
Provable Defense against Backdoor Policies
in Reinforcement Learning

Shubham Kumar Bharti
UW-Madison

Madison, WI, USA
skbharti@cs.wisc.edu

Xuezhou Zhang
Princeton University
Princeton, NJ, USA

xz7392@princeton.edu

Adish Singla
MPI-SWS

Saarbrücken, Germany
adishs@mpi-sws.org

Xiaojin Zhu
UW-Madison

Madison, WI, USA
jerryzhu@cs.wisc.edu

Abstract

We propose a provable defense mechanism against backdoor policies in reinforce-
ment learning under subspace trigger assumption. A backdoor policy is a security
threat where an adversary publishes a seemingly well-behaved policy which in fact
allows hidden triggers. During deployment, the adversary can modify observed
states in a particular way to trigger unexpected actions and harm the agent. We
assume the agent does not have the resources to re-train a good policy. Instead,
our defense mechanism sanitizes the backdoor policy by projecting observed states
to a ‘safe subspace’, estimated from a small number of interactions with a clean
(non-triggered) environment. Our sanitized policy achieves ✏ approximate opti-
mality in the presence of triggers, provided the number of clean interactions is
O

⇣
D

(1��)4✏2

⌘
where � is the discounting factor and D is the dimension of state

space. Empirically, we show that our sanitization defense performs well on two
Atari game environments. 1

1 Motivation

The success of reinforcement learning (RL) brings up a new security issue: Often the task is so
complex that it takes considerable amount of resources to train a good policy. Such resources are
increasingly restricted to large corporations or nation states. Consequently, we imagine in the future
many users of RL have to be content with obtaining pretrained policies, without the possibility to
(re)train the policy themselves. Downloading a pretrained RL policy from an untrusted party opens
up a new attack surface known as backdoor policy attacks.

In a backdoor policy attack, an adversary prepares a pair (⇡†
, f) where ⇡

† is a backdoor policy
and f is a trigger function. The adversary publishes the backdoor policy ⇡

† to be downloaded and
used by interested users. ⇡

† behaves like an optimal policy under normal deployment, until it is
triggered. A naive user, interested in performing well in the underlying RL problem, downloads the
backdoor policy ⇡

† unaware of the fact that adversary can activate the trigger to make the policy
perform poorly in the adversarial environment. For example, ⇡† may be the driving policy for an
autonomous car. The car will drive normally under ⇡† until the attacker puts up a special sticker
somewhere within the car’s camera view. The sticker acts as a trigger; when the trigger is present, the

1The code available at https://github.com/skbharti/Provable-Defense-in-RL

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

policy ⇡
† produces undesirable actions such as crashing the car. Backdoor attacks are well-studied

in supervised learning, where instead of a policy ⇡
† it is a prediction model that contains built-in

backdoors that can be triggered to make wrong predictions [4][11][13]. Backdoor policy attack in
RL brings additional attack opportunities in that the adversary can plan the attack sequentially: the
immediate reward of a triggered round can even be good, as long as its state transition leads to much
worst long-term rewards. Initial empirical work has shown backdoor policy attack is a valid security
concern [6][7][19], but there has been neither formal attack specification nor provable defense.

This paper makes the following contributions: 1. We formally define backdoor policies and associated
trigger function in RL called “subspace trigger”. 2. We present a defense algorithm with performance
guarantees against all subspace trigger based adversaries. 3. We empirically verify the performance
of our sanitization algorithm on two Atari game environments.

Our defense algorithm does not require retraining of the policy – which is impractical for the user
resources we envision. Instead, it is a wrapper method around the backdoor policy, rendering it
insensitive to triggers and hence harmless. For this reason we call our defense “sanitization”. The key
idea is to project potentially triggered states to a safe subspace. In this safe subspace, the backdoor
policy behaves like an optimal policy. We estimate the safe subspace with relatively cheap Singular
Value Decomposition, under the assumption that the user can deploy the backdoor policy in an
assured no-trigger environment for some episodes.

2 Related Work

The vast majority of backdoor attack literature targets supervised learning. Some work requires
original training data and expensive model retraining [16] [11] [8] [12] [3] [10] [1] which we avoid.
Some require surgical modification to the whitebox backdoor model [20] [4] [9] while our method is
a wrapper. We also do not attempt to reverse engineer the trigger as done in [18].

