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Lead-free halide double perovskites are promising stable and non-toxic alternatives to methylam-
monium lead iodide in the field of photovoltaics. In this context, the most commonly used double
perovskite is Cs2AgBiBr6, due to its favorable charge transport properties. However, the maximum
power conversion efficiency obtained for this material does not exceed 3%, as a consequence of its
wide indirect gap and its intrinsic and extrinsic defects. On the other hand, the materials space
that arises from the substitution of different elements in the 4 lattice sites of this structure is large
and still mostly unexplored. In this work a neural network is used to predict the band gap of double
perovskites from an initial space of 7056 structures and select candidates suitable for visible light
absorption. Successive hybrid DFT calculations are used to evaluate the thermodynamic stability,
the power conversion efficiency and the effective masses of the selected compounds, and to propose
novel potential solar absorbers.

I. INTRODUCTION

In the last years, perovskite solar cells have at-
tracted significant attention in the field of photovoltaics,
due to their low production cost and high efficiency.
The absorber material in these devices is a hybrid
organic-inorganic perovskite containing an organic cation
(e.g. methylammonium or formamidinium), lead and a
halide1–5 . Methylammonium lead iodide (MAPI) based
solar cells were first reported in 2009 with an efficiency
of 3.8%6 and their performance rapidly increased in the
following years. Today, the highest power conversion ef-
ficiency for a perovskite solar cell is 25.5%7 for formami-
dinium lead iodide (FAPI) thin films, which is compa-
rable to that of Si single crystal solar cells. These ma-
terials posses ideal charge transport properties such as
high and balanced carrier mobility and long diffusion
length8,9, but the toxicity of Pb and the instability of
the structure when exposed to humidity and heat pre-
vent a large scale application of this technology. Several
attempts have been made to replace Pb2+ with Ge2+ or
Sn2+, however, the resulting structures have shown poor
stability due to the oxidation of Ge and Sn to 4+ formal
charge state10,11. Another possible strategy is to substi-
tute two Pb atoms with two cations of charge +1 and
+3 in an alternated way, to form the double perovskite
structure A2BB’X6. Some of the most extensively studied
halide double perovskites in the field of photovoltaics are
Cs2AgBiBr6

12–19 and Cs2AgInCl6
20,21. However, solar

cells based on the former have never reached an efficiency
above 3% due to its large indirect gap, while the latter has

a direct gap but the parity-forbidden transition22 makes
it a weak absorber. A small direct gap of 0.95 eV was
found for Cs2AgTlBr6

23 but the high toxicity of Tl limits
its application.

Given that double perovskites are quaternary com-
pounds, there are in principle many thousands of pos-
sible compositions, with an equally large potential range
of optoelectronic properties. Sampling this large design
space, though, is not necessarily an easy task even for
theory. Considering that accurate predictions of the per-
ovskite electronic structure necessitate computationally
expensive theoretical methods such as hybrid functionals
and spin-orbit coupling13. Earlier studies of perovskites,
performing e.g. high-thoughput screening,24,25 were thus
often limited in the employed methods, the search range,
or focused only on a subset of properties.

Notable examples here include the works of Filip
et al.26, Zhao et al.27, Volonakis et al.28, Roknuzzaman
et al.29, and Ding et al.30, which screened limited search
spaces up to a thousand compounds. These studies em-
ployed density functional theory at the semi-local, or
sometimes at the hybrid level, to also compute the com-
pounds stabilities. Larger studies of up to a few thou-
sand double perovskites,31,32 on the other hand, tended
to employ geometric arguments33 to pre-filter the search
space.

