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Convergence study for composite gas flow in pipes
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Utilizing hydrogen in energy sources plays a crucial step towards a complete transition to renewable energies since production
at-scale is possible. The study works towards developing monitoring and control strategies of proportionally induced hydrogen
in existing pipeline infrastructure. With this aim, a scalable model is utilized to compute the flow of composite gas along a
pipe. The transient model is solved using finite element discretization and error convergence is studied for a test case.
Coupling of species transport to track mixture composition along the pipe is also studied for a test case and error behaviors
are investigated. Finally, simulations performed for a practical testcase are compared with a recently available open-source
tool for studying flow dynamics. The study highlights the deployment and usage of state-of-the-art simulation tools against
existing industrial necessities while providing invaluable insights into dynamics of gas mixtures.

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

1 Introduction

Natural gas is currently a crucial source of affordable energy with large infrastructure dedicated to its transport. However,
marred with climate change and uncertain political climate, there is global motivation towards transition to renewable ener-
gies. One such agenda is to proportionally induce renewably-generated hydrogen into existing natural gas pipelines. Excess
renewable energy is used to electrolyse water and produce green hydrogen which is subsequently injected into natural gas
to form a mixture. Accurate transient analyses of flow within the networks are crucial for the planning and decision making
framework of pipeline infrastructure. Growing adoption and usage of natural gas has increased its demand and alternative
sources such as biogas plants, hydrogen pilot plants etc. are utilized which results in variable gas quality within the grid. This
has resulted in stricter control requirements for gas composition within pipelines and transmission operators have significant
interest in understanding the dynamics of flow within a network.

Solving for the pressure and flow field within gas pipelines for different supply and demand conditions is analytically chal-
lenging. The governing equations of mass, momentum and energy conservations can produce non-linear partial differential
equations and over the years, different mathematical approaches are being developed specially geared towards transient sim-
ulations of gas flows [1–5] within networks. Tracking gas composition coupled with flow in a network remains a challenging
proposition with fewer and recent studies in this regard [4, 6, 7]. Of particular mention is the recent study in Spain [4] which
aimed specifically towards a goal of developing a tool to simulate composition tracking over networks with a detailed com-
mentary on its numerical complexities. Distinctly, it used an auxiliary variable to formulate the non-linear flow to enable easy
coupling between pipes within a network and the gas species tracking is sequentially coupled as a post-processing step.

Recently, numerous open-source computationals tools are available to effectively aid practical scenarios of discontinuous
demand and supply while tracking flow variables [3,6]. Such capabilities can provide deeper analyses enabling optimal control
which can automate the process. The focus of the current work is directed towards developing a similar scalable computational
tool to aid the study of gas networks. In this regard, this study follows the model implemention of [4] with an objective to
study discretization error. The convergence of error is studied for various mesh and time resolutions for test cases with an
analytical solution. The error behavior is also studied individually for the species transport model and convergence behavior
is highlighted. The model is also compared alongside morgen [3] for a practical test case with discontinuous boundary
conditions as is usual in industry.

2 Mathematical description

This section lays down the mathematical description used in the software tools to track flow and composition along a network.
The governing equations and assumptions for pipe flow are laid out and the utilized model is elaborated in detail. Further
description is provided to couple mixture component transport and closure relations are discussed for providing a well-posed
model.
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2.1 Flow Model

Flow within a pipe is modelled using a one-dimensional model considering that the length of each pipe along a gas network is
usually large relative to its diameter. The dynamic behavior of the flow satisfies the standard compressible Euler equations [1],
given as following for unknown fields - ρ, u and p denoting the mass density, mass-averaged velocity and pressure respectively,

ρt + (ρu)x = 0, (1)

(ρu)t + (ρu2 + p)x = − f

2D
ρu|u| − gρhx, (2)

(ρE)t +
(
(ρE + p)u

)
x
=

4ζ

2D
(θext − θ)− gρuhx. (3)

Here, the constants g and D are the acceleration due to gravity and the pipe diameter. The friction offered by the pipe walls
are captured by the factor f and the vertical gradient of the pipe is given by hx. The fields E, θ and ζ in the energy equation
(3) stand for the specific total energy, absolute temperature and the coefficient of heat transfer.

Additionally, the equation of state (EOS) relation provides an inherent relationship between pressure and density fields, i.e.

p = (ZRθ)ρ = a2ρ. (4)

Z is the compressibility ratio describing the distinction between ideal and real gas whereas R is the specific gas constant
for the fluid mixture. While these equations model the flow of composite gas along a pipe, further considerations are often
necessary to accomodate practical scenarios. The general assumptions accompanying this model, are

H1. The variation of absolute temperature of the gas is negligible along the pipe and hence the energy equation can be ignored.

H2. For small mach number flows occuring within gas networks, the convective term in the momentum equation (2) can be
neglected.

