
i

I]Wi +oRi— [

(8)
Comparing egs 6 and 8, we find that the LAT scheme gives rise
to a multiplicative noise term (L;,;/L; — 1) u-*T that scales with
the unwrapped coordinate. Its magnitude therefore grows
without bounds as the particle diffuses away from the origin. The
unbounded multiplicative noise in the LAT scheme causes
pathological particle dynamics, which becomes apparent when

https://doi.org/10.1021/acs.jctc.3c00308
J. Chem. Theory Comput. 2023, 19, 3406—3417
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the LAT scheme is used to unwrap trajectories from Brownian
dynamics (BD) and MD simulations, as demonstrated below in
section S.

3.3. Consistent (Re)Wrapping Schemes. Besides criticiz-
ing the undesired effect of intramolecular bond stretching, Kulke
and Vermaas® further claimed that the TOR scheme cannot be
reversible, because a subsequent wrapping of u'°® using
“conventional wrapping schemes” does not reproduce the
wrapped trajectory w. While the authors did not explicitly specify
which wrapping schemes they were referring to, we expect a
lattice-view scheme, which in 1D reads

LAT

)

Here, the value of @ depends on the definition of the central unit
cell. If it is defined by the interval [0, L;] (as is the case, e.g,, in
GROMACS") then a 0, whereas for cells fluctuating
symmetrically around the origin, i.e., [—L;/2, L;/2], one has a
=1 (this is the convention that LAMMPS® and NAMD'? adhere
to). The scheme in eq 9 assumes that at each time integration
step i the wrapped and unwrapped trajectories are identical up to
an integer number of box lengths L, consistent with the lattice
view of eq 3. Equation 9 should therefore be able to perfectly
rewrap a trajectory generated by the LAT unwrapping scheme.

In fact, substituting eq 7 into eq 9 with n = | (Wi — ufAT) /L, +
1/2]and a = 1 gives
L
A = T G+ ke,
i
LAT
i W'Rl+1
- + - L1+1)
L i+1 Liyy 2

which coincides with eq S because

1
{n + ZJ n;
must hold. In light of the fact that the TOR and LAT
unwrapping schemes give different results, it is apparent that eq
9 cannot be used to correctly rewrap u™°F.
To construct a (re)wrapping scheme consistent with the TOR

unwrapping scheme, we backtrace the displacements ul QR —

ufO® to reconstruct the wrapped trajectory in an iterative

manner as follows:

TOR _ _ TOR
Wo =ty
TOR _ TOR _  TOR
Wipr = "+ (ugy —w )
,»TOR TOR TOR
Wi + i -y ) a
- + 20,
L ) i+1
i+1
(10)
Whenever the trajectory w! % + (ul9® — ufO%) crosses the

periodic boundaries, it gets shifted back into the central box with
the help of the last term. Substituting eq 6 into eq 10 gives rise to
eq S, as expected. Equations 9 and 10, and their relations to the
LAT and TOR unwrapping schemes, are verified with the help of
numerical data in section S.

3.4. Upper Bound for the Time Interval Between
Sampled Structures in MD Simulations. In section 3.2 we
made the assumption that 6, R;,; << L;,; must hold, and argued
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for its validity for MD simulations at sufficiently small sampling
intervals At. Very roughly, for a particle with mass m and
diffusion coefficient D we require DAt < L > and A#* < fmL* in
the regimes dominated by diffusion and inertia, respectively.
Here, ' = kgT denotes the thermal energy scale, ky is the
Boltzmann constant and T is the absolute temperature. To
obtain a quantitative estimate of an upper bound for At, we
consider the probability P for one or more of the N particles in
the simulation box to travel a distance greater than L/2 within At
along any of the three Cartesian coordinates, resulting in an
incorrect unwrapping event in at least one of the f.,/At
sampled frames, i.e.,
P=1—[1—Pr(X> L/2)Nwa/A (11)
Here, t,, is the total simulation time and Pr(X > L/2) denotes
the probability for a single particle in 1D to move either
ballistically or diffusively in the time interval At by more than L/
2 in either direction. We can estimate this probability as follows:

