
93

Outcome Logic: A Unifying Foundation for Correctness and

Incorrectness Reasoning

NOAM ZILBERSTEIN, Cornell University, USA

DEREK DREYER,MPI-SWS, Germany

ALEXANDRA SILVA, Cornell University, USA

Program logics for bug-�nding (such as the recently introduced Incorrectness Logic) have framed correctness
and incorrectness as dual concepts requiring di�erent logical foundations. In this paper, we argue that a single
uni�ed theory can be used for both correctness and incorrectness reasoning. We present Outcome Logic (OL),
a novel generalization of Hoare Logic that is both monadic (to capture computational e�ects) and monoidal

(to reason about outcomes and reachability). OL expresses true positive bugs, while retaining correctness

reasoning abilities as well. To formalize the applicability of OL to both correctness and incorrectness, we prove
that any false OL speci�cation can be disproven in OL itself. We also use our framework to reason about new
types of incorrectness in nondeterministic and probabilistic programs. Given these advances, we advocate for
OL as a new foundational theory of correctness and incorrectness.

CCS Concepts: •Theory of computation→Hoare logic; Separation logic; Logic and veri�cation;Program
speci�cations.

Additional Key Words and Phrases: Program Logics, Hoare Logic, Incorrectness Reasoning

ACM Reference Format:

Noam Zilberstein, Derek Dreyer, and Alexandra Silva. 2023. Outcome Logic: A Unifying Foundation for
Correctness and Incorrectness Reasoning. Proc. ACM Program. Lang. 7, OOPSLA1, Article 93 (April 2023),
29 pages. https://doi.org/10.1145/3586045

“Program correctness and incorrectness are two sides of the same coin.” – O’Hearn [2019]

1 INTRODUCTION

Developing formal methods to prove program correctness—the absence of bugs—has been a holy
grail in program logic and static analysis research for many decades. However, seeing as many
static analyses deployed in practice are bug-�nding tools, O’Hearn [2019] recently advocated for
the development of formal methods for proving program incorrectness; we need expressive, e�cient,
and compositional ways to reliably identify the presence of bugs as well.
The aforementioned paper of O’Hearn [2019] proposed Incorrectness Logic (IL) as a logical

foundation for reasoning about program incorrectness. IL is inspired by—and in a precise technical
sense dual to—Hoare Logic. Like Hoare Logic, IL speci�cations are compositional, given in terms
of preconditions % and postconditions & . Hoare Triples {%} � {&} stipulate that the result of
running the program� on any state satisfying % will be a state that satis�es& . Incorrectness Triples

Authors’ addresses: Noam Zilberstein, noamz@cs.cornell.edu, Cornell University, USA; Derek Dreyer, dreyer@mpi-sws.org,
MPI-SWS, Saarland Informatics Campus, Germany; Alexandra Silva, alexandra.silva@cornell.edu, Cornell University, USA.

© 2023 Copyright held by the owner/author(s).
2475-1421/2023/4-ART93
https://doi.org/10.1145/3586045

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 93. Publication date: April 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
HTTPS://ORCID.ORG/0000-0001-6388-063X
HTTPS://ORCID.ORG/0000-0002-3884-6867
HTTPS://ORCID.ORG/0000-0001-5014-9784
https://doi.org/10.1145/3586045
https://orcid.org/0000-0001-6388-063X
https://orcid.org/0000-0002-3884-6867
https://orcid.org/0000-0001-5014-9784
https://doi.org/10.1145/3586045
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3586045&domain=pdf&date_stamp=2023-04-06

93:2 Noam Zilberstein, Derek Dreyer, and Alexandra Silva

[%] � [&] go in reverse—all states satisfying & must be reachable from some state satisfying % .

Hoare Logic: ⊨ {% } � {& } i� ∀f ⊨ % . ∀g . g ∈ J�K (f) ⇒ g ⊨ &

Incorrectness Logic: ⊨ [%] � [&] i� ∀g ⊨ &. ∃f. g ∈ J�K (f) and f ⊨ %

Practically speaking, IL di�ers from Hoare Logic in two key ways. First, whereas Hoare Logic
has no false negatives (i.e., all executions of a veri�ed program behave correctly), IL has no false
positives: any bug found using IL is in fact reachable by some execution of the program. Second,
whereas Hoare Logic is over-approximate, IL is under-approximate: to prove that a program is
incorrect, one only needs to specify (in the postcondition) a subset of the possible outcomes, which
helps to ensure the e�ciency of large-scale analyses. Subsequent work has focused on extending
IL to account for a variety of program errors (e.g., memory errors, memory leaks, data races, and
deadlocks) and on using the resulting Incorrectness Separation Logics (ISLs) to explain and inform
the development of bug-catching static analyses [Le et al. 2022; Raad et al. 2020, 2022].
Despite these exciting advances, we argue that the foundations of incorrectness reasoning are

still far from settled—and worthy of reconsideration. IL achieves true positives (reachability of
end-states) and under-approximation through the same mechanism: quanti�cation over all states
that satisfy the postcondition. However, this con�ation of concepts leads to several problems:

Expressivity. The semantics of IL only encompasses under-approximate types of incorrectness,
which does not fully account for all bugs that may be encountered in real programs. For example,
as we will see in Section 2.2, IL can be used to show the reachability of bad states, but it cannot
prove unreachability of good states.

Generality. IL is not amenable to probabilistic execution models and therefore is not a good �t for
reasoning about incorrectness in randomized programs (Section 7.2).

Error Reporting. IL cannot easily describe what conditions are su�cient to trigger a bug (Sec-
tion 6.6), meaning that analyses based on IL must implement extra algorithmic checks to determine
whether a bug is worth reporting [Le et al. 2022].

Our key insight is that reachability and under-approximation are separate concepts that can (and
should) be handled independently. But once reachability is separated from under-approximation,
the resulting program logic no longer applies only to bug-�nding. In this paper, we show how
the full spectrum of correctness and incorrectness reasoning can be achieved with a uni�ed
foundation: a generalization of “good old” Hoare Logic that we call Outcome Logic (OL). In
addition to consolidating the foundations of incorrectness with traditional correctness reasoning,
OL overcomes all the aforementioned drawbacks of IL.

In OL, assertions are no longer predicates over program states, but rather predicates on an outcome
monoid, whose elements can be, for instance, sets of program states or probability distributions on
program states. The monoidal structure enables us to model a new outcome conjunction, % ⊕ & ,
asserting that the predicates % and & each hold in reachable executions (or hold in subdistributions
on program executions). We can also under-approximate by joining a predicate with ⊤, the trivial
outcome: % ⊕ ⊤ states that % only partially covers the program outcomes. OL o�ers several
advantages as a unifying foundation for correctness and incorrectness:

Generality. OL uni�es program analysis across two dimensions. First, since any untrue OL spec
can be disproven in OL (Theorem 5.1), correctness and incorrectness reasoning are possible in
a single program logic. Second, OL uses a monadic semantics which allows it to be instantiated
for di�erent evaluation models such as nondeterminism, erroneous termination, and probabilistic
choice, thereby unifying correctness and incorrectness reasoning across execution models.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 93. Publication date: April 2023.

Outcome Logic: A Unifying Foundation for Correctness and Incorrectness Reasoning 93:3

Beyond Reachability. Until now, the study of incorrectness has revolved primarily around reacha-
bility of crash states. We prove that OL handles a broader characterization of incorrectness than IL
in nondeterministic programs (Theorem 5.6), as well as probabilistic incorrectness (Theorem 5.10).

Manifest Errors. In order to improve �x rates in automated bug �nding tools, Le et al. [2022]
only report bugs that occur regardless of context. These bugs—called manifest errors—are not
straightforward to characterize using Incorrectness Logic: an auxiliary algorithm is needed to check
whether some bug is truly a manifest error. In contrast, manifest errors are trivial to characterize
in OL—Le et al.’s [2022] original de�nition can be expressed as an OL triple (Lemma 6.7).

The contributions of the paper are as follows:

⊲ Weprovide an overview of the semantics of IL and explain what is needed in order to characterize
broader classes of errors (Section 2). We show how reasoning about outcomes can account for
reachability of end-states and enable under-approximation (when desired).

⊲ We de�ne Outcome Logic formally (Section 3 and Section 4), parametric on a monad and an
assertion logic. We de�ne syntax and semantics of the logic, using Bunched Implications (BI)
formulae for pre- and postconditions, and provide inference rules to reason about validity.

⊲ We show that OL is suitable for both correctness and incorrectness reasoning by proving that
false OL triples can be disproven within OL (Section 5). As a corollary, OL can disprove Hoare
triples, which was one motivation for IL (Corollary 5.7). We go further and show three kinds of
incorrectness that can be captured in OL, only one of which is expressible in IL (Section 5.1).

⊲ We exemplify how OL can be instantiated to �nd memory errors (Section 6) and probabilistic
bugs (Section 7). We argue that the latter use case is not feasible in IL (Section 7.2).

Finally, we conclude in Section 8 and Section 9 by discussing related work and next steps.

2 OVERVIEW: A LANDSCAPE OF TRIPLES

The study of incorrectness has made apparent the need for new program logics that guarantee true
positives and support under-approximate reasoning, since standard Hoare Logic—which does not
enjoy those properties—is incapable of proving the presence of bugs. Concretely, in a valid Hoare
Triple, denoted ⊨ {%} � {&}, running the program � in any state satisfying the precondition % will
result in a state satisfying the postcondition & (the formal de�nition is given in Figure 1). Suppose
we wanted to use such a triple to prove that the program G := malloc() # [G] ← 1 has a bug (malloc

may nondeterministically return null, causing the program to crash with a segmentation fault
when the subsequent command attempts to store the value 1 at the location pointed to by G). We
might be tempted to specify the triple as follows:

{true} G := malloc() # [G] ← 1 {(ok : G ↦→ 1) ∨ (er : G = null)} (1)

Here, the assertion (ok : ?) means that the program terminated successfully in a state satisfying ?
and (er : @) means that it crashed in a state satisfying @. However, this is not quite right. According
to the semantics of Hoare Logic, every possible end state must be covered by the postcondition,
hence the need to use a disjunction to indicate that two outcomes are possible. But since we do not
know that every state described by the postcondition is reachable, it is possible that every program
trace ends up satisfying the �rst disjunct (ok : G ↦→ 1) and the error state is never reached.

Incorrectness Logic o�ers a solution to this problem. In a valid Incorrectness Triple, ⊨ [%] � [&],
every state satisfying & is reachable by running � in some state satisfying % . So, simply switching
the triple type in the above example does give us a witness that the error is possible.

[true] G := malloc() # [G] ← 1 [(ok : G ↦→ 1) ∨ (er : G = null)] (2)

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 93. Publication date: April 2023.