Recognizing the limits of first-principles calculations,
several groups employed machine learning (ML)-based
methods to choose potential candidate materials. Unfor-
tunately, such methods tend to also need large amounts
of data for their training, which often was generated us-
ing comparatively cheap computational methods.
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Schmidt et al.34 generated a database of almost
250,000 cubic perovskites calculated via DFT with the
PBE(+U) functional. Among these, 641 were found to
be stable and overall 1562 had a PBE gap above 0.5 eV.
This database was also used as benchmark to compare
the performance of several ML models (ridge regression,
neural networks, random forest, and extremely random-
ized trees) on the prediction of the energy above hull .
The most accurate method was found to be extremely
randomized trees. Saidi et al.35 used a hierarchical con-
volutional neural network (CNN) to predict the lattice
constant, octahedral angle and band gap of hybrid metal
halide perovskites ABX3, focusing mainly on the effect
of the organic cation A. Li et al.36 trained several ML
models (gradient tree boosting regression, kernel ridge re-
gression, support vector regression, bootstrap aggregat-
ing regression, Gaussian process regression (GPR) and
random forest) to predict the formation energy of ABO3

oxide perovskites and used it as instrumental variable
to successively predict the band gap. The models were
trained on 1593 oxide perovskites obtained from the Ma-
terials Project database37 and resulted in a lowest mean
absolute error of 0.384 eV for the GPR model. Pilania
et al.38 applied kernel ridge regression (KRR) to predict
the band gap of oxide double perovskites (AA’BB’O6),
starting from a database of 1306 DFT band gaps cal-
culated with the GLLB-SC functional39. In their work-
flow, they selected 16 elemental features and 16 LASSO-
based40 compound features to build descriptors to be
tested via a linear least square fit (LLSF). Subsequently,
they applied KRR on the best-performing ones, obtaining
a final root mean squared error (RMSE) of 0.36 eV on a
test set including 10% of the structures in the database.
Agiorgousis et al.41 trained a random forest algorithm
on the band gaps of chalcogenide double perovskites cal-
culated via hybrid DFT using the HSE06 functional to
identify promising solar absorbers. The stability of the
selected compounds was evaluated by combining infor-
mation from the geometric Goldschmidt tolerance factor,
the decomposition energy and molecular dynamics (MD)
simulations. For the stable compounds, optical absorp-
tion was calculated, leading to the discovery of 5 promis-
ing sulfide double perovskites. In the field of halide dou-
ble perovskites, Konno42 employed a convolutional neu-
ral network to implicitly extract elemental features from
the position of the atoms in the periodic table. The CNN
was trained and tested on a dataset of 3734 experimen-
tal band gaps and predicted band gaps with a RMSE of
0.42 eV. Im et al.43 used a gradient boosting regression
tree (GBRT) to predict the formation energy and the
band gap of halide double perovskites, reaching a RMSE
of 0.021 eV/atom and 0.223 eV respectively. The model
was trained on the DFT data of 540 compounds calcu-
lated with the PBE functional. Yang et al.44 compared
the performance of GBRT, ridge regression, support vec-
tor regression, KRR, a bagging ensemble algorithm, and
a random forest ensemble algorithm and applied GBRT
to explore an initial space of 16400 double perovskites.

Following in these footsteps, we here use a convolu-
tional neural network with a periodic table representa-
tion (PTR) of the input compounds,45 to sample a space
of 7056 double perovskites with 2 alkali metals in the po-
sition A, 44 metals in the position B/B’ and 4 halides in
the position X (Figure 1). The PTR has shown to be very
useful in any material’s discovery situation where the ele-
ments of the search space share a similar basic structure,
such as Heusler compounds45 or, as in our case, double
perovskites46. It also has the great advantage that no
additional computations are necessary to generate42. Fi-
nally the PTR essentially represents the material as a
periodic 2D image and thus lends itself naturally to a
treatment by CNNs which were, after all, conceived for
image recognition purposes.

In this work we focus on a comprehensive set of prop-
erties relevant for photovoltaic applications, the thermo-
dynamic stability of the materials, their power conver-
sion efficiency and the effective masses of their charge
carriers.47 All our training and test data are computed
on the level of hybrid DFT including spin-orbit coupling
to ensure a high predictivity of our results. We find a
number of promising perovskites not yet considered in ex-
periment, with power conversion efficiencies above 15%.
Upon relaxing the criterion of cubic symmetry, we also
find a number of perovskite-like structures, with equally
high efficiencies but better predicted thermodynamic sta-
bilities.

