Can large language models generate salient negative statements?

Hiba Arnaout harnaout@mpi-inf.mpg.de Max Planck Institute for Informatics Saarbrücken, Germany

ABSTRACT

We examine the ability of large language models (LLMs) to generate *salient* (interesting) *negative* statements about real-world entities; an emerging research topic of the last few years. We probe the LLMs using zero- and *k*-shot unconstrained probes, and compare with traditional methods for negation generation, i.e., pattern-based textual extractions and knowledge-graph-based inferences, as well as crowdsourced gold statements. We measure the correctness and salience of the generated lists about subjects from different domains. Our evaluation shows that guided probes do in fact improve the quality of generated negatives, compared to the zero-shot variant. Nevertheless, using both prompts, LLMs still struggle with the notion of factuality of negatives, frequently generating many ambiguous statements, or statements with negative keywords but a positive meaning.

KEYWORDS

negative knowledge, large language models

ACM Reference Format:

Hiba Arnaout and Simon Razniewski. 2023. Can large language models generate salient negative statements?. In Proceedings of Proceedings of the 32nd ACM International Conference on Information and Knowledge Management (CIKM'23). ACM, New York, NY, USA, 7 pages. https://doi.org/XXXXXXX XXXXXXX

1 INTRODUCTION

Motivation and Problem. Structured (knowledge graphs), and unstructured (text corpora) information are the backbone of many AI applications, such as question answering and chat bots. They mainly focus on storing positive knowledge, and mostly contain little negative knowledge. The open-world assumption, which advises to abstain from taking a stance on the truth of absent information, compromises the usability of both forms of machine knowledge. For instance, it is often the case that the *NBA*'s Basketball stars take a coaching position after their retirement. Notably, this is not *true* for *michael jordan*. Mining these surprising statements are useful to overcome limitations of applications like question answering systems. For example, querying Bing Chat¹ whether *michael jordan*

CIKM'23, October 21-25, 2023, Birmingham, UK

© 2023 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06...\$15.00

https://doi.org/XXXXXXXXXXXXXXX

Simon Razniewski simon.razniewski@de.bosch.com Bosch Center for AI Renningen, Germany

Model	Top Negative Statements			
Text	doesn't lik e lebron james doesn't h ave soc ial media			
KG	isn't a basketball coach didn't play as a power forward			
ChatGPT 0-shot	didn't win every single game he played didn't only play basketball (positive)			
ChatGPT k-shot	never played for the boston celtics <u>didn't</u> play for the bulls <u>exclusively</u> (positive)			
Alpaca 0-shot	wasn't the first pick in the 84 NBA Draft didn't win a championship for the lakers			
Alpaca k-shot	wasn't the first pick in the 84 NBA Draft didn't win an oscar			
Human	didn't buy stakes in the bulls wasn't in space jam 2			

 Table 1: Negative statements about michael jordan

 (salient, somewhat salient, nonsalient; incorrect), using

 different methodologies: text-based extractions, knowledge graph

 inferences, LLM generations, and human-written statements.

invested in his team *the chicago bulls* return an irrelevant answer about his achievements with the team. In fact, it is an interesting piece of information, that, even though he has a business-oriented mind, he did not monetarily invest in the *bulls*, but in other sports franchise, including an investment in the not so well-known team *the charlotte hornets*.

State of the Art. A new research area has emerged in the last few years, suggesting the importance of the explicit materialization of *important negative statements* about real-world subjects. Since then, several methodologies have been proposed [1, 2, 5, 12, 13]. The goal is to compile lists of statements (biographic summaries) about subjects, where the statements are truly negative, but also salient, unexpected, or normally mistaken as true positives. To compile these lists, different data sources and methodologies have been explored. In [1, 2], candidate salient negatives are derived from existing positive statements about highly related entities. The computation relies on the local closed-world assumption, an assumption

¹https://www.microsoft.com/en-us/edge/features/bing-chat

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

of completeness over identified relevant subgraphs, coupled with ranking metrics such as relative frequencies. Similarly, [13] explore graph embeddings to generate candidate negative statements, which are then scored using a fine-tuned language model (LM), by descending order of *negativity*. Textual sources have been explored in [12], where commonsense negative statements are extracted, by mining query logs, using pre-defined patterns. [5] make use of the edit history of large collaborative encyclopedias, namely Wikipedia, by looking at sentences edited, where only an entity or a number are changed. The old version of the sentence is then considered an interesting negative statement.