93:4 Noam Zilberstein, Derek Dreyer, and Alexandra Silva

Triple Name Syntax Semantics

Hoare Logic ⊨ {% } � {& } i� ∀f ⊨ % . ∀g . g ∈ J�K (f) ⇒ g ⊨ &

Incorrectness Logic (IL) /

Reverse Hoare Logic (RHL)
⊨ [%] � [&] i� ∀g ⊨ &. ∃f. g ∈ J�K (f) and f ⊨ %

Outcome Logic (OL) ⊨ ⟨% ⟩ � ⟨& ⟩ i� ∀<. < ⊨ % =⇒ J�K†(<) ⊨ &

Fig. 1. Semantics of triples where % and & are logical formulae, � is a program, Σ is the set of all program

states, f, g ∈ Σ, and J�K : Σ→ 2
Σ is the reachable states function. In the last line of the table," is a monad,

< ∈ "Σ and J�K† : "Σ→ "Σ is the monadic li�ing of J·K : Σ→ "Σ.

Though the conclusion remains a disjunction, the semantics of the incorrectness triple (Figure 1)
ensures that every state in the disjunction is reachable. Moreover, we can under-approximate by
dropping disjuncts from the postcondition and use the simpler speci�cation:

[true] G := malloc() # [G] ← 1 [er : G = null] (3)

This more parsimonious speci�cation still witnesses the error while also helping to ensure e�ciency
of large-scale automated analyses, which must keep descriptions at each program point small.

The duality between Hoare Logic and Incorrectness Logic appears sensible. Hoare Logic has no
false negatives—a program is only correct if we account for all the possible outcomes. Incorrectness
Logic has no false positives—an error is only worth reporting if it is truly reachable. However, we
argue in this paper that incorrectness reasoning and Hoare Logic are not in fact at odds: an approach
to incorrectness that is more similar to Hoare Logic is not only possible but, in fact, advantageous
for several reasons, including the ability to express when an error will be manifest and the ability
to reason about additional varieties of incorrectness.

2.1 Unifying Correctness and Incorrectness

Our �rst insight is that the inability to prove the existence of bugs is not inherent in the semantics
of Hoare Logic. Rather, it is the result of an assertion logic that is not expressive enough to reason
about reachability. Triple (1) shows how the usual logical disjunction is inadequate in reaching this
goal. To remedy this, we use a logic with extra algebraic structure on outcomes, reminiscent of
the use of a resource logic in separation logic [O’Hearn et al. 2001; Reynolds 2002]. In this case,
resources are program outcomes rather than heap locations. Program outcomes do not necessarily
need to be the usual traces in a (non-)deterministic execution model, but can also arise from
programs with alternative execution models such as probabilistic computation. To model di�erent
types of computations in a uniform way, we use an execution model parametric on a monad. We
call this new logic Outcome Logic (OL), with triples denoted by ⟨%⟩ � ⟨&⟩ (de�ned formally in
Figure 1). Let us schematically point out the generalizations in these new triples:

⊨ ⟨%⟩ � ⟨&⟩

monadic semantics

J�K† : "Σ→ "Σ

MM {
− monadic satis�ability of %,& :< ⊨ % ,< ⊨ & , with< ∈ "Σ

− %,& might contain outcome conjunction ⊕
− semantics of ⊕ uses monoid composition ⋄

YY VV

OL triples follow the spirit of Hoare Logic—�rst quantifying over elements satisfying the precondi-
tion and then stipulating that the result of running the program on such an element must satisfy
the postcondition. The di�erence is that in OL triples, the pre- and postconditions are satis�ed by a
monoidal collection of outcomes< ∈ "Σ rather than individual program states f ∈ Σ. This allows
us to introduce a new connective in the logic—the outcome conjunction ⊕—which models program

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 93. Publication date: April 2023.

Outcome Logic: A Unifying Foundation for Correctness and Incorrectness Reasoning 93:5

outcomes as resources. Consider the postcondition in triple (2) if we replace ∨ by ⊕:

(ok : G ↦→ 1) ∨ (er : G = null) vs. (ok : G ↦→ 1) ⊕ (er : G = null)

A program state satis�es the �rst formula just by satisfying one of the disjuncts, whereas the second
one requires a collection of states that can be split to witness satisfaction of both. This ability to
split outcomes emerges as a requirement that"Σ is a (partial commutative) monoid. Given two
outcomes<1,<2 ∈ "Σ, there is an operation ⋄ that enables us to combine them<1 ⋄<2 ∈ "Σ.
The satis�ability of ⊕ is then de�ned using ⋄ to split the monoidal state:

< ⊨ % ⊕ & i� ∃<1,<2 ∈ "Σ. < =<1 ⋄<2 and <1 ⊨ % and <2 ⊨ &

Consider instantiating the above to the powerset monad that associates a set � with the set of its
subsets 2�. Given a semantic function J�K : Σ→ 2

Σ that maps individual start states f to the set
of �nal states reachable by executing � , we can give a monadic semantics J�K†(() =

⋃
f ∈(J�K (f)

where (is a set of start states.1 The monoid composition ⋄ on 2� is given by set union, which is
used compositionally to de�ne satis�ability of ⊕ as follows: (⊨ % ⊕ & i� (1 ⊨ % and (2 ⊨ & such
that (= (1 ∪ (2. Given some satisfaction relation for individual program states ⊨Σ ⊆ Σ × Prop, we
then de�ne satisfaction of atomic assertions as follows:

(⊨ % i� (≠ ∅ and ∀f ∈ (. f ⊨Σ %

The extra restriction (≠ ∅ witnesses that % is reachable (and not vacuously satis�ed). Putting this
all together, we instantiate the generic OL triples (Figure 1) to the powerset monad:

⊨ ⟨%⟩ � ⟨&⟩ i� ∀(∈ 2Σ . (⊨ % ⇒ J�K†(() ⊨ &

Now, we can revisit the example in triple (2) in OL using ⊕ instead of ∨:

⟨ok : true⟩ G := malloc() # [G] ← 1 ⟨(ok : G ↦→ 1) ⊕ (er : G = null)⟩ (4)

This speci�cation does witness the bug—for any start state there is at least one end state that satis�es
each of the outcomes. However, we are still recording extra, non-erroneous outcomes, which is
problematic for a large scale analysis algorithm. Following the example in triple (3), we would like
to specify the bug above in a way that mentions only the relevant outcome in the postcondition.
We can achieve this by simply weakening the postcondition. According to the semantics above, the
following implications hold:

(⊨ % ⊕ & ⇒ (⊨ % ⊕ ⊤ and (⊨ % ⊕ & ⇒ (⊨ ⊤ ⊕ &

So in a sense, we can drop outcomes by converting them to ⊤. For notational convenience, we de�ne
the following under-approximate triple:

⊨
↓ ⟨%⟩ � ⟨&⟩ i� ⊨ ⟨%⟩ � ⟨& ⊕ ⊤⟩

Using this shorthand, the following simpler speci�cation is also valid:

⊨
↓ ⟨ok : true⟩ G := malloc() # [G] ← 1 ⟨er : G = null⟩ (5)

This example demonstrates that OL is suitable for reasoning about crash errors, just like IL. However
our goal is not simply to cover the same use cases as IL, but rather to go further. Next, we will show
in Section 2.2 that there are bugs expressible in OL that cannot be expressed in IL. In Section 2.3
we will also explain why the semantics of OL are a better �t for characterizing an important class
of bugs known as manifest errors.

1The J−K† function is formally the monadic (or Kleisli) extension of J−K; we will de�ne this formally in Section 3.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 93. Publication date: April 2023.

93:6 Noam Zilberstein, Derek Dreyer, and Alexandra Silva

2.2 A Broader Characterization of Correctness and Incorrectness

In the semantics of Incorrectness Logic, the notions of reachability and under-approximation
are con�ated: both are a consequence of the fact that IL quanti�es over the states that satisfy
the postcondition. However, reachability and under-approximation are separate concepts and
OL allows us to reason about each independently. Reachability is expressed with the outcome
conjunction ⊕ and under-approximation is achieved by dropping outcomes. Separating reachability
and under-approximation is useful for both correctness and incorrectness reasoning.
To see this, we will �rst investigate correctness properties that rely on reachability. Before the

introduction of Incorrectness Logic by O’Hearn [2019], de Vries and Koutavas [2011] devised a
semantically equivalent logic, which they called Reverse Hoare Logic. The goal of this work was
to prove correctness speci�cations that involved multiple possible end states, all of which must be
reachable. As we saw in Example 1, Hoare Logic cannot express such speci�cations. So, de Vries and
Koutavas [2011] proposed the Reverse Hoare Triple, which—like Incorrectness Triples—guarantees
that every state described by the postcondition is reachable.
The motivating example for Reverse Hoare Logic was a nondeterministic shu�e function.

Consider the following speci�cation, where Π(0) is the set of permutations of 0:

[true] 1 := shu�le(0) [1 ∈ Π(0)]

This speci�cation states that every permutation of the list is a possible output of shu�le; however,
it is not a complete correctness speci�cation. It does not rule out the possibility that the output is
not a permutation of the input (1 ∉ Π(0)). The semantics of Reverse Hoare Logic is motivated by
reachability, but—like Incorrectness Logic—it achieves reachability in a manner that is inextricably
linked to under-approximation, which is undesirable for correctness reasoning.
de Vries and Koutavas [2011] note this, stating that a complete speci�cation for shu�le would

require both Hoare Logic and Reverse Hoare Logic, but also that it would be worthwhile to
study logics that can “express both the reachability of good states and the non-reachability of bad
states” [de Vries and Koutavas 2011, §8]. OL does just that—the full correctness of the shu�e program
can be captured using a single OL triple that guarantees reachability without under-approximating:

⟨true⟩ 1 := shu�le(0) ⟨
⊕

c ∈Π (0)

(1 = c)⟩ (6)

The OL speci�cation above states not only that all the permutations are reachable, but also that
they are the only possible outcomes. So, OL allows us to express a correctness property in a single
triple that otherwise would have required both a Hoare Triple and a Reverse Hoare Triple.

We now turn to consider incorrectness reasoning. Given that the above OL triple is a complete
correctness speci�cation, we are interested to know what it would mean for shu�le to be incorrect.
In other words, what would it take to disprove the speci�cation of shu�le? There are two ways that
the triple could be false: either one particular permutation c ∈ Π(0) is not reachable or the output
1 is (sometimes) not a permutation of 0. Both bugs can be expressed as OL triples:

∃c ∈ Π(0). ⟨true⟩ 1 := shu�le(0) ⟨1 ≠ c⟩ ⟨true⟩ 1 := shu�le(0) ⟨(1 ∉ Π(0)) ⊕ ⊤⟩

These triples both denote true bugs since the validity of either triple implies that speci�cation (6) is
false. In fact, these are the only ways that speci�cation (6) can be false. This follows from a more
general result called Falsi�cation, which we prove in Theorem 5.6:

⊭ ⟨%⟩ � ⟨

=⊕
8=1

&8⟩ i� ∃% ′⇒ % . ∃8 . ⊨ ⟨% ′⟩ � ⟨¬&8⟩ or ⊨ ⟨% ′⟩ � ⟨(

=∧
8=1

¬&8) ⊕ ⊤⟩

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 93. Publication date: April 2023.

