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Lattice gauge theories coupled to fermionic matter account for many interesting phenomena in
both high energy physics and condensed matter physics. Certain regimes, e.g. at finite fermion
density, are difficult to simulate with traditional Monte Carlo algorithms due to the so-called sign-
problem. We present a variational, sign-problem-free Monte Carlo method for lattice gauge theories
with continuous gauge groups and apply it to (2+1)-dimensional compact QED with dynamical
fermions at finite density. The variational ansatz is formulated in the full gauge field basis, i.e.
without having to resort to truncation schemes for the U(1) gauge field Hilbert space. The ansatz
consists of two parts: first, a pure gauge part based on Jastrow-type ansatz states (which can be
connected to certain neural-network ansatz states) and secondly, on a fermionic part based on gauge-
field dependent fermionic Gaussian states. These are designed in such a way that the gauge field
integral over all fermionic Gaussian states is gauge-invariant and at the same time still efficiently
tractable. To ensure the validity of the method we benchmark the pure gauge part of the ansatz
against another variational method and the full ansatz against an existing Monte Carlo simulation
where the sign-problem is absent. Moreover, in limiting cases where the exact ground state is known
we show that our ansatz is able to capture this behavior. Finally, we study a sign-problem affected
regime by probing density-induced phase transitions.

I. INTRODUCTION

Gauge theories play a prominent role in different areas
of physics. In high-energy physics, the standard model
of particle physics, a gauge theory, describes three of the
four fundamental forces in nature. At high energy scales
its interactions can be treated perturbatively, however, at
lower energies this approach fails and non-perturbative
techniques are required [1, 2]. This naturally gives rise
to lattice gauge theories as they are non-perturbative,
gauge-invariant regularizations of quantum field theo-
ries [3, 4]. In condensed matter, lattice gauge theories
emerge as low-energy effective theories of strongly cor-
related electron systems, e.g. quantum spin liquids or
high-temperature superconductors [5, 6].

Much progress has been made in studying lattice gauge
theories, both from the high-energy physics as well as
from the condensed matter side, in particular using Eu-
clidean Monte Carlo simulations [7]. Nevertheless, cer-
tain regimes are difficult to access within this framework
as fermionic theories at finite density or with an odd
number of fermion flavors may suffer from the sign prob-
lem [8] and real-time dynamics are difficult to compute
as Monte Carlo algorithms are usually formulated in Eu-
clidean spacetime.

In recent years, several approaches to this problem
have received attention: a prominent example is quan-
tum simulation where it was shown that lattice gauge
theory Hamiltonians can be realized in quantum devices
(e.g. ultracold atoms, trapped ions or superconducting
qubits) [9, 10]. The implementation of quantum sim-
ulators has been demonstrated in one dimension using

trapped ions and ultracold atoms [11–15]. In two and
more spatial dimensions the situation becomes more chal-
lenging, in particular due to appearance of magnetic in-
teractions, leading to four-body plaquette terms on the
lattice. There have been proposals on how to overcome
this problem in quantum simulators (either by employing
a digital [16–21] or an analog simulation scheme [22, 23])
but so far they have not been realized in experiments.

Another significant approach is based on variational
ansatz states which can capture the relevant physics of
the theory but at the same time can be evaluated ef-
ficiently. For lattice gauge theories these states either
have to respect the local gauge symmetries or one has
to find a reformulation of the theory in terms of gauge-
invariant variables (at the cost of more complicated in-
teractions) [24–26] such that there is a larger freedom in
choosing variational states. One class of ansatz states
are tensor networks whose one-dimensional version, ma-
trix product states (MPS), have been successfully ap-
plied to (1+1)-dimensional Abelian and non-Abelian lat-
tice gauge theories [27–37], enabling the study of finite
chemical potential scenarios and out-of-equilibrium dy-
namics which are not accessible in Monte Carlo simula-
tions of Euclidean lattice gauge theory. In higher dimen-
sions, tensor network methods have been applied to lat-
tice gauge theories with a finite-dimensional gauge field
Hilbert space (either by working with quantum link for-
mulations [38–41] or using a discrete gauge group [42–
44]). Other types of ansatz states can be formulated
in the infinite-dimensional Hilbert space of continu-
ous gauge groups. These include periodic Gaussian
states [45] (generalizations of Gaussian states that take
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into account the compactness of the gauge group) or neu-
ral network-based ansatz states [46, 47].

A particularly interesting model in higher dimensions
is (2 + 1)-dimensional compact QED (cQED3) with dy-
namical charges, both in the context of high-energy
physics and condensed matter physics. From the high-
energy perspective it is interesting since it is the sim-
plest theory to discuss confinement and chiral symme-
try breaking, also quintessential to our understanding
of quantum chromodyanmics (QCD). Already without
dynamical fermions, the theory has non-trivial inter-
actions due to the appearance of four-body magnetic
terms. It is known to confine for all couplings [48]. How-
ever, upon the inclusion of dynamical fermions, the sit-
uation is less clear since the dynamical fermionic mat-
ter might lead to deconfinement. These phenomena are
also of high relevance in condensed matter since many
low-energy effective theories of two-dimensional strongly
coupled electron systems can be described by massless
dynamical fermions coupled to a compact U(1) gauge
field. Compared to Z2 lattice gauge theories where it
was shown that sign-problem-free Monte Carlo simula-
tions could be performed for an even number of fermion
flavors even at non-zero density [49], for the U(1)-theory
the sign-problem is only absent for an even number of
fermion flavors at half-filling [50]. Based on the above
considerations, in this work, we introduce a variational
method that can access the sign-problem affected regimes
of cQED3 with dynamical charges without truncating the
U(1) gauge field Hilbert space. The ansatz is based on
a combination of a pure gauge part containing the self-
interactions of the gauge field and a fermionic part which
describes the dynamics of the matter degrees of freedom
with the gauge field. The pure gauge part is a Jas-
trow wave function constructed out of gauge-invariant
plaquette variables (its form can be connected to cer-
tain neural network quantum states [51]). The choice
of ansatz is motivated by an earlier proposal [45] which
could approximate ground states and real-time dynamics
in cQED3 with static charges. The fermionic part is an
infinite superposition of gauge-field dependent fermionic
Gaussian states which are parametrized in such a way
that the resulting state is gauge-invariant. Note that
the parametrization is done in a way that the number
of parameters only scales polynomially with system size.
In a similar fashion to neural-network quantum states,
expectation values are obtained using Monte Carlo sam-
pling. The optimization of variational states is done via
stochastic reconfiguration [52].

In order to verify the capabilities of the variational
method we first demonstrate also numerically that gauge
invariance is indeed preserved. In a second step it is
shown that the ansatz is exact in all limiting cases. This
includes the weak-coupling limit (g2 → 0) where the
ground state is known to be a π-flux state [53] and the
strong-coupling limit (g2 →∞) where the electric energy
dominates and one obtains an effective fermionic theory.
Moreover, we benchmark our ansatz against other meth-

ods: first, we compare for the pure gauge theory, i.e.
compact QED without fermions, the ground state energy
with another variational method [45] and see agreement
over the whole coupling region. These results were re-
cently confirmed in another variational study based on
neural-network states [46]. For compact QED with dy-
namical fermions, we compare with a Euclidean Monte
Carlo study at zero chemical potential and two fermion
flavors where the sign-problem is absent [50]. We com-
pute the flux energy per plaquette which agrees with
ref. [50] over the whole coupling region. We also compare
fermionic correlations quantifying the degree of antifer-
romagnetic order in the ground state. By extrapolating
this quantity to the thermodynamic limit it is shown that
antiferromagnetic order only persists down to a coupling
of g2

c,∞ = 0.15(2) which is in qualitative agreement with
ref. [50] although our extrapolated value for the tran-
sition is lower. To demonstrate our method in a sign-
problem affected regime we study density-induced phase
transition for two fermion flavors at non-zero chemical
potential, similar to a tensor network study in one di-
mension [33]. We consider both the case of massless and
massive staggered fermions and see qualitatively similar
phenomena as in ref. [33].

The manuscript is structured as follows. In sec-
tion II, we introduce the model, cQED3 with dynami-
cal fermions. In section III, we describe the variational
Monte Carlo method including the gauge-invariant con-
struction of the variational state, the numerical evalu-
ation with Monte Carlo techniques and the adaptation
of variational parameters. In section IV, our ansatz is
benchmarked against limiting cases of the model where
the ground state is known and other numerical methods.
In section V, we study a sign-problem affected regime
by investigating density induced phase transition for two
fermion flavors at non-zero chemical potential. In section
VI, we summarize and conclude.

II. THE MODEL: (2 + 1)-DIMENSIONAL
COMPACT QED WITH DYNAMICAL

FERMIONS

We study (2 + 1)-dimensional compact quantum elec-
trodynamics (cQED3) coupled to dynamical fermions.
The model is defined on an L × L square lattice with
periodic boundary conditions. We work with staggered
fermions [54] which are suitable for studying chiral sym-
metry breaking. The fermions can appear in several
species α which can be subject to different chemical po-
tentials µα (in some scenarios they are also given a mass
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FIG. 1. Naming conventions on the periodic lattice: the gauge
field degrees of freedom θx,i, Ex,i (blue) reside on the links
x, i while the fermionic degrees of freedom ψ†x,α (red), which
can come in several species α, are located on the sites x.
The circular arrows on the plaquettes denote the plaquette
variables θp. The global loops θi wind around the axis given
by ei and are illustrated by blue lines.

m). The Hamiltonian reads

H =
g2

2

∑
x,i

Ê2
x,i + gmag

∑
p

(
1− cos

(
θ̂p

))
− t

∑
x,i,α

ψ†x,αe
iθ̂x,iψx+ei,α + h.c.

+
∑
x,α

(m(−1)x + µα)ψ†x,αψx,α

≡ HE +HB +HGM +HM

(1)

where ψx,α denotes the fermionic annihilation operator

for site x and species α. The gauge field operator θ̂x,i
and the electric field operator Êx,i fulfill the canonical

commutation relations, [θ̂x,i, Êy,j ] = iδijδx,y. Accord-
ingly, the gauge field on a link can be represented either
by an integer-valued electric field variable, Êx,i |Ex,i〉 =
Ex,i |Ex,i〉 (Ex,i ∈ Z), or by an element of the U(1) gauge

group, θ̂x,i |θx,i〉 = θx,i |θx,i〉 (θx,i ∈ [0, 2π)). We will
mostly use the group element representation throughout
the manuscript. In this representation, the electric field
operator has the form Êx,i = −i∂/∂θx,i. The plaque-

tte operator θ̂p = θ̂x,1 + θ̂x+e1,2 − θ̂x+e2,1 − θ̂x,2 is the
clockwise summation of link operators around plaquette
p where x is the site at the bottom left corner. The
labelling conventions are illustrated in Fig. 1. The mag-
netic coupling gmag is usually chosen to be 1

g2 but we

keep it general for the moment.