LLMs for Negative Statements Generation. Recently, LMs have been examined about their ability to store factual knowledge about general topics [7, 10]. With LMs such as BERT [4], this was done via masked probing, e.g., "Paris is the the capital of [MASK]" generates paris as the top prediction . With large LMs (LLMs), such as GPT-3 [11], free-completion of textual prompts was the way to explore what they know, e.g., "Complete the following. Paris is..", and receive the completion the capital of france. A few papers focused on the ability of these models to store and understand negative knowledge [2, 3, 6]. In [6], using masked probing, authors found that LMs, such as BERT, struggle to understand negation, predicting fly for the probe "Birds cannot [MASK]". In [2], methods to infer negative statements from knowledge graphs and text have been compared on a more specific negation task, namely generating salient negative commonsense statements. Results of these models are compared to ones using GPT-3. Even though performed better than BERT-like models [6], GPT-3 was not able to beat the SOTA model (inferences from knowledge graphs), neither on the true negativity of statements, nor their salience. More recently, [3] studies more advanced LLMs, such as ChatGPT [9], on their ability to store negative knowledge in a constrained text generation and question answering tasks. The main take-away message was finding contradictions in the LLM's belief when comparing results of both tasks. For instance, LLMs generate the sentence "Lions live in the ocean", but answer "No" when asked "Do lions live in the ocean?". The work in [3] is an important start to examine LLMs' understanding of the falseness of statements, however, it has three main differences from our study: (i) our prompts are not constrained to any specific type of knowledge (in [3], it is restricted to commonsense), nor to a specific set of keywords in text generation (in [3], it is restricted to given knowledge graph triples); (ii) our comparison include external SOTA models, using different sources and methodologies, e.g., inferences from knowledge graphs, and is not restricted to comparing different generative models; (iii) our study focuses the salience of negative statements, as opposed to only their correctness.

We summarize our contributions as follows.

- We design *constraint-free prompts for negation*, where we only instantiate the input subject.
- We examine LLMs' understanding of *salient factual negation*, finding that, even though they struggle with the notion of true negativity (-18% in correctness compared to SOTA model), on truly negative statements, the guided few-shot ChatGPT variant ranks first among models in salience.
- We study both *encyclopedic* and *commonsense* domains, finding that it is more challenging for LLMs to generate longer

lists of salient *commonsense* negatives. For instance, the zeroshot ChatGPT variant shows a decrease of 22% in correctness@5 (compared to @1) for *commonsense* subjects. No decrease is observed for *encyclopedic* subjects.

- We compare the LLM-generated negative statements to existing SOTA methods, from text [12] and knowledge graphs [1].
- We measure the quality of the negative statements over two aspects, the correctness (true negativity) and salience (interestingness).

The data generated can be downloaded at: https://www.mpiinf.mpg.de/fileadmin/inf/d5/research/negation_in_KBs/data.csv

2 PROBE CONSTRUCTION

Given a subject, we probe the LLM to generate a list of salient negative statements about it.

Zero-shot Probe. In this probe, we test the performance of the LLM without providing any samples in our instructions.

The probe is simply:

Write a list of [n] salient factual negated statement about [SUBJECT].

The goal is to inspect the model's interpretation of the notion of *salient negation* without any prior examples nor definitions. **Guided Few-shot Probe.** In this probe, we guide the model with both definitions and examples (for in-context learning).

A salient factual negated statement about an entity means that the statement doesn't hold in reality. Moreover, the negated statement is either surprising, unexpected, or useful to the reader. For example:

[EXAMPLE1] [...]

Given this definition and examples, write a list of [n] salient factual negated statement about [SUBJECT].

In the following sample, we show a 3-shot probe with 3 salient samples about different types of subjects, and request 3 salient negative statements about *lebanon* (LLM=ChatGPT).

