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Abstract

We consider the problem of automatically synthesiz-
ing a hybrid controller for non-linear dynamical sys-
tems which ensures that the closed-loop fulfills an
arbitrary Linear Temporal Logic specification. More-
over, the specification may take into account logical
context switches induced by an external environment
or the system itself. Finally, we want to avoid classi-
cal brute-force time- and space-discretization for scal-
ability. We achieve these goals by a novel two-layer
strategy synthesis approach, where the controller gen-
erated in the lower layer provides invariant sets and
basins of attraction, which are exploited at the upper
logical layer in an abstract way. In order to achieve
this, we provide new techniques for both the upper-
and lower-level synthesis.

Our new methodology allows to leverage both the
computing power of state space control techniques
and the intelligence of finite game solving for complex
specifications, in a scalable way.

1 INTRODUCTION

The problem of synthesizing controllers for different
classes of non-linear systems with respect to tempo-
ral logic specifications has received considerable at-
tention in the last decades, especially in the context
of cyber-physical systems (CPS) design. The goal of
these methods is to allow for fully automated syn-
thesis of feedback controllers, which enforce tempo-
ral logic constraints and hence, to allow for a much
larger spectrum of specifications than classical feed-
back controller synthesis techniques. In order to

*These authors contributed equally.

achieve this goal, techniques from the formal methods
and the control communities need to be combined.

While there has been enormous progress towards
this goal in the last decade, documented by vari-
ous recent textbooks on this problem, e.g. [1, 2, 3],
most of the existing approaches still tackle the over-
all problem mainly from either the control or the for-
mal methods side. Thereby, the potential of tech-
niques available in the respective other domain is not
fully exploited, leading to unsatisfying solutions in
settings where low-layer continuous control and high-
layer logical decision making are tightly intertwined.

Such problems occur for example in the control
of autonomous robots deployed in warehouses [4],
under-water inspection [5, 6] or in rescue and evacua-
tion scenarios [7, 8]. In these applications, the robots
need to (a) directly compensate environment uncer-
tainty during their movement (such as rough terrain
or sensor/actuator noise), and (b) strategically react
to any logical context change, e.g., a newly arriving
package that needs to be re-located in the warehouse,
a leak in an oil pipeline that needs to be fixed under
water, or a door that got closed and needs to be re-
opened to reach a target in a rescue scenario. These
context changes are triggered by the external envi-
ronment and can occur at any time. They must di-
rectly result in (high-level) strategic reactions of the
robots that trigger new objectives of the (low-level)
feedback control policy which, on the other hand, is
able to correctly actuate non-trivial non-linear dy-
namical systems. Control problems with a similar
required integration of logical decision making and
low-layer feedback control occur for example in sus-
tainable building management [9], or smart energy
grid operation [10] or safety-critical medical opera-
tions [11].
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This paper presents a novel approach to such in-
tegrated control problems, which automatically com-
putes a provably correct hybrid controller that seam-
lessly reacts to (high-layer) logical context switches.
Therein, the main contribution of our work is twofold:
the new game-solving formalism we present (i) pro-
vides a certified and reactive interface between the
higher and the lower control layers via control Lya-
punov functions and (ii) while dismissing grid-based
discretization of both the input and the state spaces.
On the same line, our approach does not require dis-
cretization of time ab initio. Rather, it considers time
implicitly at the high-level strategy design, and de-
fers the actual discretization of time to the low-level
controller design, in an opportunistic way. Thereby,
it enhances scalability and avoids numerical problems
due to small sampling time intervals.

Moreover, the full class of LTL specifications can be
considered for a large class of non-linear continuous
dynamics.

1.1 Motivating Example, Challenges

and Contributions

Throughout this paper, we re-visit the following sim-
ple robot control example to outline the challenges
and contributions of our new hybrid controller syn-
thesis approach.

Example. We consider a simple moving robot r, in
a setting composed by two neighboring rooms, con-
nected by a sliding door, as depicted in Fig. 1. There
are three target sets: T1, T2 in the left room and T3 in
the right room. An external user (the environment),
at each instant of time, chooses a mode amongMi,
i ∈ {1, 2, 3} indicating the current desired target Ti
for the robot. Moreover, the opening status of the
door can be controlled by the robot – entering the
target T1 or T3 opens the door (if it was previously
closed) while entering the target T2 closes it (if it was
previously open). This can be expressed by the LTL
formula1

φA =�
∧

1≤i≤3



Mi ⇔
∧

1≤j 6=i≤3

¬Mj





∧�(T1 ∨ T3 ⇒©¬D) ∧�(T2 ⇒©D)

∧�(D ⇒ D W (T1 ∨ T3)) ∧�(¬D ⇒ ¬D W T2).
(1a)

1See Section 2.2 for an introduction to linear temporal logic
(LTL).

T1

T3

T2

D

Robot

Figure 1: Motivating example: A robot must nav-
igate to and remain at targets T1, T2 or T3 as di-
rected by an external environment choosing respec-
tive modes M1, M2, and M3, while avoiding any
collision with the walls W and with the door D (if it
is closed).

The goal is to design a feedback control policy that
reacts to the external environment decisionsMi, by
moving to the chosen target Ti while adhering to ad-
ditional safety-constraints, i.e. not hitting the walls
W (including the door if it is closed). This can be
expressed by the LTL formula

φG = �¬W
∧

i=1,2,3

(♦�Mi ⇒ ♦�Ti) . (1b)

Summarizing formally, the overall specification for
the robot is φA ⇒ φG, i.e, it needs to guarantee its
goal φG while assuming that φA holds.

Challenges. This example showcases three main
challenges that are tackled by our new controller syn-
thesis approach.
First, the environment can change the mode at any

time. Considering a real application where targets
might be far away from each other, we would like
the robot to immediately adapt its motion towards
the new target, and not only after “completing” the
previously assigned task of reaching another target.
We achieve this direct reactivity, by autonomously
switching the low-layer controller in reaction to a
mode change. This, however, requires caution to
avoid well-known instability problems in switched
control settings.
Second, as the robot itself is controlling a part

of the logical context (by being able to open and
close the door), a hybrid controller cannot naively
switch between low-layer controllers for different tar-
gets based on the active mode. If, for example, the
desired target is set to be equal to T3 and the robot
is currently in the left room while the door is closed,
the robot should automatically decide to first visit
the target T1 to open the door. Scaling this to ap-
plications (e.g., in warehouses) where many logical
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requirements interact, requires a principled way to
design a correct strategy for the robot to react to con-
text changes such that a given formal specification,
for instance φA ⇒ φG, is satisfied.

Third, it is important that the low-layer control
design does not simply implement what should be
done (i.e., which target should be reached) but also
what should not be done. For example, if the robot is
in the left room moving towards T3 while the door is
open, it must not pass over T2, as this would close the
door. In addition, the door can be both an obstacle
and a target, dependent on the current context.

To design a correct-by-construction hybrid con-
troller tackling the last two challenges, one needs
(i) a formally correct mechanism to translate strate-
gic choices from the higher layer to feedback-control
problems (with suitable guarantees) in the lower layer
and (ii) incorporate all necessary information about
the workspace and the low-layer closed-loop proper-
ties into the high-layer strategy synthesis problem.

Contribution. This paper achieves these two goals
by a new game-solving formalism for high-layer strat-
egy synthesis, which (i) computes strategy templates
instead of single strategies and (ii) allows for progress
group augmentations. We show that (i) strategy tem-
plates provide a certified top-down interface by allow-
ing a direct translation into context-dependent reach-
while-avoid (RWA) controller synthesis problems,
which, in turn, can be certifiably solved via control
Lyapunov functions. This leads to provably correct
low-layer controllers implementing high-layer strat-
egy choices. Further, we show that (ii) progress group
augmentations provide a certified bottom-up interface
that enables a non-conservative and discretization-
free incorporation of low-layer closed-loop properties
into the higher-layer strategy synthesis game.

1.2 Literature Review

Existing approaches tackling the outlined integrated
controller synthesis problem, can roughly be di-
vided into three different research lines. First,
discretization-based abstraction techniques can be
used to incorporate low-level dynamics into the high-
level strategy synthesis games (see e.g., [1, 12] for an
overview and [13, 14, 15, 16, 17] for tool support).
These approaches are able to handle the full prob-
lem class we tackle, but are known to suffer heavily
from the curse of dimensionality and from conser-
vatism introduced by the abstraction. Second, both
the specification and the dynamics of the system can

be mapped into a large optimization problem that
searches for an optimal control law ensuring that both
the logical specification and the dynamical constrains
are satisfied (see e.g. [18] for a survey). These meth-
ods, however, scale poorly with the number of logical
constrains and cannot handle external environment
inputs. Third, a constrained system can be gener-
ated, which searches for certificates on the lower level
dynamical system to enforce a temporal specification
(see e.g. [2, Ch.12] for an overview). This approach is
usually restricted to particular classes of logical spec-
ifications and non-linear dynamics.

Within this paper, we mainly follow the third ap-
proach utilizing certificates, in particular control Lya-
punov functions, to realize reach-while-avoid objec-
tives. What distinguishes our work from existing ones
(e.g., [10, 19, 20, 21]) is the presence of logical inputs
operated by the external environment. In the absence
of these, the resulting synthesis problem reduces to a
temporal logic planning problem, which does not re-
quire a reactive strategy on the higher layer, i.e., a
single plan can be computed and executed in an open-
loop fashion. Our approach produces closed-loop con-
trollers in both layers instead.

While recent methods combining certificates with
high-granularity abstractions (e.g. [22]) also produce
closed-loop solutions, there, environment inputs can
only be handled at transition points between abstract
states. In our example, the robot would need to com-
plete one motion (reaching a particular target) before
it can receive a new objective, leading to an unsatis-
fying closed-loop behavior.

In addition, our new game solving formalism is also
related to other work in the reactive synthesis com-
munity. While strategy templates have been very re-
cently introduced in [23, 24], progress group anno-
tations appeared previously in [25] for a restricted
class of temporal specifications and only induced by
uncontrolled dynamics. Further, [26] also tackles the
problem of reactive control for dynamical systems via
parity games, but only presents sufficient conditions
for the existence of certificates and controllers, while
our method is fully constructive.

2 PRELIMINARIES

In this section we recall, in a condensed form, the
main concepts and results from dynamical control
systems theory and formal methods settings.
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2.1 Dynamical Systems

Let us introduce the state-space setting and the main
stabilization/control techniques that we consider in
order to achieve the logical specifications described
in previous sections. First, we introduce the notion
of continuous-time control systems considered in this
manuscript.

Definition 1. A (continuous-time) control system is
defined by a triple S := (X,U, f) where:

• the open set X ⊆ Rnx is the admissible state space,
of dimension nx ∈ N;

• the set U ⊆ Rnu is the input space, of dimension
nu ∈ N;

• the function f ∈ C
1(Rnx×Rnu ,Rnx) describes the

system dynamics, defined by

ẋ = f(x, u). (2)

Given a control system S := (X,U, f) and a mea-
surable function u : X → U , a solution of S for u
starting at x ∈ X is a function ξx,u : [0, T ) → X
(for some T > 0 and possibly T = +∞) such
that ξx,u(0) = x, ξx,u(t) ∈ X for all t ∈ [0, T )

and ξ̇x,u(t) = f
(

ξx,u(t), u(ξx,u(t))
)

for almost all
t ∈ [0, T ).
To cope with reach-while-avoid objectives, we must

design control policies driving the solutions to desired
targets, possibly avoiding obstacles/staying in safe re-
gions. Thus, we aim to design feedback control strate-
gies, using the formalism of control Lyapunov func-
tions (CLF). Let us recall in what follows the main
definitions and concepts from CLF-based feedback
design literature (for an overview, see [27, 28, 29]). To
ease notation, given a function w : X → R and any
c ∈ R, we denote by Xw(c) := {x ∈ X | w(x) ≤ c}
the c-sublevel set of w.

Definition 2. Let us consider a compact setXT ⊂ X
named the target. A function w ∈ C 1(X,R) is a
control Lyapunov function (CLF) for system (2) with
respect to XT if there exist 0 < c < C and ρ > 0 such
that

Xw(c) ⊆ XT ∧ Xw(C) ⊆ X, (3)

inf
u∈U
〈∇w(x), f(x, u)〉 ≤ −ρw(x), ∀x ∈ Xw(C) \Xw(c).

(4)

In this case, the set Xw := Xw(C) is the basin of
attraction of w. If X = Rnx , w is radially unbounded
and inequality (4) holds in Rnx \ Xw(c), then w is
said to be a global CLF.

Intuitively, the condition (4) implies that, when-
ever x ∈ Xw \Xw(c), there exists a u ∈ U for which
the directional derivative of w along the vector f(x, u)
is strictly negative, and thus the value of the Lya-
punov function is decreasing along solutions of (2)
following such direction. This observation motivates
the following CLF-based design result.

Lemma 1. Consider a control system S := (X,U, f),
a compact target set XT ⊂ X, and suppose that
w ∈ C 1(X,R) is a CLF in the sense of Definition 2.
Consider a continuous u : Xw → U satisfying

〈∇w(x), f(x, u(x))〉 ≤ −ρw(x), ∀x ∈ Xw \Xw(c),
(5)

then, for all x ∈ Xw, it holds that ξx,u(t) ∈ Xw for all
t ∈ R+ and ∃ Tx ≥ 0 such that ξx,u(t) ∈ Xw(c), ∀t ≥
Tx.