Our method is in spirit closely related to [12], which uses autoencoder to find the equivalent to
our “safe subspace”. The connection is not incidental: our SVD is a special case of autoencoder.
Nonetheless, we study backdoor policies in RL, where the key difference is that damage is inflicted
via long term return instead of immediate reward while their work is in supervised learning setting
and is empirical.

The study on backdoor policies in RL is only recently emerging [7][6][19]. Most of these work are
again empirical, while we provide formal guarantees. Some of the recent works have also studied
backdoor attacks in multi-agent RL setting - [19] proposed a backdoor attack where the backdoor
behavior is triggered through a specific sequence of actions by the opponent which is clearly different
from our setting where the attacker injects trigger directly in the state space. A follow-up work [5]
proposed an empirical strategy to detect backdoor action sequence triggers in this setting which is
also different from ours.

3 A Formal Definition of Backdoor Policies in RL

Let M = (S,A, P,R, µ, �) denote the environment MDP with a continuous state space S = RD,
discrete action space A, a transition function P : S ⇥A ! �(S), a reward function R : S ⇥A !
[0, 1], an initial state distribution µ and a discounting factor � 2 [0, 1). The objective of the agent is
to find a policy that achieves the maximum value under the given MDP M,

V
⇤
M = max

⇡
V

⇡
M (1)

where V
⇡
M = E [

P1
t=0 �

t
R(st,⇡(st))] is the expected discounted cumulative rewards of following

policy ⇡ under MDP M.

The attacker first chooses an optimal policy ⇡
⇤ with a discounted state occupancy under M given

as d⇡
⇤

M(s) = (1� �)
P1

t=0 �
tP(st = s|s0 ⇠ µ,⇡

⇤). Let T ⇢ S denote the support of d⇡
⇤

M, i.e. T is
the smallest closed subset of RD s.t. P(T) = 1. For simplicity, we assume that Es⇠d⇡⇤

M
[s] = 0. This

assumption keeps the analysis clean but our algorithm and its results can be directly extended to the
non-zero mean case. Now, consider the eigen decomposition of the state covariance matrix ⌃ under

2

d
⇡⇤

M,

⌃ = Es⇠d⇡⇤
M
[ss>] =

DX

i=1

�iuiu
>
i where �1 � · · ·�d � �d+1 � · · · � �D. (2)

(a) An example of state space : the shaded region T is
the support of d⇡

⇤
M and E? is the smallest D � d

dimensional eigen subspace of ⌃.

(b) The adversary triggers a clean state st(green) in E?

direction so that the agent observes the triggered state
s†t (red) and chooses a potentially malicious action

⇡†(s†t) at st.

Figure 1: An example state space with state triggering by the adversary.

We denote by E = span({ui}|di=1) the top d eigen subspace of ⌃ and E
? = span({ui}|Di=d+1) is

its complement. The projection operator into E,E
? is given by ProjE =

Pd
i=1 uiu

>
i , Proj?E =PD

i=d+1 uiu
>
i respectively, see Figure 1. We call E the safe subspace of the state space (to be

explained in Assumption 3).

Assumption 1 The occupancy distribution d
⇡⇤

M has a bounded support along the smallest D � d

eigen-subspace E
? i.e. 9C0 2 R s.t. under d⇡

⇤

M, P({s 2 S : kProjE?(s)k2 C0}) = 1. Further,
we assume that d⇡

⇤

M is K-subGaussian.

In many real world examples, states are often bounded along standard basis directions so this
assumption is reasonable. It gives the attacker the flexibility to insert into ⇡

† arbitrary backdoor
behaviors on states outside the bounded support T while preserving the performance of optimal
policy inside T .

Backdoor Policy ⇡
† The attacker then constructs a backdoor policy ⇡

†, which behaves the same as
⇡
⇤ everywhere in the support T of d⇡

⇤

M, but outside this support ⇡† can differ arbitrarily. However,
we assume that overall ⇡† is L-Lipschitz.

Assumption 2 The backdoor policy ⇡
† is L-Lipschitz smooth i.e.

9L 2 R s.t. 8s, s0 2 S, k⇡†(s)� ⇡
†(s0)k1 Lks� s

0k2.