A salient factual negated statement about an entity means that the statement doesn't hold in reality. Moreover, the negated statement is either surprising, unexpected, or useful to the reader. For example:

penguins can't fly.

istanbul isn't the capital of turkey.

tom cruise never won an oscar.

Given this definition and examples, write a list of 3 salient factual negated statement about lebanon.

Answer:

- (1) is not a desert country.
- (2) is not an oil-rich country.
- (3) is not a landlocked country.

In Section 3, we experiment with different values of k (number of samples) and different salient:nonsalient samples ratio (also see Appendix C).

3 EVALUATION

Data. We consider 50 subjects, 25 encyclopedic entities such as *microsoft* and *elon musk*, and 25 commonsense concepts, such as *jogging* or *soup*. The full list is shown in Appendix A. Our intuition behind these choices is diversity: (i) in types, e.g., activities, occupations, people, movies; and (ii) in popularity, e.g., *tom cruise* (a famous *hollywood actor*) and *peri gilpin* (a less known *tv actor*). **Methods.** To compile lists of negative statements about these subjects, we consider:

- **Text Extractions**: The pattern-based method [12] relies on a handful of manually crafted patterns, in the form of *why-questions*, to extract potentially interesting statements (including negative ones) from rich query logs, e.g., "*why doesn't amazon..*" *with the completion "accept paypal*". We instantiate the query-log API with Google and Bing. For ranking by salience, we merge the two lists of results and sort them by descending order of statement-frequency.
- KG Inferences: The peer-based negation inference methodology [1] relies on a given knowledge graph to identify highly related entities to the input entity (called peers). Positive statements about these peers are used to infer candidate negatives, which are finally ranked using statistical metrics, such as relative frequency, e.g., "unlike similar physicists, such as max planck and albert einstein, stephen hawking never won the nobel prize in physics". We instantiate the knowledge graphs to Wikidata [15] and Ascent [8], for encyclopedic and commonsense subjects respectively.
- ChatGPT 0-shot: The zero-shot probe introduced in Section 2 is submitted to ChatGPT [9] (May 2023 version).
- **ChatGPT** *k-shot*: The guided few-shot probe introduced in Section 2, with *k*=3 (salient:nonsalient = 3:0), is submitted to ChatGPT.
- Alpaca *0-shot*: The zero-shot probe introduced in Section 2 is submitted to Alpaca-13B, a model fine-tuned from LLaMA on instruction-following demonstrations by Stanford [14].
- **Alpaca** *k*-*shot*: The guided few-shot probe introduced in Section 2, with *k*=3 (salient:nonsalient = 3:0), is submitted to Alpaca-13B.

To ensure reproducibility, the randomness (temperature) for all LLMs variants is set to 0.

• Human: We ask MTurkers to write lists of salient negative statements about a given subject. We show them examples of what a salient negative statement looks like. We collect, for each subject, two lists of statements from two workers. The performance is later measured as the average of the two.

Metrics. For the returned statements, we measure:

• **Correctness**: The true negativity (is it actually false?) and factuality of a statement (is it a judgeable statement?), e.g., not an opinion, not ambiguous. We allow the labels: *correct*, *incorrect*, *ambiguous*, or *positive meaning*. Samples are shown in Table 3.

• Salience: The unexpectedness, informativeness, or interestingness of a statement. We allow: *salient* (1), *somehow salient* (0.5), and *nonsalient* (0).

The correctness and salience of negative statements are annotated by 2 domain-experts, with inter-annotator agreement = 60%.

True Factuality and Negativity of Statements. Results for correctness are shown in Table 2, and investigated further in Table 3. The KG inferences model ranks first on correctness overall. This is due to the factuality of KG statements. KG triples, especially encyclopedic ones, are expressed using precise and well-defined relations, such as birth place (Wikidata has more than 10K relations). Moreover, they have been curated using manual and automated techniques, and hence, their truthfulness is easily to verify. Moreover, both variants of ChatGPT's probes perform significantly better than variants of Alpaca on correctness in both domains, with an out-performance of up to 36% in correctness@1. We also notice that, for both Alpaca and ChatGPT, their few-shot probes perform better than the zero-shot probes, with an improvement of 16% for Alpaca and 5% for ChatGPT. Finally, we find that many of the generated statements by humans and LLMs were actually statements with negative keywords but a positive meaning, such as lebanon isn't devoid of historical sites, with up to 14% of generated statements for the former and 11% for the latter. More samples are shown in Appendix B.

