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We show that out-of-time-order correlators (OTOCs) constitute a probe for Local-Operator En-
tanglement (LOE). There is strong evidence that a volumetric growth of LOE is a faithful dynamical
signature of quantum chaos, while OTOC decay corresponds to operator scrambling, often conflated
with chaos. We show that rapid OTOC decay is a necessary but not sufficient condition for linear
(chaotic) growth of the LOE entropy. We analytically support our results through wide classes
of local-circuit models of many-body dynamics, including both integrable and non-integrable dual-
unitary circuits. We show sufficient conditions under which local dynamics leads to an equivalence

of scrambling and chaos.

Introduction.— In recent years, a wide plethora of
apparently inequivalent notions of quantum chaos have
sprung up. A popular candidate is the out-of-time-
ordered correlator (OTOC), which measures a notion of
scrambling in many-body systems [1-5]. In this Let-
ter, we will give a novel interpretation for the OTOC by
showing that it serves as a particular probe to the Local-
Operator Entanglement (LOE), a well justified measure
of dynamical complexity and quantum chaos [6, 7]. In
doing so, we will uncover simple cases where a dynam-
ics is scrambling and so leads to an exponential OTOC
scaling, yet is not chaotic as demonstrated by linear LOE
entropy growth. Along the way, we derive exact analyt-
ical results for a class of many-body local circuits [8, 9].
Our results show a clear distinction between scrambling
and chaos, namely, scrambling is necessary but not suffi-
cient for quantum chaos.

The LOE is a measure of the complexity scaling of
a Heisenberg operator V, := eth(VB ®1 B)e_th cor-
responding to an initially local operator V' [6]. V acts
on a space Hp, whereas V; acts on the full system
Hs = Hp ® Hp. Above, H is a many-body Hamilto-
nian. This is directly proportional to the classical simu-
lability of an evolution [6, 10], with its scaling with time
indicative of the integrability of the dynamics [7, 11-17].
Specifically, the LOE is the entanglement of the Choi
state of an initially local, unitary and traceless Heisen-
berg operator V;,

Vi) :=(V,®1)|o"), (1)

where |¢") is the maximally entangled state over a dou-
bled system. As this is a pure quantum state, we can
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analyze its static quantum mechanical properties such as
its entanglement (LOE).

LOE is an attractive candidate for an operational
and complete notion of quantum chaos, given that: (i)
volume-law (linearly growing) LOE implies both that a
local quantum circuit representation of the unitary needs
to be a maximal depth and that it is difficult to simulate
classically (consistent with the result of Ref. [18]), (ii) a
wide range of studies into physical models support that
volume-law LOE is a necessary and sufficient indicator of
chaos, with an at-most logarithmic growth for (interact-
ing) integrable systems [7, 11, 13-17], and (iii) it can be
understood as a sensitivity to perturbation, analogous
to classical chaos [19]. Note that the simple growth of
entanglement of states in a quantum many-body system
is not a signature of chaos, with e.g. Clifford circuits
and non-interacting models generally exhibiting a linear
growth [20, 21]. Further, the LOE should not be confused
with the related quantity of the ‘operator entanglement’,
which is the entanglement of the Choi state of the full,
global unitary evolution operator [22, 23]. This quan-
tity does not have the same connection to chaos as the
LOE, generally scaling linearly with ¢ irrespective of in-
tegrability [13], unless the Hamiltonian is in a localized
phase [24].

The OTOC, on the other hand, indicates a kind of
operator scrambling, and is defined as a four-point cor-
relator with atypical time ordering [1-5],

1
F(W.V,) = 5 ul W'V W], (2)

where we take this expectation value to be computed over
the maximally mixed state p,, = 1/d. We take V and
W to be local unitaries, in which case it is easy to prove
that the OTOC is directly proportional to the square
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commutator of the Heisenberg operators,

RLFOV V)] =1- o (WVE).  (3)

That is, the OTOC quantifies how much V, anti-
commutes with W as a function of time. The appeal for
OTOC stems from a semiclassical argument connecting
the last equation to classical Poisson brackets, which are
directly related to the Lyapunov exponents of a classical
process.

Yet, it remains unclear why should this measure chaos?
In fact, there is controversy in when the OTOC detects
chaos in a wide range of quantum systems without a clas-
sical analogue [25—-28] or even with [29, 30]. In this Letter
we shed light on this confusion, showing how the OTOC
probes dynamical chaos, including how it can fail in this
purpose and specifying sufficient conditions when scram-
bling is equivalent to chaos.

OTOC in Terms of Local Operator Choi State.— We
consider the OTOC with unitary operators V' and W,
which wlog are taken to be traceless - this is the only part
of a general unitary V' that scales with time; see App. A.
We take W to be on acting on some potentially large
subspace H 4 and V on a local space Hp, with comple-
ment spaces defined such that the whole isolated system
is Hg = Ha® Hai = Hp ® Hp. These spaces are most
clearly expressed via the graphical representation of the
the OTOC F(W,V;) (Eq. (2)), equal to

A
yrfﬂﬁ Uy U, Uy

_ B

We will also use a bracket-prime notation to indicate a
doubled space. In particular, a prime label A represents
a copy of the space A, while bracketed primes represent
a combined double space, Hpn := Hp ® Hp'. For clarity,
we rewrite the definition of the Choi state |V;) (Eq. (1)),
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In this setup, V; can be interpreted as the time evolved
local Heisenberg operator we are interested in, and W as
the probe to the entanglement of the Choi state of this
operator, Eq. (1). We see the first hint of this relation,
in the following observation.

Observation 1. The OTOC can be expressed in terms
of the expectation value of a local unitary, W := WW™,
with respect to the Choi state of a time evolved Heisenberg
operator, |V;),

FW, V) = (Vi| (Lio @ W) [V). (5)

The proof for this, and all following results, can be
found in the Appendix.

Examining the relation Eq. (5), if |V;) is maximally
entangled in the splitting A fl('), then the OTOC is
equal to zero. Recalling that any maximally entangled
state i corresponds to the Choi state of a unitary ma-
trix Uy, one can prove this from Eq. (5) using standard
graphical notation:

F(Wav;f)=é Uy W H U = | [ W] = 0. (6)

For example, a global Haar random time evolution, U; €
H, with a large total dimension d, will approximately give
a maximally entangled |V;) on average. We show this in
App. C.