Outcome Logic: A Unifying Foundation for Correctness and Incorrectness Reasoning 93:7

Intuitively, a nondeterministic program is incorrect i� either one of the desired outcomes never
occurs or some undesirable outcome sometimes occurs.2 Incorrectness Logic can only characterize
the latter type of incorrectness, whereas OL accounts for both and is thus strictly more expressive
in the nondeterministic setting. An analogous result holds for probabilistic programs (Section 5.2),
whereas IL is not suitable for reasoning about probabilistic incorrectness at all (Section 7.2).

2.3 Semantic Characterizations of Bugs

In addition to enabling us to witness a larger class of incorrectness than IL (unreachable states and
probabilistic incorrectness), OL also provides a more intuitive way to reason about the type of bugs
that IL was designed for: reachability of unsafe states.
Recalling the crash error in Section 2.1, both IL triples and OL triples soundly characterize the

bug, as they both witness a trace that reaches the crash. The Incorrectness Triple (3) states that any
failing execution where G is null is reachable from some starting state. In other words, true is a
necessary condition to reach a segmentation fault. However, true is trivially a necessary condition,
so this triple does not tell us much about what will trigger the bug in practice. By contrast, the OL
triple (5) states that true is a su�cient condition, which gives us more information—the bug can
always occur no matter what the starting state is.

The latter semantics has a close correspondence to a class of bugs, known as manifest errors [Le
et al. 2022], which occur regardless of how the enclosing procedure is used and are of particular
interest in automated bug-�nding tools. Le et al. [2022, Def. 3.2] give a formal characterization of
manifest errors, but it is not a natural �t for Incorrectness Logic: determining whether an IL triple
is a manifest error requires an auxiliary algorithmic check. Though Le et al. [2022] note that there
are connections between manifest errors and under-approximate variants of Hoare Logic, we go
further in proving that their original de�nition of a manifest error is semantically equivalent to
an OL triple of the form ⊨↓ ⟨ok : true⟩ � ⟨er : @ ∗ true⟩ (Lemma 6.7). Manifest errors are therefore
trivial to characterize in OL by a simple syntactic inspection. This suggests that OL is semantically
closer to the way in which programmers naturally characterize bugs.

In addition to being an intuitive foundation for incorrectness, OL uni�es program analysis across
two dimensions. First, it uni�es correctness and incorrectness reasoning within a single program
logic, and second, it does so across execution models (e.g., nondeterministic and probabilistic). In
the remainder of the paper, we will formalize the ideas that have been exempli�ed thus far. We
formalize the OL model in Section 3 and Section 4, prove the applicability of OL to nondeterministic
and probabilistic correctness and incorrectness in Section 5, and show how OL can be used in
nondeterministic and probabilistic domains in Section 6 and Section 7, respectively. Given these
advantages, we argue that OL o�ers a promising alternative foundation for incorrectness reasoning.

3 A MODULAR PROGRAMMING LANGUAGE

We start by de�ning a programming language, inspired by Dijkstra’s guarded command lan-
guage [Dijkstra 1975], see Figure 2. The syntax includes 0, which represents divergence, 1, acting
as skip, sequential composition �1 #�2, choice �1 +�2, iteration �★, and parametrizable atomic
commands 2 . At �rst sight this looks like a standard imperative language (with nondeterminis-
tic choice). However, we will interpret the syntax in a semantic model that is parametric on a
monad and a partial commutative monoid. The former enables a generic semantics of sequential
composition, whereas the latter provides a generic interpretation of choice.

2In general, there is also a third option: the program diverges (has no outcomes). See Theorem 5.6.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 93. Publication date: April 2023.

93:8 Noam Zilberstein, Derek Dreyer, and Alexandra Silva

J�K : Σ ⇀ "Σ

� ::= 0 J0K (f) = ∅

| 1 J1K (f) = unit(f)

| �1 #�2 J�1 #�2K (f) = bind(J�1K (f), J�2K)

| �1 +�2 J�1 +�2K (f) = J�1K (f) ⋄ J�2K (f)

| �★ J�★K(f) = lfp(_5 ._f.5 † (J�K (f))) ⋄ unit(f)) (f)

| 2 J2K (f) = J2Katom (f)

Fig. 2. Syntax and Semantics of the Command Language parameterized by an execution model

⟨", bind, unit,⋄,∅⟩ and a language of atomic commands with semantics J2Katom : Σ→ "Σ

Before we de�ne the semantic model we need to recall the de�nition of a monad and partial
commutative monoid. We assume familiarity with basic category theory (categories, functors,
natural transformations), see Pierce [1991] for an introduction.

De�nition 3.1 (Monad). A monad is a triple ⟨", bind, unit⟩ in which" is a functor on a category C,
unit : Id⇒ " is a natural transformation, and bind : "� × (�→ "�) → "� satis�es:

(1) bind(<, unit) =<

(2) bind(unit(G), 5) = 5 (G)
(3) bind(bind(<, 5), 6) = bind(<, _G.bind(5 (G), 6))

Typical examples of monads include powerset, error, and distribution monads (de�ned in Section 5
and Section 6). Given a function 5 : �→ "�, its monadic extension 5 † : "�→ "� is de�ned as
5 † (<) = bind(<, 5).

De�nition 3.2 (PCM). A partial commutative monoid (PCM) is a triple ⟨-,⋄,∅⟩ consisting of a set
- and a partial binary operation ⋄ : - → - ⇀ - that is associative, commutative, and has unit ∅.

A typical example of a PCM, used in probabilistic reasoning, is ⟨[0, 1], +, 0⟩ (+ is partial, it is
unde�ned when the addition is out-of-bounds). We are now ready to de�ne the execution model
we need to provide semantics to our language.

De�nition 3.3 (Execution Model). An Execution Model is a structure ⟨", bind, unit,⋄,∅⟩ such that
⟨", bind, unit⟩ is a monad in the category of sets, and for any set �, ⟨"�,⋄,∅⟩ is a PCM that
preserves the monad bind: bind(<1 ⋄<2, :) = bind(<1, :) ⋄ bind(<2, :) and bind(∅, :) = ∅.

In Figure 2 we present the semantics of the language. The monad operations are used to provide
semantics to 1 and sequential composition # whereas the monoid operation is used in the semantics
of choice and iteration. Note that in general the semantics of the language is partial since ⋄ is partial,
which is necessary in order to express a probabilistic semantics, since two probability distributions
can only be combined if their cumulative probability mass is at most 1. For the languages we will
work with in this paper, there are simple syntactic checks to ensure totality of the semantics. In the
probabilistic case, this involves ensuring that all uses of + and ★ are guarded. We show that the
semantics is total for the execution models of interest in Zilberstein et al. [2023, §A].

Example 3.4 (State and Guarded Commands). The base language introduced in the previous section
is parametric over a set of program states Σ. In this example, we describe a speci�c type of program
state, the semantics of commands over those states, and a mechanism to de�ne the typical control
�ow operators (if and while). First, we assume some syntax of program expressions 4 ∈ Exp

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 93. Publication date: April 2023.

Outcome Logic: A Unifying Foundation for Correctness and Incorrectness Reasoning 93:9

which includes variables G ∈ Var as well as the typical Boolean and arithmetic operators. Atomic
commands come from the following syntax.

2 ::= assume 4 | G := 4 (G ∈ Var, 4 ∈ Exp)

The command assume 4 does nothing if 4 is true and eliminates the current outcome if not; G := 4

is variable assignment. A program stack is a mapping from variables to values S = {B : Var→ Val}
where program values Val = Z ∪ B are integers (Z) or Booleans (B = {true, false}). Expressions
are evaluated to values given a stack using J4KExp : S → Val. The semantics of atomic commands
J2K : S → "S, parametric on an execution model, is de�ned below.

Jassume 4K(B) =

{
unit(B) if J4KExp (B) = true

∅ if J4KExp (B) = false
JG := 4K(B) = unit(B [G ↦→ J4KExp (B)])

While a language instantiated with the atomic commands described above is still nondeterministic,
we can use assume to de�ne the usual (deterministic) control �ow operators as syntactic sugar.

if 4 then �1 else �2 = (assume 4 #�1) + (assume ¬4 #�2) skip = 1 �0
= 1

while 4 do � = (assume 4 #�)★ # assume ¬4 for # do � = �# �:+1
= � #�:

In fact, when paired with a nondeterministic evaluation model, this language is equivalent to
Dijkstra’s [1975] Guarded Command Language (GCL) by a straightforward syntactic translation.

4 OUTCOME LOGIC

In this section, we formally de�ne Outcome Logic (OL). We �rst de�ne the logic of outcome
assertions which will act as the basis for writing pre- and postconditions in OL. Next, we give the
semantics of OL triples, which is parametric on an execution model, atomic command semantics,
and an assertion logic. Finally, we give proof rules that are sound for all OL instances.

4.1 A Logic for Monoidal Assertions: Modeling the Outcome Conjunction

We now give a formal account of the outcome assertion logic that was brie�y described in Section 2.1.
The outcome assertion logic is an instance of the Logic of Bunched Implications (BI) [O’Hearn
and Pym 1999], a substructural logic that is used to reason about resource usage. Separation
logic [Reynolds 2002] and its extensions [O’Hearn 2004] are the most well-known applications of
BI. In our case, the relevant resources are program outcomes rather than heap locations.
We use the formulation of BI due to Docherty [2019]. While Docherty [2019] gives a thorough

account of the BI proof theory, we are mainly interested in the semantics for the purposes of this
paper. The syntax and semantics are given in Figure 3 with logical negation ¬i being de�ned
as i ⇒ ⊥. The semantics is parametric on a BI frame ⟨-,⋄, ≼,∅⟩—where ⟨-,⋄,∅⟩ is a PCM and
≼ ⊆ - × - is a preorder—and a satisfaction relation for basic assertions ⊨atom ⊆ - × Prop.
The two non-standard additions are the outcome conjunction ⊕, a connective to join outcomes,

and ⊤⊕ , an assertion to specify that there are no outcomes. These intended meanings are re�ected
in the semantics: ⊤⊕ is only satis�ed by the monoid unit ∅, whereas i ⊕ k is satis�ed by< i�
< can be partitioned into<1 ⋄<2 to satisfy each outcome formula separately. We will focus on
classical interpretations of BI where the preorder ≼ is equality.3

De�nition 4.1 (Outcome Assertion Logic). Given an execution model ⟨", bind, unit,⋄,∅⟩ and a
satisfaction relation for atomic assertions ⊨atom ⊆ "Σ × Prop, an Outcome Assertion Logic is an

3Intuitionistic interpretations of BI with non-trivial preorders can be used as an alternative way to encode under-approximate
program logics. This idea is explored in Zilberstein et al. [2023, §B.1].

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 93. Publication date: April 2023.