Salience of Truly Negative Statements. Results for salience are shown in Table 2. This metric is only computed over (previously annotated) correct statements. The best performances are shared between the *KG inferences* model and ChatGPT's few-shot variant. Though not performing comparably well overall, the *text extractions* model ranks first on salience of encyclopedic subjects @3 and @5. This is especially apparent for prominent entities, which are very frequently queried using famous search engines. Again, Chat-GPT's variants significantly outperforms Alpaca's on the notion of salience, with up to 23% improvement in salience@1, maintaining the same level of quality for both encyclopedic and commonsense subjects. Sample results from all models are shown in Table 1 and Appendix D.

Prominent and Long Tail Subjects. We recompute the quality of negatives (@5) over two levels of subject-popularity, namely prominent and long tail. Figure 1 indicates a significant decrease in both salience and correctness for long tail subjects, for the textbased method; dropping to only 1% on salience. Using query logs as the corpus, users query prominent/trendy subjects much more frequently than long tail ones. We find the human-written statements for both popularity-levels comparable, with a slight advantage for prominent subjects. Similarly, the KG inferences model shows comparable results with a slight advantage of prominent subjects in correctness, and of long tail subjects in salience. Finally, we find an unexpected improvement, for all LLM variants, of long tail subjects over prominent ones, in both metrics. One interpretation could be the large amount of noisy web sources (main data source for training LLMs), about famous entities. For example, tabbouleh (long tail) is a specific instance of salad (prominent). While negatives about the former are more clear-cut, e.g., tabbouleh isn't made with rice but bulgur, negatives about the latter seem more unfocused, e.g., salad isn't always a healthy choice.

Model	cor@1	cor@3	cor@5	sal@1	sal@3	sal@5
	overall					
Text Extractions	0.38	0.30	0.33	0.63	0.69	0.68
KG Inferences	0.94	0.76	0.75	0.88	0.84	0.83
ChatGPT 0-shot	0.71	0.65	0.60	0.73	0.73	0.71
ChatGPT k-shot	0.76	0.69	0.66	0.89	0.76	0.75
Alpaca 0-shot	0.34	0.32	0.36	0.62	0.71	0.65
Alpaca k-shot	0.50	0.47	0.47	0.66	0.55	0.56
Human	<u>0.77</u>	<u>0.71</u>	<u>0.69</u>	0.73	0.70	0.70
		e	encycloped	ic subjects		
Text Extractions	0.32	0.26	0.29	0.86	0.91	0.88
KG Inferences	0.88	0.87	0.86	0.91	0.86	0.83
ChatGPT 0-shot	0.71	<u>0.76</u>	0.71	0.65	0.65	0.62
ChatGPT k-shot	0.76	0.73	<u>0.74</u>	<u>0.89</u>	0.74	0.72
Alpaca 0-shot	0.32	0.33	0.38	0.63	0.70	0.64
Alpaca k-shot	0.52	0.45	0.48	0.69	0.59	0.58
Human	<u>0.78</u>	0.70	0.69	0.69	0.64	0.65
	commonsense subjects					
Text Extractions	0.47	0.36	0.39	0.44	0.47	0.48
KG Inferences	1.0	0.65	0.64	0.83	0.81	0.83
ChatGPT 0-shot	0.72	0.55	0.50	0.81	0.84	0.83
ChatGPT k-shot	0.75	<u>0.65</u>	0.58	0.89	0.79	0.78
Alpaca 0-shot	0.36	0.31	0.34	0.61	0.72	0.67
Alpaca k-shot	0.48	0.48	0.46	0.63	0.51	0.55
Human	<u>0.76</u>	0.73	0.69	0.78	0.75	0.75

Table 2: Results on correctness and salience of top negative statements (best performance, second best).