Alternatively, if |V;) is not maximally entangled,
F(W,V;) will generally be non-zero, suggesting that this
quantity constitutes a probe of the LOE of V;, through
an operator W. We will now quantify this relationship
in the following, showing the necessity of OTOC decay
for chaotic LOE behavior.

Chaos Implies Scrambling.— To investigate the general
behavior of the OTOC, we will now compute its average
value when a random traceless operator W is sampled,
and show that this sampling is typical. To uniformly
sample a random matrix with the traceless property, a
natural choice is to choose any traceless unitary W and
then apply a Haar random unitary channel to it, Wg =
R'WR where R € H. H refers to the Haar ensemble:
the unique, unitarily invariant measure on the space of
unitary matrices U(d). We define the averaged OTOC
with respect to this traceless probe,

1
G i=g [ arelwiviwwil @)

We stress that we are not averaging over the dynam-
ics, and allow the time-evolution operator U; to be com-
pletely arbitrary. Hinting at the relation of the OTOC
to entanglement, our results will be framed in terms of
v4(t), the (normalized) reduced density matrix of the
Choi state |V;) on (the doubled space) H 0 = H @ H 41,

va(t) := trzo[|Vi) (V] ]. (8)

We can then use standard techniques adapted from the
Weingarten Calculus to arrive at our first main result.

Theorem 2. The averaged OTOC over Haar random,
traceless unitaries W (as in Eq. (7)) is equal to

G = (B (o a0 -1). O
A

where |¢>+) 18 the maximally entangled state across the
doubled system Hgo .



Notice that the first term is proportional to the fi-
delity between v4(t) and the identity matrix Choi state
[¢"Y(¢"|. In words, this theorem states that the average
OTOC is proportional to the distance between the actual
reduced state of |V;) on Hao and the state of the iden-
tity channel. Interestingly, considering V; as a unitary
channel, this fidelity is exactly equal to the entanglement
fidelity of the reduced channel on H 4, which in turn is
proportional to the (efficiently computable) average gate
fidelity [31].

Remarkably, the following concentration of measure
bound shows that that a random F(W,V;) rarely varies
from the average G(V;). This is important as we work
concerns this OTOC average G(V;) in rest of the paper,
and we can be assured that the average case is represen-
tative of the typical one.

Proposition 3. The probability that the OTOC
F(Wg,V,) for some Haar random, traceless unitary Wg
varies from the average G(V,) by more than some € > 0,
satisfies

d%é?
P (IF (Wi Vi)~ GOV)| 2 ¢} = exp(_ ac )

(10)

This means that if one chooses the traceless ‘probing’
unitary W in the OTOC F(W,V;) to be Haar random
and acting on a relatively large subspace H 4, then it is
exponentially likely to approximately satisfy Theorem 2
and all following results where G(V;) appears. Even if
H 4 is composed of only O(10") qubits, the right hand
side of Eq. (10) gives a confidence of O(1/e") ~ 0.0183
within an error of e ~ O(27°%) ~ 0.0156.

Ref. [23] reports similar results to Thm 2 and Prop. 3.
However, there the Haar average is taken for the ‘bipar-
tite OTOC’ over both V and W, which are taken to have
support that is disjoint, but jointly covers the whole sys-
tem. Our results are distinct, and far less restrictive, in
allowing the operators to have arbitrary locality, averag-
ing over only one of the unitaries, and most importantly
connecting this to the LOE (chaos).

We will now consider a number of example dynamics to
pick apart Theorem 2. First, if V; has no support on H 4,
then v4(t) = |67 ¢"| and so as expected G(V;) = 1.
Typical examples are locally interacting systems at short
times, whereby one operator lies outside the lightcone
of the other. Next, consider a dynamics consisting of
a circuit of swaps U; € S. Then, if the operator V is
swapped onto a site within the space H,4, the OTOC
takes a minimum value,

—1 .
-, if V;g (S B(HA)
G(Vi)lyes = { 9471 . (11)
1, otherwise.
given that V is taken to be traceless. Similarly, one would
(approximately) get this result for v4(t) being (close to)

any pure state which is orthogonal to |¢")(¢"|. This is
an example of a kind of scrambling without chaos: a min-
imal OTOC is achieved for a clearly integrable dynamics.
Such a dynamics is not a unique example of scrambling
without chaos. In fact, it is a simple example of a wide
class of local circuit models, which we will analyze later
in Results 6-8. Finally, we saw earlier in Eq. (6) that a
maximally entangled |V;) leads to a small OTOC. This
begs the question of what the OTOC tells us if |V}) is par-
tially entangled? Can we further understand this OTOC
average as a quantitative probe to the time-scaling of the
LOE?

We now give two bounds, in terms of two different
measures of entanglement, supporting the proposition
that fast OTOC decay necessarily leads to chaotic LOE
growth.

Theorem 4. (Scrambling is Necessary for Chaos)
The OTOC, averaged over traceless unitary operators W,
is bounded by the entanglement of the time-evolved local

operator V, in the bipartition (A(') : 121(')):

A. For geometric measure of  entanglement,
2
Eg(l¢)) = 1- max [(¢Ya0pa0]|e)|", where
[ 0% 200)

the mazimum is over all product states |40 z0),
G(V;) satisfies

&2
G(V)) < 1= =—Fa([V;). (12)

2 -
B. For the 2-Réyni entropy 5(2)(y) = —log(tr[1*]),

G(V,) satisfies

1 _1g@)y,
GV, < W(die 25 ““”—1). (13)
2

Note that we only wused the inequality
D(va(t), 16" )(8"]) = maxpy) (D(valt), [¥){])) for
some distance metric D, to arrive at Eq. (12). Therefore
it is likely relatively tight for a generic evolution,
where V, does not recohere into a local, pure unitary
channel. Indeed, from numerics we notice that Eq. (12)
seems to be tighter than Eq. (13). However, in general
geometric measures are not practically accessible due
to the required optimization over all separable states.
On the other hand, the Réyni 2-entropy is. The bound
(13) is therefore one of our main results, and will be
investigated in the remainder of this work.