93:10 Noam Zilberstein, Derek Dreyer, and Alexandra Silva

i ::= ⊤ < ⊨ ⊤ always
| ⊥ < ⊨ ⊥ never
| ⊤⊕ < ⊨ ⊤⊕ i� < = ∅

| i ∧k < ⊨ i ∧k i� < ⊨ i and< ⊨ k
| i ⊕k < ⊨ i ⊕k i� ∃<1,<2 . <1 ⋄<2 ≼ < and<1 ⊨ i and<2 ⊨ k

| i ⇒ k < ⊨ i ⇒ k i� ∀<′. if< ≼ <′ and<′ ⊨ i then<′ ⊨ k
| % < ⊨ % i� % ∈ Prop and< ⊨atom %

Fig. 3. Syntax and semantics of BI given a BI frame ⟨-,⋄, ≼,∅⟩ and satisfaction relation ⊨atom ⊆ - × Prop

instance of BI based on the BI frame ⟨"Σ,⋄,=,∅⟩. Informally, we refer to BI assertions i,k as
outcome assertions and the atomic assertions %,& ∈ Prop as individual outcomes.

Remark 1 (Notation for Assertions). For the remainder of the paper, lowercase Greek metavariables
i,k refer to (syntactic) outcome assertions (De�nition 4.1), uppercase Latin metavariables % , &
refer to atomic assertions (individual outcomes), and lowercase Latin metavariables ? , @ refer to
assertions on individual program states.

Example 4.2 (Outcomes). Wementioned one example of a PCM in Section 2:- can be sets of program
states and the monoid operation ⋄ is set union. Another example is probability (sub)distributions
over a set and ⋄ is +. This monoid operation is partial; adding two subdistributions is only possible
if the mass associated with a point (and the entire distribution) remains in [0, 1].

As discussed in Section 2, under-approximation and the ability to drop outcomes is an important
part of incorrectness reasoning as it allows large scale analyses to only track pertinent information.
We use the following shorthand to express under-approximate outcome assertions.

De�nition 4.3 (Under-Approximate Outcome Assertions). Given an outcome assertion logic with
satisfaction relation ⊨ ⊆ "Σ × Prop, we de�ne an under-approximate version ⊨↓ ⊆ "Σ × Prop as
< ⊨↓i i� < ⊨ i ⊕ ⊤.

Intuitively, i ⊕ ⊤ corresponds to under-approximation since it states that i only covers a subset
of the outcomes (with the rest being unconstrained, since they are covered by ⊤). De�ning under-
approximation in this way allows us to reason about correctness and incorrectness within a single
program logic. It also enables us to drop outcomes simply by weakening; it is always possible to
weaken an outcome to ⊤, so< ⊨ % ⊕ & implies that< ⊨ % ⊕ ⊤. Equivalently,< ⊨↓ % ⊕ & implies
that< ⊨↓ % . These facts are proven in Zilberstein et al. [2023, §B]. A similar formulation would be
possible using an intuitionistic interpretation of BI (where, roughly speaking, we take the preorder
to be<1 ≼ <2 i� ∃<. <1 ⋄< =<2). We prove this correspondence in Zilberstein et al. [2023, §B.1].

4.2 Outcome Triples

We now have all the ingredients needed to de�ne the validity of the program logic.

De�nition 4.4 (Outcome Triples). The parameters needed to instantiate OL are:

(1) An execution model: ⟨", bind, unit,⋄,∅⟩
(2) A set of program states Σ and semantics of atomic commands: J2Katom : Σ→ "Σ

(3) A syntax of atomic assertions Prop and satisfaction relation: ⊨atom ⊆ "Σ × Prop

Now, let J−K : Σ→ "Σ be the semantics of the language in Figure 2 with parameters (1) and (2)
and ⊨ be the outcome assertion satisfaction relation (De�nition 4.1) with parameters (1) and (3).
For any program � (Figure 2), and outcome assertions i andk :

⊨ ⟨i⟩ � ⟨k ⟩ i� ∀< ∈ "Σ. < ⊨ i =⇒ J�K†(<) ⊨ k

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 93. Publication date: April 2023.

Outcome Logic: A Unifying Foundation for Correctness and Incorrectness Reasoning 93:11

OL is a generalization of Hoare Logic—the triples �rst quantify over elements satisfying the
precondition and then stipulate that the result of running the program on those elements satis�es
the postcondition. The di�erence is that now the pre- and postconditions are expressed as outcome
assertions and thus satis�ed by a monoidal collection< ∈ "Σ, which can account for execution
models based on nondeterminism and probability distributions.
Using outcome assertions for pre- and postconditions adds signi�cant expressive power. We

already saw in Section 2 how Outcome Logic allows us to reason about reachability and under-
approximation. We can also encode other useful concepts such as partial correctness—the post-
condition holds if the program terminates—by taking a disjunction with ⊤⊕ to express that the
program may diverge4. For convenience, we de�ne the following notation where the left triple
encodes under-approximation and the right triple encodes partial correctness.

⊨
↓ ⟨i⟩ � ⟨k ⟩ i� ⊨ ⟨i⟩ � ⟨k ⊕ ⊤⟩ ⊨pc⟨i⟩ � ⟨k ⟩ i� ⊨ ⟨i⟩ � ⟨k ∨ ⊤⊕⟩

In fact, the right triple corresponds exactly to standard Hoare Logic (Figure 1) if we instantiate OL
using the powerset semantics (De�nition 5.3) and limit the pre- and postconditions to be atomic
assertions. This result is stated below and proven in Zilberstein et al. [2023, §C].

Theorem 4.5 (Subsumption of Hoare Triples). ⊨ {%} � {&} i� ⊨pc ⟨%⟩ � ⟨&⟩

While capturing many logics in one framework is interesting and demonstrates the versatility of
Outcome Triples, our primary goal is to investigate the roles that these program logics can play
for expressing correctness and incorrectness properties. We justify OL as a theoretical basis for
correctness and incorrectness reasoning in Section 5 and give examples for how OL can be applied
to nondeterministic and probabilistic programs in Section 6 and Section 7.

4.3 Proof Systems

Now that we have formalized the validity of Outcome triples (denoted ⊨ ⟨i⟩� ⟨k ⟩), we can construct
proof systems for this family of logics. We write ⊢ ⟨i⟩ � ⟨k ⟩ to mean that the triple ⟨i⟩ � ⟨k ⟩ is
derivable from a set of inference rules. Each set of inference rules that we de�ne throughout the
paper will be sound with respect to a certain OL instance.

Global rules. Some generic rules that are valid for any OL instance are shown at the top of Fig-
ure 4. Most of the rules including Zero, One, and Seq are standard. The Rule of Conseqence

allows the strengthening and weakening of pre- and postconditions respectively using any seman-
tically valid BI implication. The Split rule allows us to analyze the program � with two di�erent
pre/postcondition pairs and join the results using an outcome conjunction.

Rules for nondeterministic programs. In the middle of Figure 4 we see two rules that are only
valid in nondeterministic languages where the semantics is based on the powerset monad. The Plus
rule characterizes nondeterministic choice by joining the outcomes from analyzing each branch
using an outcome conjunction. Repeated uses of the Induction rule allow us to unroll an iterated
command for a �nite number of iterations.

Rules for guarded programs. Finally, at the bottom of Figure 4 is a collection of rules for expression-
based languages that have the syntax introduced in Example 3.4. We write % ⊨ 4 to mean that %
entails 4 . Formally, if % ⊨ 4 and & ⊨ ¬4 and< ⊨ % ⊕ & , then Jassume 4K†(<) ⊨ % . Substitutions
% [4/G] must be de�ned for basic assertions and satisfy< ⊨ % [4/G] implies JG := 4K†(<) ⊨ % .

4Disjunctions are de�ned i ∨k i� ¬(¬i ∧ ¬k) , a standard encoding in classical logic.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 93. Publication date: April 2023.

93:12 Noam Zilberstein, Derek Dreyer, and Alexandra Silva

Generic Rules

⟨i ⟩ 0 ⟨⊤⊕ ⟩
Zero

⟨i ⟩ 1 ⟨i ⟩
One

⟨i ⟩ �1 ⟨k ⟩ ⟨k ⟩ �2 ⟨o ⟩

⟨i ⟩ �1 #�2 ⟨o ⟩
Seq

∀8 ∈ N. ⟨i8 ⟩ � ⟨i8+1 ⟩

⟨i0 ⟩ for # do� ⟨i# ⟩
For

⟨i1 ⟩ � ⟨k1 ⟩ ⟨i2 ⟩ � ⟨k2 ⟩

⟨i1 ⊕ i2 ⟩ � ⟨k1 ⊕k2 ⟩
Split

i′ ⇒ i ⟨i ⟩ � ⟨k ⟩ k ⇒ k ′

⟨i′⟩ � ⟨k ′⟩
Conseqence

⟨⊤⊕ ⟩ � ⟨⊤⊕ ⟩
Empty

⟨i ⟩ � ⟨⊤⟩
True

⟨⊥⟩ � ⟨i ⟩
False

Nondeterministic Rules

⟨i ⟩ �1 ⟨k1 ⟩ ⟨i ⟩ �2 ⟨k2 ⟩

⟨i ⟩ �1 +�2 ⟨k1 ⊕k2 ⟩
Plus

⟨i ⟩ 1 +� #�★ ⟨k ⟩

⟨i ⟩ �★ ⟨k ⟩
Induction

Expression-Based Rules

⟨% [4/G] ⟩ G := 4 ⟨% ⟩
Assign

%1 ⊨ 4 %2 ⊨ ¬4

⟨%1 ⊕ %2 ⟩ assume 4 ⟨%1 ⟩
Assume

%1 ⊨ 4 ⟨%1 ⟩ �1 ⟨&1 ⟩ %2 ⊨ ¬4 ⟨%2 ⟩ �2 ⟨&2 ⟩

⟨%1 ⊕ %2 ⟩ if 4 then�1 else�2 ⟨&1 ⊕&2 ⟩
If (Multi-Outcome)

Fig. 4. Inference rules that are valid for a variety of OL instantiations. The metavariables i ,k refer to arbitrary

outcome assertions and % , & refer to atomic (single-outcome) assertions.

The Assign rule uses weakest-precondition style backwards substitution. Assume uses expression
entailment to annihilate the outcome where the guard is false. Similarly, If (Multi-Outcome) uses
entailment to map entire outcomes to the true or false branches of an if statement, respectively.

All the rules in Figure 4 are sound (see Zilberstein et al. [2023, §F] for details of the proof).

Theorem 4.6 (Soundness of Proof System). If ⊢ ⟨%⟩ � ⟨&⟩ then ⊨ ⟨%⟩ � ⟨&⟩

Note that it is not possible to have generic loop-invariant based iteration rules that are valid for all
instances of Outcome Logic. This is because loop invariants assume a partial correctness speci�-
cation; they do not guarantee termination. Outcome Logic—in some instantiations—guarantees
reachability of end states and therefore must witness a terminating program execution. This is in
line with the Backwards Variant rule from Incorrectness Logic [O’Hearn 2019, Fig.2], the While
rule from Reverse Hoare Logic [de Vries and Koutavas 2011, Fig.2], and Loop Variants from Total
Hoare Logic [Apt 1981]. Such a rule for GCL is available in Zilberstein et al. [2023, §G].