The proof follows from classic Lyapunov theory and
comparison argument, therefore, we refer to [30, 28]
or related literature for a detailed demonstration.

Remark 1 (CLFs-based Feedback design: Litera-
ture review). Definition 2 is stated in a form par-
ticularly suited for our purposes and many exten-
sions/modifications are possible.

First of all, let us point out that some technical
issues can arise, even in the restricted context of Def-
initions 1 and 2, when considering feedback control
laws satisfying (5). Indeed, functions u : X → U sat-
isfying (5) can be necessarly discontinuous and thus
special care should be provided in defining tailored
solution concepts for the closed loop ẋ = f(x, u(x)).
For the interested reader, this technical topic is dis-
cussed in [29, Section 8]. In the affine-control case, i.e.
when U = Rnu and f(x, u) = h(x) + g(x)u for some
functions h : C 1(X,Rnx) and g ∈ C 1(X,Rnx×nu),
a smooth CLF as in Definition 2 induces a contin-
uous feedback law, as defined in [31] and well sum-
marized in [32]. Moreover, for notational simplicity,
in Definition 2 we impose to the candidate CLF the
continuous differentiability property. This hypothe-
sis can be relaxed considering locally Lipschitz candi-
date control Lyapunov functions. In this case, in (4),
Dini-derivatives or Clarke gradient formalism should
be used, since the classical gradient is not defined
for locally Lipschitz functions. We want to stress
that, for the classical stabilizability problem of con-
trol systems, it is necessary, in order to avoid any con-
servatism, to consider non-smooth (but locally Lips-
chitz) CLFs, see [28] and references therein.
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2.2 Linear Temporal Logic

In this section, we introduce the syntax and semantics
of Linear Temporal Logic (LTL) in order to formally
describe the logical specifications. For a complete
overview, we refer to [33, Chapter 5].

Atomic Propositions. An atomic proposition is a
boolean variable (i.e., a variable that can either be
true or false) which signals important information
to the higher-layer logical control layer. In this pa-
per, we consider three different (finite) sets of atomic
propositions: (i) state propositions APS , (ii) observa-
tion propositions APO, and (iii) control propositions
APC . State propositions (e.g., T1, T2, T3 in Fig. 1)
are associated with a subset of the state space s.t.
Ti ∈ APS is true at time t if the current state x(t) of
the underlying dynamical system is within this sub-
set2, i.e. x(t) ∈ Ti ⊆ X . Observation propositions
APO denote all other aggregated information observed
by the logical controller from the underlying continu-
ous control system (e.g., D in Fig. 1) and the external
environment (e.g.,M1,M2, andM3 in Fig. 1). Con-
trol propositions APC denote a finite set of feedback
control strategies that the high-level logical controller
can choose (which will be introduced in Section 4.3).
We denote by AP := APS ∪ APO ∪ APC the set of all
propositions.
Given a control system S = (X,U, f), the state

propositions APS define a labelling function L : X →
2APS s.t. for all X ∈ APS holds that X ∈ L(x) ⇔
x ∈ X . In addition, Υ: R+ → 2APO denotes a
piecewise-constant and right-continuous3 logical dis-
turbance function modelling the sequence of observa-
tion propositions acting on the system over time. We
collect all logical disturbance functions acting on S
in the set D.

Traces. A trace over a set of atomic propositions AP
is an infinite sequence π = l0l1 . . . ∈ (2AP)ω. Some-
times we also write π = p0p1 . . . ∈ AP

ω to denote the
trace {p0}{p1} . . .. Given a control system S with la-
belling function L, a trace l0l1 . . . over APS ∪ APO is
said to be generated by a trajectory ξ : R+ → X (of
the underlying dynamical system) under disturbance
Υ: R+ → 2APO , if there exists an infinite sequence of
time points τ0, τ1, . . . for which it holds that:

• τ0 = 0, τi < τi+1, and τi goes to ∞ as i goes to ∞,

2With a slight abuse of notation we denote the state subset
associated with a state proposition by the same symbol.

3A function L : R+ → S, with S a finite set, is
piecewise-constant if it has a finite number of discontinuities
in any bounded subinterval of R+; it is right-continuous if
limsցt L(s) = L(t) for all t ∈ R+.

• for all i ∈ N, t ∈ [τi, τi+1), L(ξ(t)) ∪ Υ(t) = li
holds.

We write TracesL,Υ(ξ) to denote the set of all traces
generated by ξ under L and Υ.

Linear Temporal Logic (LTL). We consider re-
quirement specifications written in Linear Temporal
Logic [34]. LTL formulas over a set of atomic propo-
sitions AP are given by the grammar

φ ::= p | φ ∨ ϕ | ¬φ | ©φ | φ Uϕ,

where p ∈ AP and ϕ is an LTL formula.
A trace π = l0l1 . . . ∈ (2AP)ω is defined to satisfy

an LTL formula φ, written as π � φ, recursively as
follows:

• π � p if p ∈ l0;

• π � φ ∨ ϕ if π � φ or π � ϕ;

• π � ¬φ if π 6� φ;

• π �©φ if l1l2 . . . � φ;

• π � φ Uϕ if there exists k ≥ 0 such that lili+1 . . . �
φ for all i < k and lklk+1 . . . � ϕ.

Furthermore, we define true := p ∨ ¬p, false :=
¬true, and the usual additional operators φ ∧ ϕ :=
¬(¬φ∨¬ϕ), φ⇒ ϕ := ¬φ∨ϕ, ♦φ := trueUφ, �φ :=
¬♦¬φ, and φ Wϕ := (φ Uϕ) ∨ �φ for LTL formulas.
We also use a set of LTL formulas {φ1, φ2, . . . , φk} as
an LTL formula which represents the disjunction of
all formulas in it.

2.3 Games on Graphs

In this section, we define the games on graphs and
related techniques which will be used to compute a
high-level logical controller satisfying a given LTL
specifications.

Game Graphs. A (labelled) game graph over a set
of atomic propositions AP is a tuple G = (V,E, ℓ)
consisting of a finite set of vertices V partitioned into
two sets: Player 0’s (controller player) vertices and
Player 1’s (environment player) vertices, a set of edges
E ⊆ V ×V , and a labelling function ℓ : V → 2AP. We
write Vi to denote Player i’s vertices, andEi to denote
the edges with source in Vi, i.e., Ei = E ∩ (Vi × V ).
A (Player i) dead-end is a (Player i) vertex v such

that there is no edge from v, i.e., E ∩ (v× V ) = ∅. A
play from a vertex v0 is a finite or infinite sequence of
vertices ρ = v0v1 . . . ∈ V ω such that (vk, vk+1) ∈ E
for all k ∈ N.
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Games. A (alternating) two-player game is a pair
G = (G,Win) consisting of a game graph G =
(V,E, ℓ) such that E∩(Vi×Vi) = ∅ and a winning con-
dition Win ⊆ V ω. Every winning condition that we
consider in this paper can equivalently be expressed
as an LTL formula4 φWin over a set of propositions
interpreted as subsets of V and we use both charac-
terizations interchangeably. A play ρ is winning if ρ
ends in a Player 1 dead-end or ρ ∈ Win (or equiva-
lently ρ � φWin).
A (memoryless) strategy for Player i, is a function

σ : Vi → V1−i such that (v, σ(v)) ∈ E holds for every
v ∈ Vi. Given a strategy σ for Player i, a σ-play is a
play ρ = v0v1 . . . s.t. vk−1 ∈ Vi implies vk = σ(vk−1)
for all k.
A Player 0 strategy σ is winning from a vertex v

if every σ-play from v are winning. Moreover, if such
a strategy exists for a vertex v, then that vertex v
is said to be winning. We collect all such winning
vertices in the winning region; and a Player 0 strategy
is said to be winning if it is winning from every vertex
v in the winning region. Note that we have defined
winning strategies only for Player 0 as only Player 0
wants to satisfy the specification in such a (zero-sum)
game.

Parity Games. A parity game is a game with a par-
ity winning condition Parity(P) defined via a prior-
ity function P : V → [0, d] that assigns to each ver-
tex a priority. A play ρ = v0v1 . . . is winning w.r.t.
Parity(P) if the maximum priority seen infinitely
often along ρ is even. The parity winning condition
Parity(P) can be represented by an LTL formula
whose atomic propositions are subsets Pi ⊆ V col-
lecting all states with priority i, yielding

∧

odd i∈[0;k]



�♦Pi =⇒
∨

even j∈[i+1;k]

�♦Pj



 .

LTL to Parity Games. It is well-known5 that every
LTL formula φ over some finite proposition set AP can
be translated into an equivalent (labeled) parity game
G = (G,Parity(P)). This translation requires a par-
tition of AP = AP0 ·∪ AP1 such that Player i (i.e., the
controller or the environment player, respectively)

4We sometimes abuse notation by using the same symbol
for the LTL formula and its semantics. An LTL formula φWin

should not be confused with the control objective φ over the
set AP defined in Section 2.2.

5We refer the reader to standard textbooks, e.g. [35], for
more details on LTL, graph games and their connection.

chooses the propositions in APi. We will see that
for the synthesis problems that we consider in this
paper, this partition is naturally given. In addition,
plays ρ = v0v1 . . . ∈ V ω are translated into traces
π = l0l1 . . . ∈ (2AP)ω (called generated by ρ) via the
labeling function ℓ of G, s.t. li = ℓ(v2i+1) ∪ ℓ(v2i+2)
for each i ≥ 0. Furthermore, we say a game G or
game graph G is total w.r.t. AP

′ ⊆ AP if for every
trace π′ over AP′, there exists a trace π generated by
a play in G such that π|AP′ = π′.
With this, we recall the following well-known re-

sult.

Lemma 2 ([36, Section 4]). Every LTL formula φ
over AP = AP0 ·∪ AP1 can be translated into a par-
ity game G = ((V,E, ℓ),Parity(P)) with ℓ := Vi →
2AP1−i such that G is total w.r.t. AP. Moreover, a play
is winning in G iff its generated trace satisfies φ.

With Lemma 2, the problem of computing a logical
controller which satisfies a given specification φ in
interaction with an uncontrolled environment reduces
to computing a winning strategy in a parity game G.

2.4 Strategy Templates

While it is well known how to compute a single win-
ning strategy for a parity game G, it was recently
shown that strategy templates [23], which character-
ize an infinite number of winning strategies in a suc-
cinct manner, are particularly useful in the context of
CPS control design. They are utilized within this pa-
per to obtain a novel translation of high-level logical
control actions into low-level feedback controllers.
Strategy templates are constructed from three types

of local edge conditions, i.e., safety, co-live and
live-group templates. Formally, given a game G =
(G = (V,E, ℓ),Win), a strategy template is a tu-
ple (S,D,H) consisting of a set of unsafe edges
S ⊆ E0, a set of co-live edges D ⊆ E0, and a
set of live-groups H ⊆ 2E0 . This strategy tem-
plate can also be represented by an LTL formula
ψ = ψunsafe(S) ∧ ψcolive(D) ∧ ψlive(H), where

ψunsafe(S) :=
∧

e∈S

�¬e,

ψcolive(D) :=
∧

e∈D

♦�¬e, and

ψlive(H) :=
∧

H∈H

�♦src(H)⇒ �♦H.

Here, an edge e = (u, v) represents the LTL
formula u ∧ ©v, and src(H) is the source set
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{v1, v2, . . . , vk} of the edges in the live-group H =
{(v1, v′1), (v2, v

′
2), . . . , (vk, v

′
k)} ∈ H.

A Player 0’s strategy σ satisfies a strategy tem-
plate ψ if it is winning in the game (G,ψ). Intu-
itively, Player 0’s strategy σ satisfies a strategy tem-
plate (S,D,H) if every σ-play ρ satisfies the follow-
ing:

(i) ρ never uses the unsafe edges in S;

(ii) eventually, ρ stops using the co-live edges in D;
and

(iii) if ρ visits src(H) infinitely many times, then it
also uses the edges in H infinitely many times.

Moreover, a strategy template ψ is winning if ev-
ery strategy satisfying ψ is winning in the original
game G. Note that sources of all the edges in these
templates are Player 0’s vertices. The algorithm
to compute a winning strategy template in a par-
ity game lies in same time complexity class as the
standard algorithm, i.e., Zielonka’s algorithm [37], for
solving parity games. This leads to the following re-
sult:

Lemma 3 ([23]). Given a parity game with game
graph G = (V,E, ℓ) and priority function P : V →
[0, d], a winning strategy template can be computed in

O
(

|V |d+O(1)
)

time.

3 PROBLEM STATEMENT

This section gives a formal definition of the problem
we are tackling in this paper. Our goal is to auto-
matically synthesize a reactive hybrid controller that
operates a non-linear control system based on exter-
nal logical inputs. Towards a formal problem state-
ment, we first define a hybrid state-feedback control
policy which controls a system S while reacting to
logical context switches induced by the sequence of
observation propositions Υ ∈ D acting on S as logi-
cal disturbances.