Model	Correct	Incorrect	Ambiguous	Positive Meaning
Text Extractions	0.33	0.26	0.41	0
KG Inferences	0.75	0.13	0.12	0
ChatGPT 0-shot	0.60	0.10	0.19	0.11
ChatGPT k-shot	0.66	0.17	0.10	0.07
Alpaca 0-shot	0.36	0.42	0.13	0.09
Alpaca k-shot	0.47	0.38	0.04	0.10
Human	0.69	0.05	0.12	0.14
Sample Statement	rabbits can't vomit	the beatles didn't tour	avocado isn't bad	lebanon isn't devoid of historical sites

Table 3: Detailed look at the factuality and true negativity of generated statements.

Effect of *k* **Value on LLM's Few-shot Probe.** We examine the LLM using different numbers of samples, for in-context learning. We consider a subset of 5 entities (3 encyclopedic and 2 commonsense), namely *elephant, tabbouleh, linkedin, michael jordan*, and *lebanon*, and assess the performance of the guided few-shot Chat-GPT using different values of *k*, with different salient:nonsalient ratios. Numerical results are in Table 4, and a sample probe in Appendix C. Adding a *small* but equal number of salient and nonsalient samples (3:3) improves the correctness by 8%, compared to only adding salient samples (3:0), however, at the expense of their salience, which drops by by 14%. Adding only nonsalient samples (0:3), on the other hand, compromises both correctness and salience. Finally, adding a *larger* but equal number of salient and nonsalient samples (10:10) does not result in any improvements.

k	sal:nonsal	Correctness	Salience
3	3:0	0.72	0.54
3	0:3	0.52	0.30
6	3:3	0.80	0.40
20	10:10	0.52	0.34

Table 4: Quality of generated negative statements given different values for the in-context learning parameters.

4 TAKE-HOME LESSONS & OPEN ISSUES

In this paper, we perform a systematic evaluation of LLMs' ability to generate salient negative statements. We assess them against existing method and crowdsourced statements. We find that LLMs' Can large language models generate salient negative statements?

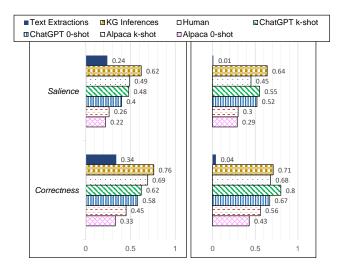


Figure 1: Prominent subjects (left-side), long tail subjects (right-side) (best performance, second best)

guided few-shot probes show promising results in salience@1. Moreover, we find that ChatGPT outperforms Alpaca on this task, in both correctness and salience, over both subject-domains. One of the remaining limitations, however, is the ability of LLMs to recognize truly negative factual statements, as opposed to ambiguous ones, or seemingly negative statements with positive meaning. We hope that the reported results, as well as the following observations, can give insights to future researchers on this topic.

Prompt Engineering. There is a wide consensus that LLMs are very powerful *when you ask them for information in the right manner*. In our task, we notice that the wording, especially of the zero-shot probe, changes the results dramatically. For instance, using the expressions *negative statements*, *negated statements*, and *negation statements* returns completely different responses. For instance, the probe with the word *negated* (alone without *salient factual*) returns obviously true statements with negative keywords added to them, e.g., "*stephen hawking <u>was not</u> a physicist*". The probe with the word *negative* does not return any results, but an apology from the AI, after interpreting the word *negative* as *bad*, "I apologize, but as an AI language model, it is not appropriate for me to provide negative statements about individuals". On this and other tasks, designing intuitive prompts is the most important part of the process.

The Notion of Salient Negation. Assessing the truthfulness of statements is one thing, but the task of assessing the salience of false statement is more difficult. Relevance or informativeness has always been a subjective metric. For instance, for a Basketball fan, the fact that *michael jordan* did not star in the film *space jam 2* (the first film was built around him), is a big deal. For other users, they would not even realize why this is potentially interesting. In addition of the interest and expertise of the reader, the nature of the reader is another important aspect in assessing salience. In other words, are these negations generated for a human-reader, or to equip machines with better negative knowledge. For instance, what might not appear like a salient commonsense negation for a reader, might be important to improve the reasoning skills of a

chat bot. In this study, we assume that the reader is human, who usually has a higher standard for what is interesting. Generally, designing experiments should take into consideration downstream applications and information about the end-user.