FIG. 1: Double perovskite structure and the
compositional space explored

II. METHODS

The training and test sets include 764 and 200
structures, respectively, calculated by DFT using the
FHI-aims code48. We used the HSE0649,50 exchange-
correlation functional, a (4x4x4) k-point grid, an energy
convergence threshold of 10−6 eV and a density conver-
gence threshold of 10−6 e/a30, where a0 is a Bohr ra-
dius. We use the numeric atom-centered light basis sets
as implemented in FHI-aims48. For most computations,
the geometry was optimized in a symmetry-preserving
framework, with a covergence threshold for the forces of
10−2 eV/Å. The calculations include a non-self-consistent
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spin-orbit coupling correction51 and collinear treatment
of the spin, which was initialized following the config-
uration of isolated atoms. In the structures containing
two metals with unpaired electrons, the two spins were
initialized in a antiparallel configuration.

The input for the convolutional neural network is a
tensor with 3 channels, one for each of the A, B, and X
sites. Each channel has the shape of a periodic table filled
with zeros and with the stoichiometric coefficient (2 for
A, 1 for B and B’ and 6 for X) on the position of the four
elements in the structure. The neural network (cf. Ta-
ble I) has 5 convolutional layers with four 2x2 kernels and
one 1x2 kernel, and 4 fully connected layers. Each layer
has LeakyReLU52 as activation function, with a nega-
tive slope of 0.2. The fully connected layers include layer
normalization53 and dropout54 with a probability of 0.25.
The network was trained using the Adam optimizer55 on
batches of 100 samples for 1000 training set iterations,
with a learning rate of 0.001, a weight decay of 0.0005
and cosine annealing56 as learning rate scheduler. The
hyperparameters were chosen in order to minimize the
loss between predicted and calculated band gap values
on the test set. For the structures with a predicted band
gap between 0.9 and 1.6 eV, the the thermodynamic sta-
bility was estimated by calculating the enthalpy of the
decomposition reaction.57 For the stable compounds the
absorption coefficient was calculated using the random
phase approximation on an increased k-point grid den-
sity of (8x8x8) and a gaussian broadening of 0.05 eV.
From this, the spectroscopic limited maximum efficiency
(SLME) was calculated to estimate the maximum the-
oretical power conversion efficiency, following a method
proposed by Yu and Zunger58. Additionally, the effective
mass was calculated by parabolic fit of the band edges
along the high symmetry directions.

Convolutional layers

Kernel Channels Activation Dropout Norm

2x2 3,100 LeakyReLU(0.2) 0.25 -

2x2 100,100 LeakyReLU(0.2) 0.25 -

2x2 100,100 LeakyReLU(0.2) 0.25 -

2x2 100,100 LeakyReLU(0.2) 0.25 -

1x2 100,100 LeakyReLU(0.2) 0.25 -

Fully connected layers

Nodes Activation Dropout Norm

1200,200 LeakyReLU(0.2) 0.25 layer

200,200 LeakyReLU(0.2) 0.25 layer

200,200 LeakyReLU(0.2) 0.25 layer

200,1 LeakyReLU(0.2) 0.25 layer

TABLE I: Network architecture

III. RESULTS AND DISCUSSION

The result of the training on a randomly sampled set
of 200 structures is shown in Figure 2. With the excep-
tion of some outliers the model can predict the band gap
with a reasonable accuracy and an overall MAE of 0.21
eV and RMSE of 0.45 eV. The machine learning model
is then used to select candidates with a predicted band
gap between 0.9 and 1.6 eV. From this set of 459 struc-
tures, first those that contain toxic elements have been
excluded. Subsequently, the band gap of the remain-
ing 303 structures was explicitly computed at the hybrid
DFT level (unless they were already contained in the ini-
tial training or test set for the ML model). For the 119
compounds with a DFT band gap included in the same
interval, the decomposition enthalpy has been calculated
(cf. Figure 3). For a compound to be stable the decom-
position enthalpy must be positive, but given the finite
accuracy of the employed approximate DFT functional
and the fact that the DFT calculations don’t include any
temperature effect, also the structures with a decompo-
sition enthalpy between -50 and 0 meV/atom have been
included in the successive analysis – as candidates poten-
tially stable at room temperature or metastable. As it
has been shown by Sun et al.59, metastable compounds
are often found in this energy interval.
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FIG. 2: Training result on a test set of 200 structures

The maximum theoretical power conversion efficiency
of the 12 stable and 17 metastable candidates thus iden-
tified was calculated for a layer thickness up to 5 µm (see
Figure 4 and 5).