The local symmetry of the model is generated by the
Gauss law operators

Ĝx =

2∑
i=1

(
Êx,i − Êx−ei,i

)
− Q̂stag (2)

State Construction Monte Carlo Sampling

Computation of Observables

Update

Adaptation of  
variational parameters

1 2

3 Exact Diagonalization
of the 

gauge-matter interaction

FIG. 2. Scheme of variational Monte Carlo procedure: the
ansatz is formulated in the full gauge field basis denoted by
|θ〉, in our case the U(1) gauge group, consisting of a pure
gauge part ΨG(θ) and gauge-field dependent fermionic Gaus-
sian states |ΨF (θ)〉. Expectation values of observables O can
be carried out analytically w.r.t. the fermionic part (which
involves the eigendecomposition of the gauge-matter interac-
tions for fixed θ). The resulting expressions Oloc(θ) are diag-
onal in θ and sampled with Monte Carlo techniques according
to a probability distribution p(θ) in which only ΨG(θ) appears
since the gauge-field dependent fermionic Gaussian states are
normalized. The variational parameters are adapted accord-
ing to stochastic reconfiguration.

where the staggered charge operator Q̂stag,x is defined as

Q̂stag,x =

Nf∑
α=1

(
ψ†x,αψx,α −

1

2
(1 + (−1)x)

)
. (3)

Physical states |phys〉 must be eigenstates of all Gauss
law operators

Ĝx |phys〉 = qx |phys〉 ∀x (4)

where eigenvalues qx correspond to different static charge
configurations.

III. THE VARIATIONAL METHOD

Since our method is based on variational Monte Carlo,
we will explain it in several steps (sketched in Fig. 2):
we first discuss the state construction and motivate the
choice of our ansatz. In the second step, we explain the
evaluation procedure of our ansatz based on Monte Carlo
sampling. In the third and final step, we discuss the
adaptation of variational parameters based on stochastic
reconfiguration.

A. State construction

We construct our ansatz state in the gauge field ba-
sis where states are characterized by all U(1) gauge link
variables θx,i, |{θx,i}〉 ≡ ⊗x,i |θx,i〉. A general gauge field
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state can then be defined by

|ΨG〉 =
∏
x,i

∫ 2π

0

dθx,i ΨG({θx,i}) |{θx,i}〉 (5)

where ΨG({θx,i}) is a function over all gauge link vari-
ables θx,i.

To extend the above to an arbitrary state |Ψ〉 of the
cQED3 model introduced in section II (i.e. including
fermions) we need to specify a fermionic Fock state
|ΨF ({θx,i})〉 for every gauge field configuration {θx,i}:

|Ψ〉 =
∏
x,i

∫ 2π

0

dθx,i ΨG({θx,i}) |ΨF ({θx,i})〉 |{θx,i}〉

≡
∫
DθΨG(θ) |ΨF (θ)〉 |θ〉

(6)

where we abbreviated for ease of notation the gauge field
configurations {θx,i} as θ and the measure as

∫
Dθ =∏

x,i

∫ 2π

0
dθx,i. This notation will be used throughout

the article.
One should note that an arbitrary state |Ψ〉 as given

above is a priori not gauge-invariant. Thus, the gauge
invariance condition for physical states in eq. (4) severely
restricts the possible choices for ΨG(θ) and |ΨF (θ)〉.

The state |Ψ〉 defined above is completely general.
From now on we will use the form of |Ψ〉 as the basis
to construct our variational ansatz state which will be
defined by specifying the pure gauge part ΨG(θ) and the
fermionic ansatz |ΨF (θ)〉.

Intuitively, the role of ΨG(θ) and |ΨF (θ)〉 in our con-
struction can be motivated as follows: ΨG(θ) is de-
signed to approximate the ground state of the pure gauge
model HKS ≡ HB + HE (the Kogut-Susskind Hamilto-
nian [4]) whereas |ΨF (θ)〉 is designed to approximate the
low-energy physics of the fermionic Hamiltonian Hfer ≡
HE +HGM +HM which neglects the self-interactions of
the gauge field.

1. The pure gauge part of the ansatz

In this section we motivate and describe the pure gauge
part ΨG(θ) of our variational state. In earlier work [45]
it was shown that

φG(θ) =

+∞∑
Np=−∞

e−
1
2 (θp−2πNp)αpp′ (θp′−2πNp′ ) (7)

is a good ansatz for the ground state of compact QED
with static charges. It is a Gaussian in the plaquette
variables θp that is made periodic by an infinite sum
over the integer-valued variables Np (αpp′ are variational
parameters). The periodicity is important to account for
the compactness of the U(1) gauge field.

Here, we would like to find an ansatz which has a sim-
ilar expressive power as the states above but at the same

time is suitable for a variational Monte Carlo simula-
tion directly in θ (without resorting to the sums above).
A useful hint is given by the Villain approximation [55]
which states

eγ(1−cos(θ)) →
∑
N

e−
1
2γ(θ−2πN)2 (8)

for γ →∞. Therefore, a suitable ansatz state could be

e−
∑

pp′ cos(θp)αp,p′ cos(θp′)+
∑

p βp cos(θp) (9)

with the matrix α and the vector β being variational
parameters. We will choose α and β to be real since
we are interested here in low-energy properties. For
the study of real-time dynamics (which will be inves-
tigated in a future work) we would choose the varia-
tional parameters to be complex. Apart from the co-
sine terms we can add sine terms, combine them in a
vector b(θ) = (cos(θp1

), .., cos(θpN ), sin(θp1
), .., sin(θpN ))

and generalize the above state to

ΨG(θ) = e−
1
2 b(θ)

Tαb(θ)−βT b(θ) (10)

which will be the variational ansatz for the pure gauge
field dynamics entering the full ansatz as in eq. (6).

In the case of periodic boundary conditions there are
two inequivalent global non-contractible loops (inequiv-
alent in the sense that they can not be transformed into
each other by plaquette operations). We choose them to
be θ1 (winding around the lattice along the x1-axis), and
θ2 (along the x2-axis), respectively (see Fig. 1). We incor-
porate them in our ansatz by expanding the vector b(θ)
by the entries cos(θ1), cos(θ2), sin(θ1) and sin(θ2). This
is necessary because upon the coupling of compact QED
to dynamical fermions, θ1 and θ2 become dynamical vari-
ables due to the appearance of gauge-matter interactions
where the phase eiθx,i appears. If expressed in terms of
gauge-invariant variables, it contains contributions from
both plaquette variables θp and the global loops θ1 and
θ2 [25]. For static charges, the magnetic Hamiltonian
is the only term depending on the gauge field variables
θx,i which can be expressed entirely in terms of plaquette
variables θp such that the global loop variables only set
different topological sectors (similar to the toric code).

For all our purposes it turned out that all variational
parameters in α corresponding to the global loop vari-
ables were not relevant and that it was sufficient to only
keep the global loop parameters in β variational. After
imposing translational invariance we thus remained with
2N + 4 variational parameters for α and 6 variational
parameters for β (with N = L2 the number of lattice
sites).

Since b(θ) contains only closed loops the gauge field
part ΨG(θ) as a function of b(θ) automatically preserves
gauge invariance.
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2. The fermionic part of the ansatz: gauge-invariant
fermionic Gaussian states

The fermionic part of our variational ansatz |ΨF (θ)〉 is
a generalization of fermionic Gaussian states that can in-
corporate interactions between fermions and gauge fields
while preserving gauge invariance. The overall state∫
Dθ |ΨF (θ)〉 |θ〉 is an integral over all gauge field con-

figurations where for every gauge field configuration θ we
define a fermionic Gaussian state |ΨF (θ)〉. The motiva-
tion for this construction is that the resulting state, an
infinite superposition of Gaussian states, is a powerful
ansatz state as it is clearly not Gaussian anymore and
can capture correlations beyond the Gaussian realm. At
the same time, we retain for every |ΨF (θ)〉 the properties
of fermionic Gaussian states which allows us to compute
part of the expectation values analytically. The number
of variational parameters is shown to scale only polyno-
mially in the system size and not exponentially as the
number of gauge field configurations.

Recalling that every pure fermionic Gaussian state can
be represented by a unitary operator UGS acting on some
reference state |Ψ0〉 [56], we carry out an analogous pro-
cedure for every gauge field configuration θ to construct
gauge-field dependent fermionic Gaussian states as

|ΨF (θ)〉 = UGS (θ) |Ψ0〉 (11)

In our method, the reference state |Ψ0〉 will be chosen
as the ground state of Hfer = HE + HGM + HM in the
strong-coupling limit (g2 → ∞), i.e. the regime where
the electric term dominates so that electric field excita-
tions are strongly suppressed. In the following we will
refer to strong- and weak-coupling always w.r.t. the rel-
ative strength of the electric Hamiltonian HE (quantified
by its coupling constant g2). If we only consider HE in
the strong-coupling limit, |Ψ0〉 will be a Fock state where
all fermions are fixed to certain sites (the exact form
of the state will depend on the number of fermion fla-
vors and the configuration of background charges). How-
ever, |Ψ0〉 does not need to be Gaussian but one can
also include perturbations induced by gauge-matter in-
teractions HGM , e.g. it is known that for two fermion
flavors at half-filling the strong-coupling ground state in
second-order perturbation theory is the ground state of
the Heisenberg model. It can be shown that its proper-
ties can be incorporated in the reference state |Ψ0〉 which
can even be kept variational (for details see Appendix C).

For simplicity of the discussion, we will assume in the
following a Gaussian reference state and only one flavor
of staggered fermions (how the ansatz can be readily ex-
tended to multiple flavors is described in Appendix B).
In the sector without background charges the reference
state is chosen to be the Dirac state |D〉

|Ψ0〉 =
∏
x∈O

ψ†x |0〉 ≡ |D〉 (12)

i.e. with all odd sites O occupied.