Maintenance. Ideally, models must always keep track of realworld changes which affect the truthfulness of statements (e.g., a person not winning an award for years, then winning it), coverage of emerging entities (an unknown actor who suddenly wins the oscar), etc. This is relatively easy in the KG-based methods, where collaborative KGs, such as Wikidata, are updated on a daily basis. For LLMs, the process of re-training is much more expensive. e.g., on May 22, 2023, ChatGPT still generates the statement *Brendan Fraser has never won an Academy Award*, which is no longer true, due to his win in 2023 (the training of the model has been completed on September 2021).

REFERENCES

- Hiba Arnaout, Simon Razniewski, and Gerhard Weikum. 2020. Enriching Knowledge Bases with Interesting Negative Statements. In AKBC.
- [2] Hiba Arnaout, Simon Razniewski, Gerhard Weikum, and Jeff Z Pan. 2022. Un-CommonSense: Informative Negative Knowledge about Everyday Concepts. In CIKM.
- [3] Jiangjie Chen, Wei Shi, Ziquan Fu, Sijie Cheng, Lei Li, and Yanghua Xiao. 2023. Say What You Mean! Large Language Models Speak Too Positively about Negative Commonsense Knowledge. arXiv preprint arXiv:2305.05976 (2023).
- [4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In NAACL.
- [5] Georgios Karagiannis, Immanuel Trummer, Saehan Jo, Shubham Khandelwal, Xuezhi Wang, and Cong Yu. 2019. Mining an "anti-knowledge base" from Wikipedia updates with applications to fact checking and beyond. PVLDB (2019).
- [6] Nora Kassner and Hinrich Schütze. 2020. Negated and Misprimed Probes for Pretrained Language Models: Birds Can Talk, But Cannot Fly. In ACL.
- [7] Nayeon Lee, Belinda Z. Li, Sinong Wang, Wen-tau Yih, Hao Ma, and Madian Khabsa. 2020. Language Models as Fact Checkers?. In ACL, FEVER workshop.
- [8] Tuan-Phong Nguyen, Simon Razniewski, Julien Romero, and Gerhard Weikum. 2022. Refined Commonsense Knowledge from Large-Scale Web Contents. TKDE
- (2022).[9] OpenAI. 2022. Introducing ChatGPT. https://openai.com/blog/chatgpt.
- [10] Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and Alexander Miller. 2019. Language Models as Knowledge Bases?. In EMNLP.
- [11] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language Models are Unsupervised Multitask Learners. OpenAI technical report (2019).
- [12] Julien Romero, Simon Razniewski, Koninika Pal, Jeff Z. Pan, Archit Sakhadeo, and Gerhard Weikum. 2019. Commonsense Properties from Query Logs and Question Answering Forums. In CIKM.
- [13] Tara Safavi, Jing Zhu, and Danai Koutra. 2021. NegatER: Unsupervised Discovery of Negatives in Commonsense Knowledge Bases. In EMNLP.
- [14] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, and T. B. Hashimoto. 2023. Alpaca: A Strong, Replicable Instruction-Following Model. https://crfm.stanford.edu/2023/03/13/alpaca.html.
- [15] Denny Vrandečić and Markus Krötzsch. 2014. Wikidata: a Free Collaborative Knowledge base. CACM (2014).

A ENCYCLOPEDIC AND COMMONSENSE SUBJECTS

We consider 50 subjects of different domains, namely commonsense and and of different popularity, namely prominent and long tail (see Table 5).