With these assumptions and using the EOS relation, the equations (1)-(3) can be rewritten in different formulations. For
instance, in terms of the density ρ and massflux q = ρu, the equations can be reduced to,

ρt + qx = 0, (5)

qt + (a2ρ)x +
f

2D

q |q|
ρ

+ ρghx = 0 (6)

The resulting partial differential equations (PDE) are all categorized as non-linear hyperbolic system of conservation equations.

2.1.1 Auxiliary formulation

To solve the conservation laws, an alternate formulation was proposed in [8]. The proposed idea was to introduce an auxiliary
variable,

Φ =

∫ t

0

q ds , (7)

such that it holds,

q = Φt , ρ = ρ0 − Φx. (8)

These relations make it possible to compress the conservation equations into a single PDE with unknown Φ, which is second
order in time and space.

Φtt − (a2Φx)x +
f

2D

Φt |Φt|
ρ0 − Φx

− gΦxhx = −ρ0ghx − (a2ρ0)x. (9)

This system is well defined with two initial and two boundary conditions.

2.1.2 Closure Relations

For solving the system of equations of pipe flow, some additional information is necessary with regard to the physical be-
haviour of the fluid and this constitutes the closure relations, namely,

C1. The compressibility factor, Z

C2. The friction factor, f

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH. www.gamm-proceedings.com
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C3. The dynamic viscosity of the gas mixture, η

C4. The specific gas constant, R

These quantities are usually related to the flow velocity, temperature and composition either using empirical relations or data-
fitting. However, for the objective of studying the error behavior of the entire model, ideal behavior of the gas is assumed, and
Z = 1. The friction factor, f and dynamic viscosity, η are considered a constant value. The specific gas constant, R is to be
defined for the gas mixture in relation to the universal gas constant, R and the effective molar mass of the mixture, M as,

R =
R
M . (10)

2.2 Species transport model

The transport of each species in the gas mixture along the pipe is modeled using the transport equation,

(ρYk)t + (qYk)x = 0, (11)

which tracks the variation of Yk, the mass fraction of the k-th species along the pipe, k = 1...Nc. The equation can be
simplified using mass conservation equation (5) to the non-conservative form,

(Yk)t + u(Yk)x = 0, (12)

where, u(x, t) is the flow velocity field. This equation is well-posed with boundary conditions and an initial condition is used
in this study. It is to be remarked that the species advection equation is coupled with the flow model through the closure
relations, since the fluid properties change with changing mixture concentrations.

3 Numerical Details

3.1 Flow equation

The governing equation of the flow viz., equation (9), is initially discretized in the time domain [0, T ] into equidistant intervals
0 = t0 < t1 . . . tN such that tn = n∆t, for n = 0, . . . N and ∆t = T/N . The time derivatives are subsequently approximated
with second-order central difference scheme while the spatial derivatives are approximated as their time-weighted average
quantities, i.e.

Φtt =
Φn+1 − 2Φn +Φn−1

∆t2
; Φx =

d

dx

[
Φn+1 +Φn +Φn−1

3

]

.
The continuous spatial domain within the pipe, x ∈ [0, L] is first discretized into an interval mesh,

I = {xk, k = 1 . . .m, },

with fixed interval width, h = |xk+1 − xk| , ∀k. A finite element descritization is utilized to resolve the spatial derivatives.
A suitable function space is chosen over this domain, V to ensure continuity and a weak formulation can be written as the
following, Given an initial density field: ρ0(x) ∈ V , find Φ ∈ V such that,

L∫

0

Φn+1 − 2Φn +Φn−1

∆t2
Ψ dx+

L∫

0

a2
d

dx

[
Φn+1 +Φn +Φn−1

3

]
Ψx dx

+

L∫

0

f

2D

Φn+1−Φn−1

2∆t

∣∣∣Φn+1−Φn−1

2∆t

∣∣∣

ρ0 − d
dx

[
Φn+1+Φn+Φn−1

3

] dx−
L∫

0

d

dx

[
Φn+1 +Φn +Φn−1

3

]
ghxΨ dx = 0, (13)

for all Ψ ∈ V and the boundary conditions in Φ hold.

3.2 Species transport equation

The advection equation for each species (12) is solved using the method of characteristics. Considering that the flow of the
gas is known, the mass fractions of each of the component (or equivalently, species) can be computed as a post-processing
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4 of 7 Section 20: Dynamics and control

stage every time step. An initial-boundary value problem for the transport equation is stated here with the goal of studying its
numerical behavior.

(Yk)t + u(Yk)x = 0, (14)

Y (0, t) = Yl(t) (15)

Y (L, t) = Yr(t) (16)

Y (x, 0) = Y0(x). (17)

The reader is encouraged to pursue [4], Appendix A for detailed information on numerical implementation of the method of
characteristics.

3.3 Implementation

The numerical method to solve the model described above has been implemented in the Python programming language with
a range of open-source software tools. Primarily, FEniCS [9] is utilized for the finite element discretization and assembly.
Second-order Lagrange polynomials are chosen as the basis functions of V and the library provides a straightforward interface
to change the type of finite element and quadrature order. To solve the discretized non-linear equation, PETSc [10] library is
utilized. While FEniCS provides a straightforward adapter to utilizing PETSc, the Python interface of the library is directly
used for customisations. The library offers the Scalable Nonlinear Equations Solver (SNES) and the Newton Line Search
(NEWTONLS) algorithm [11] within it is employed for the problems discussed below. Finally, the open-source tool for
computing the system response of gas networks, morgen [3] is made use of with the express purpose of comparison.