Definition 3. Let S = (X,U, f) be a control sys-
tem and Υ: R+ → 2APO a disturbance function. A
hybrid state-feedback policy is a function p : R+ ×
X × D → U . A solution of S for p starting at
x ∈ X under Υ is a function ξx,p,Υ : [0, T ) → X
(for some T > 0 and possibly T = +∞) such
that ξx,p,Υ(0) = x, ξx,p,Υ(t) ∈ X for all t ∈ [0, T )

and ξ̇x,p,Υ(t) = f(ξx,p,Υ(t), p(t, ξx,p,Υ(t),Υ(t)) ) for
almost all t ∈ [0, T ).

This leads us to the following problem statement.

Problem 1. Given a control system S = (X,U, f)
with labelling function L : X → 2APS and an LTL
specification φ over the predicates APS ∪ APO, find a
set of winning initial conditions Xwin ⊆ X and hybrid
state-feedback policy p : R+ × X × D → U s.t. for
all x ∈ Xwin, all disturbance functions Υ ∈ D and all
solutions ξx,p,Υ, it holds that

(i) ξx,p,Υ(t) ∈ Xwin for all t ∈ R+, and

(ii) every trace π ∈ TracesL,Υ(ξx,p,Υ) satisfies φ.

The remainder of this paper illustrates our solu-
tion to Problem 1 by first providing an overview of
the entire multi-step synthesis algorithm in Section 4,
then highlighting additional details for selected steps
in Section 5 and Section 6, and showing simulation
results for the motivating example from Section 1.1
in Section 7.

4 SYNTHESIS OVERVIEW

This section overviews our automated synthesis pro-
cedure which consists of five steps. First, in Sec-
tion 4.1 we solve a high-level logical game induced by
the specification. Then, in Section 4.2 we build a top-
down interface which allows us to translate strategic
choices from the logical level into certified low-level
feedback control policies. Afterwards, in Section 4.3,
we build a bottom-up interface to include relevant in-
formation about the low-level closed-loop dynamics
into the logical synthesis game via augmentations.
We then solve the resulting augmented high-level syn-
thesis game in Section 4.4. Finally, in Section 4.5, the
obtained winning strategy is used to construct a hy-
brid controller which is proven to solve Problem 1.

4.1 High-Level Logical Synthesis

This initial step only considers the (high-level) log-
ical strategy synthesis problem induced by the LTL
specification φ. As formalized in Problem 1, the spec-
ification φ only contains state and observation propo-
sitions, i.e., AP = APS∪APO. The definition of control
propositions APC is part of our synthesis framework
and will be discussed in Section 4.2.
In order to use Lemma 2 to construct the initial

parity game GI from φ, we need to divide AP into con-
troller (player 0) and environment (player 1) propo-
sitions. To do this, we optimistically assume that the
controller can instantly activate/deactivate all state
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propositions in APS , thus defining AP0 := APS . This
ignores the dynamics of S and how the state proposi-
tions are geometrically represented in the state-space.
This is done on purpose to enable a lazy synthe-
sis framework – our framework only adds aspects
of both the dynamics and the geometric constrains
which show to be relevant to the synthesis problem
in a later step, discussed in Section 4.3.
As observation propositions are not under the con-

trol of the system or the controller, they are nat-
urally interpreted as environment propositions, i.e.,
AP1 := APO. Intuitively, the initial game GI con-
structed from φ via Lemma 2 reveals all logical de-
pendencies of propositions relevant to the synthesis
problem at hand. After constructing GI from φ, we
can directly apply the algorithm from [23] to synthe-
size a winning strategy template ψI on GI as dis-
cussed in Section 2.4.
This gives the following result which is a direct con-

sequence of Lemma 2 and the definition of strategy
templates.

Proposition 1. Given the LTL specification φ over
AP = APS ∪APO translated into an initial parity game
GI that is total w.r.t. AP via Lemma 2 and a win-
ning strategy template ψI for GI the following holds:
for every Player 0 strategy σ that satisfies the strat-
egy template ψI , it holds that the trace generated by
a σ-play in the initial game GI satisfies the specifica-
tion φ.

Example 1. For the example from Section 1.1, the
parity game GI is constructed from the LTL speci-
fication φ = φA ⇒ φG in (1) using Lemma 2 with
AP0 = {T1, T2, T3,W} and AP1 = {M1,M2,M3,D}.
A part of the resulting parity game GI is depicted in
Fig. 2.
A winning strategy template for the part of the

parity game GI depicted in Fig. 2 is

ψI = ψunsafe(ecf , edf ) ∧ ψcolive(ecb, edb),

where evv′ denotes the edge from v to v′.
The strategy template ψI forces the plays to never

use the unsafe edges {ecf , edf} (indicated schemati-
cally by dotted red arrows) as they lead to vertex f
where proposition W is true signaling that the robot
hits the wall. Furthermore, ψI forces the plays to
eventually stop using the co-live edges {ecb, edb} (in-
dicated schematically by dashed blue arrows). This
is because if Player 0 (i.e., the controller) keeps using
these edges, then Player 1 (i.e., the environment) can
force a play to loop in one of the cycles (cbde)ω or

a 2

{M2}

b 1

{T2}

c 0{M1}

d 0

{M1,D}

e 0

{T1}

f 1 {W}

Figure 2: Illustration of a part of the initial par-
ity game for the motivating example with Player 1
(squares) vertices and Player 0 (circles) vertices con-
taining their priority in a black circle. A winning
strategy template consists of unsafe edges indicated
by red dotted arrows and co-live edges indicated by
blue dashed arrows.

(db)ω which does not lead to a winning play as the
maximum priority seen infinitely often is odd (i.e., 1)
in these cycles.

4.2 The Top-Down Interface

While Section 4.1 utilizes existing techniques from re-
active synthesis, this section contains the first techni-
cal contribution of the paper which is the translation
of strategy templates into certified low-level feedback
control policies.

4.2.1 Reach-While-Avoid-Objectives

The strategy template ψI computed in last step de-
fines, for all Player 0 vertices v, eventually required
transitions (contained in H) and (eventually) prohib-
ited transitions (contained in S or D) for strategies
that result in a correct closed-loop behavior. While
the game solving engine assumes that these transi-
tions can be instantaneously enabled (resp. disabled),
they actually have to be enforced (resp. prevented)
by a suitable actuation of the underlying dynamical
system (e.g., the robot). The main observation that
we exploit in this step is that the edge constraints
for a Player 0 vertex v induced by a strategy tem-
plate ψI naturally translate into context-dependent
reach-while-avoid objectives for the lower-layer syn-
thesis problem.

Definition 4. A context-dependent reach-while-avoid
objective (cRWA) is defined as a triple Ω := (κ,R,A)
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where κ ⊆ APO is the context, R ∈ 2APS is the target
set (to be reached) and A ∈ 2APS is the obstacle set
(to be avoided). A control proposition C ∈ APC is
said to implement the reach-while-avoid objective Ω
if

φC := �(�(C ∧ κ)⇒ ♦�R ∧ �¬A). (6)

In practice, the translation of winning strategy
templates into reach-while-avoid objectives is done
per vertex v ∈ V0 (whose label defines the context)
and reflects required and prohibited successors as tar-
gets and obstacles in the cRWA, respectively. In par-
ticular, as the final hybrid controller will make strate-
gic decisions corresponding to exactly one transition,
we compute cRWA’s per required/allowed transition,
while collecting all prohibited successors in the ob-
stacles A of these cRWA’s, as formalized next.

Definition 5. Let G be a parity game with game
graph G = (V,E, ℓ) and winning strategy template
ψ = (S,D,H). For every v ∈ V0 let SucR(v) =
{v′ ∈ V1 | (v, v′) /∈ S ∪ D}. Then, for each v′ ∈
SucR(v) we define Ωa(v, v

′) := (ℓ(v), ℓ(v′),Aa(v))
and Ωe(v, v

′) := (ℓ(v), ℓ(v′),Ae(v)) s.t.

• Aa(v) =
⋃

{v′′∈V1 | (v,v′′)∈S} ℓ(v
′′), and

• Ae(v) =
⋃

{v′′∈V1 | (v,v′′)∈S∪D} ℓ(v
′′).

We collect all such cRWA’s for the strategy template
ψ in the set cRWA(G, ψ).

Intuitively, for such cRWA’s, Aa consists of the
propositions that need to be avoided “always”,
whereas Ae consists of the propositions that need to
be avoided “eventually always”. This definition is
illustrated by the follwing example.

Example 2. Consider the winning strategy template
ψI computed in Example 1 for the parity game given
in Fig. 2. From vertex d, strategy template ψI forces
Player 0 to never use edge edf and eventually stop
using edge edb. That means, Player 0 has to eventu-
ally only use edge ede from vertex d. The labels of
the vertices imply that whenever modeM1 is active
and the door is closed, the system “always” has to
reach T1 while avoiding walls W and “eventually al-
ways” has to reach T1 while avoiding both walls W
and target T2. This leads to the cRWA’s Ωa(d, e) =
(ℓ(d), ℓ(e),Aa(d)) and Ωe(d, e) = (ℓ(d), ℓ(e),Ae(d)),
where ℓ(d) = {M1,D}, ℓ(e) = {T1}, Aa(d) = {W},
and Ae(d) = {W , T2}.

4.2.2 Feedback-Control Policies

Within this step, we utilize existing techniques to
synthesize a feedback-control policy u : X → U asso-
ciated to cRWA problem Ω = (κ,R,A), s.t. all traces
generated by solutions of S for u satisfy (6), given
that C and κ are true for all t ∈ R+, where C ∈ APC

is a controller proposition that flags that the feed-
back control policy u is currently applied to S. This
part of our controller design strategy comes with un-
avoidable conservatism. Indeed, it is well-known that
very particular cases of the control problems that we
tackle here face strong controllability barriers, such
as undecidability and NP-hardness (see [38]). For
this reason, we rely here on control techniques that
are intrinsically conservative, but provide, when they
converge, a satisfactory solution.
As an example of such approaches, which fits

particularly well with our setting, we utilize exist-
ing techniques based on control Lyapunov functions
(CLF), as introduced in Section 2.1, to define u from
an Ω = (κ,R,A). This is achieved by constructing
a CLF w : X → R (recall Definition 2) w.r.t. to the
target R and enforcing that the basin of attraction
Xw ⊆ X excludes A, i.e. A∩Xw = ∅.
We thus have the following definition.

Definition 6. Given the control system S =
(X,U, f), consider a cRWA Ω = (κ,R,A). We say
that a CLF w (as in Definition 2) with basin of
attraction Xw and the corresponding feedback map
uw : Xw → U satisfying conditions in Lemma 1 are
associated to Ω if Xw ∩ A = ∅ and Xw(c) ⊆ R.

Section 6.1 will discuss a particular technique to
synthesize Xw and uw realizing a cRWA for partic-
ular classes of dynamical systems and state proposi-
tions. For any such realization of a cRWA we have
the following guarantees on the resulting closed-loop
system under a constant context, i.e., w.r.t. a triv-
ial distrubance function Υ := κω, which are a direct
consequence of Lemma 1 and Definition 6.

Proposition 2. Given the control system S =
(X,U, f) with labelling function L, let Ω = (κ,R,A)
be a cRWA and let uw : Xw → U be a feedback-control
policy induced by a CLF w associated to Ω with basin
of attraction Xw. Then, for all x ∈ Xw and for all
solutions ξx,uw

of S, it holds that

(i) ξx,uw
(t) ∈ Xw for all t ∈ R+,

(ii) every trace π ∈ TracesL,Υ(ξx,uw
) satisfies φCw

in
(6), with Cw ∈ APC being the control proposition
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T1

T2

Xe

Xa

Figure 3: Xa (region enclosed by red dotted line)
and Xe (region enclosed by blue dashed line) illus-
trate possible basins of attraction for the CLFs im-
plementing the cRWAs Ωa(d, e) (ensuring to reach T1
while avoiding only the walls) and Ωe(d, e) (ensuring
to reach T1 while avoiding walls and T2), respectively
from Example 2.

associated to w and Υ := κω inducing a constant
context.

Example 3. Consider the robot example given in
Fig. 1, the cRWAs Ωa(d, e) and Ωe(d, e) as given in
Example 2. A possible set of corresponding CLFs wa

and we with basins of attraction Xa and Xe, respec-
tively are depicted in Fig. 3.

4.3 The Bottom-Up Interface

The synthesis procedure from Section 4.2 results in
a finite set W of CLFs with a finite set U of con-
trol policies, such that each control policy uw ∈ U

(resulting from a CLF w ∈ W) is equipped with a
basin of attraction Xw ⊆ X , associated to a given
Ω ∈ cRWA(GI , ψI) resulting from a particular edge in
the high-level synthesis game GI . This implies that
whenever w is non-global, i.e., if Xw ( X , the control
policy uw cannot be applied anywhere.
Thinking back to the logical strategy computed in

Section 4.1, policy uw must be used when its corre-
sponding cRWA Ω for an edge e is “activated” by
a logical control strategy, “choosing” the edge e in
GI . By constructing the cRWA’s for winning edges
as defined in Definition 5, we essentially equip the
resulting controller with a direct actuation capabil-
ity of the underlying dynamical system – it must
choose between available feedback-control policies.
To reflect this change of actuation capabilities in the
higher-level game, we introduce a controller propo-
sition Cw ∈ APC for every available feedback-control
policy uw which flags that uw ∈ U should be used to
actuate S. Further, as every uw is equipped with a
basin of attractionXw, the resulting hybrid controller

is implementable only if the current continuous state
x is in Xw We therefore need to track this informa-
tion in the synthesis game. For this purpose, we in-
troduce a new state proposition Xw for every uw ∈ U

that flags whether the state is in its basin of attrac-
tion, and we define AP+S := APS∪

⋃

w∈W
Xw as the set

of all state propositions including all additional state
propositions Xw’s.
The next four steps provide an algorithm that en-

sures that this information gets translated from the
lower to the higher layer in a certified way, such that
the resulting higher-layer synthesis game allows to
synthesize a hybrid controller that solves Problem 1.