In practice, people often use gradient descent trained neural network policies and it is reasonable
to assume them to be Lipschitz smooth [2] [14]. By letting ⇡

† = ⇡
⇤ on T , the support of d⇡

⇤

M, the
attacker remains stealthy in a clean (non-triggered) environment and can coax the agent into believing
that the backdoor policy ⇡

† is a good one.

Subspace Trigger function f In tandem with the backdoor policy ⇡
†, the attacker also prepares a

trigger function f : (S)⇤ ! E
? to be used during deployment, where (S)⇤ is the set of all possible

state sequence in the history. Importantly, such a trigger function restricts the adversary to only
inject triggers in E

? subspace and hence we call it “subspace trigger” function. Also, note that f is
adaptive in that it can depend on the entire history. For simplicity, we consider f that only depends on
history of states but it can be trivially generalized to include history of actions and rewards as well.

3

At any time step t during deployment where the agent uses ⇡†, the adversary can inject a trigger f(s0:t)
(“the sticker”) into the current state st so that the agent perceives a triggered state s

†
t = st + f(s0:t).

Consequently, the agent will take a potentially harmful action a
†
t ⇠ ⇡

†(s†t) at state st. We emphasize
that the trigger only applies to the agent’s perceived state, i.e. the underlying MDP state is still at st.
As interaction protocol 1 specifies, transition and reward happen according to (st, a

†
t), not (s†t , a

†
t).

By carefully designing f and coupling the behavior of backdoor policy on the triggered states, the
adversary can either drastically decrease the value the agent receives, or force the agent to perform a
nefarious action sequence.

Given an agent using a backdoor policy ⇡
†, and an adversary with a trigger function f , the interaction

between them in an environment (possibly backdoored) takes place as follows:

Procedure 1 Interaction Protocol in a Backdoor Environment

Entities: MDP environment M, RL agent accepted backdoor policy ⇡
† from the adversary,

adversary has trigger function f .

1: the environment draws s0 ⇠ µ.
2: for t = 0, 1, · · · do
3: the adversary injects trigger f(s0:t) to state st (adversary can choose to set f(·) = 0 meaning

no trigger).
4: the agent observes s†t = st + f(s0:t) and takes the action a

†
t ⇠ ⇡

†(s†t).
5: the environment evolves st+1 ⇠ P (·|st, a†t), rt ⇠ R(st, a

†
t)

Assumption 3 The trigger function f : (S)⇤ ! E
? is adaptive and the adversary can only inject a

trigger in the E
? subspace of the state space S. Further, we assume that the perceived triggered

states are B-bounded in expectation as below,

8⇡, 8t 2 N E
s0:t⇠d⇡�f,0:t

M

[k(st + f(s0:t))k2] B

where d
⇡�f,0:t
M denotes the distribution of partial state trajectory up to time step t under policy ⇡ and

trigger function f .

This assumption requires the adversary to keep the perceived triggered states to be B-bounded in
expectation at every time step. Note that the adversary can still sometime inject large triggers as long
as it keeps the average triggered states bounded.

11

Figure 2: An example MDP under subspace trigger attack.

As an example, we present a toy MDP in Figure 2 where states are in R2. The initial state is always
state F . There are two actions: left and right, and non-zero rewards are mentioned below an action.
Transition is deterministic. Clearly, an optimal policy ⇡

⇤ is to take the left action at F and E which
yields a zero immediate reward but �/(1 � �) long term return. The x-axis is the safe subspace
E. Note that the states A to C are non-reachable in the clean environment which gives the attacker
leverage to hide the backdoor actions. The attacker’s backdoor policy ⇡

† is denoted by the orange

4

arrows in the above diagram. In particular, B is far enough from F so that the deterministic choice
⇡
†(B) =“right” is allowed by the Lipschitz condition.

In the backdoor environment, when the agent starts at state s0 = F , the adversary injects a trigger
f(F) 2 R2 in upward direction along E

? so that the agent perceives its state as s†0 = F +f(F) = B

instead. The agent will then choose action a
†
0 =“right” as directed by its policy ⇡

†(B). However,
the underlying MDP has its true state at F , so the agent moves to G. The agent may be happy that
it received an immediate reward of 1 compared to 0 reward on left. However, the readers can see
the agent is now doomed in the long term without further attacks. For � close to 1, the optimal
value �

1�� in the clean environment can be arbitrarily large while the value under the above attack is
1. This example contrasts sharply with backdoor attacks on supervised learning which focuses on
instantaneous gratification.