The Gaussian operator UGS(θ) acting on |Ψ0〉 is de-
fined as

UGS (θ) = exp

(
i

2

∑
x,y

ψ†xξ(θ)xyψy

)
(13)

where ξ(θ) is dependent on the gauge-field and on the
variational parameters. The gauge-field dependence has
to be chosen in a way that respects gauge invariance.
This can be achieved by defining ξ(θ) via the eigende-
composition of the gauge-matter Hamiltonian which can
be written as

HGM =

∫
Dθ |θ〉 〈θ| ~ψ†xhGM (θ)xy ~ψy (14)

with ~ψx ≡ (ψx1
, ..., ψxN )T a vector of all fermionic an-

nihilation operators. The matrix hGM (θ) is hermitian
and can be diagonalized for a specific gauge field config-
uration θ as hGM (θ) = V (θ)Λ(θ)V (θ)†. We use V (θ) to
rewrite ξ(θ) as

ξ(θ)xy = V (θ)xiξ̃ijV (θ)†jy (15)

with ξ̃ containing the variational parameters. Note that
ξ̃ does not depend on the gauge field configuration and
thus the number variational parameters scales quadrat-
ically with the system size (linearly for our choice of
parametrization, see Appendix B). Putting everything
together, the fermionic part of the ansatz for one fermion
flavor takes the form

|ΨF (θ)〉 = exp

(
i

2

∑
x,y

ψ†xV (θ)xiξ̃ijV (θ)†jyψy

)
|D〉 (16)

and the whole variational ansatz state |Ψ〉 is thus fully
defined according to eq. (6).

Gauge invariance of |Ψ〉 follows from the fact that
HGM and its eigenstates are gauge-invariant since the
construction of |ΨF (θ)〉 given in eq. (16) is formulated in
terms of these eigenstates.

Since the gauge invariance condition in eq. (4) is lo-
cal in θ, every realization of the state in a Monte Carlo
simulation will be gauge-invariant, i.e. even with an im-
perfect sampling algorithm the unphysical part of the
Hilbert space is never accessed.

The motivation for the choice of ansatz above is on
the one hand that it ensures gauge invariance but more
importantly, by choosing the matrix ξ̃ appropriately,
the occupation of the eigenstates of HGM can be tuned
which allows to obtain good ground state approximations
even in regimes where strong gauge field fluctuations are
present. This has to be seen in contrast to mean-field de-
scriptions where a certain gauge field pattern is fixed and
the resulting fermionic theory is studied. The latter has
the problem, which is particularly relevant in the study of
quantum spin liquid states (where the lattice gauge the-
ory emerges as an effective low-energy description), that
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it often remains unclear whether the spin liquid state is
stable against gauge field fluctuations [5].

The cost of working with the ansatz is that the eigen-
decomposition of hGM (θ) needs to be carried out at every
measurement step of the Monte Carlo algorithm. How-
ever, hGM (θ) is a hermitian N×N matrix where N is the
number of lattice sites such that the cost is O(N3) which
can be done efficiently. Note that the number of fermion
flavors does not enter as the gauge-matter interaction is
the same for all flavors.

The fermionic ansatz state in eq. (16) is normalized
since the Gaussian operator acting on the Dirac vacuum
is unitary. This is beneficial for the variational Monte
Carlo simulation since it will not contribute to the prob-
ability distribution that needs to be sampled. Thus, no
sampling problems related to fermion determinants can
occur in this method as opposed to action-based Monte
Carlo algorithms.

So far we have not specified the matrix ξ̃ in eq. (16)
containing the fermionic variational parameters. For that
we consider the eigendecomposition of hGM (θ), denoted
as hGM (θ) |wi(θ)〉 = λi(θ) |wi(θ)〉, i ∈ {1, .., N}. As-
suming an L × L lattice with L even, the spectrum of
hGM (θ) is symmetric around zero, i.e. we have N/2 pairs
of eigenvectors |wk+(θ)〉 and |wk−(θ)〉 (k ∈ {1, .., N/2})
such that |wk+(θ)〉 corresponds to the eigenvalue +λk(θ)
and |wk−(θ)〉 to the eigenvalue −λk(θ). A useful fea-
ture of these pairs is their structure in the position basis
as they can be written as two vectors |wke(θ)〉, |wko(θ)〉
which are residing exclusively on even (respectively odd)
lattice sites:

|wk+(θ)〉 =
1√
2

(|wke(θ)〉+ |wko(θ)〉) (17)

|wk−(θ)〉 =
1√
2

(|wke(θ)〉 − |wko(θ)〉) (18)

This allows us to write the strong-coupling state in
eq. (12), where the fermions occupy all odd sites, as a
product over all pairs k where in each pair the odd super-
positon is occupied, |wk−(θ)〉 = 1√

2
(|wke(θ)〉 − |wko(θ)〉).

The purpose of ξ̃ in eq. (16) is then to smoothly transform
this equal superposition of |wk+(θ)〉 and |wk−(θ)〉 into a
state where all |wk−(θ)〉 are occupied, corresponding to

the ground state of HGM . Thus, ξ̃ allows us to transform
smoothly from the strong-coupling ground state to the
weak-coupling ground state. For more details on ξ̃ and
the specific choice of parametrization see Appendix B.

B. Evaluating expectation values

In this section we describe how Monte Carlo techniques
can be used to compute various expectation values for
the variational ansatz presented in the previous section.
Throughout the following discussion the variational pa-
rameters are kept fixed, their adaptation will be discussed
in the next section.

For the computation of an observable O with the full
ansatz |Ψ〉 from eq. (6) we obtain

〈Ψ|O|Ψ〉
〈Ψ|Ψ〉 =

∫
Dθ 〈ΨF (θ)|ΨG(θ)OΨG(θ) |ΨF (θ)〉∫

Dθ |ΨG(θ)|2 〈ΨF (θ)|ΨF (θ)〉︸ ︷︷ ︸
=1

=

∫
Dθ Oloc(θ)|ΨG(θ)|2∫

Dθ |ΨG(θ)|2 =

∫
Dθ Oloc(θ)p(θ)

(19)
where |ΨF (θ)〉 is absent in the norm since it is already
normalized by construction (see eq. (16)) so that the
probability distribution p(θ) depends only on ΨG(θ). The
fermionic part of the ansatz thus only appears in the nu-
merator for the evaluation of O which is carried out an-
alytically and only the remaining expression Oloc(θ) is
sampled in a Monte Carlo simulation.

We split the calculation of Oloc(θ) in two parts: since
O is a priori not diagonal in θ (e.g. all electric observ-
ables involve derivatives w.r.t. θ) we first compute the
action of O on our ansatz |Ψ〉 which gives rise to an ex-
pression Ofer(θ) that is diagonal in θ but might still con-
tain fermionic operators (e.g. due to derivatives of the
fermionic ansatz |ΨF (θ)〉):

O

∫
DθΨG(θ) |ΨF (θ)〉 |θ〉 =

∫
DθOfer(θ)ΨG(θ) |ΨF (θ)〉 |θ〉

(20)
Oloc(θ) is then derived by evaluating Ofer(θ) w.r.t. the
fermionic ansatz

Oloc(θ) = 〈ΨF (θ)|Ofer(θ) |ΨF (θ)〉

=
〈ΨF (θ)| OΨG(θ) |ΨF (θ)〉

ΨG(θ)

(21)

which is now a real-valued function that can be readily
sampled in a Monte Carlo simulation.

The probability distribution p(θ) according to which
we need to sample is only dependent on the gauge part
ΨG(θ) defined in eq. (10):

p(θ) =
|ΨG(θ)|2∫
Dθ |ΨG(θ)|2 =

e−b
T (θ)αb(θ)−2βT b(θ)∫

Dθ e−bT (θ)αb−2βT b(θ)

≡ e−S(θ)∫
Dθ e−S(θ)

(22)

The method described above has to be contrasted with
usual variational Monte Carlo methods [57] where the
whole trial wavefunction contributes to the probability
distribution and the local quantities Oloc(θ) do not in-
volve taking expectation values w.r.t. some part of the
ansatz.

Having discussed the general procedure, the computa-
tion of observables can be divided into three groups by
level of difficulty: the first group consists of observables
that are not diagonal in θ (all electric quantities such as
HE) and thus first need to be brought into a diagonal
form Ofer(θ). These observables are the most involved.
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The second group of observables are already of that form
but since Ofer(θ) is still a fermionic operator it needs to
be evaluated w.r.t. |ΨF (θ)〉 to obtain Oloc(θ) (e.g. HGM

or HM ). The third group of observables is already of
the form Oloc(θ) and can be readily sampled in a Monte
Carlo simulation (e.g. HB).

Two things need to be shown to demonstrate that our
variational ansatz can be used efficiently: first, the effi-
cient computation of Oloc(θ) and secondly, efficient sam-
pling of the probability distribution p(θ). Thus, in the
following, we first show exemplary for the Hamiltonian
how Oloc(θ) is derived, i.e. we compute the local energy
Hloc(θ). In a second step, we explain the Monte Carlo
simulation, in particular how samples from p(θ) are gen-
erated using Metropolis algorithm.

1. Computation of the local energy Hloc(θ)

The electric Hamiltonian HE is the only term of the
Hamiltonian defined in eq. (1) that is not diagonal in
θ (the most difficult type of observable to compute, as
discussed above). We thus focus on HE and discuss other
terms briefly at the end of this section.

The electric Hamiltonian corresponds to second or-
der derivatives in the gauge field variables θx,i. Since
our ansatz consists of a fermionic part |ΨF (θ)〉 and a
pure gauge part ΨG(θ), the electric energy has a solely
fermionic contribution, a pure gauge contribution and a
crossterm between the two, denoted as:

〈HE〉 = 〈HE〉ff + 〈HE〉gg + 〈HE〉fg (23)

We start by considering 〈HE〉gg, the part originating

from taking twice the derivative of ΨG(θ) whose con-
struction is based on the vector b(θ) (see eq. (10)). Hence,
we need to compute the derivative of b(θ) with respect
to θx,i which gives rise to the vector

bx,i(θ) = δp,(x,i)(− sin(θp1
), ..,− sin(θpN ),

cos(θp1
), .., cos(θpN ))

(24)

with

δp,(x,i) =


1 if (x, i) ∈ p clockwise

−1 if (x, i) ∈ p anti-clockwise

0 else

(25)

where (x, i) ∈ p clockwise (anti-clockwise) means that
the link (x, i) is contained in the plaquette p and the
orientation of the link is parallel (anti-parallel) to the
orientation of the plaquette. For periodic boundary con-
ditions we have the additional entries cos(θj) and sin(θj)
in b(θ) corresponding to the global loops θ1 and θ2. They
give rise to the derivatives − sin(θj) and cos(θj) if (x, i)
lies on the xj-axis and otherwise zero.