The LOE entropy grows at fastest linearly, with strong
evidence that this maximal scaling is saturated if and
only if the dynamics are chaotic [14, 16|, compared
to logarithmic growth for integrable dynamics [7, 11—
13, 15, 17]. Therefore, Eq. (13) gives us a bound on
scrambling, with the OTOC decaying at fastest exponen-
tially, governed by the rate of growth of the LOE entropy,
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FIG. 1. Brickwork circuit models of dynamics consists of
repeated 2-site unitary superoperators on a one dimensional
lattice. Time goes from top to bottom, and the lightcone
for a single-site operator is shown in green. We set wlog the
position of the initial local operator V to be y = 0.

Bexp(—at),
ct

if U; chaotic,

14
if U; regular. (14)

G(Vy) = {

This should not be compared to the bound on certain
OTOCs from Refs. [3, 32]. There they lower-bound a
thermally regulated OTOC within a certain time regime
with an exponential function with positive Lyapunov ex-
ponent for fast-scrambling systems, under a range of as-
sumptions and approximations. The strength of Theo-
rem 4 is that it is an analytic argument relying on essen-
tially no assumptions, with the scaling (14) determined
by a range of previous heuristics [7, 11-17].

Theorem 4 therefore states that fast decay of the
OTOC is necessary for chaos. However, the counter ar-
gument is not necessarily true, i.e. the bounds in Eq. (14)
are not necessarily tight. We will now examine our re-
sults through classes of local circuit models, to uncover:
(i) When Eq. (13) is saturated, and (ii) When the OTOC
decays fast for slowly decaying LOE; i.e. scrambling
without chaos.

Application to Local Circuit Models.— We will now
consider examples of local circuit models of dynamics,
called ‘brickwork’ circuits |21, 33-37], whereby at each
discrete time step two-body unitary gates are applied to
next-neighbor sites on a lattice (see Fig. 1),

U: Hil ® /HiQ - 7‘[01 ® Hoz' (15)

It is necessary to introduce some notation to succinctly
present our results. We take the initial operator V to
have support on a single site which we specify wlog to
be at y = 0, where both the sites and time steps are
labeled with half integers as in Fig. 1. Then the disjoint
spaces H 4 and H z are labeled by the list of integers of the
spins they contain, ¢4 and ¢ ;7 respectively. The following
results will cover two exclusive cases: when the left light
cone edge is in H 4 (t € £,4) or when the right light cone is
in Ha (¢t € £3), where we denote by a the edge of region

H 4 within the lightcone. Finally, we define x4 :=t+a
as the ‘light cone coordinates’ (see Fig. 2).

In completely general brickwork unitary circuits, both
the OTOC and the LOE entropy can be expressed in
terms of the same spacetime transfer matrix G(Vt)2 ~
(T..[UD*" ~ 5(2)(VA(t)). While we do not define T
explicitly here (see App. GG), this leads to our first result

on local circuit OTOC behavior."]

Observation 5. When the term —ﬁ from Eq. (9) can
2

be neglected, both sides of the inequality Eq. (13) have
generically the same leading order scaling for large x_,
but constant x .

Further supporting this result, numerical examples of
Haar random unitary bricks show similar scaling for both
sides of Eq. (13). We will now delve into a specific model
in order to uncover an analytic example showing that
scrambling is distinct from chaos.

Consider the Floquet interacting XXZ model on
qubits, consisting of a brickwork dynamics (see Fig. 1)
with two-site unitary

Uxxyz =exp [—i (%Uz®am+goy®oy+Joz®oz)] . (16)

where J is a free parameter. We have set the parameter
in front of o, ® o, and o, ® o, to 7/4 to impose dual-
unitarity [9, 39, 40], which we later discuss. Moreover,
we additionally specify that J # ©/4, as J = 7 /4 yields
the SWAP circuit as in Eq. (11). This dynamics is not
chaotic. In particular, the LOE scales logarithmically
with time [12, 17], characteristic of interacting integrable
models. However, we will see that the OTOC decays
exponentially for all times (or is constantly minimal),
indicative of strong scrambling.

Theorem 6. (Scrambling without Chaos) The Flo-
quet dual-unitary XXZ model (16) produces an exponen-
tially decaying OTOC. Concretely, for a single site oper-
ator V, Eq. (18) reduces to

-, iftely,
G(Vi)lxxz = dA:i(m_) .
Be +(1=-08), iftels.

(17)
with positive constants « and 8 reported in Eq. (HG).
For any V' orthogonal to o, the constants are such that
G(V;) decays to a minimal (negative) value.

The fact that the OTOC exhibits (maximal) exponen-
tial decay for this clearly integrable model is stark evi-
dence of the distinction between scrambling and chaos.
This lays bare the main thesis of this Letter: while the
OTOC will always bear witness to chaos, there exists
a wide variety of dynamics that are scrambling but not
chaotic. In other words, the decay of the OTOC is nec-
essary but not sufficient for chaos.
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FIG. 2. Schematic of the labeling conventions used in our
results for brickwork circuits. xz_ describes the size of the
region H 0 (Hzm) whent € £, (t € £7).

The example dynamics (16) is in fact a particular ex-
ample of a class of locally interacting models that are con-
sidered to yield maximally spreading dynamics [9, 41, 42].
Using Eq. (9), we can actually compute the average
OTOC for this entire class of many-body dynamics that
satisfy the dual unitary property, which we call D. These
are local circuits where each component is unitary in both
the space and time direction, such that one can analyt-
ically compute a range of relevant quantities in many-
body systems evolving under these dynamics. Far be-
yond the trivial swap circuit S as in Eq. (11), these mod-
els include for example the (chaotic) self-dual kicked Ising
model [8, 43, 44] and the (integrable) Floquet Heisenberg
XXZ model [39, 40], as in Eq. (16). Dual unitarity is a
highly general condition on two-body gates, setting only
two out of the 16 free parameters of the 2-qubit unitary

group [9].