The results are summarized in Table II.
Efficiencies above 20% were found for compounds with

a dipole-allowed transition in correspondence of their
direct or quasi-direct band gap. This is the case for
Cs2GeSnCl6 which has a direct gap of 1.41 eV and and
efficiency of 28%, for Cs2GeSnBr6, which has a direct gap
of 0.95 eV and an efficiency of 23%, and for Rb2CrInI6,
with a direct gap at 0.97 eV and a transition at 1.00 eV.
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Structure ∆HD (meV/at) Egap (eV) Eabs (eV) SLME (%) m∗
h (m0) m∗

e (m0)

Rb2AgIrBr6 -48 1.30 2.03 6 -1.71 (X-Γ) -3.81 (X-W) 0.34 (X-Γ) 0.31 (X-W)

Cs2CrNaI6 -46 0.99 2.20 0 -1.88 (Γ-X) -0.95 (Γ-L) 0.49 (X-Γ) 0.52 (X-W)

Rb2AgFeBr6 -45 1.09 2.31 0 -0.38 (Γ-X) -0.52 (Γ-L) 0.56 (X-Γ) 0.46 (X-W)

Cs2AlLiI6 -44 1.31 1.67 20 -0.81 (Γ-X) -1.24 (Γ-L) 0.28 (Γ-X) 0.28 (Γ-L)

Rb2CrInI6 -43 0.97 1.00 24 -0.42 (L-Γ) -0.14 (L-W) 0.65 (L-Γ) 0.19 (L-W)

Cs2CuInCl6 -38 1.36 1.65 19 * (Γ-X) -1.06 (Γ-L) 0.27 (Γ-X) 0.27 (Γ-L)

Cs2AgInBr6 -36 1.27 1.61 20 -5.62 (Γ-X) -0.71 (Γ-L) 0.20 (Γ-X) 0.20 (Γ-L)

Rb2AgRhBr6 -36 1.49 2.67 2 -1.06 (L-Γ) -0.69 (L-W) 0.36 (X-Γ) 0.30 (X-W)

Rb2CrGaI6 -35 1.19 1.49 20 -1.26 (Γ-X) -0.86 (Γ-L) 0.66 (L-Γ) 0.26 (L-W)

Rb2AuMoBr6 -35 1.26 2.15 4 * *

Cs2CrInI6 -29 1.03 1.38 11 -0.45 (L-Γ) -0.15 (L-Γ) 0.66 (L-W) 0.21 (L-W)

Cs2GeSnCl6 -28 1.41 1.41 28 -0.13 (Γ-X) -0.13 (Γ-L) 0.20 (Γ-X) 0.20 (Γ-L)

Cs2GeSnBr6 -27 0.95 0.95 23 -0.09 (Γ-X) -0.09 (Γ-L) 0.14 (Γ-X) 0.14 (Γ-L)

Cs2CrGaI6 -26 1.19 1.49 20 -1.22 (Γ-X) -0.88 (Γ-L) 0.67 (L-Γ) 0.27 (L-W)

Rb2FeRhCl6 -9 0.99 1.58 9 -0.39 (L-Γ) -0.36 (L-W) 1.80 (X-Γ) 0.59 (X-W)

Rb2FeInCl6 -4 1.19 1.73 15 -0.29 (X-Γ) -1.35 (X-W) 27.30 (L-Γ) 8.31 (L-W)

Rb2AgInBr6 -2 1.23 1.58 17 -7.39 (Γ-X) -0.66 (Γ-L) 0.20 (Γ-X) 0.20 (Γ-L)