The electric energy of the pure gauge part and the
corresponding local quantity HE,gg,loc(θ) is then derived

as

〈HE〉gg

=

∫
Dθ g

2

2

∑
x,i

(
bT (θ)αbx,i(θ) + βT bx,i(θ)

)2
e−S(θ)∫

Dθ e−S(θ)

≡
∫
DθHE,gg,loc(θ)p(θ)

(26)

with the probability distribution p(θ) and S(θ) =
bT (θ)αb(θ) + 2βT b(θ), both defined in eq. (22). The
part of the electric Hamiltonian acting only on ΨG(θ)
can therefore be written in a simple diagonal form in the
gauge field basis.

It is more difficult to compute HE,ff,loc(θ), i.e. the lo-
cal quantity corresponding to derivatives of the fermionic
ansatz |ΨF (θ)〉. As discussed earlier, we first derive an
expression HE,ff,fer(θ) that will be diagonal in θ but
still contains fermionic operators (see Appendix A for
details):

〈HE〉ff

=
g2

2

∫
Dθ p(θ) 〈ΨF (θ)|

∑
x,i

− ∂2

∂θ2
x,i

|ΨF (θ)〉

=
g2

2

∫
Dθ p(θ)

∑
x,i

〈ΨF (θ)|~ψ†fx,i(θ)~ψ ~ψ†fx,i(θ)~ψ|ΨF (θ)〉

≡
∫
Dθ p(θ) 〈ΨF (θ)|HE,ff,fer(θ)|ΨF (θ)〉

(27)
with

fx,i(θ) =
1

i

(
∂θx,ie

iξ(θ)
)
e−iξ(θ). (28)

The form of fx,i(θ) above is for a general gauge-field de-
pendent fermionic Gaussian state characterized by some
ξ(θ). To get an expression explicitly diagonal in θ we

insert our ansatz ξ(θ) = V (θ)ξ̃V †(θ) defined in eq. (15)
which is based on the eigendecomposition of the gauge-
matter Hamiltonian, hGM (θ) = V (θ)Λ(θ)V †(θ). We ob-
tain (see Appendix A for the derivation):

fx,i(θ) = ~ψ†V (θ)
(
αx,i(θ)− eiξ̃αx,i(θ)e−iξ̃

)
V †(θ)~ψ

(29)
with αx,i(θ) = −iV †(θ)∂θx,iV (θ). We can find an ex-

plicit expression for αx,i(θ) which amounts to finding the
derivatives of the eigenvectors of hGM (θ):

αx,i
kl (θ) =

V †kx(θ)eiθx,iV (θ)x+eil − h.c.
λl(θ)− λk(θ)

(30)

where λi(θ) are the eigenvalues of hGM (θ). The final
expression for HE,ff,fer(θ) is thus diagonal in θ but still
a quartic fermionic operator. This form of the electric
Hamiltonian intuitively illustrates that the gauge field
mediates interactions between the fermions.
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In the following we want to evaluate these fermionic
interactions w.r.t. the fermionic state |ΨF (θ)〉 as shown
in the last row in eq. (27) to compute the local electric
energy HE,ff,loc(θ) that can then be measured in our
Monte Carlo simulation.

As a side note we want to mention that |ΨF (θ)〉 in
its general form defined in eq. (11) does not need to be
Gaussian as one can also choose a Non-Guassian refer-
ence state |Ψ0〉. This might be useful if one is particu-
larly interested in the strong-coupling regime (from the
high-energy physics perspective one is usually interested
in the weak-coupling region where the continuum limit is
located). In the strong-coupling regime the electric field
is strongly suppressed and the Hilbert space effectively
reduces to a fermionic Fock space. Such models can be
tackled by other many-body methods (e.g. tensor net-
works) which are not suitable for lattice gauge theories
with infinte-dimensional local Hilbert spaces. One could
combine our ansatz with such methods by carrying out
the unitary transformation given by the fermionic Gaus-
sian operator UGS(θ) (acting on top of |Ψ0〉) so that the
remaining expression can be evaluated w.r.t. the ref-
erence state |Ψ0〉 whose fermionic correlation functions
could be computed with another method (in Appendix C
we demonstrate this for two fermion flavors at half-filling
where the effective model is the Heisenberg model).

If we focus, however, on the case of one fermion fla-
vor and the Gaussian reference state |D〉 as defined in
eq. (16), we need to evaluate a fermionic Gaussian state
for every gauge field configuration θ. The fermionic ex-
pectation values in eq. (27) can then be computed as

〈ΨF (θ)|~ψ†fx,i(θ)~ψ ~ψ†fx,i(θ)~ψ|ΨF (θ)〉
= Tr

((
1− Γψψ†(θ)

)
fx,i(θ)

)2
+ Tr

((
1− Γψψ†(θ)

)
fx,i(θ)Γψψ†(θ)fx,i(θ)

) (31)

where Γψψ†(θ) = V (θ)Γ̃V (θ)† is the covariance matrix of

the Gaussian state |ΨF (θ)〉 and Γ̃ = eiξ̃V (θ)†Γ0V (θ)e−iξ̃

with Γ0 the covariance matrix of the reference state
|D〉 and ξ̃ containing the variational parameters (see
eq. (15)). Inserting the expectation values above in
eq. (27) gives HE,ff,loc(θ).

The last remaining part of the electric Hamiltonian,
the crossterm 〈HE〉fg, involves a quadratic expression in

the fermions coming from |ΨF (θ)〉 and a derivative in b(θ)
coming from ΨG(θ) and is thus easier to compute than
the quartic expressions in the pure fermionic contribution
(for the explicit form see Appendix A).

Other parts of the Hamiltonian are easier to evaluate
since they are already diagonal in the gauge field basis.
For the sake of completeness we will provide them here
briefly. First, the magnetic part which is directly suitable

for Monte Carlo sampling:

〈HB〉 = gmag

∫
Dθ
∑
p

(1− cos(θp)) p(θ)

≡
∫
DθHB,loc(θ)p(θ)

(32)

The gauge-matter interactions are already diagonal and
only quadratic in the fermions:

〈HGM 〉 = −t
∫
Dθ~ψ†hGM (θ)~ψp(θ)

= −t
∫
DθTr

((
1− Γψψ†(θ)

)
hGM (θ)

)
p(θ)

≡
∫
DθHGM,loc(θ)p(θ)

(33)
where the quadratic expressions in the fermions are eval-
uated in analogy to the electric part of the Hamiltonian.
In the same fashion are other purely fermionic parts eval-
uated such as the mass term HM .

In terms of computational cost the local electric energy
HE,loc(θ) is the most difficult part to evaluate. Naively,
one expects the required number of operations for evalu-
ating it to be O(N4) (N the number of lattice sites) but

with the chosen parametrization of ξ̃ it can be shown to
be O(N3) (see Appendix B).

2. Monte Carlo algorithm

In the following we show how to efficiently evaluate an
observable O with our ansatz |Ψ〉 in a Monte Carlo sim-
ulation given an expression for Oloc(θ). The expectation
value of O is computed as an average over N samples θi
drawn from the probability distribution p(θ):

〈Ψ|O|Ψ〉
〈Ψ|Ψ〉 =

∫
Dθ Oloc(θ)p(θ) ≈ 1

N

N∑
i=1

Oloc(θi) (34)

The samples θi are generated by a Markov chain θ1 →
. . .→ θi → . . .→ θN using Metropolis algorithm [58].

One iteration in this procedure, i.e. θi → θi+1, is
described as follows: starting from θi a new configura-
tion θ′ is proposed according to some update scheme.
In our case this involves sweeping through every link of
the lattice and performing local updates on the gauge
variables θx,i. At the same time, we also perform global
updates to switch between different monopole-like config-
urations which is hard to achieve with local updates (for
details on the update scheme see Appendix D). Recalling
from eq. (22) the form p(θ) ∼ e−S(θ) of our probabil-
ity distribution, we compute the transition probability
p(θ → θ′) = e−S(θ′)/e−S(θi) = e−∆S . In the acceptance
step, a random number u between zero and one is gener-
ated and the new configuration is accepted if e−∆S ≥ u,
i.e. θi+1 = θ′. Otherwise, the configuration θ′ is re-
jected and θi+1 = θi. In the first phase of the Monte
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Carlo simulation (the warm-up phase) these iterations
are performed to equilibrate the system (i.e. reach con-
figurations with sufficiently low weight S(θ)) and only
after that the configurations θi are used to compute the
expectation value in eq. (34).

The numerical cost of performing Metropolis algorithm
depends on computing the transition probability between
the old configuration θ and the proposed configuration θ′.
For local updates they differ only in a single link variable
θx,i, respectively two plaquette variables θp. The vec-
tor b(θ), constructed out of sin(θp) and cos(θp), is thus
changed in four places. Since S(θ) is bilinear in b(θ),
the cost of computing ∆S is of order O(N) where N is
the number of lattice sites. Sweeping through the lat-
tice with this procedure is thus of order O(N2). For the
global updates the transition probability requires O(N2)
operations but is only performed O(1) times so that the
cost of a full update is O(N2).

Having such a low cost for updates has several advan-
tages: we can perform multiple local and global updates
to further decorrelate expensive measurements. The ac-
ceptance probability in our simulations stays on a high
level throughout the whole coupling region (see Ap-
pendix D). Moreover, if we parallelize the Monte Carlo
simulation with multiple runners there is practically no
overhead due to the warm-up phase.