We define a necessary object which is well-studied in
dual unitary literature [9]. In terms of the (doubled)
local, bipartite Hilbert spaces as in Eq. (15), we de-
fine the CPTP maps M, := <]l|i(1') U* ® U|]l)og> and
M_ = (]l|i<2r> UeU |]1)O<1r>. These local maps govern the
decay of 2—point correlations in D [9]. Remarkably, we
can compute the OTOC average for this entire class ex-
actly, where it either takes a uniform, minimal value, or
otherwise always generically decays exponentially.

Theorem 7. (OTOC in Dual Unitary Circuits) For
evolution according to dual unitary circuits D, the aver-
age OTOC is exactly

1

(v ﬁ, t EEA
(V)lb = dil_l(di(V|Mi*Mf*|V)—1), tels.
(18)

We stress that our result for G(¢) in Eq. (18) relies
only on the dual unitarity property, both in the chaotic
and non-chaotic cases. Note that the present work is not
unique in considering OTOCs in dual unitary circuits. In
Ref. [41], OTOCs are computed in the ‘infinite lightcone’
limit for the subset of completely chaotic dual unitary
circuits, while in Ref. [15] average OTOCs are computed
for circuits consisting of randomly sampled 1-site parts
of dual unitary qubit gates. Neither of these references

compute the OTOC averaged over one of the operators
W, for arbitrary ¢. In addition, in our case the support
of W can be arbitrary large, in contrast to the single site
operators considered in these works.

We can further specify the dual unitary dynamics
to be ‘completely chaotic’ [16] (‘maximally chaotic’ in
Ref. [41]), defined by the property that the eigenvec-
tors with eigenvalue one of the transfer matrix discussed
around Observation 5 are limited to a minimal set (see
App. (). This property generically holds, but is vio-
lated if there are additional symmetries (e.g. kicked Ising
model) or additional local conservation laws (e.g. trot-
terized XXZ model). This property leads to a precise
equivalence between the LOE and OTOC.

Corollary 8. Forx_ kept fized, Eq. (18) can be expressed
using the known inequalities of Réyni-2 entropy of LOE
(see App. G) as

GVlues < o Jim 55200 | (19

where equality holds exactly for completely chaotic dual
unitary circuits for || = d_1/2, and also taking x, to be
large. Here, |\| is the largest non-trivial eigenvalue of

M_ [16].

Notice here that Eq. (19) is exactly equivalent to
Eq. (13) for d4 > 1. That is, asymptotically the aver-
age OTOC is proportional to LOE in completely chaotic
dual unitary circuits with |A| = d 2. This provides
an important new insight into the completely chaotic as-
sumption: for dual unitary circuits it is equivalent to
demanding equality in (13). It would be interesting to
study when this inequality (13) is saturated for non dual-
unitary circuits, which we discuss in our concluding re-
marks.

Conclusions and Discussion.— In this Letter, we have
demonstrated that the Out-of-Time-Ordered Correlator
(OTOC) generally functions as a probe of the Local Op-
erator Entanglement (LOE) of the time-evolving opera-
tor V; (Results 1- 4). This means that formally, scram-
bling is strictly necessary for chaos. To explore this re-
lationship, we examined the OTOC for the class of dual
unitary local circuits. We showed an explicit example of
an integrable dynamics where the OTOC exponentially
decays for all times, representing a maximal scrambling
without chaos (Theorem 6). Finally, we also determined
generic conditions that defines when LOE scaling is pre-
cisely equivalent to OTOC scaling in dual unitary circuits
(Theorem 7).

In this work, the (ultra-)local unitary operator V was
left unspecified, but its exact choice may influence com-
putations (cf. Thm 6). Often, it is argued that typically
the particular choice of operator V should not matter (for
OTOC), therefor V is averaged over [46, 47]. One can



take a more subtle approach and define a density opera-
tor that encodes all possible OTOCs or local Heisenberg
operators, which is therefore independent of the choice
of local operator [19, 48]. We extend our main results to
this operator-free setting in App. I.

We saw in Theorem 7 that in local circuits which sat-
isfy the (distinctly) dual unitary property of being com-
pletely chaotic, in some cases scrambling equals chaos.
It would be interesting to determine the class of models
which saturate the bound (13) in general evolution which
does not satisfy the dual unitary property. We speculate
that (13) may hold the key to characterizing a class of
completely chaotic evolution in this general case.

Finally, there is some motivation in recent literature
that the usual (4-point) OTOC which we consider here
does not probe a sufficiently fine structure of chaos
and randommness [18, 46]. Instead, a higher point
OTOC generalization is sometimes considered, called the
2k—QOTOC. There is a clear generalization of the present
results connecting such higher OTOCs to a novel gener-

alization of LOE, but we leave this to a future detailed
investigation.
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Appendix A: Traceless Operators for the OTOC

Here we justify the choice of the operators V and W in the OTOC to be traceless.

Any operator W can be written as sum of a traceless W' and a constant part proportional to the identity, W =

w'+ i tr[W]. Using this, the OTOC (2) reduces to

FW,V;) = [ WV W]
|1I[W7N
A
= tr[(W')TVtTW'Vt] + const,

tr[ W]

w1y v, + S g

te[1V,I W'V, + 2

S arovy viava - efory i) A

where we have used the unitary property of V; and that tr[W'] = 0. Therefore the only non-trivial part of W that
leads to OTOC scaling is the traceless unitary W', and this fact similarly holds for V. Hence wlog we assume W and
V to be traceless throughout this work.
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Appendix B: Proof of Observation 1

Observation 1. The OTOC can be expressed in terms of the expectation value of a local unitary, W := W @ W™,
with respect to the Choi state of a time evolved Heisenberg operator, |V;),

FW,V,) = (Vi (Law @ W) [V;). ()

Proof. Rewriting the OTOC over a doubled space,

F(W,V;) = tu[W V' wv;]
= (@ TV wr) etls) (B1)
= (@ | (VWV)ase Ly @Wi)le")
where |¢") is the Choi state of the identity map across the total doubled system, Hgn = Hg ® Hg = (Hs ® Hz) ®
Ha ® Har, and we have used the identity (AB® 1) |[¢") = (A ® BT |¢"). We have also introduced subscripts to

make clear the different Hilbert spaces used here. Then, recalling the definition |V;) := (V; ® 1) [¢") (Eq. (1)), we
have that

FW,V,) = (Vi (1a @ Wa)® (11 ® Wy)|V;)
= (Vi (La0 @ W) |V4) (B2)

where W := W ® W is a superoperator acting over both copies of the system, on the vector |V;) € Hgo.