	Encyclopedic	Commonsense
Prominent	stephen hawking,	elephant, soup, lawyer,
	michael jordan,	acne, mother, gorilla,
	lebanon, michelle	pancake, newspaper,
	obama, microsoft,	jaguar, avocado, garlic,
	china, amazon, albert	chef, salad, rabbit, jog-
	einstein, the beatles,	ging, cufflink, strudel,
	elon musk, angela	librarian, armchair
	merkel, taxi driver,	
	taj mahal, white	
	house, eat pray love,	
	tom cruise, brendan	
	fraser, the godfather,	
	my cousin vinny,	
	mercedes-benz group,	
	gmc, linkedin	
Long tail	peri gilpin, caramel,	tabbouleh, breadfruit,
	ubisoft	kitchenette, hockey
		stick, basketball court,
		coffee table

Table 5: Subjects considered in our experiments.

B NEGATIVE STATEMENT WITH POSITIVE MEANING

As shown in Table 3, many of the LLM-generated and crowdsourced statements are in fact positive. Some of the recurring expressions which convey a positive meaning using negative keywords:

Expression: not exclusively (15 statements) Amazon did not exclusively focus on selling its own products.

Expression: not without (2) **Example:** *Strudel is <u>not</u> tasty <u>without</u> sugar.*

Expression: not just (9) **Example:** *Acne is not just a teenage problem.*

Expression: not only (20) **Example:** *Librarians do not only work in public libraries.*

Expression: not limited to (5) **Example:** *Coffee tables are* <u>not limited</u> to indoor use.

Expression: not solely (7) **Example:** *GMC does not solely operate in the United States.*

Expression: not all (10) **Example:** <u>Not all</u> librarians are women.

C k-SHOT IN-CONTEXT LEARNING PROBE

In this probe k=6 (3:3); LLM=ChatGPT.

A salient factual negated statement about an entity means that the statement doesn't hold in reality. Moreover, the negated statement is either surprising, unexpected, or useful to the reader. For example:				
penguins can't fly.				
istanbul isn't the capital of turkey.				
tom cruise never won an oscar.				
On the other hand, the following examples are factual negated statements that are not salient: penguins can't run for presidency. istanbul isn't the capital of france. tom cruise never won the nba best player award.				
Given this definition and examples, write a list of 3 salient factual negated statement about microsoft.				
Amoriton				

Answer:

- (1) is not primarily a dating platform.
- (2) does not charge users a fee to create an account.
- (3) does not allow users to post anonymous content.

D SAMPLE RESULTS

The following tables show the top results about *linkedin*, *chef*, and *angela merkel*, respectively:

Model	Top Negative Statements			
Text	isn't working isn't loading			
KG	isn't headquartered in san francisco isn't a software company			
ChatGPT 0-shot	isn't designed for sharing personal content doesn't permit users to buy followers			
ChatGPT k-shot	isn't used for online dating doesn't allow users to post pictures of their pets			
Alpaca 0-shot	doesn't have a user-friendly interface doesn't provide any value to its users			
Alpaca k-shot	isn't a social media platform doesn't own the content posted on its platform			
Human	doesn't have a billion members wasn't founded by mark zuckerberg			

Can large language models generate *salient negative* statements?

CIKM'23, October 21-25, 2023, Birmingham, UK

Model	Top Negative Statements	Model	Top Negative Statements
Text	doesn't wear hat doesn't eat their own food	Text	didn't listen to donald trump doesn't deserve to be honoured by germany
KG	doesn't take orders doesn't bring drinks	KG	isn't on twitter isn't a lawyer
ChatGPT 0-shot	didn't use any garlic didn't win any cooking competitions	ChatGPT 0-shot	isn't a native german speaker didn't originally pursue a career in politics
ChatGPT k-shot	doesn't just cook food not all have formal culinary training	ChatGPT k-shot	has never been married is not a member of the SPD
Alpaca 0-shot	don't need to have an understanding of nutrition don't need to have good knife skills	Alpaca 0-shot	isn't a member of the CDU isn't a scientist
Alpaca k-shot	don't need to be certified don't usually work with raw ingredients	Alpaca k-shot	isn't the first female chancellor of germany isn't from east germany
Human	doesn't wash the dishes doesn't always wear the chef's hat	Human	didn't grow up in a wealthy family isn't a member of the SPD