C. Adaption of variational parameters

In the last section we described the evaluation with
our Monte Carlo scheme for a fixed set of variational
parameters. To study ground states and dynamical phe-
nomena we need to adjust the variational parameters ac-
cordingly. Here, we focus on the study of ground state
properties but the discussion can be readily extended to
time-evolution phenomena as we use an imaginary time-
evoultion procedure (called stochastic reconfiguration in
the variational Monte Carlo language [52]) to find the
optimal set of parameters. We project the equations of
motion onto the tangent plane of our variational mani-
fold. For every variational parameter γi, either fermionic

(in ξ̃) or pure gauge (in α and β) we define a correspond-
ing tangent vector |Ψi〉 ≡ PΨ (∂γi |Ψ〉) where PΨ ensures
orthogonality to |Ψ〉:

PΨ(|ψ〉) ≡ |ψ〉 − 〈Ψ|ψ〉 |Ψ〉 (35)

All tangent vectors in our ansatz are linearly independent
which allows to invert the Gram matrix Gij ≡ 〈Ψi|Ψj〉.
This can be intuitively explained by considering the dif-
ferent types of tangent vectors: the ones corresponding
to the fermionic parameters are related to the single-
particle eigenstates of the gauge-matter Hamiltonian and
are therefore orthogonal. The tangent vectors corre-
sponding to the pure gauge part are quadratic (for α) or
linear (for β) in the entries of the vector b(θ) which are re-
lated to the different plaquette variables θp, thus leading
to linearly independent tangent vectors. The imaginary

time evolution of the variational parameters can then be
expressed in the following way:

−γ̇i =
1

2

∑
j

(G−1)ij
∂E

∂γj
(36)

with E ≡ 〈Ψ|H|Ψ〉〈Ψ|Ψ〉 the variational energy (whose evalua-

tion was described in the previous section) and γ̇ ≡ ∂γ
∂τ .

The gradient of the variational energy and the Gram
matrix need to be measured in a Monte Carlo simulation.
The cost of both can be shown to scale in the same way
as the cost of computing the variational energy (see Ap-
pendix E). Summarizing, the computational complexity
of our variational Monte Carlo algorithm is O(N2) for
the update procedure and O(N3) for the measurement
procedure, thus allowing for an efficient implementation.

IV. BENCHMARKING OF THE VARIATIONAL
METHOD

Now, we have all the ingredients to apply our varia-
tional method: We constructed a gauge-invariant state
and showed how it can be efficiently evaluated for a fixed
set of parameters using Monte Carlo sampling. Addi-
tionally, we have a scheme to adapt the parameters using
stochastic reconfiguration.

In the following section, we investigate the validity
of the variational method. It will be threefold: first,
to confirm the analytical arguments about gauge invari-
ance of the ansatz given in the previous section we will
show numerically that our state is gauge-invariant up
to machine precision. Secondly, we investigate differ-
ent limiting cases of cQED3 where the ground states are
known. In the last part, we benchmark our results for
the Nf = 2 case at half-filling (in the sector of exactly
one fermion per lattice site) with a recent Monte Carlo
simulation [50].

A. Gauge invariance

To also show numerically that gauge invariance is man-
ifest in our ansatz we compute the expectation value
of the Gauss law operator 〈Gx〉 (as defined in eq. (2))
for every site x and plot 〈Gx〉 − qx for the whole lat-
tice since this quantity needs to be zero for a physical,
gauge-invariant state, see eq. (4). We choose different
variational parameters, different lattice sizes and differ-
ent sampling sizes but the violation of the Gauss law is
always found to be of the order of machine precision, i.e.
〈Gx〉 − qx . 10−16. One such configuration for a very
small sampling size of N = 10 and a system size L = 12
is illustrated in Fig. 3.
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FIG. 3. Gauss law violation 〈Gx〉 − qx for a 12 × 12 lattice
at g2 = 0.25, t = 1 and gmag = −1 with a random choice of
variational parameters and a sampling size of N = 10. The
Gauss law violation is of the order of machine precision even
for a small sampling size, demonstrating that the ansatz is
inherently gauge-invariant.

B. Limiting cases

It is useful to consider the limiting cases of compact
QED with fermionic matter and convince ourselves that
the ground state properties can be captured accurately
by our method. In the following, we consider massless
fermions without chemical potentials.

We first study the limit g2 → 0 while keeping t and
gmag fixed: it is well known that in this limit the gauge
field forms a π-flux pattern and the fermions fill up the
lower band at half-filling [53]. A typical problem in mean-
field theory is to investigate the stability of the π-flux pat-
tern against gauge field fluctuations. This can be studied
naturally in our ansatz by watching the parameter flow
upon increasing the electric coupling constant g2. The
π-flux state itself is naturally incorporated in our ansatz
since we can fix the gauge field to a certain configuration
by tuning the β-parameters to a very high value such that
the constraint cos θp = −1 is enforced for all plaquettes.
In addition, since we have periodic boundary conditions,
we also need to choose the optimal flux configuration for
the global non-contractible loops which depends on the
size of the lattice. To accomplish that it is important to
have a global update in our update scheme since these
global changes in the configuration can not be captured
by only updating plaquettes locally. Finding the π-flux
state is in general a useful test for our update scheme
since the probability distribution needs to approximate
a delta distribution for which a good update scheme is
required. The fermionic part is obtained by tuning the
variational parameters of the fermions in such a way that
for all flux configurations the lower half of the band is oc-

1 2 3 4 5 6 7 8 9 10 11 12

1
2
3
4
5
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g2 = 0.00

0

π/2

π

3π/2

FIG. 4. The flux θp per plaquette is shown for the variational
ground state at g2 = 0.0, t = 1 and gmag = −1 for a 12 × 12
lattice. The average deviation of θp from π is on the order of
10−4. The global loops θ1 and θ2 (winding around the axes
of the lattice) also acquire a π-flux with a similar deviation
as the plaquette fluxes.

cupied (which corresponds to choosing all fermionic pa-
rameters ξi = 1 as described in Appendix B). The result
of our variational optimization is an accurate representa-
tion of the π-flux state with an average deviation on the
order of 10−8 from cos θp = −1, respectively an average
deviation on the order of 10−4 from θp = π (depicted in
Fig. 4).

Next we consider the opposite limit to the π-flux state,
the strong-coupling limit with large g2. In this limit,
the electric energy dominates and some fluctuations are
introduced in second-order perturbation theory by the
gauge-matter Hamiltonian. For one fermion flavor this
perturbation does not have a large effect and the ground
state is described by a Gaussian state. For two fermion
flavors, however, one can have correlated hopping pro-
cesses which at half-filling give rise to the Heisenberg
Hamiltonian. Both cases can be captured by construc-
tion in our ansatz since we design the fermionic part of
the ansatz in such a way that our gauge-field dependent
Gaussian operator acts on a strong-coupling reference
state |Ψ0〉 (see eq. (11)) and we can choose that refer-
ence state according to our needs. We can either choose
a Gaussian state for |Ψ0〉 or include more advanced meth-
ods, e.g. to approximate the Heisenberg ground state we
can include spin wave theory in |Ψ0〉 (see Appendix C).

We also benchmark for the limiting case that the
gauge-matter interactions vanish (t = 0) so that fermions
and gauge-field decouple and we obtain the standard pure
gauge compact QED described by the Kogut-Susskind
Hamiltonian HKS = HE + HB with gmag = 1

g2 [4].

We therefore only consider the pure gauge part of our
ansatz (setting our fermionic variational parameters to
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FIG. 5. Benchmark for pure gauge compact QED3 of our
ansatz (denoted by FG) against the variational method in
ref. [45] based on complex periodic Gaussian states (denoted
by CPG): we compare the ground state energy E0 for an 8×8
lattice over the whole coupling region and compute the rela-
tive error (see inset).

zero, ξ̃ = 0). We benchmark our ansatz against a re-
cent work [45] which has given good ground state and
real-time dynamics of compact QED (the results were re-
cently confirmed by another variational study [46]). We
compare the ground state energy of both methods for
an L = 8 × 8 for the whole coupling region of g2 (since
g2 is the only coupling constant in pure gauge compact
QED). We find that our results agree very well for the
whole coupling region (with a maximal difference of half
a percent) while our method performs a tiny bit better
at large couplings where the method in ref. [45] gives
minimally better results for small g2. The benchmark is
illustrated in Fig. 5.

C. Benchmark against Euclidean Monte Carlo

Benchmarking for cQED3 including dynamical
fermions is in general difficult since in most scenarios a
sign-problem occurs so that no Euclidean Monte Carlo
studies exist. However, it was shown to be absent for
an even fermion number at zero chemical potential [50].
This was exploited in order to perform determinantal
Monte Carlo simulations. Thus, it is natural to compare
our ansatz with the Monte Carlo simulations for the case
of Nf = 2 fermionic species at half-filling. The analysis
in ref. [50] revolves around the question of whether a
confinement-deconfinement transition takes place and
what the nature of this phase transitions is.

We fix the magnetic coupling and the gauge-matter
coupling to gmag = −1 and t = 1 and will mostly vary
the electric coupling g2. The first observable that is com-
pared is the flux energy per plaquette cos(θp) averaged
over the whole lattice. Our results are shown in Fig. 6.
We see agreement over the whole coupling region of g2

with Fig. 13 in ref. [50]. Note that in ref. [50] a different
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FIG. 6. Benchmark for compact QED3 coupled to Nf = 2
species of dynamical fermions at half-filling: the shown av-
eraged flux energy per plaquette cos(θp) in the variational
ground state is to be compared with results obtained in an
Euclidean Monte Carlo study shown in Fig. 13 in ref. [50].
The data agrees over the whole coupling region, showing no
evidence of a discontinuous phase transition.

convention for the electric coupling is used differing by a
factor 4. Thus, the upper end of the coupling ranges is
the same while our lower end goes further down to g2 = 0.
Since we also do not observe finite-size effects it supports
the claim in ref. [50] that there is no discontinuous phase
transition taking place.