We also reproduce the above proof graphically, where we believe it is far easier to follow:

. 1,
» Vit =£_l T A{_Ut . Ut Ut - Ut B
s, —
—




Appendix C: Proof that maximum entangled Heisenberg operators leads to small OTOC

To derive Eq. (6) algebraically, we start directly from Eq. (5) and use that the Schmidt spectrum of a maximally
entangled state is uniform,

FOVV) = 3 (ol W) (3168,) = 5 3 (el Wl = W)= gl wlwf =0 (@
i,j

Here, the final equality is due to imposing the traceless property of W.

Further, choosing the global dynamics to be Haar random, on average one finds that

(VA>UteH d - d Poo — |¢ ><¢+|) = Poo- (C2)

where po, = 1/d is the infinite temperature state, and where we have assumed d > 1 in the final approximation. This
can be proven directly, using the expression for the reduced state of |V;) on AD (Eq. (8)),

va(t) = trao[|Vi) (Vel], (C3)

and applying the expression for the 2—fold Haar average, Eq. (D4).

Appendix D: Proof of Theorem 2

Theorem 2. The averaged OTOC over Haar random, traceless unitaries W (as in Eq. (7)) is equal to

G =5 o7 (@7 Tva® 167 - 1), 9)

where |¢+) is the mazimally entangled state across the doubled system Hgw .

Proof. Choose the probing unitary W to be Haar random, while preserving its traceless property. That is, consider
the average quantity,

1
=~ de w[UWuvivtwuv,]. (D1)
Recall that each of W, V', and U are local unitary matrices, acting on the spaces A, B and A respectively,
W=W,1j;. (D2)

Note also that we take A and B to be disjoint, B € A. We write W = Utwu e Ha. Vi is in general global for large
enough t, so V; € Hg. Then

1 . .
= - JdUtr[WijWVt]

}inUtr[(ﬂg & WV (11 @ Wa)Vi] (D3)

1 - N
2 arutvias el e v o 1a)sss]

611 JdUtr[(VtT ® X/t)((UT)@Q(I/[/T W)U®) ® ]lg(r))S],

where S is the swap operation. Written in this form in the doubled space, we can see that the Haar average over U
is a 2—fold channel of the quantity Wl; ® W4 We can compute this exactly using well-known formula which can be
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derived from Weingarten calculus, which states that the 2-fold Haar average (over U € H, with dimension d) of some
tensor X € H ® H is [46]

(I>(2)

Haar

(X) := J,dUU UX)U o U (D4)

1 1 1
= 5 (]l tr[ X ] + Str[SX] - EStr[X] - 3]1 tr[SX]),

Note also that for any X, by definition the 2—fold Haar average is equal to the 2—fold average over a unitary 2—design,
that is ®\o). (X) = <I>é2)de$gn(X)
Examining the terms of the identity (D4) for X = WL ® Wy, note that
tr[ W ® Wal = tr[Wi1t[Wa] =0, and (D5)
[ Wh ® WaSan] = [ WiWal=te[14] = da (D6)

where the first line is due to the choice of W being traceless, and the second line it due to W being unitary. Therefore
in this case only the second and fourth terms in Eq. (D4) are non-zero. Subbing this into Eq. (D3), we arrive at

1 f
G=—5——tr[(V; ® V))|(daSaa —Laa)®1Lz0|Sgs
T 1y 07 @V ((daSax ~ Law) © L0 S ]

ﬁ (dA tr[(‘/; ® ‘/;)]IA(I)SAA,] — tr[‘/jv]) (D7)
A
= ﬁ (dA trA(o[(trA[VtT] ®tra[Vi1)Ssa]— d)

A

1

= A —1) (dA tral (tralVy Tera[ViD)] - d)
A

Now we notice that
tralVi] = da(¢ a0V, ® 1)|¢") 400 - (D8)

We have brought out the supernormalization here and in the following, such that |¢") is a normalized quantum state.
Subbing this into Eq. (D7), we get

d(d21 1) (datrallda (6" 140 (V; @ 1)|¢") 40 1= d) (D9)
i m (dhdatraoll (6" Lao (Vi @ D)6 )40 I*167) 40 (67 Lio ] = d)

Now we recall the definition of the Choi state of the time-evolved local operator V;, in terms of the maximally mixed
state |¢") on the doubled space Hg ® Hg

Vi) := (g @ V) 9"). (D10)
Then from Eq. (D9)

1 3 + +
= AB—1) (dAdA trzo[(¢ [Vi(Vilo" ) an] - d)
1
a7 (dadtranlle™) (671 (tran Vi) (ViI])] - d) (D11)
We additionally define the reduced state of |V;) on H 40,
va() = trao[ Vi) (Vi (D12)

This is a normalized density matrix, and as the reduced state of a pure state it be used can measure the entanglement

of this state. Then Eq. (D11) reduces to,
1 1
G=—— (dhtraolle") (" |va(t)] - 1) =

4 -1 d4 -

Where F is the fidelity of quantum states. O

S (BAFwa(t).16°)(6"1) - 1) (D13)
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Appendix E: Proof of Proposition 3

Proposition 3. The probability that the OTOC F(Wg,V;) for some Haar random, traceless unitary Wg varies from
the average G(V;) by more than some € > 0, satisfies

2 2
Prps {|F(Wn, Vi) = (V)| Ze}sexp(— & ) (10)

Proof. This proof uses some techniques from that of Proposition 3 from Ref. [23], found in its Supplemental Material.
However, we arrive at a smaller Lipschitz constant. We will be applying Levy’s Lemma, a concentration of measure
result.