4.3.1 Changing Actuation Capabilities

In order to prepare the high-layer initial game GI

from Section 4.1 for the incorporation of a refined
system model, we need to incorporate the control
propositions APC and make sure that these are the
only propositions the controller can choose with its
strategy, leading to the desired direct actuation of
lower-level feedback control policies.
This is achieved by updating the initial game to

a merged game GM while preserving the parity con-
dition and a one-to-one correspondence between the
traces generated by plays in GI and the ones gener-
ated by plays in GM .

Definition 7. Given an initial game
GI = (GI ,Parity(PI)) with game graph
GI = (V I , EI , ℓI), the merged game
GM = (GM ,Parity(PM )) with game graph
GM = (VM , EM , ℓM ) is constructed as follows.

• The set of Player 1 vertices is preserved, i.e.,
VM
1 = V I

1 s.t. for each v ∈ VM
1 , PM (v) = PI(v)

and ℓM (v) = ∅.

• For every pair of Player 1 vertices v1, v2 ∈
V I
1 connected via a Player 0 vertex v0 ∈ V I

0 ,
i.e.,(v1, v0), (v0, v2) ∈ EI , we add:

– a unique Player 0 vertex v ∈ VM
0 \ V I

0 with
ℓM (v) = ℓI(v0) ∪ ℓI(v2) and PM (v) = PI(v0),

– new edges (v1, v), (v, v2) ∈ EM \ EI .

This leads to the following lemma.

Lemma 4. Let GI be the parity game constructed
from φ over AP as in Proposition 1 and GM its merged
version constructed via Definition 7. Then GM is to-
tal w.r.t. AP, and every winning play in GM generates
a trace which satisfies φ.
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Proof. Let ρ = v0v1 · · · be a winning play in GM with
v2k ∈ VM

1 for every k ≥ 0, and let π = l0l1 · · · be the
trace generated by the play ρ. Then by construction,
vertices v2k also belong to V I

1 with same priority, i.e.,
PM (v2k) = PI(v2k) for every k ≥ 0. Furthermore,
for every v2k+1 ∈ VM

0 , there exists a correspond-
ing vertex v′2k+1 ∈ V

I
0 that connects the vertices v2k

and v2k+2 in the game GI such that PM (v2k+1) =
PI(v′2k+1) and ℓM (v2k+1) = ℓI(v2k+1) ∪ ℓI(v2k+2).
Hence, the play ρ′ = v0v

′
1v2 · · · is a winning play in

game GI as maximum priority seen infinitely often in
ρ′ w.r.t. PI is same as the maximum priority seen in-
finitely often in ρ w.r.t PM . Now, let π′ = l′0l

′
1 · · · be

the trace generated by ρ′ in GI , then by construction
of game GI , π′ satisfies the specification φ. Moreover,
since ℓM (v2k+2) = ∅ for every k ≥ 0, we have, by def-
inition, lk = ℓM (v2k+1) ∪ ℓM (v2k+2) = ℓM (v2k+1).
Therefore, l′k = ℓI(v2k+1) ∪ ℓ

I(v2k+2) = lk. So,
π = π′, and hence, π satisfies the specification φ.

Using similar arguments, it can be shown that for
every play in GI , there exists a corresponding play in
GM that generates the same trace. Hence, as GI is
total w.r.t. AP, so is GM .

Example 4. Consider the initial game GI given in
Fig. 2. Then the resulting merged game GM is de-
picted in Fig. 4. As shown in the figure, Player 1
vertices, i.e., vertices b, e, f , are preserved with same
priorities but empty labels. For every pair of Player 1
vertices connected via a Player 0 vertex in GI , there
is a new vertex with label containing all necessary
propositions that connects the pair in GM , e.g., for
vertex b and f connected via d in GI , the new vertex
d2 containing labels of both d and f connects vertex
b and f .

4.3.2 Control Graph Construction

In this step we construct a game graph that cap-
tures the interplay of the environment and obser-
vation propositions contained in the context κ of a
given cRWA with the newly introduced control and
state propositions Cw ∈ APC and Xw ∈ AP

+
S . Intu-

itively, this graph captures which context changes an
application of a particular feedback control policy uw
for a CLF w (triggered by Cw) might cause. When
composed with the modifided game graph GM from
Section 4.3 this leads to the lazy refinement of the log-
ical synthesis game discussed earlier, which only in-
cludes relevant information about the low-level feed-
back control loop.

Let us denote the cRWA’s for which the CLF w was
synthesized by Ωw = (κw,Rw,Aw). Consider AP

+
S ⊇

APS the set of all state propositions including all addi-
tional state propositions Xw’s as defined above, and

L+ : X → 2AP
+

S be an extended version of labelling
function L defined by L+(x) = {X ∈ AP

+
S | x ∈ X},

(and thus, L+(x) ∩ APS = L(x) for all x ∈ X).

Definition 8. Given the control system S :=
(X,U, f) with labelling function L+ and the set W

of all CLFs computed as before, the control game

graph GC = (V C , EC , ℓC) with ℓC : V → 2AP
+

S
∪APO is

defined as follows.

1. For each CLF w ∈W, there are two Player 1 ver-
tices in V C

1 , a transition vertex and an invariant
vertex, both with label {Cw}.

2. For every subset of propositions c ⊆ APO ∪ AP
+
S ,

there is a Player 0 vertex v ∈ V C
0 with ℓC(v) = c

iff there exists x ∈ X such that c ∩ AP+S = L+(x).

3. From each invariant vertex v ∈ V C
1 of some CLF

w, there is an edge (v, v′) to v′ ∈ V C
0 iff Rw ⊆

ℓC(v′).

4. From each transition vertex v ∈ V C
1 of some CLF

w, there is an edge (v, v′) to v′ ∈ V C
0 iff Xw ∈

ℓC(v′).

5. From each Player 0 vertex v ∈ V C
0 with Xw ∈

ℓC(v) and κw = ℓC(v) ∩ APO for some CLF w, if
Rw ⊆ ℓC(v), then there is an edge to the invari-
ant vertex of w, else, then there is an edge to the
transition vertex of w.

The construction of GC via Definition 8 trans-
lates some characteristics of the low-level continuous
closed loop system captured by Proposition 2 into the
higher-layer synthesis game. In addition, it ensures
that a logical controller actuating a control policy uw
via control proposition Cw can only do so if context
κw is true and the continuous system is in the basin
of attraction Xw (signaled by the system proposition
Xw being true). These translations can be formalized
via LTL formulas which are ensured to hold true on
every play over GC as formalized in the next lemma.

Lemma 5. Given the premises of Definition 8, it
holds for every trace π over GC and every CLF
w ∈ W with basin of attraction Xw, cRWA Ωw :=
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a 2

{M2, T2}

b 1

c1 0

{M1, T2}

c2 0

{M1,W}

c3 0

{M1, T1}

d1 0

{M1,D,T1}

d2 0

{M1,D,W}

d3 0

{M1,D,T2}

e 0f 1

Figure 4: Corresponding merged game for the initial game given in Fig. 2, where labels of Player 1 vertices
are empty sets.

(κw,Rw,Aw) and associated controller Cw, that

�(Xw ⇒ ¬Aw), (7)

�(Cw ⇒ Xw ∧ κw), (8)

�(Rw ∧ Cw ⇒©Rw). (9)

�(Xw ∧ Cw ⇒©Xw). (10)

Proof. Let ρ = v0v1 · · · be a play in GC and π =
l0l1 · · · be the trace generated by ρ. We need to show
that π satisfies (7)-(10).
By Definition 6, for each w ∈ W, Xw ∩ Aw = ∅.

Then, by item 2, for each i ≥ 0, if Xw ∈ ℓC(vi) then
Aw ∩ ℓC(vi) = ∅. Hence, π satisfies (7).
Next, by item 5, if Cw ∈ ℓC(vi+1) for some i ≥ 0,

then Xw ∈ ℓ
C(vi) and κw = ℓC(vi) ∩ APO. Hence, π

also satisfies (8).
Next, by item 3 and item 5, if Rw ⊆ ℓC(vi) and
Cw ∈ ℓC(vi+1) for some i ≥ 0, then Rw ⊆ ℓC(vi+2).
Hence, π also satisfies (9).
Similarly, by item 4 and item 5, if Xw ∈ ℓC(vi) and
Cw ∈ ℓC(vi+1) for some i ≥ 0, then Xw ∈ ℓC(vi+2).
Hence, π also satisfies (10).

Intuitively, the control game graph GC models all
the state proposition sequences generated by a trajec-
tory ξ triggered by the controller policies associated
with W as in Proposition 2. Furthermore, it also
models the logical disturbances received as inputs via
the disturbance function Υ ∈ D. This is formalized
by the next lemma which directly follows by item 2-4
of Definition 8.

Lemma 6. Given the premises of Definition 8, one
of the following holds for every disturbance function
Υ ∈ D

• for some play in GC , its generated trace π satis-
fies that π|APO = Υ, or

• for some play in GC ending in a Player 0 dead-
end, its generated trace π satisfies that π|APO is
a prefix of Υ.

Example 5. For the CLFs wa and we given in Exam-
ple 3 with basins of attractionXa and Xe as shown in
Fig. 3, the corresponding control game graph (with-
out the Player 0 dead-ends) is depicted in Fig. 5. As
in the figure, the transition vertices of wa and we are
vertices a and c, respectively, and the invariant ver-
tices are vertices g and i, respectively. Note that both
CLFs have context {M1,D}. Hence, vertices with a
label that contains Xa or Xe but not the propositions
M1 or D are Player 0 dead-ends (no outgoing edges
are defined from them). For simplicity, those vertices
are not shown in Fig. 5.

While we could now take the product of GC with
GM from the previous step in order to obtain the new,
refined logical synthesis game, we note that this typi-
cally does not lead to a game that actually has a win-
ning strategy. The reason for this lies in the fact that
the modification of GI to GM gives the right to trigger
state propositions to the environment, i.e., now the
controller actuates APC and gets “notified” by the un-
derlying dynamical systems via a triggering of APS ’s
that the actuated controller actually resulted in the
(hopefully desired) state proposition change. From a
two-player game perspective, the environment could
now use its additional power to prevent the robot to
reach the target. E.g., in Fig. 5, starting from ver-
tex b, if the controller keeps using the control policy
for CLF we, then the environment can force the play
to loop between vertex a and b instead of reaching tar-
get T1 represented by vertex h. This is because the
resulting logical game still misses essential informa-
tion about the low-level closed loop dynamics under
a given feedback-control policy. We thus incorporate,
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a

{Ce}

b

{Xe,Xa,M1,D}

c

{Ca}

d

{Xa,M1,D}

e

{Xa, T2,M1,D}

g

{Ce}

h

{Xe,Xa, T1,M1,D}

i

{Ca}

Figure 5: The corresponding control game graph (without Player 0 dead-ends) for the basins of attraction
in Fig. 3.

in what follows, the information captured by item (ii)
of Proposition 2.

4.3.3 Persistent Live-Groups

In order to capture item (ii) of Proposition 2 in the
logical synthesis game, we construct so called persis-
tent liveness constraints to annotate the control game
graph GC which are inspired by progress groups from
[25].

Definition 9. Given a game graph G = (V,E), a
persistent live-group is a tuple (S, C, T) consisting of
sets S, T ⊆ V and C ⊆ E0 such that T ⊆ S. The con-
straints represented by such a persistent live group is
expressed by the following LTL formula

ψpers(S, C, T) := �
(

�(S ∧ ψcont(C))⇒ ♦T
)

, (11)

where ψcont(C) := src(C) ⇒ C. Moreover,
the constraints represented by a set Λ of per-
sistent live-groups is denoted by ψpers(Λ) :=
∧

(S,C,T)∈Λ ψpers(S, C, T).