In the second part we study fermionic observables, re-
lated to the fermionic correlations of the ground state.
These are used in ref. [50] to probe a phase transition be-
tween a deconfined U(1) spin-liquid and a confined phase
exhibiting antiferromagnetic order (AFM). The observ-
able that is computed is the spin structure factor χS(k):

χS(k) =
1

L4

∑
x,y

∑
α,β=1,2

〈
Sαβ (x)Sβα(y)

〉
eik(x−y) (37)

with Sαβ (x) = ψ†x,αψx,β − 1/2δαβ
∑
γ ψ
†
x,γψx,γ . From the

spin structure factor one can compute the AFM correla-
tion ratio defined as

rAFM = 1− χS((π, π) + δk)

χS((π, π))
(38)

which quantifies the strength of AFM order (δk =
(2π/L, 0) denotes the smallest momentum vector). The
question addressed in ref. [50] is whether in the thermo-
dynamic limit AFM order persists down to g2 = 0, in
other words whether the π-flux state is stable against
gauge-field fluctuations. The AFM correlation ratio is
computed up to lattice sizes of 16× 16 and the crossing
points between neighboring lattice sizes are extracted.
The crossing points are extrapolated to the thermody-
namic limit, resulting in g2

c,∞ = 0.15(2). The proce-
dure is shown in Fig. 7 which is to be compared with
the Euclidean Monte Carlo study in ref. [50] where the
extrapoled value is g2

c,∞,EMC = 0.40(5). We thus obtain
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FIG. 7. Benchmark for compact QED3 coupled to Nf = 2 species of dynamical fermions at half-filling: we compute the
AFM correlation ratio rAFM in the variational ground state for lattice size up to 16× 16 (left). The AFM correlation ratio is
computed from the spin correlations and quantifies the strength of antiferromagnetic order. The crossing points are extracted
and extrapolated to the thermodynamic limit, resulting in g2c,∞ = 0.15(2) (right). This is to be compared with the Euclidean
Monte Carlo study in ref. [50] where also a non-zero coupling was extrapolated but at a higher value of g2c,∞,EMC = 0.40(5).

qualitatively similar results in the sense that both ex-
trapolated values are significantly larger than zero and
indicate a possible phase transition but the value in our
method is lower compared to ref. [50].

Another interesting quantity are the spin-spin correla-
tions as defined in eq. (37). We compute the decay of
spin correlations on a 16 × 16 lattice both in the weak-
coupling region (g2 = 0.1) and in a more strongly-coupled
region (g2 = 0.85). The result for both the full correla-
tion function and only the connected part is shown in
Fig. 8. At stronger coupling the correlation function de-
cays to a constant value which is lower than predicted by
the Heisenberg model (as to be expected since g2 = 0.85
is still too small for a Heisenberg description). The con-
nected correlation function decays exponentially as ex-
pected. At weak coupling the connected correlation func-
tion rather decays algebraically, as expected for a gapless
spin liquid. The form of the decay is very similar to one in
the Euclidean Monte Carlo study (see Fig. 4 in ref. [50]).

We can thus, at least qualitatively, support the claim
in ref. [50] that there is indeed a deconfined phase which,
however, only persists up to a smaller coupling of g2

c,∞ =
0.15(2) in our case. One should note though that for the
extrapolation of the AFM correlation ratio and also the
computation of the spin structure factor is very sensi-
tive to errors (as also mentioned in ref. [50]) so that a
quantitative difference can be expected.

V. SIGN-PROBLEM AFFECTED REGIMES

In this section, we access regimes where the sign-
problem is present in order to demonstrate that our

1 2 3 4 5 6 7
r
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10−2

10−1

〈S
(r

)S
(0

)〉

conn. corr. (g2 = 0.10)

full corr. (g2 = 0.10)

conn. corr. (g2 = 0.85)

full corr. (g2 = 0.85)

FIG. 8. Benchmark for compact QED3 coupled to Nf = 2
species of dynamical fermions at half-filling: we compute the
decay of spin correlations (both for the full correlation func-
tion and the connected correlation function) in the variatonal
ground state for a 16× 16 lattice at weak coupling (g2 = 0.1)
and at stronger coupling (g2 = 0.85). Note that we only
use odd distances in r to avoid oscillations. At strong cou-
pling (where one expects behaviour similar to the Heisenberg
model) the full correlations decay to a constant while the con-
nected part decays exponentially. At weak coupling the decay
is rather algebraically, similar to the decay shown in the Eu-
clidean Monte Carlo study in Fig. 4 in ref. [50].

method does not suffer from the sign-poblem. Having
benchmarked our ansatz for the scenario of two flavors
of fermions at half-filling, i.e. zero chemical potential, it
is natural to study this configuration at finite chemical
potential.

We specifically want to look at a scenario that has
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FIG. 9. Finite chemical potential study for compact QED3 coupled to Nf = 2 species of dynamical fermions: we compute the
variational ground state energies (corrected by an overall constant µN/2) on an 8× 8 lattice for different isospin numbers ∆N
depending on the chemical potential difference µ between the two species. We study both the case of massless and massive
fermions (see top row, (a,c)). By computing the crossing points between the ground state energies we can extract the phase
transitions between neighboring ∆N phases (see bottom row, (b,d)).

been used in one dimension with tensor networks [33] to
demonstrate overcoming the sign-problem and extend it
to two dimensions. In the referenced work the authors
study density-induced phase transitions due to varying
flavor-dependent chemical potentials. Analogously to
ref. [33], we look at the case of massless and massive
fermions.

We fix the parameters in the Hamiltonian given in
eq. (1) to the values t = 1, gmag = −1 and g2 = 0.2,
similar to the benchmarked case in the previous section.
Only the staggered mass m and the chemical potentials
µ1 and µ2 will be changed. To make this explicit we
rewrite the Hamiltonian as

H =HE +HB +HGM +HM (m)

=H0(m) + µ1N1 + µ2N2

=H0(m) +
µ+

2
N − µ−

2
∆N

(39)

with the conserved quantities N1 =
∑

x ψ
†
x,1ψx,1 and

N2 =
∑

x ψ
†
x,2ψx,2. Alternatively, one can also use the

total number of fermions N = N1 +N2 and their imbal-
ance (sometimes called isopsin number) ∆N = N1 −N2

as conserved quantities. Respectively, one defines the
chemical potentials µ+ = (µ1 + µ2) and µ− = (µ1 − µ2).
The rest of the Hamiltonian is contained in H0(m) which
only depends on m.

The Hamiltonian is block-diagonal and different sec-
tors are labelled with N and ∆N . In analogy to ref. [33],
we fix the total number of fermions N to the number of
lattice sites and study the nature of the ground state
(characterized by ∆N) depending on µ−, the isospin
chemical potential. Since the energy (up to a constant)
only depends on µ−, we set µ2 = 0 so that µ+ = µ− =
µ1 ≡ µ. The ground state energy for each sector can then
be written as

E∆N,N (µ,m) = N
µ

2
−∆N

µ

2
+ E0,∆N,N (m) (40)

where E0,∆N,N (m) is the ground state w.r.t. H0(m) for
fixed N and ∆N .

We ran our simulations on an 8 × 8 lattice where we
saw that finite-size effects were negligible for our pur-
poses. To detect the phase transitions between different
∆N phases we compute the variational ground state en-
ergy for a given ∆N to determine E0,∆N,N (m). We plot
the ground state energy of every ∆N -sector subtracted
by the constant given by the total number of fermions,
i.e. E∆N,N (µ,m) − N µ

2 . The crossing points between
different ∆N energies give us the location of the phase
transitions.

The result of that procedure for the massless case is
shown in Fig. 9(a) which then allows us to plot the ∆N
phase transitions, illustrated in Fig. 9(b). For the mas-
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sive case we choose a staggered mass of m = 1.0 and
repeat the same procedure as in the massless case. The
result for the ground state energy is shown in Fig. 9(c)
whereas the phase transitions are shown in Fig. 9(d).

When comparing the massless and massive case it be-
comes clear that the phase transitions are all shifted to
higher values of µ. However, the extent of this shift
depends strongly on the isospin number. While phase
transitions between small ∆N are severely affected by
the staggered mass term (in particular the transition be-
tween ∆N = 0 and ∆N = 2 which shifted from µ = 0.5
to µ = 1.5), phase transitions for larger ∆N are rel-
atively unaffected (e.g. the phase transition between
∆N = 6 and ∆N = 8 shifts only slightly from µ = 2.2
to µ = 2.3). This is in agreement with the results of the
tensor-network study in one dimension [33].

The reason for this behaviour lies in the different
changes in ground state energy E0,∆N,N (m) for different
∆N if we go from H0(m = 0) to H0(m = 1). Qual-
itatively, this can be explained with the fact that for
larger isospin numbers ∆N the imbalance in occupation
between even and odd sites (the lattice analogue of the
chiral condensate) becomes smaller and thus gets more
penalized by a staggered mass term. Hence, the phase
transitions shift to higher values in chemical potential.
Since this effect is stronger for smaller isospin number, it
mostly affects transitions between such phases.

VI. CONCLUSION

In summary, we have presented a variational, sign-
problem-free Monte Carlo method to study higher-
dimensional lattice gauge theories with dynamical
fermions without truncating the gauge field Hilbert space
and applied it to (2+1)-dimensional compact QED with
dynamical fermions.

We benchmarked the ansatz against limiting cases of
the model, against other variational methods [45] and
against a Euclidean Monte Carlo study [50]. To access
sign-problem affected regimes we study the model at fi-
nite chemical potential, namely (in analogy to a tensor-
network study in one dimension [33]) we detect density-
induced phase transition for both the case of massless
and massive staggered fermions.

The variational ansatz is formulated in the gauge field
basis of U(1), consisting of two parts: first, a Jastrow-

type ansatz state is constructed out of the gauge field
plaquette variables, thus readily gauge-invariant. It can
describe the ground state of pure gauge compact QED.
Secondly, a gauge-fermion part is introduced that is an
infinite superposition of gauge-field dependent fermionic
Gaussian states. For every gauge field configuration a
fermionic Gaussian state is defined in such a way that
the integral over all gauge field configurations is gauge-
invariant and still efficiently tractable, i.e. the num-
ber of variational parameters scales polynomially in sys-
tem size and not exponentially. Such a construction can
be achieved by making the variational parameters of a
fermionic Gaussian state gauge-field dependent and use
a parametrization based on the eigendecomposition of
the gauge-matter Hamiltonian. This requires exact diag-
onalization at every measurement step in the sampling
algorithm but since its scaling is O(N3) in system size,
the method is efficient and we can reach large lattice sizes.

In the future it would be interesting to also study
other higher-dimensional lattice gauge theories such as
three-dimensional or non-Abelian lattice gauge theories.
The former would not require any change in the ansatz
while the non-Abelian nature of the gauge group only re-
quires changes in the pure gauge part of the ansatz. The
fermionic part could stay the same since the eigendecom-
position of the gauge-matter Hamiltonian can still be car-
ried out efficiently. The pure gauge part would need to be
changed since the plaquette operators on which the Jas-
trow wavefunction is based would not be gauge-invariant
anymore but this could be remedied by using traces of
plaquette operators and potentially other closed loops.