}

where erfc(-) denotes the complementary error function and

2 _
—x /2(7 L

= erfc] ———
276* 2 2

Pr(X>L/2)~2 dx
’/ 20

2DAt,
o =
At*/pm,

diffusive motion

ballistic motion

depends on the dominating particle dynamics. For sufficiently
small sampling intervals At, the probabilities P and Pr(X > L/2)
are also small, which allows us to reduce eq 11 to P &~ 3 NPr(X >
L/2) tiw/ At and replace erfc(-) with its asymptotic expansion
for large arguments. Setting P = £ < 1 results in the expression

2
|20 L7807
P 3 ’ (12)

which can be used to estimate how large the sampling interval At
can be chosen for a specific MD simulation setup without
skewing the resulting unwrapped trajectory due to particles
crossing the periodic boundaries.

Solving eq 12 for At in the ballistic (6> = Af/pm) and
diffusive limit (6> = 2DAt) gives the requirements

6Nttotal
LAt

pmL* 6Nty [ 2
Atballistic < In it 1 )
8 eL wpm (13)
Jmel?
Atdlffu ive = o
e / | 24V2NDt oy 1)

respectively, where W_,(-) denotes the lower branch of the
Lambert W function, which can be expanded for small
arguments to give W_,(z — 0_) ~ — In(— l/z) — In(In(-1/
z)) = In (In(=1/2))/In(=1/2)."" For ¢ = 1072 and N ~ 33.3
nm ™~ L 3 TIP3P water molecules with D ~ 6 nm* ns™''* and m ~
18 g mol ™" at T = 300 K, eqs 13 and 14 evaluate to At e &
0.48 ps, 0.94 ps, 1.4 ps and Atgge = 2.9 ps, 11 ps, 25 ps for
cubic simulation boxes with edge lengths L =2.5nm,5nm, and
7.5 nm, respectively. For water at ambient conditions,” one can
safely use the Aty bound for times At > 1 ps.

https://doi.org/10.1021/acs.jctc.3c00308
J. Chem. Theory Comput. 2023, 19, 3406—3417
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4, METHODS
4.1. MD Simulation of TIP4P-D Water with GROMACS.

We made use of a 1 s constant-pressure simulation of 515
TIP4P-D water molecules'” in a cubic box with an average edge
length of L ~ 2.5 nm, which was previously reported on in ref 2.
The simulation was run using GROMACS 2018.6* with a 2 fs
integration time step, and particle-mesh Ewald electrostatics'*
with a 1.2 nm real-space cutoff. The SETTLE algorithm was
used to keep water molecules rigid."> The production run
commenced after a 100 ps initial equilibration at constant
volume and a subsequent 5 ns equilibration run at constant
pressure. Temperature and pressure were maintained at 300 K
and 1 bar throughout the entire simulation using the velocity-
rescaling thermostat'® (7, = 1 ps) and the Parrinello—Rahman
barostat'” (7, = 5 ps), respectively. Particle coordinates were
sampled every At = 1 ps. For the sake of comparison, we also
considered a 1 us constant-volume simulation of the system
described above, which was equilibrated and run in an identical
manner.”

4.2. MD Simulation of SPC/E Water with LAMMPS. We
generated a set of wrapped and unwrapped trajectories of 511
SPC/E water molecules'® at ambient conditions using the
LAMMPS package stable release from September 29, 2021
(update 3).>" The simulation was performed at constant
pressure in a cubic box with an average edge length of L ~ 2.5
nm. The SHAKE algorithm® was used to constrain the
intramolecular bonds and angles at an accuracy tolerance of
107*. The particle-particle particle-mesh solver*' with a relative
force error accuracy of 107* was used to compute long-range
Coulombic interactions, where the cutoff distance in real space
was set to 9.8 A. Equilibration consisted of a 15 ns run in the
NVT ensemble, followed by a 20 ns run in the NPT ensemble.
Temperature and pressure were maintained at 300 K and 1 bar
using the Nosé—Hoover thermostat and barostat’*’ with
damping coeflicients of 100 and 1000 fs, respectively. The 1 us
production run in the NPT ensemble was performed using the
same thermostat and barostat coeflicients, and a 1 fs integration
time step. Particle coordinates of the wrapped and unwrapped
trajectory were sampled every At = 1 ps via the dump command.