Intuitively, ψcont(C) ensures that edges in C are
chosen when possible, as this is only possible for
Player 0 vertices in S. Furthermore, (11) ensures that
persistently choosing the edges in C from the source
vertices S will eventually lead us to a vertex in T.
For a CLF w ∈ W, we construct a persistent live-

group (Sw, Cw, Tw) that captures Proposition 2 in the
following way. Given the control graph GC as defined
before, and a CLF w ∈ W, first, the persistent acti-
vation of Cw is captured via the set Cw collecting all
(Player 0) edges that end in vertices with labeled by
Cw, i.e.,

Cw = E ∩
(

V × {v ∈ V | Cw ∈ ℓ
C(v)}

)

. (12)

Always choosing an edge from Cw will force Xw to
remain true within the same context κw, which is
captured by the set Sw collecting all (Player 0) ver-
tices labeled by Xw and propositions in κw, and all

(Player 1) vertices labeled by Cw, i.e.,

Sw = {v ∈ V | Xw ∈ ℓ
C(v), κw = ℓC(v) ∩ APO}

∪ {v ∈ V | Cw ∈ ℓ
C(v)}. (13)

Finally, we know that always choosing an edge from
Cw will eventually lead us to a vertex where Rw is
true, captured by the set Tw collecting all vertices
labeled by Rw , i.e.,

Tw = {v ∈ V | Rw = ℓC(v) ∩ APS}. (14)

Example 6. For example, consider the control game
graph shown in Fig. 5 for Example 5. For CLF
w1 of Ω1, the corresponding persistent live-group is
(S, C, T), where S = {a, b, g, h} corresponds to the
region of basin of attraction for w1 with context
κ1 = {M1,D} being true, C = {eba, ehg} corresponds
to the edges that represent using the control policy
uw, and T = {h} corresponds to the target region of
Ω1, i.e., vertices labeled by T1 .

Given the set W of all CLFs as given before, we
collect all the corresponding persistent live-groups for
the CLFs in W in the set ΛC . With the persistent
live-group assumptions ΛC , the control game graph
GC also ensures that item (ii) of Proposition 2 holds
at a higher level as formalized below.

Lemma 7. Let GC be a control graph as in Defini-
tion 8 and W a set of CLFs with persistent live-groups
(Sw, Cw, Tw) for all w ∈ W as in (13)-(14). Then a
play over GC satisfies ψpers(Sw, Cw, Tw), if and only
if its generated trace satisfies

�(�(Xw ∧ κw ∧ Cw)⇒ ♦Rw). (15)

Moreover, (15) along with (7)-(10) ensures that
every trace generated by plays in GC satisfying
ψpers(Sw, Cw, Tw) also satisfies φCw

in (6). Con-
versely, every trace satisfying (6) is generated by a
play in GC satisfying ψpers(Sw, Cw, Tw).
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Proof. Let ρ = v0v1 · · · be a play in GC and π =
l0l1 · · · be the trace generated by ρ. By the definition
of the persistent live-groups as in (12)-(14), rewriting
(11) in terms of propositions gives us that, ρ satisfies
ψpers(Sw, Cw, Tw) if and only if trace π satisfies (15).
Furthermore, by Lemma 5, the trace π also satisfies
(7)-(10).
Now, suppose π satisfied (15), then we need to show

that π also satisfies φCw
in (6). It suffices to show that

for every k ≥ 0, the trace πk = lklk+1 · · · satisfies the
following:

�(Cw ∧ κw)⇒ ♦�Rw ∧ �¬Aw.

Suppose πk satisfies�(Cw∧κw). Then, every j ≥ k, lj
satisfies Cw, which implies, by (8), lj also satisfies Xw.
Moreover, by (7), lj also satisfies ¬Aw for each j ≥ 0.
Therefore, trace πk satisfies both �(Cw∧κw∧Xw) and
�¬Aw, which then implies, by (15), πk also satisfies
♦Rw. That means, there exists m ≥ k such that lm
satisfies Rw. As lm also satisfies Cw, by (9), lm+1

satisfies Rw. Using the same argument inductively,
we can show that li satisfies Rw for all i ≥ m. There-
fore, πk satisfies both ♦�Rw and �¬Aw. Conversely,
suppose π satisfies (6), then we need to show that ρ
satisfies ψpers(Sw, Cw, Tw). It is enough to show that
π satisfies (15), which trivially follows from (6).

4.3.4 Final Augmented Parity Game

Given the three ingredients from the last steps, we are
now ready to construct the final augmented (parity)
game which serves a new logical synthesis game for
the final hybrid controller and is defined next.

Definition 10. An augmented game G is a tuple
(G,φ,Λ) consisting of a game graphG, a set of persis-
tent live-groups Λ over G and an LTL specification φ.
Moreover, an augmented game (G,φ,Λ) is equivalent
to the game (G,ψpers(Λ)⇒ φ).

Let us now describe how the final augmented par-
ity game, i.e., an augmented game with parity speci-
fication, is constructed. Recall that VM

i and V C
i are

the vertices of Player i in game graph GM and GC ,
respectively.

Definition 11. Given the merged game GM , con-
trol game graph GC , and persistent live-groups
ΛC as computed before, the final augmented par-
ity game GF = (GF ,Parity(PF ),ΛF ) with GF =
(V F , EF , ℓF ) is constructed by taking the product of
the game GM and the tuple (GC ,ΛC) as follows:

• v = (vM , vC) ∈ V F
i with label ℓF (v) =

ℓ′(vM ) ∪ ℓC(vC) if vM ∈ VM
i , vC ∈ V C

i , and
ℓ′(vM )|APO∪APS = ℓC(vC)|APO∪APS ;

• there is an edge (v1, v2) ∈ E
F from v1 = (vM1 , vC1 )

to v2 = (vM2 , vC2 ) if (v
M
1 , vM2 ) ∈ EM and (vC1 , v

C
2 ) ∈

EC ;

• for vertex v = (vM , vC) ∈ V F , P(v) = PM (vM );

• (S, C, T) ∈ ΛF if there exists a (SC , CC , TC) ∈ ΛC

such that:

– S = V F ∩ (VM × S
C),

– T = V F ∩ (VM × T
C),

– for every edge e = (v1, v2) ∈ EF with v1 =
(vM1 , vC1 ) and v2 = (vM2 , vC2 ), it holds e ∈ C if
and only if (vC1 , v

C
2 ) ∈ C

C .

As the priority function PF is defined by the pri-
ority function PM of the merged game GM and ev-
ery winning play in GF satisfying ψpers(Λ

F ) needs
to satisfy the parity condition Parity(PF ), the next
proposition directly follows from Lemma 4.

Proposition 3. Given the LTL specification φ, ini-
tial game GI , and the final game GF with persis-
tent live-groups ΛF as in Definition 11, suppose π
be a trace generated by a winning play satisfying
ψpers(Λ

F ) in GF , then π satisfies the specification φ.

4.4 Solving the Final Augmented

Game

As discussed in Section 4.1, the initial game GI al-
lowed the system to instantaneously activate or de-
activate all state propositions in APS . However, this
was no longer possible in the merged game GM . But,
in the final game GF , the persistent live-groups, using
the results described in Lemma 7, enable the system
to activate or deactivate specific state propositions
which are ensured to become eventually true (using
the associated feedback-control policy) if no external
context change is induced.
The next obvious step of our synthesis procedure

is to solve the final augmented game GF , i.e., to
compute a winning strategy in this game. Based
on the observation made in Definition 10 that an
augmented game (G,φ,Λ) is equivalent to the game
(G,ψpers(Λ) ⇒ φ) one can use standard game solv-
ing techniques for this purpose. This, however, usu-
ally results in computationally intractable problems.
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ẋ(t) = f(x(t), p(x(t), ν(t)) )

ΓσF ,x,Υ

x(t)

Υ(t)

ν(t)

Figure 6: The interconnection between the control
system and the hybrid system HσF defined in Defini-
tion 12

We will therefore provide a new algorithm for solv-
ing augmented parity games, in the subsequent Sec-
tion 5, which has a similar algorithmic structure and
therefore also similar worst-case time complexity as
the standard algorithm for solving classical (non-
augmented parity) games and therefore allows for a
computationally tractable solution.
For the time being, we assume that we have solved
GF , i.e., we have computed a winning region V F

win ⊆
V F and a winning strategy σF : V F

0 → V F
1 s.t. all

resulting traces satisfy φ due to Proposition 3.

4.5 Constructing the Hybrid Con-

troller

Given a winning region V F
win ⊆ V F and a winning

strategy σF : V F
0 → V F

1 , we now construct a set of
initial winning conditions Xwin ⊆ X and a hybrid
feedback control policy p : R+ × X × D → U (as in
Definition 3) to solve Problem 1.
We first observe that the winning region V F

win ⊆
V F naturally translates into a set of initial winning
conditions Xwin via the labeling function L+ s.t.

Xwin := {x ∈ X | ∃v ∈ V F
win s.t. ℓF (v)∩AP+S = L+(x)}.

(16)
In order to translate the winning strategy σF :

V F
0 → V F

1 into a hybrid control policy p we take
a two-step approach. We first construct a map Γ
which uses σF to translate the history of a contin-
uous curve ζ : R+ → X and a disturbance function
Υ: R+ → 2APO into a piece-wise constant function
ν : R+ → V F

1 of Player 1 vertices of GF . The hybrid
controller p then translates each vertex ν(t) ∈ V F

1

into the feedback control policy uw : X → U associ-
ated with its (unique) label6 ℓF (ν(t)) = Cw ∈ APC ,

6We slightly abuse notation by writing ℓF (ν(t)) = Cw in-
stead of {Cw}.

which is a single control proposition by construction
of GF . This control policy uw is then applied to S
via f . This is illustrated in Fig. 6 and formalized in
the following definition.

Definition 12. Let S = (X,U, f) be a control sys-
tem with labelling function L+ and W the set of all
CLFs. Consider σF : V F

0 → V F
1 a winning strategy

over the final game GF , a continuous curve ζ : R+ →
X and a disturbance function Υ: R+ → 2APO . Then
the map ΓσF ,ζ,Υ defines a piecewise constant function
ν : R+ → V F

1 such that:

1. ν(0) = σF (v0), where v0 ∈ V F
0 s.t. ℓF (v0) =

L+(ζ(0)) ∪Υ(0),

2. for any discontinuity point τ ∈ R+ of L+(ζ(·)) ∪
Υ(·), it holds that ν(τ) := σF (v) s.t. (ν(τ−), v) ∈
EF and ℓF (v) = L+(ζ(τ))∪Υ(τ), (where ν(τ−) :=
limsրτ ν(s)), and

3. the set of discontinuity points of ν(·) is contained
in the set of discontinuity points of L+(ζ(·))∪Υ(·).

Intuitively, Definition 12 models the fact that the
logical layer of the hybrid controller (modelled by the
game) might actuate a change in the low-level feed-
back control policy only when the context changes.
This context change can either be induced externally
(when Υ has a discontinuity point, i.e., the observa-
tion proposition changes) or when L+(ζ(t)) changes,
i.e., the underlying system dynamics causing state
propositions to change. Both is detected by a discon-
tinuity point in L+(ζ(t)) ∪ Υ(t). At these triggering
points (and only then), the map ΓσF mimics the move
of the winning strategy σF by moving to the environ-
ment vertex v selected by σF in GF while respecting
the current context.
We emphasize that the definition of the map

ΓσF ,ζ,Υ is actually causal. It only uses the informa-
tion from the past of ζ and Υ up to time point t− to
compute ν(t). This implies that we can actually use
it online to dynamically generate the signal ν from
the past observations of a state trajectory ξ and the
past logical disturbances Υ, as depicted in Fig. 6. As,
in this context, the state trajectory ξ is not known a
priory, we slightly abuse notation and refer to ΓσF ,ζ,Υ

as ΓσF ,x,Υ, where x is the starting point of ξ.
With this slight notation overload, we can define

the final closed loop system as follows.

Definition 13. Given the premises of Definition 12,
the final closed loop system is given by

ẋ(t) = f(x(t), p(x(t), ν(t)) ), (17)
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where p(x(t), ν(t)) := uw(x) ∈ U and ν(t) is dynami-
cally generated via ΓσF ,x,Υ by interpreting (the past
of) a solution ξx,p,Υ : R+ → X of (17) under p and
Υ, with starting point x ∈ X , as (the past of) ζ in
Definition 12.

This leads to the main result of this section estab-
lishing the correctness of our synthesis procedure.

Theorem 1. Consider a control system S =
(X,U, f) with labelling function L, an LTL specifi-
cation φ over the predicates APS ∪ APO. Consider
the final game GF , W the set of all CLFs, L+ the
extended labelling function, the winning region V F

win

and winning strategy σF : V F
0 → V F

1 . Then x ∈ Xwin

as in (16) and p as in Definition 13 solve Problem 1.

The proof of Theorem 1 combines all correctness
results established in Section 4.1-Section 4.4.

Proof. Since the plays ending in Player 0 dead-ends
are not winning in a game and σF is a winning strat-
egy in GF , no σF -play ends in a Player 0 dead-end.
Then, by Lemma 4 and Lemma 6, all possible changes
in L+ (triggered by applying control policies associ-
ated with W) and Υ are captured by the game graph
GC . In particular, every solution ξx,p,Υ corresponds
to a play ρ = v0v1 · · · in GF such that every change
in L+ and Υ corresponds to a move by Player 1 to a
vertex with corresponding label in ρ. Furthermore, as
x ∈ Xwin(V

F
win) we have v0 ∈ V

F
win. Moreover, by Def-

inition 12, ρ is a σF -play starting from the winning
region V F

win of game GF . So, ρ is a winning play, and
hence, it always stays in V F

win. This implies, ξx,p,Υ(t)
also belongs to Xwin(V

F
win) for all t ∈ R+.