Lemma 9. Levy’s Lemma states that for U sampled according to the Haar measure H, f : U; — R a Lipschitz
continuous function with Lipschitz constant K, and € > 0 then

Pros {|F(U) = (f(U))a| 2 ¢} = exp(—f%) (B1)

where K 1is defined such that for all N,M € Uy

|f(N) = f(M)]| = K|IN = M]l>. (E2)

We first need to show that the function
1 tortrr At
f(U)zC—ltr[U wW'Uv, U'wWuVv,] (E3)

is Lipschitz continuous and determine its constant K. We will use the shorthand notation for superoperators, for
X e B(H A)

N(X):=N(X)Ne®1j, (E4)
and similarly

M(X) = M (X)M ®15. (E5)
Then, using Holder’s inequality | tr[ AB]| < || All || Bl|1

FV) = D] = 21 alV VYN (W) = M ()]
< SIVilleol VOV YWN (W) = MOV YW MOW) (E6)

= SIN VOV ) = MOV)) = MOV = AW )VMOW)

Here we have also used that || X||e = 1 for unitary X, and added and subtracted NWHV,M(W). We can now
apply the triangle inequality,

|F(N) = f(M)]

1A

(INOV OV V) = M)+ T = M) VM) )

Ul -l

(VW) = M) Ly + M) = N1 ) (ET)
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where we have also used that Schatten p norms are unitarily invariant. Then, as || X||; < Vd||X]|2

V) = £OD] < LIV = M) + M08 - N )

=7(||N<W> M)l + MW = N ()]),) (ES)

=7(|w< )= MW)I,)

=ﬁ(||(NT(W)N - M (W)M) e ]1A||2)
=%(||NT(W)N - M*(W)Mllg)

where we have subbed in the definitions (F4) and (E5), and used that || X ® 1 1|2 = || X||2]|14ll2 = Vdal|X||2. We
will now apply a similar triangle inequality ‘trick’ as before,

2
[F(V) = £(a)] SW(IINT(W)N - M (W)Ml|,)

A

F(HN*(W)(N M) = (M = NYW) ML) (E9)
A

s\/?(llN*(W)(N M)l + (M7 = N (W) M)
A

= |IN - M|

\/a 2

where we have again used the unitary invariance of Schatten norms. Therefore, a Lipschitz constant for the OTOC
function f(U) is

4
K=—. (E10)
Vda
Directly applying this to Levy’s Lemma completes the proof. O

Appendix F: Proof of Theorem 4

Theorem 4. (Scrambling is Necessary for Chaos) The OTOC, averaged over traceless unitary operators W, is
bounded by the entanglement of the time-evolved local operator V; in the bipartition (A(') : /_1(')):

A. For geometric measure of entanglement, Eq(|¢)) :=1— v w >| (Ya0bz0|0) |7, where the mazimum is over
A0® 0

all product states | 01 z0), G(V;) satisfies
B
G(Vvt) =1- d2 Ii
A

~Ea(I12). (12)

B. For the 2-Réyni entropy 5(2)(1/) = —log(tr[v*]), G(V,) satisfies

1 _1g@)y,
o (dje 25 (valt) —1). (13)
2

G(V,) =

Proof. A. We first define the geometric measure of entanglement for pure states across the bipartition A : A,

Eg(l¢)) =1 - lﬂ%};)l (atpale)”. (F1)
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The maximum is taken over all states separable in the splitting A : A, and p := tri[|¢)(¢|]. Then, from
Eq. (9), noticing that the first term is equal to the quantum fidelity: {(¢" |va(t)|¢") = F(lo" W o |, va(t)), we

have that
G(V;) = —— % — (7 (16701 va) - 1)
< S—max[ @37 (10a)(wal va(®) - 1]
= [AmaX| (baalla ® Us|V;) |* - } (F2)
- ox | amt (wavalVi) -1
= 2 [ G- Eavn -1]
IR A Ee(1Vi))
A

where the third line we have used Uhlmann’s Theorem [49].

B. Starting again from Eq. (9), we have that

G =z (4 (6" wa()l6) - 1) (F3)
r

Then, we can use the Cauchy-Schwarz inequality for the Hilbert Schmidt inner product, (A, B)yg := tr[ATB],

(6" va(®)]67) = (a(t). 1676 Dus < Virlva () IV (6 16%)? = Virlwa(1)’] (F4)

to arrive at

1
6 = o — (dvulva)?1-1) (5)
2
Then,
1 2 ~15P(wa(t))
G(‘/t) < S dAe 2 -1], (FG)

where the 2—Réyni entropy is defined as 5(2)(y) := —log(tr[+*]).

Appendix G: Average OTOC vs. LOE for Brickwork Circuits

Here we investigate the scaling of Réyni Entropy 5(2)(ut) and the average OTOC G(V,) in general brickwork
circuits, and therefore: (i) show that Eq. (13) is a faithful bound according to the leading order scaling of transfer
matrices which we will define (ii) numerically verify that Haar random brickwork circuits show a similar scaling (iii)
compute G(V;) for dual unitary circuits, and show how they compare to known results on LOE from Ref. [16] and (iv)
show that Eq. (13) is saturated asymptotically for ‘completely chaotic’ dual unitary circuits. We will use techniques
and notation that largely follow Ref. [16]. For further information on the notation used, see therein.

We will use the superoperator (doubled/folder) representation of the components of the local unitary circuit, as in
the main text represented with calligraphic script. Graphically, it is convenient to define

u:=U®U*=x (G1)



14

U =U'eU" = x (G2)

Time runs from top to bottom in these diagrams. Note that each line represents a doubled space. Unitarity then

means that
trin[U ® U] =(x)=(x7=T T (G3)

(U@U*)(U*@UT)=}=‘ =1. (G4)

Here, white circles indicate a projection onto the maximally mixed state on the double space, in other words tracing
over the space.

and its transpose conjugate

and also that

Now consider a local Heisenberg operator V' under evolution of a brickwork unitary circuit, the folded diagrammatic
representation for its Choi state is

%

Note that every line in this diagram represents a doubled Hilbert space. Here, the black circle represents the Choi

state of the local operator,
venis-1- (B (©6)

Local circuits have a natural ‘lightcone’ from the unitary property of the bricks: applying the graphical rule Eq. (G3),
Eq. (G5) reduces to

%
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Now, we can use this to come up with a graphical expression for the reduced state of |V;) on A('),

7

vt
va(t) = trao[| V) (V] = y : (G8)

\_

Notice that we can further simplify the three top-left gates with the three bottom-left ones using the unitary condition
(G4). The resulting expression can then be used to compute the OTOC average G(V;) (Eq. (9)) and and the 2—Réyni

entropy S(2), in order to test Eq. (13).