4.3. MD Simulation of TIP3P Water with NAMD. We
generated an unwrapped trajectory of 826 TIP3P water
molecules™ at ambient conditions in a cubic periodic box
with L ~ 2.9 nm, using NAMD version 3.19 A time step of 2 fs
was used. Temperature was maintained at 300 K using
underdamped Langevin dynamics with a damping time of 1
ps. Pressure was set to 1 bar using the Nosé—Hoover Langevin
piston method as implemented in NAMD,” with a piston
period of 200 fs and a decay time of 100 fs. Water molecules were
kept rigid using the SETTLE algorithm."> Long-range electro-
static interactions were computed using the Particle-Mesh
Ewald method, with a 12 A cutoff for the real-space part. The
same cutoff was applied to Lennard-Jones potentials, with force-
switching for a continuous decay of the force to zero. Particle
coordinates were sampled every At = 1 ps for 900 ns in total, this
slightly shorter duration being the result of numerical instability
(see further section 5.3). To obtain a corresponding wrapped
trajectory, we chose to wrap the NAMD output trajectory using
eq9.

5. RESULTS AND DISCUSSION

5.1. Brownian Dynamics Simulations. To verify the
analytic predictions of section 3, we evaluated egs S, 6, and 8 in
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an iterative fashion to generate a wrapped trajectory w, and two
unwrapped trajectories u and u*. The wrapped trajectory was
unwrapped using the TOR and LAT schemes (eqs 2 and 4,
respectively), and the resulting unwrapped trajectories were
compared to the corresponding u and u* realizations. We used
random initial positions wy = uy = uf = L(R' — 1/2) with
R~ Uy, ,  uniformly distributed on the interval [0,1], and fixed
parameter values of o} = 0.1L and o, = 0.05L .

Figure 2 displays a representative set of trajectories that were
generated as described above. In accordance with our

()
0
|~
x -1
<
.2
= . .
2 =2 simulation box
o L —— wrapped trajectory w
_3 L —— unwrapped trajectory u
| —— unwrapped trajectory uTOR |
1 1 1 1 1 1 1 1 1
(b)

I~
~
x
<
.9 B |
=)
2 =2 simulation box 'ﬂ% v
o L —— wrapped trajectory w
_3 | —— pseudo unwrapped trajectory u*
unwrapped trajectory utAT |
| | 1 I 1 | | | |
100 300 500 700 900
time 7 [a.u.]

Figure 2. Comparison of the TOR and LAT unwrapping schemes in
1D. (a) TOR unwrapping of trajectory for 1D Gaussian model. While
the wrapped trajectory w (blue line, eq S) is confined to the simulation
box (gray shaded area), its unwrapped partner trajectory u (red line, eq
6) can traverse arbitrarily far from their common initial position. The
TOR unwrapping scheme (eq 2), when applied to w, produces a
trajectory u"O® (green line), which completely overlaps with u. Note
that the unwrapped trajectories u and u"® are not “on lattice” in NPT
simulations. As a result, they may not coincide with the wrapped
trajectory w in revisits to the central simulation box, as seen around time
500. (b) LAT unwrapping of the same trajectory as in (a). The
unwrapped trajectory 4T (orange line) generated by the LAT
unwrapping scheme (eq 4) coincides with the pseudo unwrapped
trajectory u* (purple line, eq 8) and exhibits the same exaggerated
fluctuations away from the central box.

predictions in section 3.2, the unwrapped trajectory u™AT
associated with the LAT scheme exhibits the same position-
dependent fluctuations that can be found in u* (eq 8), which
increase with the distance to the origin in stark contrast to the
dynamics of the wrapped trajectory. Meanwhile, the unwrapped
trajectory u' % generated by the TOR scheme shows moderate
fluctuations and completely overlaps with u, as expected. A
visual comparison of trajectory segments between two
boundary-crossing events demonstrates that u™O® perfectly
captures the trends observed in w. The same cannot be said
about 4T,