By the discussed correspondence between ξx,p,Υ
and play ρ, a trace π generated by ξx,p,Υ under L
is also the trace generated by the play ρ. Further-
more, every play in GF corresponds to a play in the
control graph GC as in Definition 8. Moreover, by
Proposition 2, π satisfies (6). Then by Lemma 7 and
Definition 10, π is generated by a play in GF satis-
fying ψpers(Λ

F ). Hence, ρ satisfies ψpers(Λ
F ). More-

over, as ρ is a winning play in GF , by Proposition 3,
trace π satisfies the specification φ.

5 SYNTHESIS DETAILS:

HIGH-LAYER

The previous section described our synthesis frame-
work and established its ability to solve Problem 1 in
Theorem 1. The main hypotheses in this statement
are the existence of

1. a winning strategy for the final game GF , and

2. a CLF w for each cRWA.

Within this section we give a novel algorithm to ef-
ficiently solving augmented parity games constructed
in Section 4.3, thus tackling the first point. The sec-
ond hypothesis is treated in subsequent Section 6,
which presents the construction of feedback control
policies implementing cRWA via CLFs used in Sec-
tion 4.2, together with the proof of the well-posedness
of the arising closed loop (17).

5.1 Augmented Reachability Games

While an augmented parity game can be reduced to a
Rabin game (by transforming each persistent group-
liveness constraints into an additional Rabin pair)
and then solving the resulting Rabin game using clas-
sical algorithms [39], this method is computationally
not tractable. This is due to the fact that exist-
ing algorithms are known to become intractable very
quickly if the number of Rabin pairs grows. There-
fore, we leverage the recent insight that local liveness
constraints on the environment player typically fall
into a class of synthesis problems that allow for an
efficient direct synthesis procedure [25, 40]. The aug-
mented games we consider are similar to the ones
discussed by Sun et al. [25]. We, however, provide
a novel algorithm that tackles the full class of parity
games and thereby subsumes the restricted problem
class considered in [25].

The practically most efficient known algorithm
to solve classical (non-augmented) parity games is
Zielonka’s algorithm [37]. This algorithm recursively
solves reachability games for both players to compute
a winning region and a winning strategy of the con-
troller player in the original parity game. In order to
mimic Zielonka’s algorithm for augmented games, we
first discuss an algorithm to solve augmented reacha-
bility games. From this, our new algorithm essentially
follows as a corollary.
An augmented reachability game is a tuple G =

(G,φ,Λ) where the specification φ = ♦T is to finally
reach a set T ⊆ V of target vertices. The new recur-
sive algorithm that solves an augmented reachability
game G is given in Algorithm 1. The main idea of
the algorithm is to first compute the set of vertices
A from which Player 0 can reach T even without the
help of any persistent live-group constraints (line 2)
along with the corresponding strategy σ for Player 0
(line 3). Afterwards, the algorithm computes the set
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Algorithm 1 SolveReach(G, T,Λ)

Require: An augmented game G = (G,φ,Λ) with
φ = ♦T

Ensure: Winning region and winning strategy in the
augmented game G

1: Initialize a random Player 0 strategy σ
2: A, σA ← Attr

0 (G, T )
3: σ(v)← σA(v) for every v ∈ A \ T
4: for (S, C, T) ∈ Λ do
5: if (S \A) ∩ pre(A) 6= ∅ then
6: B, σB ← Solve(G|C, φB)
7: with φB = ♦A ∨�(S \ T)
8: if B 6⊆ A then
9: σ(v)← σB(v) for every v ∈ B \A

10: C, σC ← SolveReach(G,A ∪B,Λ)
11: σ(v)← σC(v) for every v ∈ C \(A∪B)
12: return (C, σ)

13: return A, σ

of states B from which Player 0 has a strategy (i.e.
σB) to reach A with the help of a persistent live-
group (lines 5-7). If this set B enlarges the winning
state set A (line 8), we use recursion to solve another
augmented reachability game with target T := A∪B
(line 12).
Within Algorithm 1, we use the following notation.

Given a game graph G = (V,E) and a persistent live-
group (S, C, T), we write G|C to denote the restricted
game graph (V,E′) such that E′ ⊆ E and for every
edge e = (v′, v) ∈ E′, either e ∈ C or there is no edge
in C starting from v′. Furthermore, pre(T ) ⊆ V is the
set of vertices from which there is an edge to T .
For a set T of vertices, the attractor function

Attr
i (G, T ) solves the (non-augmented) reachabil-

ity game (G,♦T ). I.e., it returns the attractor set
A := attri (G, T ) ⊆ V and a attractor strategy σA of
Player i. Intuitively, A collects all vertices from which
Player i has a strategy (i.e., σA) to force every play
starting in A to visit T in a finite number of steps.
Moreover, the function Solve(G,φ) returns the win-
ning region and a winning strategy in a game (G,φ)
with φ = ♦A ∨ �¬T for some A, T ⊆ V . Both the
functions ATTR and Solve solve classical synthe-
sis problems with standard algorithms (see e.g. [41]).
For the sake of a complete prove we note that Solve
can be implemented using the following remark.

Remark 2. Given a game G = (G = (V,E), φ) where
φ = ♦A ∨ �S for some A,S ⊆ V , one can reduce
the game to a smaller safety game (G′, φ′ = �S′),
where S′ = S ∪ {vA} and G′ is the game graph ob-

tained from G by merging all vertices in A to a sin-
gle new sink vertex vA, i.e., all incoming edges to A
are retained but vA has only one outgoing edge that
is (vA, vA). In such a game, the winning region is
V \ attr1 (G′, V \ S′), see [41].

With this, we can prove the correctness of Algo-
rithm 1.

Theorem 2. Given an augmented game
G = (G,φ,Λ) with φ = ♦T , the algorithm
SolveReach(G, T,Λ) returns the winning re-
gion and a winning strategy in game G. Moreover,
the algorithm terminates in O(|Λ| · |V | · |E|) time.

Proof. Suppose Vwin be the winning region in the
augmented game G. Using induction on the num-
ber of times SolveReach(·) is called, we show that
the set returned by the algorithm is indeed Vwin, and
the updated strategy σ returned by the algorithm is
a winning strategy in G.

Base case: If SolveReach(·) is never called, i.e.,
the algorithm returned (A, σ) in line 13. Hence, we
need to show that A = Vwin.
First, let us show that A ⊆ Vwin. By the defi-

nition of attractor function Attr
0 (G, T ), every σA-

play from A eventually visits T , and hence, satisfies
φ (which is stronger than ψpers(Λ)⇒ φ). Therefore,
every vertex in A is trivially winning in G, and hence,
A ⊆ Vwin.
Now, for the other direction, suppose v be a vertex

such that v 6∈ A. It is enough to show that v 6∈ Vwin.
As v 6∈ A = attr0 (G, T ), Player 0 can not force the
plays to visit T . If q 6∈ S for every (S, C, T) ∈ Λ,
then the persistent group-liveness constraints are not
relevant for vertex v. Now, suppose v ∈ S for some
(S, C, T) ∈ Λ. As the algorithm did not reach line 12,
for every persistent live-group, one of the conditional
statements, the one in line 5 or the one in line 8, is not
satisfied. If the statement in line 5 is not satisfied, i.e.,
(S \A)∩ pre(A) = ∅, then there is no edge from S \A
to A, and hence, this persistent live-group constraint
does not help in reaching A from V \A anyway.
Next, if the statement in line 5 is not satisfied,

then it holds that B ⊆ A. Hence, v 6∈ B. As B
is the winning region for game (G|C, φB) and such a
game is determined [41], Player 1 has a strategy σ1
such that every σ1-play in this game starting from v
satisfies ¬φB = �¬A∧♦(T∪V \ S). Therefore, every
σ1-play trivially satisfies ψpers(S, C, T) without ever
reaching A. Hence, if Player 1 sticks to strategy σ1,
Player 0 can not make the plays from v visit A ⊇ T
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using this constraint. Therefore, in any case, Player 0
has no strategy that can enforce a play from v to
satisfy ψpers(Λ)⇒ ♦T . Hence, v 6∈ Vwin.
Now, let us show that the returned strategy σ is

indeed a winning strategy in G. As σA is the attractor
strategy to reach T , line 3, it is easy to verify that
every σ-play starting from A \ T eventually visits T ,
and hence satisfies φ. Therefore, every σ-play from
A is winning.

Induction case: Suppose the algorithm returned
(C, σ) in line 12 for some (S, C, T) ∈ Λ. By induc-
tion hypothesis, C is the winning region and σC is
a winning strategy in the augmented game GC =
(G,φC ,Λ) with φC = ♦(A ∪B).
First, let us show that Vwin ⊆ C. By the defi-

nition of attractor set attr0 (G, ·), it is easy to see
that T ⊆ A. So, every play in G satisfies ♦T ⇒
♦(A ∪ B). Therefore, a winning play in augmented
game (G, T,Λ) is also winning in augmented game
(G,A ∪B,Λ). Therefore, Vwin ⊆ C.
Now, for the other direction, let us first show that

B ⊆ Vwin. As σB is a winning strategy in game
GB , every σB-play ρ starting in B satisfies φB. By
definition of φB , either ρ satisfies ♦A or it satisfies
�(S \ T). Furthermore, as ρ is a play in G|C, it satis-
fies �(S∧ψcont(C)). Hence, if ρ satisfies ψpers(S, C, T),
then it also satisfies ♦T. Therefore, ρ can not satisfy
both ψpers(S, C, T) and �(S \ T). As a consequence,
ρ satisfies ψpers(S, C, T) ⇒ ♦A. Furthermore, as we
know, A ⊆ Vwin. Therefore, ρ satisfies ♦A ⇒ ♦Vwin,
and hence, satisfies ψpers(S, C, T) ⇒ ♦Vwin. So, ev-
ery σB-play starting in B satisfies ψpers(Λ)⇒ ♦Vwin.
Then, one can construct a Player 0 strategy σ0 (i.e.,
the one that uses σB until the play reaches the win-
ning region Vwin of game G, and then switches to a
winning strategy of game G) such that every σ0-play
starting in B satisfies the following

(ψpers(Λ)⇒ ♦Vwin) ∧�(Vwin ∧ ψpers(Λ)⇒ ♦T ),

and hence, satisfies ψpers(Λ) ⇒ ♦T . Therefore, B ⊆
Vwin.
Now, let us the other direction for induction case,

i.e., C ⊆ Vwin. As B ⊆ Vwin and A ⊆ Vwin as
proven by the arguments given in base case, it holds
that A ∪ B ⊆ Vwin. So, every play in G satisfies
♦(A ∪ B) ⇒ ♦Vwin. Furthermore, as σC is a win-
ning strategy in game GC , every σC -play starting in
C satisfies ψpers(Λ)⇒ ♦(A ∪B), and hence, satisfies
ψpers(Λ) ⇒ ♦Vwin. Then, as in the last paragraph,
one can construct a Player 0 strategy σ0 (i.e., the one

that uses σC until the play reaches the winning re-
gion Vwin of game G, and then switches to a winning
strategy of game G) such that every σ0-play starting
in C satisfies the following

(ψpers(Λ)⇒ ♦Vwin) ∧�(Vwin ∧ ψpers(Λ)⇒ ♦T ).

Hence, every σ0-play starting in C satisfies
ψpers(Λ)⇒ ♦T . Therefore, C ⊆ Vwin.

Now, let us show that the returned strategy σ in
Algorithm 1 is also a winning strategy in game G. As
σ is follows strategy σC for vertices in C \ (A ∪ B),
every σ-play from C \ (A∪B) eventually visits A∪B
when ψpers(Λ) holds. Now, let σM be the updated
strategy until line 9. Then, from line 3,9, it is easy
to see that σ(v) = σM (v) for every vertex v in A ∪
B. As σB is a winning strategy in game GB , using
line 9 and the discussion above, every σ-play from
B \A eventually visits A when ψpers(Λ) holds. Then,
using arguments of base case, every σ-play from A \
T eventually visits T . Therefore, in total, as σ is
a strategy, every σ-play from C eventually visits T
when ψpers(Λ) holds. Hence, σ is indeed a winning
strategy in game G.

Time complexity: Let k be the number of times
SolveReach(·) is called. If T = V , then A = V , and
hence, S \ A = ∅ for every (S, C, T) ∈ Λ, and hence,
SolveReach(·) will never be called. Furthermore, if
T 6= V , then, by definition of attr0 (G, ·), it holds that
T ⊆ A. So, in line 5, we keep adding at least one ver-
tex to the target for the next call of SolveReach(·).
Hence, k can be at most |V |. Moreover, in each it-
eration, we might need to solve game (G|C, φB) for
each (S, C, T) ∈ Λ; and using Remark 2, solving such
a game can be reduced to computing an attractor
function attr1 (G, ·). As computing such an attractor
function takes O(|E|) time [41], the algorithm takes
O(|Λ| · |V | · |E|) time in total.

5.2 Augmented Parity Games

Zielonka’s algorithm [37] solves classical parity games
by recursively using attractor functions Attr0 (G, T )
and Attr

1 (G, T ). The only difference between the
attractor function Attr

0 (G, T ) and our new func-
tion SolveReach(G, T,Λ) from Algorithm 1 is the
utilization of augmented live groups to solve reach-
ability games. To solve an augmented parity game
(G,φ,Λ), one can therefore simply replace every use
of Attr0 (G, T ) with SolveReach(G, T,Λ) within
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Zielonka’s algorithm. Due to Theorem 2, the re-
sulting algorithm correctly solves augmented parity
games and returns a strategy, summarized in the fol-
lowing corollary.