Also, in light of more and more powerful quantum de-
vices which require for the simulation of lattice gauge the-
ories some kind of truncation in the gauge field Hilbert
space, the presented method could help in studying and
thus controlling the errors caused by such truncations.
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[30] S. Kühn, E. Zohar, J. I. Cirac, and M. C. Bañuls, Journal
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Appendix A: Details on the computation of the local electric energy HE,loc(θ)

The most difficult observables to compute in our variational Monte Carlo scheme are electric quantites, with the
electric energy being its most prominent representative. In section III B, we discussed the computation of 〈HE〉 which
according to eq. (23) consists of three parts: 〈HE〉 = 〈HE〉ff + 〈HE〉gg + 〈HE〉fg. To evaluate them one needs the

local quantity HE,loc(θ) that can sampled in a Monte Carlo simulation (see eq. (21)). In the body of the manuscript
we derived HE,gg,loc(θ) and gave the final result for HE,ff,loc(θ). In the following we present some details on the
derivation of HE,ff,loc(θ) and give the final result for the crossterm HE,fg,loc(θ).

The computation of HE,ff,loc(θ) involves deriving the fermionic Gaussian operator UGS(θ) defined in eq. (16) w.r.t.
θx,i which results in the form of fx,i(θ) given in eq. (28):

1

i

(
∂θx,iUGS(θ)

)
U†GS(θ)

=

∫ 1

0

dt exp

(
it
∑
x,y

ψ†xξ(θ)xyψy

)∑
x,y

ψ†x
∂ξ(θ)xy
∂θx,i

ψy exp

(
−it

∑
x,y

ψ†xξ(θ)xyψy

)

=
∑

x,y,x′,y′

ψ†x

∫ 1

0

dt [exp (itξ(θ))]xx′

[
∂ξ(θ)

∂θx,i

]
x′y′

[exp (−itξ(θ))]y′y ψy

= ~ψ†
∫ 1

0

dt exp (itξ(θ))
∂ξ(θ)

∂θx,i
exp (−itξ(θ)) ~ψ

= ~ψ†
1

i

(
∂θx,ie

iξ(θ)
)
e−iξ(θ) ~ψ ≡ ~ψ†fx,i(θ)~ψ

(A1)

where ~ψ is a vector of the fermionic annihilation operators ψx and we used the identity:

∂θe
M(θ) =

∫ 1

0

dtetM(θ) (∂θM(θ)) e−tM(θ)eM(θ). (A2)

If we carry out the second derivative ∂θx,i we obtain an additional term corresponding to the derivative of fx,i(θ)

which vanishes. Thus, we remain with another contribution ~ψ†fx,i(θ)~ψ due to the derivative of UGS(θ), resulting in

the fermionic operator HE,ff,fer(θ) in eq. (27). Inserting ξ(θ) = V (θ)ξ̃V †(θ) defined in eq. (15) we derive an explicit
expression for fx,i(θ):

fx,i(θ) =− i∂θx,i
(
eiV (θ)ξ̃V †(θ)

)
e−iV (θ)ξ̃V †(θ)

=V (θ)

1

i
V †(θ)∂θx,iV (θ) + eiξ̃

1

i
∂θx,iV

†(θ)V (θ)︸ ︷︷ ︸
=−V †(θ)∂θx,iV (θ)

e−iξ̃

V †(θ)

=V (θ)
(
αx,i(θ)− eiξ̃αx,i(θ)e−iξ̃

)
V †(θ)

(A3)

with V (θ) defined by the eigendecomposition of hGM (θ) = V (θ)Λ(θ)V †(θ) and αx,i(θ) = −iV †(θ)∂θx,iV (θ) containing

the derivatives of the eigenvectors of hGM (θ). An explicit expression for αx,i(θ) can be derived by using a connection
with the derivative of hGM (θ):

αx,i
kl (θ) = −i

V †kx′(θ)
∂hGM (θ)x′x′′

∂θx,i
V (θ)x′′l

λl(θ)− λk(θ)

=
V †kx(θ)eiθx,iV (θ)x+eil − h.c.

λl(θ)− λk(θ)
.

(A4)

Since the derivative of hGM (θ) is non-zero only for sites adjacent to the link x, i the expression for αx,i(θ) simplifies
significantly. With the diagonal expressions for fx,i(θ) as given above, HE,ff,loc(θ) is straightforwardly computed as
explained in the body of the manuscript.

The derivation of HE,fg,loc(θ) involves a derivative of ΨG(θ) which is expressed via the vector bx,i(θ) defined in
eq. (24) and a derivative of |ΨF (θ)〉 resulting in a quadratic fermionic operator as discussed above:
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〈HE〉fg =
g2

2

∑
x,i

∫
Dθ p(θ)2 〈ΨF (θ)|~ψ†fx,i(θ)~ψ|ΨF (θ)〉

(
ibT (θ)αbx,i(θ) + iβT bx,i(θ)

)
=
g2

2

∑
x,i

∫
Dθ p(θ)2 Tr

((
1− Γψψ†(θ)

)
fx,i(θ)

) (
ibT (θ)αbx,i(θ) + iβT bx,i(θ)

)
≡
∫
Dθ p(θ)HE,fg,loc(θ)

(A5)

where we used the covariance matrix of the fermionic Gaussian state Γψψ†(θ) as defined in eq. (31). For ground state
studies as considered in this manuscript the variational parameters α and β are chosen real such that the electric
energy of the cross term vanishes.

Appendix B: Details on the structure of ξ̃

In the following we provide details on the parametrization of the matrix ξ̃ij containing the fermionic varia-

tional parameters. Recall that ξ̃ is formulated in the eigenbasis of the gauge-matter Hamiltonian, hGM (θ)xy =

V (θ)xiΛ(θ)iV (θ)†iy. It allows to control the fermionic state in terms of eigenstates of the gauge-matter Hamiltonian.

In principle one can keep all parameters variational, however, one can simplify the structure of ξ̃ by considering
the structure of the eigenstates as already discussed in section III A. This can be emphasized by considering the two
limits of the fermionic Hamiltonian Hfer = HE + HGM , i.e. the strong-coupling limit (g2 → ∞, HE dominates) and
the weak-coupling limit (g2 → 0, HGM dominates) and how this fermionic state looks in terms of the eigenbasis of
the gauge-matter Hamiltonian.

In the strong-coupling limit the ground state is in a positional eigenstate, e.g. for one flavor all odd sites are
occupied, |D〉 =

∏
x∈O ψx |0〉. This is already incorporated in the ansatz by setting the whole matrix ξ̃ to zero so that

only the strong coupling reference state |D〉 remains but it is instructive to think of this state in terms of eigenstates
of the gauge-matter Hamiltonian. Following the discussion in section III A we can rewrite the state as

|D〉 =

∫
Dθ
∏
i

1√
2

(
ψ†i+(θ)− ψ†i−(θ)

)
|0〉 (B1)

where we used the labeling of the eigenstates as in section III A where ψ†i+(θ) |0〉 denotes the single-particle eigenstate

of HGM with eigenvalue λi(θ) and, respectively, −λi(θ) for ψ†i−(θ) |0〉. On the other hand, in the weak-coupling limit
the ground state is described by the occupation of all eigenstates with negative eigenvalue, i.e. the lower band,

|Ψ0,GM 〉 =

∫
Dθ
∏
i

ψ†i−(θ) |0〉 (B2)

Thus, one can smoothly transform from the strong coupling ground state to the weak coupling ground state by

performing for every pair i of single-particle eigenstates (ψ†i+(θ) |0〉 and ψ†i−(θ) |0〉) the transformation

1√
2

(
ψ†i+(θ)− ψ†i−(θ)

)
|0〉 → ψ†i−(θ) |0〉 . (B3)

Viewed in terms of the covariance matrix for the single-particle eigenstates ψ†i+(θ) |0〉 and ψ†i−(θ) |0〉, this amounts to
1
2 (1− σx) → 1

2 (1+ σz). This can be incorporated into ξ̃ by choosing the submatrix of ξ̃ related to the ψ†i+(θ) |0〉
and ψ†i−(θ) |0〉 eigenstates (a 2× 2-matrix) as ξ̃|i = −π4σyξi (where ξi is a variational parameter) so that changing ξi
from zero to one smoothly transforms from the weak-coupling to the strong-coupling ground state. We thus end up
with N/2 fermionic variational parameters (N = L2 the number of lattice sites) and a block-diagonal form of ξ̃:

ξ̃ =


ξ̃|1 0 . . . 0

0 ξ̃|2
. . .

...
...

. . .
. . . 0

0 . . . 0 ξ̃|N/2

 (B4)
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For the case of Nf = 2 fermion flavors (and potentially even more flavors) one can choose a simi-
lar block-diagonal structure where one now blocks the single-particle eigenstates of both flavors together, i.e.

ψ†1,i+(θ) |0〉 , ψ†1,i−(θ) |0〉 , ψ†2,i+(θ) |0〉 , ψ†2,i−(θ) |0〉 . The individual blocks ξ̃|i are then 4 × 4-matrices (or more gen-

erally 2Nf × 2Nf -matrices). The variational parametrization of these blocks is kept general as this allows to control
certain properties between the two species, e.g. the imbalance ∆N between the two species as was used for the study
of sign-problem affected regimes in section V. The block-diagonal structure allows even for multiple fermion flavors
to compute the local energy Hloc(θ), in particular HE,loc(θ), (see section III B 1) with a computational cost of only
O(N3).

Appendix C: Choosing a non-Gaussian reference state for the strong-coupling limit

Our fermionic state construction is based on a gauge-field dependent fermionic Gaussian operator UGS(θ) acting
on a strong-coupling reference state |Ψ0〉 (see eq. (11)). In this section we show that this reference state can also be
chosen non-Gaussian, using the example of Nf = 2 fermionic species at half-filling as discussed in the body of the
manuscript. In the strong-coupling limit (g2 >> 1) the lattice gauge theory reduces to an effective fermionic theory
where the electric field vanishes to zeroth order. In second-order perturbation theory one can have virtual hopping
processes between the two fermion species in opposite directions. This gives effectively rise to fermionic interactions
as can be seen in our ansatz by the appearance of quartic expressions in the fermions (see eq. (27)). In the considered
sector of one fermion per site this allows a mapping to a spin Hamiltonian, the Heisenberg model [59]. This can be
incorporated in the ansatz by using a good approximation of the ground state of the effective fermionic theory (the
Heisenberg model in our case) as reference state |Ψ0〉. This ground state approximation can be obtained using any
method of choice, e.g. tensor networks or spin wave theory (as was chosen in our case).