The nondiffusivity of u™*" is even more pronounced in higher
dimensions, as illustrated in Figure 3, where we combine two 1D
trajectories of the Gaussian model, w, and w,, to construct a two-
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Figure 3. Comparison of the TOR and LAT unwrapping schemes in
2D. A wrapped trajectory w of the Gaussian model (not shown) was
unwrapped using the TOR and LAT schemes, which resulted in the
unwrapped trajectories #'°% (green line) and wT (orange line),
respectively. While #7® is visually indistinguishable from an ordinary
diffusive trajectory anywhere in the plane, 4" is strongly affected by
box fluctuations after leaving the central simulation box (average size
shown as black square). Note that the apparent noise in %" grows with
the distance from the central box and becomes anisotropic, with
position fluctuations emanating in a star-like fashion from the origin.

dimensional (2D) wrapped trajectory w = (w, w,)". The
unwrapped trajectories and #*" were generated by
unwrapping each component of w separately using the TOR
and LAT schemes, respectively. As shown, the apparent noise in
the #*T trajectory not only grows with distance from the central
simulation box but also becomes anisotropic. Supporting Movie
S1 visualizes the evolution of the trajectories and the fluctuations
of the simulation box.

Finally, we assessed the ability of eqs 9 and 10 to reverse the
operations of the LAT and TOR unwrapping schemes,
respectively. In Figure 4, we demonstrate that eq 10 faithfully
reproduces the wrapped 1D trajectory w when applied to u” ¥,
Similarly, we find that eq 9 perfectly rewraps u™*" back into the
simulation box. It is therefore unsurprising that Kulke and
Vermaas® only found their own unwrapping scheme to be
reversible with respect to “conventional wrapping schemes”
(such as eq 9): the unwrapped trajectories u™°* and u™" are
different and therefore require different wrapping schemes to be
correctly rewrapped into the simulation box.

5.2. GROMACS Simulations. In our BD simulations, we
could freely choose the amplitude o; of the box fluctuations to
highlight the difference between the two unwrapping schemes.
In MD simulations, however, box fluctuations for aqueous
systems at ambient conditions are generally well below one
percent of the average edge length, so the amplified fluctuations
in 4T are much more subtle. To test whether we can identify
considerable differences between the TOR and LAT schemes in
MD simulations, we analyzed the wrapped trajectories of
TIP4P-D water in a small, fluctuating, cubic box, as reported
previously in ref 2 (see section 4.1 for technical details).

In Figure 5, we plot the y-component of the trajectory of an
oxygen atom in a water molecule that managed to diffuse more
than 30 box edge lengths away from the central simulation box.
At first glance, the unwrapped trajectories produced by the TOR
and LAT schemes may seem identical, but when we zoom in on
the last few nanoseconds of the trajectory, we find 4" to have
the same exaggerated fluctuations as observed in our BD
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Figure 4. Rewrapping trajectories using appropriate wrapping schemes.
(a) The unwrapped trajectory u™ O (green line), generated by the TOR
scheme, can be perfectly rewrapped inside the simulation box (gray
shaded area) using eq 10 with a = 1, as seen by the complete overlap of
wTOR (cyan line) with the original wrapped trajectory w (blue line). (b)
Similar results can be achieved for u™*" (orange line), generated by the
LAT scheme, if it is rewrapped using eq 9 with @ = 1. This gives rise to
the trajectory w'T (pink line).

simulations. By contrast, uToR
the wrapped trajectory w.