Corollary 1. An augmented parity game with game
graph (V,E, ℓ) and priority function P : V → [0, d]

can be solved in O
(

|V |d+O(1)
)

time.

6 SYNTHESIS DETAILS:

LOW-LEVEL

This section illustrates an efficient and flexible nu-
merical method to design CLFs which can then be
used to design feedback-control policies via Lemma 1.
We show that the arising closed-loop exhibits exis-
tence of solutions from every feasible initial point and
we discuss boundedness of solutions.

6.1 Synthesis of Control Policies from

cRWAs

It is well-known that the problem of synthesizing
CLFs (in the sense of Section 4.2) for general nonlin-
ear control systems (as in Definition 1) over a generic
state space X ⊆ Rnx solving a generic cRWA prob-
lem Ω = (κ,R,A) is numerically intractable [38]. We
thus restrict the class of systems we consider.

Assumption 1. The control system S = (X,U, f)
has affine dynamics of the form

f(x, u) := Ax+Bu+ g, (18)

for some A ∈ Rnx×nx , B ∈ Rnx×nu and g ∈ Rnx .
Moreover, we suppose that the input space is a
convex polytope, i.e. U = H(pU , HU ) := {x ∈
Rnx : H⊤

U (x − pU ) ≤c 1}, for some hU and HU

of appropriate dimensions.

In addition, we restrict the shape of the state-space
regions linked to state propositions APS .

Assumption 2. Given a state proposition T ∈ APS

its corresponding state-space region is either ellip-
soidal of the type E(q, S) = {x ∈ Rnx : (x −
q)⊤S(x − q) ≤ 1} or a convex polytope H(p,H) =
{x ∈ Rnx : H⊤(x − p) ≤c 1}, where S ∈ Rnx×nx is
a symmetric positive semidefinite matrix, q, p ∈ Rnx

are vectors and H ∈ Rnx×m.

Under these assumptions, instead of searching for
control Lyapunov functions all over the set of C 1

functions, we restrict our search to quadratic func-
tions of the form

w(x) = (x− xc)
⊤P (x− xc), (19)

where xc ∈ X is the center of w and P ∈ Rnx×nx ,
P ≻ 0.
Inspired by the results in [20], we present a method

to design a CLF w(x) in the form of (19) associated
with a cRWA problem Ω = (κ,R,A) (as in Defini-
tion 6) in three steps:

(A) Find xc such that R ⊂ L(xc) and A∩L(xc) = ∅.

(B) Find a safe set S ⊆ X such that xc ∈ S and
A∩ L(x) = ∅ for all x ∈ S.

(C) Construct a CLF w such that its basin of attrac-
tion is safe, i.e., Xw ⊆ S.

These steps must be performed with awareness of the
context κ and the changes that it causes in the con-
tinuous state space. First, Item (A) is a necessary
condition for the existence of a CLF that generates a
feasible controller for Ω. However, given that the set
difference between the convex regions where R and A
hold is potentially non-convex, checking whether such
xc exists is a very difficult problem. To avoid resort-
ing to global optimization strategies such as branch-
and-bound algorithms, we introduce another assump-
tion.

Assumption 3. Given a cRWA problem Ω =
(κ,R,A), for all x ∈ X such that R ⊂ L(x) we have
x /∈ EA, where EA ⊂ 2X is an ellipsoidal regions as-
sociated with a proposition in A.

Assumption 3 requires that any ellipsoidal set that
is to be avoided in Ω does not intersect the region
associated to R, i.e. the region to be reached. In
prctice, if it is not the case, one can replace ellipsoidal
obstacles by polytopic over-approximations.

Lemma 8. A point xc satisfying Item (A) exists if
the following optimization problem is feasible:

xc ∈ X ⊂ Rnx s.t. (20)

∀ Ei(qr, Sr) ∈ ER

[

1 •
xc − qr S−1

r

]

≻ 0, (21)

∀ Hj(pr, Hr) ∈ PR, H⊤
r (xc − pr) < 1, (22)

∀ Hk(pa, Ha) ∈ PA. ‖H⊤
a (xc − pa)‖∞ > 1,

(23)

∃uc ∈ U ⊆ Rnu Axc +Buc + g = 0,
(24)
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where ER and PR are respectively the set of ellipsoids
and polytopes associated with propositions in R while
PA is the set of polytopic sets associated with propo-
sitions in A.

Proof. Applying the Schur Complement Lemma [42,
p. 7], (21) becomes exactly the definition of an el-
lipsoid E(qr , Sr). The condition (23) ensures that
A ∩ L(xc) = ∅. Finally, (24) enforces that xc is a
stationary point for the system under a constant in-
put uc. This last condition can be handled directly by
semidefinite programs whenever U is also a polytope,
i.e., U = H(pU , HU ).

To find a safe set S as required in Item (B), we shall
search for the largest ellipsoid E(xc, PS) centered at
xc and shaped through PS ∈ Rnx×nx .

Lemma 9. The ellipsoid S = E(xc, PS) satisfies
Item (B) if the following semidefinite program is fea-
sible:

min
PS,β1,β2,...

tr(PS) s.t. (25)

∀ Ei(qa,Pa) ∈ EA,

[

PS+βiPa −PSxc−βiPaqa
• ρi

]

≻ 0,

(26)

∀ Hj(pa, Ha) ∈ PA, ∃h ∈ cols(Ha) α(h)PS ≻ hh
⊤,
(27)

where ρi = x⊤c PSxc + βiq
⊤
a Paqa − 1− βi and α(h) =

(1 + h⊤(pa − xc))
2 and cols(Ha) denotes the set of

column vectors of Ha.

Proof. Note that (26) is an application of the S-
procedure [42, p. 23], ensuring that x /∈ E(qa, Pa) for
all x such that x ∈ E(xc, PS). On the other hand, (27)
ensures that all polytopes in PA have at least one
hyperplane on their boundaries that separates them
from the safe set S. Indeed, we can prove the follow-
ing statement:
For given polytope H(p,H) and ellipsoid E(q, S), if
there is h ∈ cols(H) such that (1 + h⊤(p − q))2S ≻
hh⊤, we have H(p,H) ∩ E(q, S) = ∅.
Indeed, since H(p,H) and E(q, S) are convex sets, the
intersection H(p,H)∩E(q, S) is empty if there exists
one column h ∈ Rnx of H such that

h⊤(x− p) > 1, ∀ x ∈ E(q, S). (28)

This inequality defines a separating hyperplane be-
tween E(q, S) and H(p,H), since h⊤(x − p) ≤ 1 for
all x ∈ H(p,H), by definition. Since q ∈ E(q, S)
we have h⊤(q − p) > 1, and we can rewrite (28) as

(1 + h⊤(p − q))−1h⊤(x − q) < 1, for all x ∈ E(q, S).
Also, since q ∈ Rnx is the center of E(q, S), this el-
lipsoid is contained also in the hyperplane defined by
(1 + h⊤(p− q))−1h⊤(x− q) > −1, and thus we have
|(1 + h⊤(p− q))−1h⊤(x− q)| < 1, for all x ∈ E(q, S).
Thus (28) is equivalent to

(x− q)⊤(1 + h⊤(p− q))−2hh⊤(x− q) < 1

for all x ∈ E(q, S). This, by definition, holds if and
only if (1+h⊤(p−q))2S ≻ hh⊤, concluding the proof.

Finally, having the safe set S = E(xc, PS) fully de-
termined, we can proceed with constructing the CLF
and extracting feedback control policies from them,
as required by Item (C). We summarize our sufficient
conditions in the following statement.

Lemma 10. Suppose that the following semidefinite
program, for a given decay rate ρ > 0, is feasible:

max
Z,Y,β1,β2,...

tr(Z) s.t. (29)

Z ≺P−1
S

(30)

AZ + ZA⊤+BY + Y ⊤B⊤ ≺ −2ρZ (31)

∀ hU ∈ cols(HU )

[

Z Y ⊤hU
• (1+(pU−u0)⊤hU )2

]

≻ 0.

(32)

Then, defining P = Z−1 and K = Y P , for the CLF
defined by w(x) := (x − xc)⊤P (x − xc) and the sur-
rogate controller u(x) := K(x−xc)+u0 it holds that

1. u(x) ∈ U for all x ∈ Xw,

2. 〈∇w(x), f(x, u(x))〉 ≤ −ρw(x), for all x ∈ Xw.

In particular, the function w satisfies conditions in
Item (C).

Proof. First, (30) ensures safety as, inverting both
sides of the inequality implies that Xw(1) =
E(xc, P ) ⊂ S. Then (31) ensures the descent con-
dition (4). Condition (32) implies that u(x) ∈ U =
H(hU , HU ) for all x ∈ Xw(1). To show that, con-
sider a hU ∈ cols(HU ) and multiplying the first line
and column of the matrix in (32) by P and apply
the Schur Complement Lemma. The result is the
equivalent matrix inequality (1 + h⊤U (pU − uc))

2P ≻
K⊤hUh

⊤
UK. Multiplying it to the right by (x − xc)

and to the left by (x− xc)⊤ while using the assump-
tion that x ∈ Xw(1) = E(xc, P ) yields (1 + h⊤U (pU −
uc))

2 ≻ (x− xc)⊤K⊤hUh
⊤
UK(x− xc), which can also
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be rewritten as |h⊤U (K(x − xc) − pU + uc)| < 1. By
definition, this inequality being fulfilled for all hU ∈
cols(HU ) is equivalent to u(x) ∈ H(pU , HU ).

Putting Lemmas 8, 9 and 10 together, it can
be seen that the controller u(x) constructed in
Lemma 10 is a feedback control policy satisfying
Lemma 1, and hence also Proposition 2.
After providing all details on the synthesis of a hy-

brid controller solving Problem 1, we now discuss two
additional issues in the correctness of this controller,
which are not captured by Proposition 3.

6.2 Existence of Solutions

In our statement of Problem 1 and in the control
technique formalized and summarized in Theorem 1
we state that any (trace of) solution of the closed
loop system (17) satisfies the considered LTL specifi-
cation. However, we did not provide a well-posedness
result establishing existence of solutions for (17), for
any initial condition and any external logical pertur-
bation. Indeed, it is known that closed-loop feedback
systems with state-dependent piecewise-defined con-
trol input may exhibit pathological behaviors, such
as chattering and sliding modes [43, 44, 45].
In what follows, we thus prove the existence of so-

lutions, in the case studied in Section 6.1.

Proposition 4. Consider a control system S =
(X,U, f) with labelling function L, an LTL specifica-
tion φ over the predicates APS ∪ APO, the final game
GF and a winning strategy σF : V F

0 → V F
1 . Suppose

that Assumptions 1, 2 and 3 hold, and that the set of
required CLFs W is build following the procedure in-
troduced in Subsection 6.1. For every x ∈ Xwin, there
exists a solution ξx,p,Υ : R+ → X to (17) starting at
x, in the sense of Definition 3.

Proof. First, we recall that by Assumptions 2 and 3
and by construction, any state proposition AP

+
S is as-

sociated to a compact (ellipsoidal or polyhedral) sub-
set of X . The closed loop (17), under Assumption 1
can be compactly rewritten as

ẋ = G(t, x) = Ax +B p(x, ν(t) ) + g,

with p(x, Cw) = Kw(x − xcw) + u0w, for all x ∈ Rn

and all Cw ∈ APC , for someKw, xcw and u0w of appro-
priate dimensions, recall Lemma 10. Thus, the time-
varying vector field G : R+×X → Rnx is discontinu-
ous in t, and recalling Definition 12, the discontinuity
points are contained in the sequence of discontinu-
ity points of L+(ξx,p,Υ(·)) ∪ Υ(·). We have to show

that this sequence has no accumulation point, thus
ruling out the so-called Zeno phenomenon, see [44].
Since Υ ∈ D by assumption is piecewise constant,
we have to check the behavior of discontinuities of
L+(ξx,p,Υ(·)), given a fixed context κ ⊆ APO. By
construction, these discontinuities can occur only if
ξx,p,Υ(·) lies at the boundaries of the regions of at-
traction of the CLFs w ∈W, with w associated to a
cRWA with context κ, i.e. the CLFs that can be acti-
vated at that instant of time. For the boundaries of
these region of attractions, the vector field G satisfies
a tranversability condition

n(x)⊤G(t, x) < 0,

where n(x) is the normal vector to the ellipsoid Xw

in x, i.e. the vector field is “pointing inward” the
set Xw. This follows by Item 2) in Lemma 10. This
fact, also called patchy vector field property is a suffi-
cient condition to ensure existence of solutions (in the
sense of Definition 3), as proven in [46, Proposition
3.1], to which we refer for the details. The complete-
ness of solutions, i.e. the fact that any solution is
well-defined on the whole positive real line R+, fol-
lows by the fact that, as proven in Theorem 1, by
Definition 12, a winning play ρ always stays in V F

win.
This implies, ξx,p,Υ(t) also belongs to Xwin(V

F
win) for

all t ∈ R+, concluding the proof.

For a more detailed discussion regarding (proper-
ties of) solutions of discontinuous differential equa-
tions and hybrid systems, we refer to [43, 44, 45].