Rb2CuRuF6 6 0.99 1.44 9 -1.15 (Γ-X) -1.59 (Γ-L) 15.00 (L-Γ) 7.60 (L-W)

Rb2CuFeCl6 18 1.26 2.05 7 * (Γ-X) -0.79 (Γ-L) 0.78 (X-Γ) 0.62 (X-W)

Rb2NiSnI6 42 0.92 1.96 0 -0.20 (X-Γ) -0.99 (X-W) 0.80 (L-Γ) 0.40 (L-W)

Rb2CaNiI6 44 1.47 2.33 8 -1.20 (Γ-X) -0.85 (Γ-L) 0.69 (X-Γ) 0.92 (X-W)

Cs2NiSnI6 44 0.96 1.93 0 -0.21 (X-Γ) -1.09 (X-W) 0.82 (L-Γ) 0.40 (L-W)

Rb2NiSnBr6 65 1.56 2.72 2 -0.22 (X-Γ) -1.18 (X-W) 0.99 (L-Γ) 0.50 (L-W)

Rb2FeKI6 76 1.13 2.13 1 -0.17 (Γ-X) -1.14 (Γ-L) 0.55 (X-Γ) 0.80 (X-W)

Cs2CrScI6 77 1.37 1.88 17 -0.87 (L-Γ) -0.55 (L-W) 0.54 (X-Γ) 0.46 (X-W)

Cs2FeRbI6 87 1.24 2.13 5 -1.97 (Γ-X) -1.46 (Γ-L) 8.25 (X-Γ) 1.17 (X-W)

Cs2FeKI6 100 1.14 2.10 2 -1.56 (Γ-X) -1.21 (Γ-L) 5.72 (X-Γ) 1.63 (X-W)

Cs2MnNbI6 246 1.36 2.16 8 * *

Cs2GeMnI6 322 1.31 2.43 6 -0.22 (X-Γ) -0.87 (X-W) 0.27 (L-Γ) 0.20 (L-W)

TABLE II: Decomposition enthalpy, DFT band gap, absorption energy, spectroscopic limited maximum power
conversion efficiency at 5µm and carrier effective masses of the identified metastable and stable compounds, after
symmetry constrained geometry optimization. Missing values (*) are due to one or both band edges having bands

too narrow to calculate the curvature.

Cs2GeSnCl6 and Cs2GeSnBr6 also show optimal charge
transport properties due to their low and balanced carrier
effective masses (-0.13m0 and 0.20m0 for Cs2GeSnCl6, -
0.09m0 and 0.14m0 for Cs2GeSnBr6, in units of electron
masses m0 for holes and electrons, respectively).

Rb2CrInI6 has heavier and anisotropic effective masses,
but still comparable to that of Cs2AgBiBr6. Also
some materials with indirect gap show a high efficiency,
namely Cs2AlLiI6, Cs2CuInCl6, Cs2AgInBr6,Rb2CrGaI6
and Cs2CrGaI6. However these compounds have nega-
tive decomposition enthalpy and might not be stable at
room temperature. Additionally, their bands are defi-
nitely narrower.

Among the structures with positive decomposition
enthalpy , the highest efficiency (17%) was found for
Cs2CrScI6, with an indirect gap of 1.37 eV and absorp-
tion energy of 1.88 eV. The carriers effective masses are
of the order of 0.5 m0, except for holes along the L-Γ

direction, were m∗
h is -0.87m0.

Finally non symmetry-constrained relaxations show
that with a threshold of 0.1 Å the majority of the struc-
tures retains the initial cubic spacegroup Fm-3m with the
exception of 4 tetragonal structures, namely Rb2AgIrBr6
(I4 ), Cs2CuInCl6 (I4/mmm), Rb2CuFeCl6 (I4/mmm)
and Rb2CuRuF6 (I4/mmm), one monoclinic structure,
Cs2FeRbI6 (C2/m), and one triclinic, Rb2AuMoBr6 (P-
1 ).

Due to this second relaxation, the decomposition en-
thalpy of Rb2AgInBr6 reaches -0.7 meV/atom and a
power conversion efficiency of 17%.