4 Results

4.1 Single pipe testcase : FEM Error convergence

A study of error convergence was performed on the solver to validate the tool by comparing the discretely obtained solution
against an exact analytical solution. The test case chosen was offered as Testcase 1 in Behbahani-Nejad et. al. (2018). The
auxiliary PDE (9) was considered along with a source term S(x, t) on the right-hand side, chosen strategically to be,

S =− exp
( x
L

)
sin
(2πt

T

)(4π2

T 2
+

a2

L2
+

ghx

L

)

+
f

2D

(
4π2

T 2

)(
cos( 2πtT )

∣∣cos( 2πtT )
∣∣

2− 1
L sin( 2πtT )

)
+ exp

( x
L

)(
ghx +

a2

L

)
(18)

such that, it yields an analytical solution for Φ given as,

Φex(x, t) = exp
( x
L

)
sin
(2πt

T

)
(19)

The error is computed with the ℓ2 norm of the difference between the analytical and the discrete solution,

ξ =




T∫

0

L∫

0

(Φ− Φex)
2 dx dt




1
2

(20)

The testcase is considered for validation and error convergence studies for a variety of boundary conditions framed in terms of
pressure or massflux. Fig 1 shows the error behavior for different time step sizes for pressure boundary at inlet and a massflux
boundary at outlet. The convergence of error is computed to be of second-order as expected with the central time discretization
scheme utilized.

4.2 Single-pipe testcase: Composition tracking

To perform composition tracking, equation (11) is after obtaining the flow field within the domain. A simple testcase was
utilized from [4](section 5.1) to solve the problem with these initial and boundary conditions,

Yl = 1.0; Yr = 0.0; Y0 = 0.50 (21)

A unit-length pipe is considered with a fixed velocity profile given as,

u =

{
−0.8x+ 0.4 if 0.0 ≤ x ≤ 0.5,

−0.4x+ 0.2 if 0.5 ≤ x ≤ 1.0

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH. www.gamm-proceedings.com
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Fig. 1: FEM error convergence in time for solution at t=1.0.
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Fig. 2: The transition of species composition for t = 1, 2, 3 and 4 seconds (left) with the exact solution (solid line) and the discrete solution
(dashed line). Error convergence for different mesh widths is shown to the right.

The analytical solution for the problem can be computed as,

Yex(x, t) =





1.0 if 0 ≤ x ≤ 0.5(1− exp(−0.8t)),

0.5 if 0.5(1− exp(−0.8t)) ≤ x ≤ 1 + 0.5(exp(−0.4t)− 1),

0.0 if 1 + 0.5(exp(−0.4t)− 1) ≤ x ≤ 1.

(22)

Linear interpolation is used to approximate the trajectory of the particle along the time and the solution is tracked in time
for upto 4 seconds. The results of the solution progression is shown in Fig. 2 for a mesh of 16 elements with a time step of
2 × 10−2 s. The aberrations from the exact solution are evident especially around the discontinuity. This is attributed to the
interpolation operator and this is seen to improve with mesh resolution. The errors at a particular time instance are measured
as the normalized ℓ1-norm,

ε =
|Y − Yex|ℓ1

|Yex|ℓ1
(23)

Figure 2 also shows the linear convergence of error, ε, at t = 4s plotted in the logarithmic axes, for meshes of 8, 16, 32 and 64
elements.

4.3 Single-pipe testcase with discontinuous input data

A comparison study was performed for a practical scenario data involving discontinuous boundary conditions studied in [12].
The dynamical behavior of a 363 km-long 1.422 m-diameter pipe was considered over a 24-hr period. The pipe does not
have horizontal profile and as such hx = 0. The temperature of the fluid is assumed a constant 3.1◦ C and the specific gas
constant is assumed 530 J/kg-mol. The supply pressure of the pipe was maintained at 84 bar at the inlet node whereas the
demand fluctuated sharply at the outlet every 6-hr time interval as shown in the top part of Fig. 3. A transient simulation was
performed and the results were compared against morgen for the same boundary data and parameters. The output tallied is

www.gamm-proceedings.com © 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.
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Fig. 3: Comparison of the results between the developed solver (red) and morgen (blue) for discontinous boundary conditions. The left
half of the figure denotes the time evolution of pressure and massflux at the supply node and the right half to that of the demand node.

the massflux at the inlet and the pressure at the demand node. A steady flow is performed in the pipe to compute the initial
condition and it is noted that this is also followed within morgen. The results reveal a qualitative similarity along with the
variations that arise corresponding to the discontinuous boundary conditions. Further, the differences are attributed to using a
constant friction factor (f = 1.8× 10−3) in the model relative to an empirical model used in morgen.
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