1. Proof of Observation 5

Observation 5. When the term —ﬁ from Eq. (9) can be neglected, both sides of the inequality Eq. (13) have
2
generically the same leading order scaling for large x_, but constant x. .

Proof. We now define a transfer matrix which yields a convenient description from which to compute quantities in

brickwork circuits
T.[U] = o+—+—+—+—+—+—o . (GY)

-
S8

This transfer matrix appears in both the expression for the 2—Réyni entropy S(Q)(Vt) and the OTOC average G(V,).
In particular, for the five layer example in Eq. (G8) (t =5/2, a = =1/2, x, = 2, _ = 3), using the unitarity graphical
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identities (G3)-(G4) it is easy to show that

G(V;) = ("I BIUT V@ (") e V).  (G10)

4 vt
Whereas, for the 2—Réyni entropy similarly for the example (G8), one can show that

O O O O

v vt % vt
(rl (BIUT IV, @ (69 @ ;)™ (G11)

where |rg) ‘rainbow state’ on six sites, i.e. the contraction of indices in the graphical representation of Eq. (G11),
formally defined as [16]
&
|Tj> = d_] Z |11[2"'Ij>|Ij[j_1"'[1)7 (G12)
Iy,Is,....1;

where d refers to the local dimension of a single site here. Recalling that x4 1=t * a, in full generality we have that
G(V) = (6™ T[T [V @ (01)°* P o ¥[), and

@ (G13)
O < (T 0T Ve (6 e )

We note that, in fact, one should define the exponent of T as [x,] and the parameter of 7 as [z_ ], to account for
when z is half integer (this applies also to the results 6-8). One can circumvent this in the main text by just choosing
a such that z is an integer. Then the leading eigenvectors of T,_[U] will dominate both the expressions in (G13), for

large z, when the term —ﬁ from Eq. (9) can be neglected. Strictly speaking, ((67)®% | and/or (r,_| could have
A

zero overlap with the leading eigenvector, but this generically won’t happen. Considering A as the leading non-trivial
eigenvalue of T,_[U], this means that for a scaling x, but constant z_ (i.e. time ¢ and a scaling proportionally), both

G(V;) ~ A™ (G14)

and

Ve 5P walt) o \7+ (G15)

Therefore, generically both sides of Eq. (13) have the same asymptotic scaling with large x, (large ¢ but constant
da). O

2. Random Brickwork Scaling

As a simple test case of Eq. (13), we can choose each brick of a local circuit to be chosen according to the Haar
distribution (see details around Theorem 2). In this case we see a similar trend for the left and right hand side of the
inequality (13). This is presented in Fig. 3.
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0.2+

G(a=(t))

0.1+

FIG. 3. Comparison of the bound from Eq. (13) (solid lines) and G(o,(¢) (points) for five different evolutions (different colors),
which are given by a clean brick-wall quantum circuit made of the same two qubit gate. The five gates were chosen to be Haar

random. The bipartition A® : A" is taken to be across half of the total system (a = 0).

3. Dual Unitary Circuits (Proof of Theorem 7)

Here we will prove Theorem 7. As explained in the main text, dual unitarity is the extra condition on a brickwork
circuit, that each unitary brick is unitary in both and time and space directions. Graphically, this means that in

addition to the graphical rules Egs. (G3)-(G4), we also have that

—o0
trys[U ® U*] =K=x= , (G16)
—0

as well as a spatial analogue of Eq. (G4) (which is not relevant for the present proof, but is relevant for the results
we use from Ref. [16]). Using this, we can now prove our main theorem of this section.

Theorem 7. (OTOC in Dual Unitary Circuits) For evolution according to dual unitary circuits D, the average

OTOC is exactly

-1
21 tely (18)

GVl = {dil—l(di (VIMEIME V) —1), tels.
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Proof. Directly from Eq. (G8) we have that

(¢ lvalt) [67) = v . (G17)

where wlog we have taken V' to be local on the site y = 0 (as in Fig. 1). We have here first chosen the case where H z0
is on the left - i.e. that the right light cone of V; ends up in H 40, and so t € £4. In the above diagram, the boundary
site between H 40 and H z0 is a = =1/2. A direct application of the graphical rules (G3), (G4) and (G16) leads to

+ + VT
(07| vat) ") lree, = =[te[V]]" =0, (G18)
/ e—o0

as V is taken to be traceless. This holds in general when ¢t € £4. If V was instead on site y = 1, the condition would
change to t € £4 (left light cone in A), and otherwise the results are the same. Therefore wlog we just take y = 0
here and in the rest of this work. It can be easily seen that this calculation holds for y = 0 and arbitrary a and ¢, as
long as the right lightcone of V; ends up in H 40. Substituting this result into Eq. (9), this completes the proof for
the first condition of Eq. (18), when ¢t € £4.

The less trivial, complement situation is when the right light-cone of V' ends up in the traced-over region f_l('),
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—t € £ 4. This corresponds to, for example,

(6" va®) 16" lveBa.) = v , (G19)

J

J/

where now in this example a = 1. Again applying the graphical rules of dual and standard unitarity (Egs. (G3), (G4)
and (G16)), we arrive at the expression

(61 va() 16" e, =V 28 (G20)

L+
recalling that x4 := ¢t £ a. Graphically, one has that (defined algebraically below Eq. (18))

M_ = —}— and M, := —§— . (G21)

Again, this generalizes directly for arbitrary a and ¢. This therefore completes the proof of Eq. (18) and therefore
Theorem 7.

We emphasize that we arrive at this expression only through the assumption of dual unitarity. In particular, no
completely chaotic assumption from Refs. [16, 41] is needed so far. Further, this expression (G20) is efficient to compute
numerically in any dual unitary circuit, with the matrices M, governing the behavior of two point spatiotemporal
correlation functions [9].