To quantify the effect that box fluctuations have on
unwrapped trajectories, we analyzed the diffusive behavior
observed in different trajectory segments. We made use of a
maximum likelihood estimator’® (MLE) for the diffusion
coefficient D, which accounts for the fact that a d-dimensional
diffusive process X(f) can be corrupted by static noise and
dynamic motion blur, resulting in the following mean squared
displacement (MSD):

MSD(z) = (IX(z) — X(0)I*) = a’d + 2dD(r — 2B).
(15)
Here, 7 denotes the lag time. For MD simulations, the motion
blur coefficient B is zero and the vertical intercept a* accounts for
nondiffusive dynamics at short times.”” Note that the MLE does
not rely explicitly on estimates for the MSD, but instead exploits
the statistics of the increments X(£,,,) — X(t) We segmented
our unwrapped oxygen trajectories for TIP4P-D water into 1 ns
blocks and extracted for each block (with index i) estimates for
the static noise a; and the diffusion coefficient D, Figure 6
presents our results for the TOR and LAT schemes.
Unsurprisingly, the TOR scheme gives consistent parameter
estimates for all block indices i, whereas the estimates for the
LAT scheme vary strongly with i and tend toward larger values at
later times in the trajectory. This behavior is to be expected as
the diffusive spread of the water molecules moves them further
away from the central simulation box, where artifacts become
more pronounced in trajectories associated with the LAT
unwrapping scheme.
It should be noted that our results imply a significant
difference between global diffusion coefficient estimates

visually reproduces the features of
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Figure S. Trajectory of an oxygen atom of a TIP4P-D water molecule
along a single coordinate axis. (a) The wrapped trajectory w (blue line)
is unwrapped via the TOR and LAT schemes, resulting in u"°% (green
line) and u"T (orange line), respectively. The two unwrapped
trajectories seem almost identical, because box fluctuations in MD
simulations of water at ambient conditions are small compared to the
dimensions of the simulation box (gray shaded area). (b) However, a
zoom-in on the last 5 ns of the trajectory reveals that u™T exhibits larger
fluctuations between subsequent time frames than u™® and w. The
enhanced noise in 4" is indicative of the unbounded multiplicative
noise associated with the LAT unwrapping scheme.

obtained for the TOR scheme and the LAT scheme witha At=1
ps time step. Consistent with the analysis of Figure 6, we find the
global mean estimates Dyog = 2.0602(2) nm? ns™" and Dy 7 =
4.64(3) nm® ns™" by applying the MLE to the full 1 us trajectory
of each oxygen atom and then average over all water molecules,
without correcting for finite-size effects.'>** By comparison, we
obtained the global mean estimate D = 2.0517(2) nm? ns™" for
the corresponding NVT simulation (see section 4.1 for technical
details). The standard errors of Dyop, Dyar, and D (in
parentheses) were estimated by assuming that the diffusion
processes of individual water molecules were uncorrelated.
Importantly, we expect the discrepancy between Drog and Dy 51
to grow if the MD simulations are extended beyond the 1 us
used here, because D estimates in Figure 6 obtained with the
MLE for the LAT unwrapped trajectories slowly increase to ever
larger values as the traced particles move further away from the
central box (see Figure 6).

5.3. LAMMPS and NAMD Simulations. The GROMACS
simulation software package exclusively generates wrapped
trajectories. These trajectories are typically unwrapped in a
postprocessing step using built-in tools like t rjconv or third-
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party software, such as the PBCTools and qwrap” plugins for
VMD.? Other MD simulation codes write out unwrapped
trajectories directly, either by default or via user-specified
settings, but this raises the question which unwrapping scheme
these trajectories correspond to. We therefore analyzed
simulation trajectories for SPC/E and TIP3P water generated
via the software packages LAMMPS and NAMD, respectively
(see sections 4.2 and 4.3 for technical details). NAMD does not,
in general, wrap the particle coordinates throughout the
simulation, except when writing coordinates to disk, and then
only when instructed to do so through the user options
wrapAll or wrapWater. LAMMPS, by contrast, allows the
user to specify whether the wrapped coordinates, unwrapped
coordinates, or both should be written out.

We segmented the unwrapped trajectories of oxygen atoms
generated by LAMMPS and NAMD into 1 ns blocks and
analyzed the diffusive dynamics of every block separately, as
detailed in section 5.2. This was also done to the corresponding
wrapped partner trajectories, after unwrapping them via the
TOR unwrapping scheme. The resulting diffusion coeflicient
estimates as functions of the tim