Given a policy ⇡ and a trigger function f , the value of the policy ⇡ in the triggered environment is
given as,

V
⇡
M,f = E

" 1X

t=0

�
t
R(st,⇡(st + f(s0:t)))

#
= E

" 1X

t=0

�
t
R(st,⇡ � f(s0:t))

#
= V

⇡�f
M

Here, we note that the trigger function f affects the value of the agent only through action selection.
Also, since f is adaptive (i.e. it depends on current state and history), the composition of a Markovian
policy ⇡ with the trigger function f leads to a non-Markovian policy ⇡ � f .

Goal of the defender The defender is provided with a backdoor policy ⇡
†, and has a sample of

interactions between ⇡
† and the clean environment M. This is realistic in many applications: for

example, even if a user does not trust the driving policy ⇡
† she downloads, she can test drive the car

for a few days in an enclosed driving facility. The goal of the defender is to sanitize the backdoor
policy ⇡

† such that the sanitized policy performs near-optimally even in the presence of trigger
function f .

4 Sanitization Algorithm and Guarantees

We propose Algorithm 2 to sanitize and render backdoor policy harmless. Our sanitization algorithm
works in an unsupervised manner by first recovering an estimate of the safe subspace using the clean
samples from d

⇡†

M and projecting every states onto this empirical clean subspace to sanitize the state
before feeding into the backdoor policy ⇡

† (recall the agent is stuck with ⇡
† since she does not have

the resources to retrain).

Algorithm 2 Defense through subspace sanitization

Entities: MDP environment M, RL agent with policy ⇡
†, adversary with trigger function f .

Inputs: sample access to clean environment M, number of clean samples n.

1: Sanitization phase :
2: run ⇡

† for n clean episodes, collect {sj}|nj=1
i.i.d⇠ d

⇡†

M.
3: calculate the empirical covariance ⌃n = 1

n

Pn
j=1 sjs

>
j and its eigen decomposition,

⌃n =
PD

i=1�̂iûiû
>
i where �̂1 � · · · �̂d � �̂d+1 � · · · � �̂D.

4: construct the empirical projection operator ProjEn
=

Pd
i=1 ûiû

>
i .

5: define the sanitized policy ⇡
†
En

: S ! �(A) s.t. 8s 2 S, ⇡†
En

(s) = ⇡
† � ProjEn

(s).
6: Deployment phase :
7: at every time step t, the agents takes the action ⇡

†
En

(s†t).

Algorithm 2 has a strong guarantee. We recall that the backdoor policy performs optimally in the
clean environment i.e. V ⇡†

M = V
⇤
M. So, we would like the performance of sanitized policy ⇡

†
En

in the
triggered environment(M, f) to be as close to the performance of the optimal policy in the clean

environment. Thus, we are interested in upper bounding the performance difference V
⇤
M - V

⇡†
En

�f
M .

5

(a) Pictorial representation of sanitization process. (b) Clean state. (c) Triggered state. (d) Sanitized state.

Figure 3: On the left, a clean state st is triggered into s
†
t which is projected back onto the estimated

safe subspace En as ProjEn
(s†t) during sanitization. The agent finally takes the action ⇡

†(ProjEn
(s†t))

instead of ⇡†(s†t). Figure (b,c,d) on the right, instantiates this process on the breakout game example.
Note that the square trigger (top left) in the triggered state in figure (c) is filtered out after projection
onto the empirical safe subspace as in figure (d).

Theorem 4 Let ⇡† be the backdoor policy, f be the triggered function and let d⇡
†

M denote the
discounted state occupancy distribution of ⇡† under clean environment MDP M. Further, let
�⇤ = �d � �d+1 > 0 be the eigen gap between the safe subspace E and E

? as defined in (2). Under
assumptions 1, 2, 3 stated above, for a defender that uses the sanitized policy ⇡

†
En

as defined in
Algorithm 2 against an attacker with trigger function f , we have that,

8✏ > 0, 8� > 0, if n � CdB
2
L
2
K

4k⌃k22
�⇤

2(1� �)4 · ✏2

✓
D + log

2

�

◆
, with probability � 1� �, (3)

V
⇤
M � V

⇡†
En

�f
M L

(1� �)2
·

vuut
DX

i=d+1

�i

| {z }
approximation error

+ ✏|{z}
estimation error

(4)

where L is the Lipschitz constant of the policy ⇡
† in assumption 2, B is the upper bound on the

expected observed triggered states in assumption 3, K is the sub-Gaussian parameter of the state-
occupancy distribution d

⇡†

M, � is the discount factor and C is some fixed constant.