Interestingly, we will now see that the completely chaotic property results in an equivalence of chaos and scrambling.
To make this explicit, we compare the above results with previous results for LOE. In particular, in Ref. [16] the LOE
Réyni entropies for dual unitary circuits in the asymptotic light-cone limits z, — 00 are computed. This is achieved
for a completely chaotic dual unitary circuit.
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The completely chaotic (called ‘maximally chaotic’ in Ref. [41]) property corresponds to the assumption that the
eigenvectors with eigenvalue one of transfer matrices T,[U] (defined in Eq. (G9)), and an orthogonal transfer matrix
(not defined explicitly here, but this is the transfer matrix in the ‘orthogonal lightcone direction’; see Egs. (37)-(38)
in Ref. [16]) are limited to a minimal set. In particular, these minimal eigenvectors can be expressed in terms of the
rainbow state (G12), and always trivially have eigenvalue one due to the dual unitary properties. See Egs. (49)-(51)
of Ref. [16] for an explicit definition and derivation. We also note that in Ref. [16], a numerical analysis reveals that
the completely chaotic property is highly typical. What this means is that within the set of randomly chosen dual
unitary circuits, elements that are not completely chaotic (likely) form a measure zero subset. It would be interesting
to prove this claim analytically.

The precise scaling of the 2-Réyni entropy from Ref. [16] directly implies that for general dual unitary circuits,
]' xr xT
Jim (exol-55P 0] ) = (Vi M5 A7 V) (G2

In particular, Eq. (80) from Ref. [16] is equal to our expression for (¢" |v4(t)|¢") in Eq. (18) (note that our expressions
for x, in this paper are reversed compared to [16], due to labeling conventions). Then for G(V;) in the limit x_ — oo,
the multiplicative factor and additive constant go to one and zero respectively, as d4 — 00. The equality holds under
the completely chaotic assumption and for |\| = a! 2, with the consecutive limits z; — 00 and z_ — oo (as also
necessarily d4 — 00). Here |\| is the largest non-trivial eigenvalue of M_. The more general Eq. (G22) also follows
directly from Ref. [16], where we notice that the expression for purity can contain additional positive terms for non

completely chaotic examples, and in finite time, resulting in an inequality.

We therefore arrive at Eq. (19) and therefore concluding the proof of Theorem 8.

Appendix H: Proof of Theorem 6

Theorem 6. (Scrambling without Chaos) The Floquet dual-unitary XXZ model (16) produces an exponentially
decaying OTOC. Concretely, for a single site operator V', Eq. (18) reduces to

- iftely
G(Vi)lxxz = {d !

Be=5) 4 (1-8), iftels. (17)

with positive constants a and B reported in Eq. (H6). For any V orthogonal to o, the constants are such that G(V;)
decays to a minimal (negative) value.

Proof. Expanding the single-site unitary qubit operator V' in the Pauli basis, we have that

V=a11+a,0x +a,0y +a,0z
= a,0x + 0,0y + 0,0z (H1)
astr[V] =0 < ay = 0. As we consider the normalized Choi state |V'), we also have that

at =1~ (as+a)). (H2)

From Theorem 7 we know that in dual unitary circuits,

G(V;) = ﬁ (@ (VI MM V) = 1). (H3)
o

Now, using the full classification of dual unitary circuits for qubits [9], we know that M, for the XXZ model for
qubits takes the simple form in the Pauli basis

M, = diag(1,sin(2J),sin(2J),1). (H4)
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Substituting Eqgs. (I11) and (114) into Eq. (113), evaluating in the Pauli basis
1

G(V))xxy = o (d4((a3 + a3 sin(27)*") +a2) - 1)
1 . xT_
= —d2A—1 (di((ai+a§)s1n(2J}2( )—(ai+a§)))+l, (H5)

where we have used Eq. (H2). This corresponds to the exponential behavior decay with (z_), as sin(2J) < 1 given
that J # /4. For clarity of notation, we arrive at Eq. (17) by setting

1
a= ln(m)7 and
B =di(a; +ay)/(d5 - 1). (HG6)

From this, for a, = 0 and taking the limit (z_) — oo we arrive at

lim (G(V, hol) = ———.
i (G0xxzla,et) = 7

Appendix I: Operator Free Generalization

Here we argue that a operator-free generalization of the OTOC and of the LOE are related in a straightforward
manner, generalizing the main results of the Letter. These CP operators encode all possible OTOCs and local
Heisenberg operator Choi states (from which to compute the LOE), analogous to defining a density matrix in quantum
mechanics to encode all possible measurements which one could make. One can probe novel properties of this CP
operator generalization, such as the conditional mutual information which allows one to distinguish between genuine
quantum scrambling and decoherence (as in Ref. [418]).

The ‘out-of-time-order tensor’ (OTOT) is defined as the CP operator TOTOT ¢ Hp, ® Ha ® Hp, such that [45]

FOW, V) = e[ YT (v e W e V)] (I1)

Full definitions and further details can be found in Ref. [48]. The space B, ; are the same spatial Hilbert spaces at
the start and end of the OTOC protocol, which are technically indpendent spaces in the quantum combs formalism.
We further take the initial state in the OTOT definition to be maximally mixed p ~ 1. Then for a choice of the
operations V and W, one gets exactly the usual OTOC F(W, V) from the tensor TOTOT,

Similarly, we can generalize the LOE to a ‘local tensor entanglement’ (LTE), for the CP operator THE e 1 B ®
HS [l()]v

1z + +
T i s (2 @ 1676 o ). )

As detailed in Ref. [19], if one projects with some choice of maximally entangled state onto the ancilla B', one gets
exactly the time evolved Heisenberg operator. From this, the usual LOE can be computed. For example, for a qubit
space Hp, projecting onto the ancilla space Hp with the 1" bell state results in,

(@) = Tey = X, (I3)

where X; is the time evolved Pauli-X operator.

LTE

Our results from the main body can easily be framed in terms of these two objects.

Observation 10. The LTE and OTOT are related via

Ypa,5, = tra[Tn,s, * Tn,s,] (14)
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where the right hand side is the link product, giving a Hilbert Schmidt inner product on the complement to the probe
space, H i, and a tensor product on Ha [50] (see below in Eq. (15)). Note that B;jy = N;5 due to projection with the
mazimally entangled state in the definition Eq. (12).

This observation is immediately apparent graphically, in that

oTOoT
T =

From this, all previous results will directly generalize to this operator-free setting. This is revealing of the close
connection between the OTOC and LOE [19].
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