5 MODELING CORRECTNESS AND INCORRECTNESS VIA OUTCOMES

Incorrectness Logic was motivated in large part by its ability to disprove correctness speci�cations
(i.e., Hoare Triples) [Möller et al. 2021, Thm 4.1]. In this section, we prove that OL can not only
disprove Hoare Triples (Corollary 5.7), but it can also express strictly more types of incorrectness
than IL can. Theorem 5.6 shows three classes of bugs in nondeterministic programs that can be
characterized in OL, only one of which is expressible in IL. Section 5.2 shows that OL can express
probabilistic incorrectness too, whereas IL cannot.
Our �rst result is stated in terms of semantic triples in which the pre- and postconditions are

semantic assertions (which we denote with uppercase Greek metavariables Φ,Ψ ∈ 2"Σ) rather
than the syntactic assertions i,k ∈ Prop we have seen thus far. The advantage of this approach

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 93. Publication date: April 2023.

Outcome Logic: A Unifying Foundation for Correctness and Incorrectness Reasoning 93:13

is that we can show the power of the OL model without worrying about the expressiveness of
the syntactic assertion language (as a point of reference, the formal development of Incorrectness
Logic is purely semantic [Le et al. 2022; Möller et al. 2021; O’Hearn 2019], as was the metatheory
for separation logic [Calcagno et al. 2007; Yang 2001]).
The following Falsi�cation theorem states that any false OL triple can be disproven within OL.

Since we already know that OL subsumes Hoare Logic (Theorem 4.5), it follows that any correctness
property that is expressible in Hoare Logic can be disproven using OL. We use ⊨(⟨Φ⟩ � ⟨Ψ⟩ to
denote a valid semantic OL triple, that is: if< ∈ Φ, then J�K†(<) ∈ Ψ. The assertion sat(Φ) means
that Φ is satis�able, in other words Φ ≠ ∅.

Theorem 5.1 (Semantic Falsification). For any OL instance and any program � and semantic
assertions Φ, Ψ:

⊭(⟨Φ⟩ � ⟨Ψ⟩ i� ∃Φ′. such that Φ
′⇒ Φ, sat(Φ′), and ⊨(⟨Φ

′⟩ � ⟨¬Ψ⟩

Proof. We provide a proof sketch here. If ⊭(⟨Φ⟩ � ⟨Ψ⟩, then there must be an< ∈ Φ such that
J�K†(<) ∉ Ψ. Choosing Φ′ = {<} gives us ⊨(⟨Φ′⟩ � ⟨¬Ψ⟩. For the reverse direction, we know from
sat(Φ′) that there is an< ∈ Φ′ and from Φ

′ ⇒ Φ, we know that< ∈ Φ and from ⊨(⟨Φ⟩ � ⟨¬Ψ⟩,
we know that J�K†(<) ∉ Ψ, so ⊭(⟨Φ⟩ � ⟨Ψ⟩. □

The full proof of this theorem and formulation of semantic triples are given in Zilberstein et al.
[2023, §D.1]. While this result shows the power of the OLmodel, we also seek to answer whether the
outcome assertion syntax given in De�nition 4.1 can express the pre- and postconditions needed to
disprove other triples. We answer this question in the a�rmative, although the forward direction
of the result has to be proven separately for nondeterministic and probabilistic models. While
the semantic proof above applies to any OL instance, the syntactic versions that we present in
Section 5.1 and Section 5.2 rely on additional properties of the speci�c OL instance. Despite the
added complexity, we deem this worthwhile since syntactic descriptions give us a characterizations
that can be used in the design of automated bug-�nding tools.

The reverse direction of Theorem 5.1 corresponds to O’Hearn’s [2019] Principle of Denial, though
the original Principle of Denial used two triple types (IL and Hoare) and now we only need to use
one (OL). We can prove a syntactic version of The Principle of Denial for OL, which can be thought
of as a generalization of the true positives property, since it tells us when an OL triple (denoting a
bug) disproves another OL triple (denoting correctness).

Theorem 5.2 (Principle of Denial). For any OL instance and any program� and syntactic assertions
i , i ′, andk :

If i ′⇒ i, sat(i ′), and ⊨ ⟨i ′⟩ � ⟨¬k ⟩ then ⊭ ⟨i⟩ � ⟨k ⟩

This theorem is a consequence of Theorem 5.1, together with a result stating how to translate
syntactic triples to equivalent semantic ones [Zilberstein et al. 2023, Lemma D.1].
Proving a syntactic version of the forward direction of Theorem 5.1 is more complicated—

it requires us to witness the existence of a syntactic assertion corresponding to Φ
′. The way

in which this assertion is constructed depends on several properties of the OL instance. One
additional requirement is that the program� must terminate after �nitely many steps, otherwise the
precondition may not be �nitely expressible. This is a common issue when generating preconditions
and as a result many developments choose to work with semantic assertions rather than syntactic
ones [Kaminski 2019]. The IL falsi�cation results are also only given semantically [Möller et al.
2021; O’Hearn 2019], which avoids in�nitary assertions in loop cases.

In the following sections, we will investigate falsi�cation in both nondeterministic and probabilis-
tic OL instances. In doing so, we will provide more speci�c falsi�cation theorems which both deal

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 93. Publication date: April 2023.

93:14 Noam Zilberstein, Derek Dreyer, and Alexandra Silva

with syntactic assertions and more precisely characterize the ways in which particular programs
can be incorrect. While we have just seen that we can obtain a falsi�cation witness for correctness
speci�cations ⟨i⟩ � ⟨k ⟩ by negating the postcondition, proving a triple with postcondition ¬k
may not be convenient. For example, ifk is a sequence of outcomes &1 ⊕ · · · ⊕ &= , then it is not
immediately clear what ¬k expresses. We therefore provide more intuitive assertions for canonical
types of incorrectness encountered in programs.

5.1 Falsification in Nondeterministic Programs

In this section, we explore falsi�cation for nondeterministic programs. The �rst step is to formally
de�ne a nondeterministic instance of OL by de�ning an evaluation model and BI frame.

De�nition 5.3 (Nondeterministic Evaluation Model). A nondeterministic evaluation model based on
program states f ∈ Σ is ⟨2Σ, bind, unit,∪, ∅⟩ where ⟨2(−) , bind, unit⟩ is the powerset monad:

bind((, :) ≜
⋃
G ∈(

: (G) unit(G) ≜ {G}

De�nition 5.4 (Nondeterministic Outcome Assertions). Given some satisfaction relation on program
states ⊨Σ ⊆ Σ × Prop, we create an instance of the outcome assertion logic (De�nition 4.1) with the
BI frame ⟨2Σ,∪,=, ∅⟩ such that atomic assertions come from Prop and are satis�ed as follows:

(⊨ % i� (≠ ∅ and ∀f ∈ (. f ⊨Σ %

We impose one additional requirement, that the atomic assertions & ∈ Prop can be logically
negated5, which we will denote & . Now, we return to the question of how to falsify a sequence of
nondeterministic outcomes &1 ⊕ · · · ⊕ &= . Lemma 5.5 shows that there are exactly three ways that
this assertion can be false.

Lemma 5.5 (Falsifying Assertions). For any (∈ 2Σ and atomic assertions &1, . . . , &= ,

(⊭ &1 ⊕ · · · ⊕ &= i� ∃8 . (⊨ &8 or (⊨ (&1 ∧ · · · ∧&=) ⊕ ⊤ or (⊨ ⊤⊕

If we take &1 ⊕ · · · ⊕ &= to represent a desirable set of program outcomes, then Lemma 5.5 tells
us that said program can be wrong in exactly three ways. Either there is some desirable outcome
(&8) that the program never reaches, there is some undesirable outcome (&1 ∧ · · · ∧&=) that the
program sometimes reaches, or there is an input that causes it to diverge (⊤⊕). Now, following
from this result, we can state what it means to falsify a nondeterministic speci�cation:

Theorem 5.6 (Nondeterministic Falsification). For any OL instance based on the nondeterministic
evaluation model (De�nition 5.3) and outcome assertions (De�nition 5.4), ⊭ ⟨i⟩ � ⟨

⊕=
8=1&8⟩ i�:

∃i ′⇒ i. sat(i ′) and ∃8 . ⊨ ⟨i ′⟩ � ⟨&8⟩ or ⊨
↓ ⟨i ′⟩ � ⟨

=∧
8=1

&8⟩ or ⊨ ⟨i
′⟩ � ⟨⊤⊕⟩

The type of bugs expressible in Incorrectness Logic are a special case of Theorem 5.6. Since IL is
under-approximate, it can only express the second kind of bug (reachability of a bad outcome), not
the �rst (non-reachability of a good outcome), or last (divergence). IL was motivated by its ability
to disprove Hoare Triples—since Hoare Triples are a special case of OL (Theorem 4.5), Theorem 5.6
suggests that OL can disprove Hoare Triples as well. We make this correspondence explicit in the
following Corollary where, compared to Theorem 5.6, the �rst two cases collapse since there is
only a single outcome and the divergence case no longer represents a bug since the Hoare Triple is
a partial correctness speci�cation.

5Crucially,& is not the same as ¬& (where ¬ is from BI) since (⊨ ¬& i� (= ∅ or ∃f ∈ (.f ⊭Σ & whereas (⊨ & i� (≠ ∅

and ∀f ∈ (. f ⊭Σ & .

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 93. Publication date: April 2023.

Outcome Logic: A Unifying Foundation for Correctness and Incorrectness Reasoning 93:15

Corollary 5.7 (Hoare Logic Falsification).

⊭ {%} � {&} i� ∃i ⇒ % . sat(i) and ⊨
↓ ⟨i⟩ � ⟨&⟩

So, although we do not show that OL semantically subsumes Incorrectness Logic, it does have the
ability to express the same bugs as IL. OL can also disprove more complex correctness properties,
such as that of the shu�le function that we saw in Section 2.2. As we will now see, another OL
instance is capable of disproving probabilistic properties too.

5.2 Falsification in Probabilistic Programs

Before we can de�ne falsi�cation in a probabilistic setting, we must establish some preliminary
de�nitions. Probabilistic programs use an execution model based on probability (sub)distributions.
A (sub)distribution ` ∈ D- over a set - is a function mapping elements G ∈ - to probabilities in
[0, 1] ⊂ R. The support of a distribution is the set of elements having nonzero probability supp(`) =
{G | ` (G) > 0} and the mass of a distribution is |` | =

∑
G ∈supp(`) ` (G). A valid distribution must

have mass at most 1. The empty distribution ∅ maps everything to probability 0 and distributions
can be summed pointwise `1 + `2 = _G .`1 (G) + `2 (G) if |`1 | + |`2 | ≤ 1. For any countable set - ,
⟨D-, +,∅⟩ is a PCM. In addition, distributions can be weighted by scalars ? · ` = _G .? · ` (G) if
? · |` | ≤ 1 (this is always de�ned if ? ≤ 1). The Dirac distribution XG assigns probability 1 to G and
0 to everything else. We complete the de�nition of a probabilistic execution model:

De�nition 5.8 (Probabilistic Evaluation Model). A probabilistic evaluation model based on program
states Σ is de�ned as ⟨DΣ, bind, unit, +,∅⟩ where ⟨D, bind, unit⟩ is the Giry [1982] monad:

bind(`, :) =
∑

G ∈supp(`)

` (G) · : (G) unit(G) = XG

We can make our imperative language probabilistic by adding a command G $←− [for sampling
from �nitely supported probability distributions [∈ DVal over program values. This command is
intended to be added to an existing language such as GCL (Example 3.4) ormGCL (Section 6.4). The
program semantics and atomic assertions are based on distributions over program states ` ∈ DΣ.
The semantics for the sampling command is de�ned in terms of variable assignment. This allows
us to abstract over the type of program states.