6.3 Preventing Instability

As said, since the external environment can change
at any instant of time, the closed loop system (17)
exhibits hybrid behavior. This may lead to undesired
phenomena on infinite horizons, as we highlight in
the following simple example.

Example 7. Consider a control system of the form
S := (Rnx , U, f), and two compact target sets
T1, T2 ⊂ Rnx such that T1 ∩ T2 = ∅, and consider
APS = {T1, T2}. We consider the following desired
mode-target game specification (for an overview on
mode-target games, see [47]):

ϕ := (♦�M1 =⇒ ♦�T1) ∧ (♦�M2 =⇒ ♦�T2)
(33)

where M1,M2 ∈ APO are the input atomic propo-
sitions representing the modes activated by the ex-
ternal environment. Suppose to have global CLFs
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w1, w2 : Rnx → R with respect to the target T1, T2,
in the sense of Definition 2, and consider continuous
ui : R

nx → Rnu satisfying (5) globally in Rnx \Xw(c),
for any i ∈ {1, 2}. This provides a winning strategy
for the game arising from (33): we activate the feed-
back law ui when the mode Mi is active. Now con-
sider the disturbance function Υ : R+ → APO mod-
eling the environment behavior. Then the resulting
hybrid closed-loop system can be written as

ẋ(t) = g(x(t),Υ(t)) (34)

where g(x,Mi) := f(x, ui(x)) for i ∈ {1, 2}. Systems
of the form (34) are known as switched systems, and
have been intensively studied in recent years (see [48,
44] for an overview). It is well-known that, even if
the targets T1, T2 are asymptotically stable for the
corresponding subsystems, the external disturbance
Υ : R+ → APO can produce unbounded solutions for
some initial condition x ∈ Rnx , which is undesired in
many contexts, see for example [48, Chapter 1].

There are many possible approaches to overcome
the instability problem discussed in Example 7. Here,
we informally highlight two of them.
First, consider a control system S = (X,U, f) and

an LTL specification φ over APS ∪APO. Suppose that
the problem is global i.e., X = Rnx . Consider a large
enough compact set C ⊂ Rnx such that X ⊂ int(C) for
all X ∈ APS . Consider its boundary ∂C, add ∂C ∈ APS

(intuitively, a large enough “wall”), and consider a
“new” specification φ′ defined by φ′ = φ ∧ �¬∂C.
Thus, paying the price of considering a more “convo-
luted” specification, we force, on the logical level, the
solutions of S to stay in the compact set C.
Second, suppose that the environment, while being

unpredictable, does satisfy some assumptions on the
frequency of its decisions. More formally, suppose
there exists a dwell-time τ > 0, such that, if t ∈ R+

is a discontinuity point of the disturbance function
Υ (i.e. an instant at which the external environment
changes), we suppose that Υ(s) = Υ(t), ∀s ∈ [t, t+τ).
It is well-known that, if all the subsystems are asymp-
totically stable, a large enough dwell-time will ensure
boundedness of solution of the switched system (34).
The technical details are not reported here, we refer
to [48, Section 3.2].
While the above-mentioned approaches can provide

a simple stability guarantee to the hybrid-closed loop
system arising from our design method, we point out
that the formal study of stability/instability phenom-
ena induced by LTL-based control is a largely open
future research direction.

7 EXPERIMENTAL RE-

SULTS

In this section, we demonstrate the proposed tech-
niques on an example. We consider the mode-target
based example introduced in Section 1.1 in a 2-D
space. The state space for the example is constrained
to the box [0, 10] × [0, 10], and the three target re-
gions T1, T2, and T3 are ellipsoidal balls of radius 0.2
located at co-ordinates (3, 4), (3, 6), and (5, 5), re-
spectively. The sliding door is a vertical line from
(4, 0) to (4, 10).
We used our proposed techniques to solve Prob-

lem 1 for this example. All computations were done
on a MacBook Pro 2.5GHz with 16GB RAM. We
started by constructing the initial game GI from spec-
ification φ, as given in Example 1. The initial game
GI has 51 vertices and 182 edges, which was con-
structed in 0.042 seconds. Next, we computed a strat-
egy template for the initial game, and then, we trans-
lated this strategy template into several reach-while-
avoid problems which took 0.007 seconds. Next, we
constructed the control game graph GC with 159 ver-
tices and 1704 edges in 6.13 seconds. Next, we con-
structed the final augmented game GF with 826 ver-
tices and 17604 edges in 0.652 seconds. Finally, we
solved the final game to compute a winning strategy
in 112.495 seconds which is used as a hybrid controller
in the state space. In total, our algorithm took 120
seconds to solve Problem 1 for this example. More-
over, we also conducted a simulation7 of this example
that uses the hybrid controller computed by our al-
gorithm.

8 CONCLUSION

In this paper we proposed a method to synthesize
feedback controllers for continuous-time systems, in
order to fulfill general LTL specifications. We pre-
sented our main algorithm, which, on the logical level,
aims to rewrite the general problem in the form of an
augmented parity game. In order to efficiently per-
form our proposed method, a new solving algorithm
for augmented games is proposed. On the continu-
ous state-space level, the winning strategy is imple-
mented via a control Lyapunov functions approach,
which provides a natural and flexible feedback design
for a large class of dynamical systems.
We believe that our work paves the way towards a

7Link: https://cloud.mpi-sws.org/index.php/s/Yrf2dDzspTkYm88
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new generation of symbolic controllers, where formal
guarantees are still available, thanks to rigorous tech-
niques both at the logical and dynamics levels; how-
ever with satisfactory scalability performances, be-
cause the (time- and space-) discretizations are com-
puted endogenously, in an event-triggered philosophy.
As further directions of research, we plan to extend
our approach to more general logical/dynamical sys-
tems settings and to formally investigate and improve
both numerical complexity and theoretical conser-
vatism of the proposed methods. In particular, we
believe that our framework fits for an iterative, or ac-
tive learning, approach, where the solution, and the
bottlenecks, at the logical level may be used as infor-
mation to guide the low-level design, and vice-versa.
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novative pick-up and transport robot system
for casualty evacuation,” in IEEE International

Symposium on Safety, Security, and Rescue
Robotics, SSRR 2022, Sevilla, Spain, November
8-10, 2022, pp. 67–73, IEEE, 2022.

[9] P. H. Shaikh, N. B. M. Nor, P. Nallagownden,
I. Elamvazuthi, and T. Ibrahim, “A review on
optimized control systems for building energy
and comfort management of smart sustainable
buildings,” Renewable and Sustainable Energy
Reviews, vol. 34, pp. 409–429, 2014.

[10] S. Saha and A. A. Julius, “An MILP approach
for real-time optimal controller synthesis with
metric temporal logic specifications,” in 2016
American Control Conference (ACC), pp. 1105–
1110, 2016.

[11] Z. Wang, R. M. Jungers, Q. Flandroy, B. Herre-
gods, and C. Hernalsteens, “Finite-horizon co-
variance control of state-affine nonlinear sys-
tems with application to proton beamline cali-
bration,” in 18th European Control Conference
(ECC), pp. 3740–3745, IEEE, 2019.

[12] G. Reissig, A. Weber, and M. Rungger, “Feed-
back refinement relations for the synthesis of
symbolic controllers,” TAC, vol. 62, no. 4,
pp. 1781–1796, 2017.

[13] M. Rungger and M. Zamani, “SCOTS: A tool for
the synthesis of symbolic controllers,” in HSCC,
pp. 99–104, ACM, 2016.

[14] O. L. Bulancea, P. Nilsson, and N. Ozay,
“Nonuniform abstractions, refinement and con-
troller synthesis with novel BDD encodings,”
IFAC-PapersOnLine, vol. 51, no. 16, pp. 19–24,
2018.

[15] K. Hsu, R. Majumdar, K. Mallik, and A.-K.
Schmuck, “Multi-layered abstraction-based con-
troller synthesis for continuous-time systems,” in
HSCC’18, pp. 120–129, ACM, 2018.

[16] M. Khaled and M. Zamani, “pFaces: an ac-
celeration ecosystem for symbolic control,” in
HSCC’19, pp. 252–257, ACM, 2019.

[17] Y. Li and J. Liu, “ROCS: A robustly complete
control synthesis tool for nonlinear dynamical
systems,” in HSCC’18, pp. 130–135, ACM, 2018.

[18] C. Belta and S. Sadraddini, “Formal methods
for control synthesis: An optimization perspec-
tive,” Annual Review of Control, Robotics, and
Autonomous Systems, vol. 2, pp. 115–140, 2019.

23



[19] P. Jagtap, S. Soudjani, and M. Zamani, “For-
mal synthesis of stochastic systems via control
barrier certificates,” IEEE Transactions on Au-
tomatic Control, vol. 66, no. 7, pp. 3097–3110,
2021.

[20] B. He, J. Lee, U. Topcu, and L. Sentis, “BP-
RRT: Barrier pair synthesis for temporal logic
motion planning,” in 2020 59th IEEE Confer-
ence on Decision and Control (CDC), pp. 1404–
1409, 2020.

[21] W. Xiao, C. A. Belta, and C. G. Cassandras,
“High order control Lyapunov-barrier functions
for temporal logic specifications,” in 2021 Amer-
ican Control Conference (ACC), pp. 4886–4891,
2021.

[22] P. Nilsson and A. D. Ames, “Barrier func-
tions: Bridging the gap between planning from
specifications and safety-critical control,” in
2018 IEEE Conference on Decision and Control
(CDC), pp. 765–772, 2018.

[23] A. Anand, S. P. Nayak, and A.-K. Schmuck,
“Synthesizing permissive winning strategy tem-
plates for parity games,” tech. rep., 2023.

[24] A. Anand, K. Mallik, S. P. Nayak, and
A. Schmuck, “Computing adequately per-
missive assumptions for synthesis,” CoRR,
vol. abs/2301.07563, 2023.

[25] F. Sun, N. Ozay, E. M. Wolff, J. Liu, and
R. M. Murray, “Efficient control synthesis for
augmented finite transition systems with an ap-
plication to switching protocols,” in 2014 Amer-
ican Control Conference, pp. 3273–3280, 2014.

[26] R. Dimitrova and R. Majumdar, “Deductive
control synthesis for alternating-time logics,”
in 2014 International Conference on Embedded
Software (EMSOFT), pp. 1–10, 2014.

[27] Z. Artstein, “Stabilization with relaxed con-
trols,” Nonlinear Analysis: Theory, Methods
and Applications, vol. 7, no. 11, pp. 1163–1173,
1983.

[28] F. H. Clarke, Y. Ledyaev, L. Rifford, and
R. Stern, “Feedback stabilization and Lyapunov
functions,” SIAM Journal on Control and Opti-
mization, vol. 39, no. 1, pp. 25–48, 2000.

[29] F. H. Clarke, “Lyapunov functions and discon-
tinuous stabilizing feedback,” Annual Reviews in
Control, vol. 35, no. 1, pp. 13–33, 2011.

[30] E. Sontag, “A Lyapunov-like characterization
of asymptotic controllability,” SIAM Journal
on Control and Optimization, vol. 21, no. 3,
pp. 462–471, 1983.

[31] E. Sontag, “A “universal” construction of Art-
stein’s theorem on nonlinear stabilization,” Sys-
tems & Control Letters, vol. 13, no. 2, pp. 117–
123, 1989.

[32] M. Romdlony and B. Jayawardhana, “Stabiliza-
tion with guaranteed safety using control Lya-
punov–barrier function,” Automatica, vol. 66,
pp. 39–47, 2016.

[33] C. Baier and J.-P.Katoen, Principles of Model
Checking. MIT Press, 2008.

[34] A. Pnueli, “The temporal logic of programs,”
in 18th Annual Symposium on Foundations of
Computer Science (sfcs 1977), pp. 46–57, 1977.

[35] S. Demri, V. Goranko, and M. Lange, Temporal
Logics in Computer Science: Finite-State Sys-
tems. USA: Cambridge University Press, 1st ed.,
2016.

[36] T. Michaud and M. Colange, “Reactive synthesis
from LTL specification with spot,” in Proceed-
ings Seventh Workshop on Synthesis, SYNT-
CAV 2018, vol. xx of Electronic Proceedings in
Theoretical Computer Science, p. xx, 2018.

[37] W. Zielonka, “Infinite games on finitely coloured
graphs with applications to automata on infinite
trees,” Theor. Comput. Sci., vol. 200, no. 1-2,
pp. 135–183, 1998.

[38] V. D. Blondel and J. N. Tsitsiklis, “A survey of
computational complexity results in systems and
control,” Automatica, vol. 36, no. 9, pp. 1249–
1274, 2000.

[39] N. Piterman and A. Pnueli, “Faster solutions of
Rabin and Streett games,” in 21th IEEE Sym-
posium on Logic in Computer Science (LICS
2006), 12-15 August 2006, Seattle, WA, USA,
Proceedings, pp. 275–284, IEEE Computer Soci-
ety, 2006.

24



[40] T. Banerjee, R. Majumdar, K. Mallik, A.-K.
Schmuck, and S. Soudjani, “Fast symbolic al-
gorithms for omega-regular games under strong
transition fairness,” TheoretiCS, vol. 2, 2023.

[41] K. R. Apt and E. Grädel, eds., Lectures in
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