We make the following remarks:

• Our safety guarantee is an (✏, �)-PAC style guarantee with both approximation and estimation
error terms. The first term is a fixed approximation error ✏app that the defense algorithm has to
suffer even in the presence of infinite clean samples. However, if the eigen energy of E? subspacePD

i=d+1 �i = 0, i.e. if the adversary injects trigger only in the null eigen spaces of ⌃, the defender
can avoid the approximation error.

• The second term ✏ is the estimation error which scales as O(1/
p
n) and can be made as small as

required with more clean samples.
• The overall sample complexity grows polynomially in the effective horizon 1/(1� �), the inverse

eigen-gap 1
�⇤

, the inverse estimation error 1
✏ and the dimension of state space D. We note that the

lower the eigen separation between the safe subspace and its complement, the more difficult will it
be for the defender to recover the safe subspace using samples; hence more difficult the defense.

Proof: The key step in the proof is the following value decomposition:

V
⇤
M � V

⇡†
En

�f
M = V

⇡†

M � V
⇡†
En

�f
M (5)

= V
⇡†

M � V
⇡†
E

M| {z }
(1)

+V
⇡†
E

M � V
⇡†
E�f

M| {z }
(2)

+V
⇡†
E�f

M � V
⇡†
En

�f
M| {z }

(3)

(6)

6

Term (1) leads to an approximation error in the clean environment which cannot be avoided even
in presence of infinite samples. Term (2) is the performance difference of the true projected policy
⇡
†
E = ⇡

† � ProjE when acting on clean vs triggered environment. Term (3) is the estimation error
that arises due to the fact that the defender only gets sample access to the clean environment.

Since the triggers always lie in E
? (by assumption 3), projection of s†t onto E engulfs the trigger

part of it effectively reducing the second error term to zero. To see this, simply observe that
⇡
†
E(st+f(s0:t)) = ⇡

†(ProjE(st+f(s0:t))) = ⇡
†(ProjE(st)) = ⇡

†
E(st) using linearity of projection

operator and orthogonality of triggers f(·) to E subspace, which implies,

V
⇡†
E�f

M = E
" 1X

t=0

�
t
R(st,⇡

†
E(st + f(s0:t)))

#
=E

" 1X

t=0

�
t
R(st,⇡

†
E(st))

#
= V

⇡†
E

M . (7)

We now bound the approximation error in the clean environment, the term (1) in (6):

V
⇡†

M � V
⇡†
E

M
(1)
=

1

1� �
E
s⇠d⇡†

M

⇣
⇡
†(s)� ⇡

†
E(s)

⌘>
Q

⇡†
E (s, ·)

�

(2)
 1

1� �
E
s⇠d⇡†

M

h
k⇡†(s)� ⇡

†
E(s)k1kQ

⇡†
E (s, ·)k1

i

(3)
 L

1� �
· kQ⇡†

Ek1 ·
q

E
s⇠d⇡†

M
k(I � ProjE)sk22

(4)
 L

(1� �)2
·
r
E
s⇠d⇡†

M
k
PD

i=d+1uiu
>
i sk22

(5)
=

L

(1� �)2
·
qPD

i=d+1�i (8)

where (1) uses performance difference lemma (Lemma 8), (2) is Holders inequality, (3) uses L-
Lipschitzness of ⇡† and Jensen’s inequality, (4) uses kQ⇡†

Ek1 1/(1� �) and (5) follows from
the following :

E
s⇠d⇡†

M
k
X

i

uiu
>
i sk22 =

X

i

E
s⇠d⇡†

M

⇥
u
>
i ss

>
ui

⇤
=

X

i

E
s⇠d⇡†

M

⇥
tr(ss>uiu

>
i)

⇤

=
X

i

tr(E
s⇠d⇡†

M

⇥
ss

>⇤
uiu

>
i) =

X

i

tr(�iuiu
>
i) =

X

i

�i. (9)