2 ::= G $←− [JG $←− [K (f) = bind([, _E . JG := EK (f))

De�nition 5.9 (Probabilistic Outcome Assertions). Given some satisfaction relation on program states
⊨Σ ⊆ Σ × Prop, we instantiate the outcome assertion logic (De�nition 4.1) with the BI frame
⟨DΣ, +,=,∅⟩ such that atomic assertions have the form P[�] = ? where ? ∈ [0, 1], � ∈ Prop, and:

` ⊨ P[�] = ? i� |` | = ? and ∀f ∈ supp(`). f ⊨Σ �

Intuitively, the assertion P[�] = ? states that the outcome � occurs with probability ? . As a
shorthand for under-approximate assertions, we also de�ne P[�] ≥ ? to be (P[�] = ?) ⊕ ⊤ (see
Lemma B.5 for a semantic justi�cation).

We will now investigate falsi�cation of probabilistic assertions of the form
⊕=

8=1 (P[�8] = ?8). In
general, any such sequence can be falsi�ed by specifying the precise probabilities of all combinations
of the outcomes �8 . In the special case where = = 2, ` ⊭ (P[�] = ? ⊕ P[�] = @) i�:

` ⊨ P[� ∧ �] = ?1 ⊕ P[� ∧ ¬�] = ?2 ⊕ P[¬� ∧ �] = ?3 ⊕ P[¬� ∧ ¬�] = ?4

Such that ?4 > 0 or ?2 > ? or ?3 > @ or ?1 + ?2 + ?3 ≠ ? +@. The more general version of this result
shows that 2= outcomes are needed to disprove an assertion with = outcomes [Zilberstein et al. 2023,
Lemmas D.9 and D.12], which is infeasible for large =. However, there are several special cases that

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 93. Publication date: April 2023.

93:16 Noam Zilberstein, Derek Dreyer, and Alexandra Silva

require many fewer outcomes. For example, if all the�8s are pairwise disjoint, then falsi�cation can
be achieved with just = + 1 outcomes. Below, we use ®@ to denote a vector of probabilities @1, . . . , @= .

Theorem 5.10 (Disjoint Falsification). First, let �0 =
∧=

8=1 ¬�8 . If all the events are disjoint (for
all 8 ≠ 9 , �8 ∧� 9 i� false), then:

⊭ ⟨i⟩ � ⟨

=⊕
8=1

(P[�8] = ?8)⟩ i� ∃®@, i ′⇒ i. ⊨ ⟨i ′⟩ � ⟨

=⊕
8=0

(P[�8] = @8)⟩

Such that sat(i ′) and @0 ≠ 0 or for some 8 @8 ≠ ?8 .

Many speci�cations fall into this disjointness case since the primary way in which proofs split
into multiple probabilistic outcomes is via sampling, which always splits the postcondition into
disjoint outcomes with the sampled variable G taking on a unique value.
The correctness of some probabilistic programs is speci�ed using lower bounds. For example,

we may want to specify that some good outcome occurs with high probability. These assertions can
also be falsi�ed using a lower bound.

Theorem 5.11 (Principle of Denial for Lower Bounds).

If ∃i ′⇒ i. sat(i ′), ⊨ ⟨i ′⟩ � ⟨P[¬�] ≥ @⟩ then ⊭ ⟨i⟩ � ⟨P[�] ≥ ?⟩ (where @ > 1− ?)

Note that this implication only goes one way, since the original speci�cation P[�] ≥ ? could be
satis�ed by a sub-distribution ` where |` | < 1 and therefore (P` [�] ̸≥ ?) ⇏ (P` [¬�] > 1 − ?).
There are many more special cases for probabilistic falsi�cation, but the relevant cases for the
purposes of this paper fall into the categories discussed above.

6 OUTCOME LOGIC FOR MEMORY ERRORS

In this section we specialize OL to prove the existence of memory errors in nondeterministic
programs. The program logic is constructed in four layers. First, at its core, there is an assertion
logic for describing heaps in the style of separation logic (Section 6.1). On top of that, we build an
assertion logic with the capability of describing error states and multiple outcomes (Section 6.2).
Then, we de�ne the execution model using a monad combining both errors and nondeterminism
(Section 6.3). Finally, we provide proof rules for this multi-layered logic (Section 6.4).

We use this logic in Section 6.5 to reason about memory errors in the style of Incorrectness
Separation Logic [Raad et al. 2020]. We also discuss why the semantics of Outcome Logic is a good
�t for this type of bug �nding by examining manifest errors in more depth (Section 6.6).

6.1 Heap Assertions

First, we create a syntax of logical assertions to describe the heap in the style of Separation
Logic [Reynolds 2002]. In order to describe why a program crashed, we need negative heap assertions
in addition to the standard points-to predicates. These assertions, denoted G ̸↦→, state that the
pointer G is invalidated [Raad et al. 2020]. The syntax for the heap assertion logic is below.

? ∈ SL ::= emp | ∃G .? | ? ∧ @ | ? ∨ @ | ? ⇒ @ | ? ∗ @ | ? −−∗ @ | 4 | 41 ↦→ 42 | 4 ↦→ − | 4 ̸↦→ (7)

In this syntax, 4 ∈ Exp is an expression which includes true and false. We add logical negation ¬?
as shorthand for ? ⇒ false. These assertions are satis�ed by a stack and heap pair (B, ℎ) ∈ S × H .
Stacks are de�ned as before (Example 3.4) and heaps are partial functions from positive natural
numbers (addresses) to program values or bottomH = {ℎ | ℎ : N+ ⇀ Val + {⊥}}6. The constant

6Note that ℓ ∉ dom(ℎ) indicates that we have no information about the pointer ℓ whereas ℎ (ℓ) = ⊥ indicates that ℓ is
deallocated. This is why ℎ is both partial and includes ⊥ in the co-domain.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 93. Publication date: April 2023.

Outcome Logic: A Unifying Foundation for Correctness and Incorrectness Reasoning 93:17

null is equal to 0, so it is not a valid address and therefore null ∉ dom(ℎ) for any heap ℎ. The
semantics of SL is de�ned in Zilberstein et al. [2023, §E.1] and is similar to that of Raad et al. [2020].

6.2 Reasoning about Errors

While most formulations of Hoare Logic focus only on safe states, descriptions of error states are
a fundamental part of Incorrectness Logic [O’Hearn 2019]. Reasoning about errors is built into
the semantics of incorrectness triples and the underlying programming languages. In the style of
Incorrectness Logic, we use (ok : ?) and (er : ?) to indicate whether or not the program terminated
successfully. In our formulation, however, these are regular assertions rather than part of the triples
themselves. This makes our assertion logic more expressive because we can describe programs that
have multiple outcomes—some of which are successful and some erroneous—in a single triple. The
semantics of programs that may crash is also encoded as a monadic e�ect.

De�nition 6.1 (Assertion logic with errors). Given a set of error states �, a set of program states Σ,
and the relations ⊨� ⊆ � × Prop� and ⊨Σ ⊆ Σ × Prop

Σ
, we construct a new assertion logic with

semantics ⊨ ⊆ (� + Σ) × (Prop
Σ
× Prop�) de�ned below:

i! (4) ⊨ (?, @) i� 4 ⊨� @ i' (f) ⊨ (?, @) i� f ⊨Σ ?

In the above, i! : � → � + Σ and i' : Σ→ � + Σ are the left and right injections, respectively. We
also add syntactic sugar (ok : ?) ≜ (?, false) and (er : @) ≜ (false, @), so in general the assertion
(?, @) can be thought of as (ok : ?) ∨ (er : @). Additional logical operations (¬, ∧, and ∨) are de�ned
in Zilberstein et al. [2023, §E.2]. We now combine errors with separation logic as follows:

De�nition 6.2 (Separation Logic with Errors). We de�ne an assertion logic as follows:

⊲ The syntax of basic assertions Prop is given in De�nition 6.1 with Prop� = Prop
Σ
= SL, the

heap assertion logic (7). So, Prop has the syntax (ok : ?) and (er : @) where ?, @ ∈ SL.
⊲ Σ, the set of program states, is given by S ×H .
⊲ The satisfaction relation is also given in De�nition 6.1 with � = Σ, so ⊨ ⊆ (Σ + Σ) × Prop.

6.3 Execution Model

We will now create an execution model supports both nondeterminism and errors by combining
the powerset monad (De�nition 5.3) with an error monad. We begin by de�ning the error monad,
which is based on taking a coproduct with a set � of errors. In order to use errors in conjunction
with another e�ect (i.e., nondeterminism), we de�ne a monad transformer [Liang et al. 1995]. This
is valid since the error monad composes with all other monads [Lüth and Ghani 2002].

De�nition 6.3 (Execution model with errors). Given some execution model ⟨", bind" , unit" ,⋄,∅⟩,
we de�ne a new execution model ⟨" (� + −), binder, uniter,⋄,∅⟩ such that:

binder (<,:) = bind"

(
<, _G.

{
: (~) if G = i' (~)
unit" (G) if G = i! (~)

)
uniter (G) = unit" (i' (G))

Note the monoid de�nition (⋄ and∅) remains the same as the original execution model. For example,
if the outer monad is powerset, we still use set union and empty set in the same way—errors only
exist within a single outcome.

Example 6.4 (Execution model for nondeterminism and errors). We are particularly interested in
the above de�nition when" is the powerset monad, i.e., 2(−) . This results in an execution model
⟨2�+−, bind, unit,⋄,∅⟩ where the operations are derived as follows:

bind((, :) = {i! (G) | i! (G) ∈ (} ∪
⋃

i' (G) ∈(

: (G) unit(G) = {i' (G)}

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 93. Publication date: April 2023.

93:18 Noam Zilberstein, Derek Dreyer, and Alexandra Silva

We now turn to de�ning atomic commands for manipulating the heap in a language called the
Guarded Command Language with Memory (mGCL). The syntax for mGCL is given below and the
semantics is in Zilberstein et al. [2023, §E.3]. Note that mGCL commands are deterministic and can
therefore be interpreted in both nondeterministic and probabilistic evaluation models.

2 ∈ mGCL ::= assume 4 | G := 4 | G := alloc() | free(4) | G ← [4] | [41] ← 42 | error()

Assume and assignment are the same as in GCL (Example 3.4). The usual heap operations for
allocation (alloc), deallocation (free), loads (G ← [4]), and stores ([41] ← 42) are also included along
with an error command that immediately fails. We also de�ne G := malloc() as syntactic sugar for
(G := alloc()) + (G := null), which is valid in nondeterministic evaluation models.

De�nition 6.5 (Outcome-Based Separation Logic). We instantiate OL (De�nition 4.4) with:

(1) The execution model is from Example 6.4 with � = S ×H .
(2) The language of atomic commands is mGCL.
(3) The assertion logic is the one given in De�nition 5.4 using De�nition 6.2 for basic assertions.