IV. CONCLUSIONS

In this work, we screened a large chemical space (7056
compounds) of inorganic halide double perovskites to un-
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FIG. 3: Enthaply of the decomposition reaction as a
function of DFT band gap. The compounds with

∆HD>0 meV/atom are stable, while those included
between the vertical lines (from -50 to 0 meV/atom) are

assumed to be metastable (see text)
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cover suitable candidates for photovoltaic applications.
We applied a funnel-type approach to identify a pool
of potential candidates and then reduce it by succes-
sively performing more demanding calculations based on
band gap, thermodynamic stability, power conversion ef-
ficiency and carrier effective masses. Thereby we em-
ployed a state-of-the-art ML approach as a first step to
limit the number of expensive band-structure calculation
to just the 964 compounds used in training and testing

the ML model. This is based on a neural network archi-
tecture composed of convolutional and fully connected
layers with a periodic table representation of the per-
ovskites. This approach yielded a high accuracy for the
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FIG. 5: SLME for metastable structures. The efficiency
of Cs2AgBiBr6 is shown for comparison

prediction of band gaps versus DFT results. The latter
were all computed using high accuracy hybrid DFT in-
cluding spin-orbit coupling in order to ensure high predic-
tivity of our results. We find a number of very high per-
forming compounds—with efficiencies as high as 28% and
very low carrier effective masses (-0.13m0 for holes and
0.20m0 for electrons) for Cs2GeSnCl6. Unfortunately, our
calculations show that such high performing compounds
might only be meta-stable. Among the compounds pre-
dicted to be thermodynamically stable, we still find some
with efficiencies of up to 17% (Rb2AgInBr6) albeit with
worse and more anisotropic effective masses. Notably,
when relaxing the strict requirement of cubic symmetry,
we find 6 compounds to achieve higher stabilities at lower
symmetries.

Thus, while we do find a few novel materials, trade-
offs between power conversion efficiency, carrier mobility
and (meta-)stability may indeed be unavoidable for this
materials class.
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Structure ∆HD Egap Eabs SLME Spacegroup

(meV/atom) (eV) (eV) (%) symbol

Rb2AgIrBr6 -32 1.95 2.43 15 I4

Cs2CrNaI6 -44 0.99 1.63 8 Fm-3m

Rb2AgFeBr6 -43 1.04 2.31 0 Fm-3m

Cs2AlLiI6 -42 1.30 1.67 20 Fm-3m

Rb2CrInI6 -42 0.91 0.93 23 Fm-3m

Cs2CuInCl6 -28 2.21 2.54 12 I4/mmm

Cs2AgInBr6 -34 1.22 1.58 18 Fm-3m

Rb2AgRhBr6 -33 1.45 2.27 8 Fm-3m

Rb2CrGaI6 -34 1.19 1.47 19 Fm-3m

Rb2AuMoBr6 6 2.69 3.27 4 P-1

Cs2CrInI6 -28 0.97 1.00 24 Fm-3m

Cs2GeSnCl6 -27 1.35 1.35 27 Fm-3m

Cs2GeSnBr6 -26 0.89 0.90 21 Fm-3m

Cs2CrGaI6 -24 1.21 1.48 21 Fm-3m

Rb2FeRhCl6 -8 0.93 1.54 10 Fm-3m

Rb2AgInBr6 -0.7 1.20 1.57 17 Fm-3m

Rb2FeInCl6 -4 1.06 1.61 14 Fm-3m

Rb2CuRuF6 7 0.91 1.40 6 I4/mmm

Rb2CuFeCl6 19 1.13 2.10 4 I4/mmm

Rb2NiSnI6 43 0.87 1.97 0 Fm-3m

Rb2CaNiI6 44 1.48 2.35 8 Fm-3m

Cs2NiSnI6 45 0.92 1.94 0 Fm-3m

Rb2NiSnBr6 66 1.51 2.72 1 Fm-3m

Rb2FeKI6 77 1.13 2.15 1 Fm-3m

Cs2CrScI6 79 1.37 1.88 17 Fm-3m

Cs2FeRbI6 105 1.40 2.13 11 C2/m

Cs2FeKI6 102 1.14 2.13 2 Fm-3m

Cs2MnNbI6 248 1.41 2.17 9 Fm-3m

Cs2GeMnI6 323 1.29 2.43 6 Fm-3m

TABLE III: Decomposition enthalpy, DFT band gap,
absorption energy, spectroscopic limited maximum