Next, we bound the estimation error in the triggered environment, the third term in (6). Let ⇡ =
⇡
† � ProjE and ⇡

0 = ⇡
† � ProjEn

, then the difference in value of these policies in a triggered
environment is given as

V
⇡�f
M (s0)� V

⇡0�f
M (s0) (10)

(1)
=

1X

t=0

�
t E
s0:t⇠d⇡�f,0:t

M

h
Q

⇡0�f
M (s0:t,⇡ � f(s0:t))�Q

⇡0�f
M (s0:t,⇡

0 � f(s0:t))
i

(2)

1X

t=0

�
t E
s0:t⇠d⇡�f,0:t

M

h
k⇡ � f(s0:t)� ⇡

0 � f(s0:t)k1kQ⇡0�f
M (s0:t, ·)k1

i

(3)
 1

1� �

1X

t=0

�
t E
s0:t⇠d⇡�f,0:t

M

⇥
k(⇡†(ProjE(st + f(s0:t)))� ⇡

†(ProjEn
(st + f(s0:t)))k1

⇤

(4)
 1

1� �

1X

t=0

�
t
L E
s0:t⇠d⇡�f,0:t

M

⇥
k(ProjE � ProjEn

)(st + f(s0:t))k2
⇤

(5)
 L

1� �
· kProjE � ProjEn

k2
1X

t=0

�
t E
s0:t⇠d⇡�f,0:t

M

[k(st + f(s0:t))k2]

(6)
 B · L

(1� �)2
kProjE � ProjEn

k2 (11)

7

where (1) follows from performance difference lemma for non-Markovian policies (Lemma 8),
(2) follows from Holder’s inequality, (3) follows from kQk1 1/(1 � �), (4) follows from
L-Lipschitzness of ⇡

†, (5) follows from L2 matrix vector norm inequality and (6) uses the B-
boundedness of the trigger functions f as defined in 3.

Now, if n � CdB2L2K4k⌃k2

�⇤2(1��)4·✏2
�
D + log 2

�

�
, using Lemma 6 with (11), we can upper bound the

estimation error by ✏, i.e.

V
⇡†
E�f

M � V
⇡†
En

�f
M ✏. (12)

Finishing the proof of Theorem 4: We plug back (7), (8), (12) in (6) to conclude the proof. ⇤

Computational Complexity The computation complexity of our subspace sanitization algorithm is
O(D3 + T ·D2) where D is the dimension of the state space and T is the total number of time step
the agent runs during deployment. The algorithm incurs a one time cost of O(D3) for computing the
SVD of the empirical covariance matrix and the projection operation at each time step of deployment
requires O(D2) compute time.

5 Experiments

In this section, we present some experimental results that validate our sanitization algorithm against
backdoor attacks in Atari game environments. We performed the sanitization experiments on backdoor
policies in two Atari games: (i) Boxing-Ram game with a vector RAM state space, (ii) Breakout game
with an image state space. In each case, we acted as the attacker and pre-trained a backdoor policy
using a reward poisoning schema as described in [7]. The backdoor policy was trained to a level
such that the agent performs well in clean environment but fares poorly in the triggered environment.
In each case, we used our sanitization algorithm to sanitize the backdoor policy and reported their
results.

5.1 Boxing-Ram game

Environment and attack specification The state consists of a 32 dimensional byte RAM vector: a
concatenation of four 8-byte vectors representing information stored in the simulator’s RAM from
the latest four time steps. The attacker exploits an unused byte (which is always zero in the clean
environment) to inject triggers directly into the vector RAM state space. Concretely, f = 255 · e28
where e28 is 28th canonical basis vector in R32. The action space consists of 18 different actions:
moving left, right, up, down, punch, and combinations thereof.

Backdoor policy The backdoor policy consists of a 4 layered fully connected neural network
with second layer shared to the critic network. The joint actor critic network is trained using PPO
algorithm [15] implemented in Pytorch. The backdoor policy has been trained using an environment
poisoning scheme following [6] to train the agent to seek low value in the triggered environment. The
policy has been trained to a level such that it receives high returns in the clean environment. However,
when the attacker activates the trigger, the agent will move close to the opponent to get beaten down
without fighting back, thus minimizing its return.