Note that although the execution model has been augmented with errors, the nondeterministic
falsi�cation result (Theorem 5.6) still holds for Outcome-Based Separation Logic.

6.4 Proof Rules for Memory Errors

Now that we have de�ned the semantics of OL triples that can express properties about memory and
errors, let us turn to the proof theory. In this section, we will de�ne proof rules for Outcome-Based
Separation Logic (De�nition 6.5), which we will use in subsequent sections to prove that programs
crash due to memory errors. We will de�ne these proof rules in a way that is generic with respect
to the execution model, leveraging the fact that the atomic mGCL commands are deterministic,
and thus can be given speci�cations that hold good under multiple di�erent execution models (e.g.,
nondeterminism or probabilistic computation).
Concretely, let us observe that the semantics of mGCL is based on the composition of two

monads: an outer monad" (e.g., powerset), and the error monad � +−. Since the atomic commands
of mGCL are deterministic, however, their semantics is agnostic to the choice of the outer monad
" , and can be speci�ed axiomatically without needing to talk explicitly about (multiple) outcomes.
Hence, we de�ne a new type of triple that is capable of making assertions about errors (using er

and ok), but says nothing about outcomes (using ⊕):

De�nition 6.6 (Liftable Triples). Consider an OL instance based on the composition of two monads
" = "1 ◦"2, and so J�K : Σ→ ("1 ◦"2)Σ (note that any monad can be decomposed in this way,
by taking"2 = Id). One such example is the execution model from Example 6.4 where"1 = 2

(−)

and"2 = � + −. The validity of an OL triple that is liftable into the monad"1 is de�ned as follows:

⊨"1
⟨?⟩ � ⟨@⟩ i� ∀f ∈ "2Σ. f ⊨ ? ⇒ ∃g ∈ "2Σ. J�K†(unit"1

(f)) = unit"1
(g) and g ⊨ @

Intuitively, this triple says that � is deterministic; if we run it on any individual state that satis�es
? , then the result will be an individual state satisfying @. In the case of Example 6.4, this means that
? and @ describe elements of � + Σ; they can describe error states (using er and ok), but cannot use
⊕. Similarly, we write ⊢"1

⟨?⟩ � ⟨@⟩ to denote a liftable derivation, which is sound with respect to
the above semantics and can be lifted into the monad"1.

Figure 5 contains the proof rules for Outcome-Based Separation Logic (De�nition 6.5). The �rst
group of rules is very close to the standard separation logic proof system originally due to O’Hearn
et al. [2001], with the addition of rules to reason about unsafe states inspired by Raad et al. [2020].
These rules are liftable into any monad " (since errors compose with all other monads). The

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 93. Publication date: April 2023.

Outcome Logic: A Unifying Foundation for Correctness and Incorrectness Reasoning 93:19

Separation Logic Small Axioms

⊢" ⟨ok : ? ⟩ error() ⟨er : ? ⟩
Error

⊢" ⟨ok : G = E ∧ emp⟩ G := alloc() ⟨ok : G ↦→ −⟩
Alloc

⊢" ⟨ok : 4 ↦→ −⟩ free(4) ⟨ok : 4 ̸↦→⟩
Free Ok

⊢" ⟨ok : 4 ̸↦→⟩ free(4) ⟨er : 4 ̸↦→⟩
Free Er

⊢" ⟨ok : 41 ↦→ −⟩ [41] ← 42 ⟨ok : 41 ↦→ 42 ⟩
Store Ok

⊢" ⟨ok : 41 ̸↦→⟩ [41] ← 42 ⟨er : 41 ̸↦→⟩
Store Er

⊢" ⟨ok : G =< ∧ 4 ↦→ =⟩ G ← [4] ⟨ok : G = = ∧ 4 [</G] ↦→ =⟩
Load Ok

⊢" ⟨ok : 4 ̸↦→⟩ G ← [4] ⟨er : 4 ̸↦→⟩
Load Er

⊢" ⟨n : ? ⟩ 2 ⟨n′ : @⟩ fv(A) ∩mod(2) = ∅

⊢" ⟨n : ? ∗ A ⟩ 2 ⟨n′ : @ ∗ A ⟩
Frame

Monadic Rules

⊢
2
(−) ⟨? ⟩ � ⟨@⟩

⟨? ⟩ � ⟨@⟩
Nondeterministic Lifting

⊢" ⟨er : ? ⟩ � ⟨er : ? ⟩
Error Propagation

Fig. 5. Proof rules for Outcome-Based Separation Logic, the OL instantiation of Definition 6.5. The first group

is inspired by O’Hearn et al.’s [2001] small axioms with additional rules added for unsafe states. The second

group deal with the monadic execution model.

Lifting proof rule states that if some triple is liftable into the powerset monad (where ? and @ are
satis�ed by individual states), then we can obtain a new triple where ? and @ are satis�ed by sets of
states (as in De�nition 5.4). All of the small axioms above can be lifted in this way.
In order to use the proof rules for conditionals and assignment from Figure 4, we also de�ne

expression entailment and substitution. Both operations are only de�ned for ok assertions.

(ok : ?) ⊨ 4 i� ? ⇒ 4 (ok : ?) [4/G] ≜ ok : ? [4/G]

This means that, for example, the Assign rule only allows us to prove ⟨ok : ? [4/G]⟩ G := 4 ⟨ok : ?⟩.
If an error has occurred, we instead use the Error Propagation rule to propagate the error forward
through the proof (i.e., ⟨er : ?⟩ G := 4 ⟨er : ?⟩), since the program will never recover from the crash.

6.5 Proof of a Bug

We now demonstrate that the OL proof system shown in Figure 5 is e�ective for bug-�nding. The
program in Figure 6 has a possible use-after-free error. This program �rst appeared as a motivating
example for ISL [Raad et al. 2020]. It models a common error in C++ when using the std::vector
library. A call to push_back can reallocate the vector’s underlying memory bu�er, in which case
pointers to that bu�er become invalid.
As in Raad et al. [2020], we model the vector as a single heap location, and the push_back

function nondeterministically chooses to either reallocate the bu�er or do nothing. A subsequent
memory access may then fail, as seen in the main function. Since our language does not have
procedures, we model these as macros and prove the existence of the bug with all the code inlined.
The proof mostly makes use of standard separation logic proof rules and is quite similar to the
ISL version [Raad et al. 2020] especially in the use of negative heap assertion after the call to free.
Under-approximation is achieved using the rule of consequence to drop one of the outcomes.
Correctness for this program would be given by the postcondition (ok : E ↦→ G ∗ G ↦→ 1). As

Theorem 5.6 showed, we can disprove it by showing that an undesirable outcome will sometimes

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 93. Publication date: April 2023.

93:20 Noam Zilberstein, Derek Dreyer, and Alexandra Silva

main() :
G ← [E]#
push_back(E)#
[G] ← 1

push_back(E) :

©«

~ ← [E]#
free(~)#
~ := alloc()#
[E] ← ~

ª®®®¬
+ skip

⟨ok : E ↦→ 0 ∗ 0 ↦→ −⟩

G ← [E]#

⟨ok : E ↦→ G ∗ G ↦→ −⟩

©«

⟨ok : E ↦→ G ∗ G ↦→ −⟩

~ ← [E]#

⟨ok : E ↦→ G ∗ G ↦→ − ∧ ~ = G ⟩

free(~)#
⟨ok : E ↦→ G ∗ G ̸↦→ ∧~ = G ⟩

~ := alloc()#
⟨ok : E ↦→ G ∗ G ̸↦→ ∗~ ↦→ −⟩

[E] ← ~

⟨ok : E ↦→ ~ ∗ G ̸↦→ ∗~ ↦→ −⟩

ª®®®®®®®®®®®®®¬

+

⟨ok : E ↦→ G ∗ G ↦→ −⟩

skip

⟨ok : E ↦→ G ∗ G ↦→ −⟩

#

⟨(ok : E ↦→ ~ ∗ G ̸↦→ ∗~ ↦→ −) ⊕ (ok : E ↦→ G ∗ G ↦→ −) ⟩

[G] ← 1

⟨(er : E ↦→ ~ ∗ G ̸↦→ ∗~ ↦→ −) ⊕ (ok : E ↦→ G ∗ G ↦→ 1) ⟩

=⇒ ⟨(er : G ̸↦→ ∗ true) ⊕ ⊤⟩

Fig. 6. Program with a possible use-a�er-free error (le�) and proof sketch (right)

occur. In this case, that undesirable outcome is (er : G ̸↦→∗true). Clearly, (er : G ̸↦→∗true)⊕⊤ implies
¬(ok : E ↦→ G ∗ G ↦→ 1), so the speci�cation in Figure 6 disproves the correctness speci�cation.

6.6 Manifest Errors

Le et al. [2022] showed empirically that the �x rates of bug-�nding tools can be improved by
reporting only those bugs that occur regardless of context. These errors are known as manifest
errors, as demonstrated in the examples below.

⟨ok : G ̸↦→⟩ [G] ← 1 ⟨er : G ̸↦→⟩ ⟨ok : true⟩ G := malloc() # [G] ← 1 ⟨(er : G = null) ⊕ ⊤⟩

The left program has a latent error since it is only triggered if the pointer is already deallocated,
therefore it would not be reported. The right program has a manifest error since it is possible no
matter the context in which the program is invoked. Le et al. [2022, Def. 3.2] give the following
de�nition for manifest errors:

⊨ [ok : ?] � [er : @] is a manifest error i� ∀f. ∃g ∈ J�K (f). g ⊨ (er : @ ∗ true)

First note that the precondition ? does not appear in the formal de�nition. This indicates that
IL preconditions do not meaningfully describe the conditions su�cient to reach an end state. In
addition, the universal quanti�cation over the precondition resembles Hoare Logic more closely
than Incorrectness Logic (which quanti�es over the postcondition). As stated in the following
lemma, the formal de�nition of a manifest error can be expressed as an OL triple.

Lemma 6.7 (Manifest Error Characterization).

⊨ [?] � [er : @] is a manifest error i� ⊨
↓ ⟨ok : true⟩ � ⟨er : @ ∗ true⟩

Following from this result, determining whether a program has a manifest error is equivalent to
proving an OL triple of the form above. Characterizing a manifest error using IL is much harder. Le
et al. [2022] provide an algorithm to do so, which involves several satis�ability checks (which are
NP-hard). The di�culty in characterizing manifest errors suggests that under-approximation in IL
is too powerful. To see this, we compare the standard If rule from OL to One-Sided If—a hallmark
of IL which allows the analysis to only consider one branch of an if statement.

⟨ok : ? ∧ 4⟩ �1 ⟨n : @⟩ ⟨ok : ? ∧ ¬4⟩ �2 ⟨n : @⟩

⟨ok : ?⟩ if 4 then �1 else �2 ⟨n : @⟩
If

[? ∧ 4] �1 [n : @]

[?] if 4 then �1 else �2 [n : @]
One-Sided If

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 93. Publication date: April 2023.