The most difficult terms to evaluate in this scenario involve again quartic fermionic operators of the form

〈Ψ0|~ψ†fx,i,Nf=2(θ)~ψ ~ψ†fx,i,Nf=2(θ)~ψ|Ψ0〉 (C1)

with ~ψ = (~ψ1, ~ψ2)T now containing annihilation operators of both fermionic species. In the expression above we already
performed the unitary transformation defined by UGS(θ) resulting in a slightly different form of fx,i(θ) compared to
eq. (28):

fx,i,Nf=2(θ) =

(
V (θ) 0

0 V (θ)

)[
e−iξ̃

(
αx,i(θ) 0

0 αx,i(θ)

)
eiξ̃ −

(
αx,i(θ) 0

0 αx,i(θ)

)](
V †(θ) 0

0 V (θ)†

)
≡
(
f(θ)11 f(θ)12

f(θ)†12 f(θ)22

) (C2)

For ease of notation we dropped the subscripts for the submatrices of f(θ) in the last row. The fermionic operator
~ψ†fx,i,Nf=2(θ)~ψ can be written in the individual components of the fermionic species as

~ψ†fx,i,Nf=2(θ)~ψ = ~ψ†1f(θ)11
~ψ1 + ~ψ†2f(θ)22

~ψ2 + ~ψ†1f(θ)12
~ψ2 + ~ψ†2f(θ)†12

~ψ1. (C3)

The fermionic expressions appearing in eq. (C1) then take the general form (explicitly writing out the site dependence):
~ψ†αxf(θ)αα′,xx′ ~ψα′x′ ~ψ†βyf(θ)ββ′,yy′ ~ψβ′y′ . Since the expression in eq. (C1) is evaluated w.r.t. the strong coupling

vacuum |Ψ0〉 we can project this expression onto the spin subspace with
∑
α=1,2 ψ

†
αxψαx = 1 for all x. This simplifies

the expression since only combinations of fermionic operators remain that respect the single occupancy constraint, i.e.
either x = x′ and y = y′ or x = y′ and x′ = y. If we further keep only contributions that are known to be non-zero
for the Heisenberg ground state, we can express the expectation value in eq. (C1) in terms of the spin correlations:

〈Ψ0|~ψ†fx,i,Nf=2(θ)~ψ ~ψ†fx,i,Nf=2(θ)~ψ|Ψ0〉

=
∑
x,y

1

4

(
|f(θ)11,xy|2 + |f(θ)22,xy|2 + 2|f(θ)12,xy|2 + f(θ)11,xxf(θ)11,yy + f(θ)22,xxf(θ)22,yy + 2f(θ)11,xxf(θ)22,yy

)
+
∑
x,y

〈Szx〉 (f(θ)11,xxf(θ)11,yy − f(θ)22,xxf(θ)22,yy + f(θ)11,xxf(θ)22,yy − f(θ)22,xxf(θ)11,yy)

+
∑
x,y

〈
SzxS

z
y

〉 (
2|f(θ)12,xy|2 − |f(θ)11,xy|2 − |f(θ)22,xy|2 + f(θ)11,xxf(θ)11,yy + f(θ)22,xxf(θ)22,yy − 2f(θ)11,xxf(θ)22,yy

)
+
∑
x,y

2
〈
S+
x S
−
y

〉 (
f(θ)12,xxf(θ)12,yy − f(θ)11,xyf(θ)22,yx

)
(C4)
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FIG. 10. The acceptance probability in the variational ground states of the Nf = 2 model. The acceptance probability is on
a high level down to the lowest non-zero coupling and only for g2 = 0.0 it sharply drops. This is expected since the ground
state there is diagonal in θ with all plaquettes θp having π flux so that our variational probability, while approaching the delta
distribution, gets lower and lower in acceptance probability.

where all spin correlations are evaluated w.r.t. |Ψ0〉. We chose spin wave theory to approximate the ground state
of the Heisenberg model [60]. One can even make the parameters of the spin waves variational and thus interpolate
between a Gaussian state (the Neel state) and spin wave theory.

Appendix D: Update scheme of Monte Carlo algorithm

In this section we provide some more details on the update scheme in our Monte Carlo algorithm. As the cost of
updates is quite low, we are free to perform various types of updates.

For local updates we perform the update of a link θx,i which changes the two plaquette variables that contain the
link, for one of them the value of θp is raised, for the other, respectively, lowered. One can extend this update scheme
if one changes a second link variable in on one of the two plaquettes in such a way that it compensates the change due
to θx,i and θp is unchanged. Thus, only one of the two plaquettes containing the link variable θx,i will be updated
and another plaquette that is next-nearest neighbor to it. Performing this procedure for all possible pairs, we update
six pairs of next-nearest neighbor plaquettes.

The global updates are related to changes in the gauge field configuration that are hard to obtain by iteratively
applying local updates. It turned out that one such configuration is a change in all plaquettes θp by 2π/N and
a change in a specific plaquette θp′ by −2π(1 − 1/N) with N the number of plaquettes. The corresponding link
configuration θx,i to create such a change in θp can be computed via the lattice Green’s function:

φglob
p =

1√
N

∑
k

eikp
Q̃(k)

4− 2 cos (kx)− 2 cos (kx)

θglob
x,i = εij∆

(−)
j φglob

p = εij

(
φglob
p − φglob

p−ej

) (D1)

where Q̃(k) is the Fourier transform of Q(p) which contains the desired changes in plaquette variables θp that we
want to create. In a first step a scalar field φglob

p on the plaquettes is generated from Q(p), from which one can derive

the link variables θglob
x,i by applying the lattice curl to φglob which involves the plaquettes p and p−ej that contain the

link x, i. With the procedure above various kinds of global updates can be performed by choosing Q(p) appropriately.

As supporting evidence that our update scheme gives reasonable results we provide in Fig. 10 the acceptance
probability in the variational ground states of the Nf = 2 model where we compared our results with Euclidean
Monte Carlo results (see IV C). Throughout the whole coupling region the acceptance probability is on a high level,
except for g2 = 0.0 where it is expected since the ground state is the π-flux state and our probability distribution
approximates a delta distribution.
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Appendix E: Details on gradient and Gram matrix

In this section we sketch the computation of the gradient of the variational energy and the Gram matrix using
Monte Carlo simulation as required for the adaptation of the parameters with stochastic reconfiguration. Starting
with the gradient, we first recall the form of the variational energy in terms of the local energy Hloc(θ):

〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 =

∫
Dθ Hloc(θ)|ΨG(θ)|2∫

Dθ |ΨG(θ)|2 =

∫
Dθ Hloc(θ)e−b

T (θ)αb(θ)−2βT b(θ)∫
Dθ e−bT (θ)αb−2βT b(θ)

=

∫
Dθ Hloc(θ)p(θ) (E1)

The gradient will involve derivatives of Hloc(θ) w.r.t. all variational parameters and derivatives of p(θ) but these only
w.r.t. the pure gauge parameters α and β. We provide the latter (denoted by the subscript p(θ)) exemplary for the
matrix element αpp′ (the expressions for β are analogous but easier since the corresponding term in the exponential
is only linear in b(θ)):

∂ 〈E〉p(θ)
∂αpp′

=

∫
Dθ Hloc(θ) (−b(θ)pb(θ)p′) e−b

T (θ)αb(θ)−2βT b(θ)∫
Dθ e−bT (θ)αb−2βT b(θ)

− 〈Ψ|H|Ψ〉〈Ψ|Ψ〉

∫
Dθ (−b(θ)pb(θ)p′) e−b

T (θ)αb(θ)−2βT b(θ)∫
Dθ e−bT (θ)αb−2βT b(θ)

(E2)
where the first term is from the derivative of |ΨG(θ)|2 in the numerator and the second term from the denomina-
tior. Both can be efficiently evaluated. Regarding derivatives of Hloc(θ), only HE,loc(θ) depends on the variational
parameters α and β through the expression bT (θ)αbx,i(θ) +βT bx,i(θ). Therefore derivatives are easily calculated, e.g.
b(θ)pbx,i(θ)p′ for the matrix element αpp′ . The derivatives of Hloc(θ) w.r.t. the fermionic parameters ξi are non-zero
for HE , HGM and HM and can be shown to take the schematic form

∂

∂ξi
Tr

Γ̃
(
ξ̃
)∑

x,i

Ax,i(θ)

 = i
∑
kl

(
ξ̃

∂ξi

)
kl

Γ̃
(
ξ̃
)∑

x,i

Ax,i(θ)−
∑
x,i

Ax,i(θ)Γ̃
(
ξ̃
)T

kl

(E3)

where Γ̃
(
ξ̃
)

is defined in eq. (31) and Ax,i(θ) is some gauge-field dependent matrix containing a link dependence.

Since only the right term (that is transposed) needs to be computed in a Monte Carlo simulation and the whole
derivative can be post-processed, the computational cost of the derivatives scales the same as the computation of the
variational energy.

For the computation of the Gram matrix Gij ≡ 〈Ψi|Ψj〉 it is useful to look at the tangent vectors first. The
tangent vectors corresponding to the fermionic parameters ξi are related to the single-particle eigenstates of the
gauge-matter Hamiltonian and can therefore be shown to be orthogonal. The tangent vectors corresponding to α and
β are quadratic, respectively linear, in the vector b(θ) (defined for eq. (10)):∣∣∣Ψαp,p′

〉
=

∫
Dθ b(θ)pb(θ)p′e−

1
2 b(θ)

Tαb(θ)−βT b(θ) |ΨF (θ)〉 |θ〉∣∣Ψβp

〉
=

∫
Dθ b(θ)pe

− 1
2 b(θ)

Tαb(θ)−βT b(θ) |ΨF (θ)〉 |θ〉
(E4)

The local quantity Oloc(θ) that needs to be sampled in a Monte Carlo simulation thus takes a simple form that is very
similar to the gradient of the norm 〈Ψ|Ψ〉 that needs to be computed for the gradient of the variational energy (see
eq. (E2)). Since we use translational invariance to parametrize α, the tangent vectors will be related to the Fourier

components b̃(θ)k and not b(θ)pb(θ)p′ . The part of Gram matrix related to the overlaps between α-tangent vectors

will thus involve sampling b̃(θ)kb̃(θ)k′ , thus being of size O(N2) and efficiently tractable.
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