5.2 Breakout game

Environment and the attack specification We consider a version of breakout game where the
states consist of a stack of four down-scaled board images (4⇥ 84⇥ 84) from the last 4 time steps
and the action space consists of three actions: move left, move right, and do not move. The attack
directly takes place in the image state space where the attacker injects a 6⇥ 6 pixel square trigger on
the top left part of the arena, see Figure 3.

Backdoor policy The backdoor policy is a neural network with two convolutional layers followed
by two dense layers with ReLU activation units. The policy has been trained using environment
poisoning attack scheme following [7] with a backdoor objective to force the agent to take ‘do not
move’ action in the triggered states. Empirically, the policy has been trained to a level such that

8

(a) Boxing-ram game. (b) Breakout game.

Figure 4: Performance of the backdoor policy in the clean environment (blue), and in the triggered
environment (brown). With sufficient clean sanitization samples (n), our sanitized policy recovers
back the clean performance (green). Shading is ± standard deviation.

it consistently performs very well in the clean environment receiving high returns. However, in
presence of trigger, it falters into not moving at all thus losing lives very quickly.

5.3 Empirical results of our sanitization algorithm

For a fixed sanitization sample count n, the defender collects n clean episodes from the environment
and chooses an independent sample from each episode to get n samples d⇡

†

M. Empirically, we observe
that choosing roughly 2n correlated samples also works for sanitization in these examples. It then
constructs a sanitized policy (as defined in Algorithm 2) using top d eigen bases of the empirical
covariance matrix. The safe space dimension d is decided using the eigen gap in the empirical
covariance matrix (all eigenvectors with eigenvalues � 10�10 are chosen as ‘safe subspace’, see
section 5.4 for further discussion).

In Figure 4, the blue and brown lines show the performance of backdoor policy in clean and triggered
environment, respectively. The y-axis shows the mean and standard deviation of empirical agent value
obtained from 4 independent trials. In each trial, we estimated the empirical value from averaging
the returns obtained from 5 independent episodes sampled using the respective (policy, trigger) pair.
We observe that the backdoor policy performed well in the clean environment (blue). However, its
performance dropped significantly in the presence of triggers (brown). Next, the green line shows
the performance of the sanitized policy constructed using n clean samples (on x-axis) from d

⇡†

M.
We clearly observe that in both the examples, the performance of sanitized policy increases with
n and after a sufficient number of clean samples the sanitized policy recovers backs the original
clean performance (of backdoor policy in the clean environment, blue line) even when acting in the
triggered environment. This empirically verifies the success of our sanitization algorithm against
subspace backdoor attacks.

5.4 Dependence of our algorithm on the dimension d of safe subspace

Our theory assumes that the defender knows the dimension of the safe space d which might not
always hold true in practice. Though, the defender still has an access to eigen spectrum of the clean
empirical covariance matrix ⌃n which it can use to estimate d and the corresponding ‘safe subspace’.
A good estimate of d is important, because both underestimation and overestimation can lead to loss
in performance. Specifically, with underestimation the defender might lose important dimensions in
the safe subspace, and with overestimation the defender may include spurious dimensions from E

?

hampering effective sanitization in both scenarios. This phenomenon is depicted by the empirical
value curve (green) in Figure 5, where we see that the performance of the sanitized policy decreases
both with underestimation and overestimation of d. In practice, one can choose d based on the
spectral gap of the empirical covariance matrix ⌃n. From the singular value spectrum curve (blue) in

9

(a) Boxing-ram game. (b) Breakout game.

Figure 5: Performance of sanitized policies with different safe space dimension d (in green); Plot of
log singular value spectrum of empirical covariance matrix (in blue) with n = 40 for boxing-ram
game and n = 32768 for the breakout game.

Figure 5, we observe that the correct threshold corresponds to dimension just before the first major
dip in singular values; which occurs after dimension 24 in Boxing-Ram game and near dimension
20000 in Breakout game. We used these thresholds to select d in our experiments.

6 Conclusion

We formally specified backdoor policy with subspace trigger attacks in RL. We then proposed a
sanitization algorithm that allows a user to safely use a backdoor policy under subspace trigger
attackers. Our defense has the advantage of being a wrapper method and does not require expensive
policy retraining. Our sanitization work makes RL safer and contributes to trustworthy AI. Future
work will address the limitations of our defense, namely the need for clean environment interactions
and the assumption that triggers reside in a subspace E

?.