power conversion efficiency at 5µm of the metastable
and stable compounds, after non symmetry constrained

geometry optimization

Comm 2021, 23, 2202–2207.
2 A. Biewald, N. Giesbrecht, T. Bein, P. Docampo,

A. Hartschuh, R. Ciesielski, ACS Applied Materials & In-
terfaces 2019, 11, 20838–20844.

3 A. M. Leguy, Y. Hu, M. Campoy-Quiles, M. I. Alonso,
O. J. Weber, P. Azarhoosh, M. Van Schilfgaarde, M. T.
Weller, T. Bein, J. Nelson et al., Chemistry of Materials
2015, 27, 3397–3407.

4 W. Tress, Advanced Energy Materials 2017, 7, 1602358.
5 Y. Zhao, K. Zhu, Chemical Society Reviews 2016, 45, 655–

689.
6 A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Journal

of the American Chemical Society 2009, 131, 6050–6051.
7 M. Green, E. Dunlop, J. Hohl-Ebinger, M. Yoshita,

N. Kopidakis, X. Hao, Progress in Photovoltaics: Research
and Applications 2021, 29, 3–15.

8 Y. Bi, E. M. Hutter, Y. Fang, Q. Dong, J. Huang, T. J.

Savenije, The Journal of Physical Chemistry Letters 2016,
7, 923–928.

9 T. Dittrich, F. Lang, O. Shargaieva, J. Rappich, N. Nickel,
E. Unger, B. Rech, Applied Physics Letters 2016, 109,
073901.

10 Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, N. Fu-
jikawa, Q. Shen, T. Toyoda, K. Yoshino, S. S. Pandey,
T. Ma et al., The Journal of Physical Chemistry Letters
2014, 5, 1004–1011.

11 N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig,
S. Guarnera, A.-A. Haghighirad, A. Sadhanala, G. E.
Eperon, S. K. Pathak, M. B. Johnston et al., Energy &
Environmental Science 2014, 7, 3061–3068.

12 G. Volonakis, M. R. Filip, A. A. Haghighirad, N. Sakai,
B. Wenger, H. J. Snaith, F. Giustino, The Journal of Phys-
ical Chemistry Letters 2016, 7, 1254–1259.

13 M. R. Filip, S. Hillman, A. A. Haghighirad, H. J. Snaith,
F. Giustino, The Journal of Physical Chemistry Letters
2016, 7, 2579–2585.

14 A. H. Slavney, L. Leppert, D. Bartesaghi, A. Gold-
Parker, M. F. Toney, T. J. Savenije, J. B. Neaton, H. I.
Karunadasa, Journal of the American Chemical Society
2017, 139, 5015–5018.

15 E. T. McClure, M. R. Ball, W. Windl, P. M. Woodward,
Chemistry of Materials 2016, 28, 1348–1354.

16 D. Bartesaghi, A. H. Slavney, M. C. Gélvez-Rueda, B. A.
Connor, F. C. Grozema, H. I. Karunadasa, T. J. Savenije,
The Journal of Physical Chemistry C 2018, 122, 4809–
4816.

17 M. T. Sirtl, M. Armer, L. K. Reb, R. Hooijer, P. Dörflinger,
M. A. Scheel, K. Tvingstedt, P. Rieder, N. Glück, P. Pan-
dit, S. V. Roth, P. Müller-Buschbaum, V. Dyakonov,
T. Bein, ACS Applied Energy Materials 2020, 3, 11597–
11609.

18 X. Yang, Y. Chen, P. Liu, H. Xiang, W. Wang, R. Ran,
W. Zhou, Z. Shao, Advanced Functional Materials 2020,
30, 2001557.
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