Acknowledgment This work was supported in part by NSF grants 1545481, 1704117, 1836978,
2023239, 2041428, 2202457, ARO MURI W911NF2110317, and AF CoE FA9550-18-1-0166.

References
[1] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin Edwards, Taesung

Lee, Ian Molloy, and Biplav Srivastava. Detecting backdoor attacks on deep neural networks by
activation clustering. In SafeAI@AAAI, 2019.

[2] Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George Pappas.
Efficient and accurate estimation of lipschitz constants for deep neural networks. In Advances
in Neural Information Processing Systems, volume 32, 2019.

[3] Yansong Gao, Chang Xu, Derui Wang, Shiping Chen, Damith C Ranasinghe, and Surya Nepal.
Strip: A defence against trojan attacks on deep neural networks. In 35th Annual Computer
Security Applications Conference (ACSAC), 2019.

[4] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Evaluating
backdooring attacks on deep neural networks. IEEE Access, 7:47230–47244, 2019.

[5] Junfeng Guo, Ang Li, and Cong Liu. Backdoor detection in reinforcement learning. arXiv
preprint arXiv:2202.03609, 2022.

[6] Kiran Karra, Chace Ashcraft, and Neil Fendley. The TrojAI software framework: An opensource
tool for embedding trojans into deep learning models. arXiv preprint arXiv:2003.07233, 2020.

10

[7] Panagiota Kiourti, Kacper Wardega, Susmit Jha, and Wenchao Li. Trojdrl: Evaluation of
backdoor attacks on deep reinforcement learning. In Proceedings of the 57th ACM/EDAC/IEEE
Design Automation Conference, DAC ’20. IEEE Press, 2020.

[8] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Neural attention
distillation: Erasing backdoor triggers from deep neural networks. In International Conference
on Learning Representations, 2021.

[9] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning: Defending against
backdooring attacks on deep neural networks. In Research in Attacks, Intrusions, and Defenses,
pages 273–294, 2018.

[10] Yang Liu, Mingyuan Fan, Cen Chen, Ximeng Liu, Zhuo Ma, Li Wang, and Jianfeng Ma.
Backdoor defense with machine unlearning. In IEEE INFOCOM 2022 - IEEE Conference on
Computer Communications, page 280–289. IEEE Press, 2022.

[11] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and
Xiangyu Zhang. Trojaning attack on neural networks. In 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA, February 18-221, 2018.
The Internet Society, 2018.

[12] Yuntao Liu, Yang Xie, and Ankur Srivastava. Neural trojans. In 2017 IEEE International
Conference on Computer Design (ICCD), pages 45–48, 2017.

[13] Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsiavash. Hidden trigger backdoor
attacks. Proceedings of the AAAI Conference on Artificial Intelligence, 34(07):11957–11965,
Apr. 2020.

[14] Kevin Scaman and Aladin Virmaux. Lipschitz regularity of deep neural networks: Analysis and
efficient estimation. In Proceedings of the 32nd International Conference on Neural Information
Processing Systems, NIPS’18, page 3839–3848, 2018.

[15] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[16] Brandon Tran, Jerry Li, and Aleksander Madry. Spectral signatures in backdoor attacks. In
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 31, 2018.

[17] Roman Vershynin. High-dimensional probability: An introduction with applications in data
science, volume 47. Cambridge university press, 2018.

[18] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and
Ben Y. Zhao. Neural cleanse: Identifying and mitigating backdoor attacks in neural networks.
In 2019 IEEE Symposium on Security and Privacy (SP), pages 707–723, 2019.

[19] Lun Wang, Zaynah Javed, Xian Wu, Wenbo Guo, Xinyu Xing, and Dawn Song. Backdoorl:
Backdoor attack against competitive reinforcement learning. In Zhi-Hua Zhou, editor, Proceed-
ings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pages
3699–3705. International Joint Conferences on Artificial Intelligence Organization, 8 2021.

[20] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features
in deep neural networks? In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q.
Weinberger, editors, Advances in Neural Information Processing Systems, volume 27, 2014.

[21] Y. Yu, T. Wang, and R. J. Samworth. A useful variant of the Davis–Kahan theorem for
statisticians. Biometrika, 102(2):315–323, 04 2014.

11