Outcome Logic: A Unifying Foundation for Correctness and Incorrectness Reasoning 93:21

⊢D ⟨�⟩ � ⟨�⟩

⟨P[�] = ? ⟩ � ⟨P[�] = ? ⟩
Lifting

∀E ∈ supp([) . ⟨�⟩ G := E ⟨�E ⟩

⟨P[�] = ? ⟩ G $←− [⟨
⊕

E∈supp([)

(P[�E] = ? · [(E)) ⟩
Sample

Fig. 7. Probabilistic proof rules.

One-Sided If generates imprecise preconditions since the precondition of the premise (? ∧ 4) is
stronger than the precondition of the conclusion (?). OL, on the other hand, requires the precondition
to be precise enough to force the execution down a speci�c logical path, otherwise both paths must
be considered as seen in the If rule. As such, OL enables under-approximation in just the right
ways; only outcomes that result from nondeterministic choice can be dropped.

Le et al.’s [2022] discussion of manifest errors suggests that su�cient preconditions are important;
we need to know what happens when we run the program on any state satisfying the precondition.
Interestingly, there is no analogous motivation for covering the whole postcondition (as IL does).
Reachability is important, but we only have to reach some error state, not all of them. In fact, as we
will see in our exploration of probabilistic programming, covering the entire post is often infeasible.

7 PROBABILISTIC INCORRECTNESS

Randomization is a powerful tool that is seeing increased adoption in mainstream software devel-
opment as it is essential for machine learning and security applications. The study of probabilistic
programming has a rich history [Kozen 1979, 1983], but there is little prior work on proving
that probabilistic programs are incorrect. In Section 5.2, we gave a theoretical result showing that
probabilistic speci�cations in OL can be disproven. In this section, we provide a proof system for
probabilistic OL and use it to prove incorrectness in a particular example program.

We work with the probabilistic OL instance using the evaluation model from De�nition 5.8 and
the outcome assertions in De�nition 5.9. The basic commands are assignment and assume from
GCL (Example 3.4) with probabilistic sampling added (G $←− [). There are only two proof rules for
the probabilistic language, given in Figure 7. The Lifting rule allows us to lift a derivation (e.g.
for variable assignment) into a probabilistic setting. This is sound, since every state in the support
must transition from � to �, thus P[�] before running � is equal to P[�] after. The Sample rule
splits the postcondition into a separate outcome for each value in the support of [.
The rules for conditional branching in Figure 4 can be used in probabilistic proofs by de�ning

expression entailment (P[�] = ?) ⊨ 4 i� � ⊨ 4 . Assign can also be used; substitution propagates
inside the probabilistic assertion (P[�] = ?) [4/G] = (P[�[4/G]] = ?). Note that the conditional
rules require us to know the probability that the guard is true or false upfront. This is standard for
probabilistic Hoare Logics [Barthe et al. 2018; den Hartog 2002].
Absent are rules for while loops. Looping rules in probabilistic languages are complex since

invariants cannot be used when probabilities change across iterations. Such proof rules are certainly
expressible in our model, but are out of scope for this paper. For examples of how this is done, see
Barthe et al. [2018]; den Hartog [2002].

7.1 Error Bounds for Machine Learning

Randomization is often used in approximation algorithms where computing the exact solution to a
problem is di�cult. In these applications, some amount of error is acceptable as long as it is likely
to be small. One such application is supervised learning algorithms, which produce a hypothesis
from a set of labelled examples. The examples are members of some set - and are drawn randomly
from some probability distribution [∈ D- . The hypothesis is a function ℎ : - → B which guesses
whether new data points are positive or negative examples.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 93. Publication date: April 2023.

93:22 Noam Zilberstein, Derek Dreyer, and Alexandra Silva

0 1
Cℎ

er(ℎ)

ℎ := −1#
for # do

G $←− [0, 1]#
if L(G) ∧ G > ℎ then

ℎ := G

else

skip

⟨P[true] = 1⟩ =⇒ ⟨P[er(−1) > Y] ≥ (1 − Y)0 ⟩
ℎ := −1 #

⟨P[er(ℎ) > Y] ≥ (1 − Y)0 ⟩
for # do

⟨P[er(ℎ) > Y] ≥ (1 − Y)8 ⟩
G $←− [0, 1]#
⟨
⊕

@∈[0,1] P[er(ℎ) > Y ∧ G = @] ≥ Δ · (1 − Y)8 ⟩

if L(G) ∧ G > ℎ then

⟨
⊕

@∈(ℎ,C] P[er(ℎ) > Y ∧ G = @] ≥ Δ · (1 − Y)8 ⟩

=⇒ ⟨
⊕

G∈(ℎ,C−Y] P[er(G) > Y] ≥ Δ · (1 − Y)8 ⟩

=⇒ ⟨P[er(G) > Y] ≥ (C − Y − ℎ) · (1 − Y)8 ⟩
ℎ := G
⟨P[er(ℎ) > Y] ≥ (C − Y − ℎ) · (1 − Y)8 ⟩

else

⟨
⊕

@∈[0,ℎ]∪(C,1] P[er(ℎ) > Y ∧ G = @] ≥ Δ · (1 − Y)8 ⟩

skip#

⟨
⊕

@∈[0,ℎ]∪(C,1] P[er(ℎ) > Y ∧ G = @] ≥ Δ · (1 − Y)8 ⟩

=⇒ ⟨P[er(ℎ) > Y] ≥ (ℎ + 1 − C) · (1 − Y)8 ⟩
⟨P[er(ℎ) > Y] ≥ (C − Y − ℎ) · (1 − Y)8 ⊕ P[er(ℎ) > Y] ≥ (ℎ + 1 − C) · (1 − Y)8 ⟩
=⇒ ⟨P[er(ℎ) > Y] ≥ (1 − Y)8+1 ⟩

⟨P[er(ℎ) > Y] ≥ (1 − Y)# ⟩

Fig. 8. The interval learning problem: a diagram of the learning problem (top le�), a program implementing

interval learning (bo�om le�), and a proof sketch (right).

Consider the simple learning problem in which we want to learn a point C ∈ [0, 1] ⊂ R on the
unit interval. Since we require distributions used in programs to be �nite, we can approximate
[0, 1] as {: · Δ | 0 ≤ : ≤ 1

Δ
} for some �nite step size Δ. Anything in the interval [0, C] is considered

a positive example, and anything greater than C is a negative example. This concept is illustrated at
the top of Figure 8 and the program below—expressed in a probabilistic extension of GCL—learns
this concept by repeatedly sampling examples and re�ning the hypothesis ℎ after each round. The
resulting hypothesis is always equal to the largest positive example that the algorithm has seen.
Therefore it will always classify negative examples correctly and only make mistakes on positive
examples between ℎ and C .

The labelling oracleL(G) = G ≤ C gives the true label of any point on the interval. Let er(ℎ) = C−ℎ
be the error of the hypothesis (the total probability mass between ℎ and C). The goal is to determine
the probability that ℎ has error greater than Y after # iterations. Practically speaking, this simulates
training the model on a dataset of size# . Intuitively, the error will be less than Y if the algorithm ever
samples an example in the interval [C−Y, C]. The chance of getting a hit in this range increases greatly
with the number of examples seen. While this problem may seem contrived, it is a 1-dimensional
version of the Rectangle Learning Problem which is known to have practical applications and the
proof ideas are extensible to other learnable concepts [Kearns and Vazirani 1994].
To prove that this program is correct, we want to say that the resulting hypothesis has small

error with high probability. Choosing an error bound Y and a con�dence parameter X , we say that
the program is correct if at the end P[er(ℎ) ≤ Y] ≥ 1 − X . Now, we can look to Theorem 5.11 to
determine how to disprove the correctness speci�cation. We need to show that the probability of the
opposite happening (er(ℎ) > Y) is higher than X . Based on the derivation in Figure 8, we conclude
that the program is incorrect if (1 − Y)# > X . Suppose we had a dataset of size # = 100 and desired
at most 1% error (Y = 0.01) with 90% likelihood (X = 0.1). Then the postcondition tells us that the
error is higher than 1% with probability at least 37%. Clearly 37% > X , so the program is incorrect;
we need a larger dataset in order to get a better result.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 93. Publication date: April 2023.

Outcome Logic: A Unifying Foundation for Correctness and Incorrectness Reasoning 93:23

7.2 Probabilistic Incorrectness Logic

It is natural to ask whether a similar result could be achieved using a probabilistic variant of Incor-
rectness Logic. However, such a program logic is cumbersome and produces poor characterizations
of errors. To show this, we begin by examining the semantics of a probabilistic IL triple.

⊨ [%] � [&] i� ∀` ⊨ &. ∃` ′. ` ⊑ J�K†(` ′) and ` ′ ⊨ %

This de�nition di�ers from standard Incorrectness Logic in two ways. First, assertions are satis�ed
by distributions over program states ` ∈ DΣ rather than individual program states f ∈ Σ. This is
necessary in order tomake the assertion logic quantitative. Second, under-approximation is achieved
using the sub-distribution relation ⊑ instead of set inclusion7. As is typical with Incorrectness Logic,
this de�nition stipulates that any subdistribution satisfying the postcondition must be reachable
by an execution of the program. While in non-probabilistic cases it can already be hard to fully
characterize a valid end-state, even more information is needed in the probabilistic case.

To demonstrate this, consider the interval learning program from Figure 8. The postcondition of
this triple is P[er(ℎ) > Y] ≥ (1 − Y)# , which is not a valid postcondition for an incorrectness triple
because it does not adequately describe the �nal distribution. That is, there are many distributions
satisfying this assertion that could not result from running the program. In one such distribution,
ℎ = −1 with probability 1. So, lower bounds are not suitable for use in Incorrectness Logic because
a distribution can be invented where the probability is arbitrarily large, rendering it unreachable.
But changing the inequality to an equality to obtain P[er(ℎ) > Y] = (1 − Y)# does not solve the
problem. This assertion can be satis�ed by a distribution where ℎ = −1 with probability (1 − Y)# ,
which is also unreachable. In order for an assertion to properly characterize the output distribution,
it has to specify all the possible values of ℎ. Such an assertion is given below:

Y⊕
G=0

(
P[er(ℎ) = G] = (1 − G)# − (1 − (G + Δ))#

)

The original assertion was easy to understand; we immediately knew the probability of having
a large error. By contrast, the added information needed for IL actually obscures the result. It is
not useful to know the probability of each value of ℎ, we only care about bounding the probability
that er(ℎ) > Y. In general, Probabilistic Incorrectness Logic requires us to specify the entire joint
distribution over all the program variables which is certainly undesirable and often infeasible.

Many techniques in probabilistic program analysis summarize the output distribution in alterna-
tive ways. This includes using expected values [Kaminski 2019; Morgan et al. 1996] and probabilistic
independence [Barthe et al. 2019]. If those techniques are used to express correctness, it makes
sense that similar ideas would be desirable for incorrectness. However, techniques that summarize
a distribution are incompatible with Incorrectness Logic since they do not specify the output
distribution in a su�cient level of detail. Based on these �ndings, we conclude that developing
probabilistic variants of Incorrectness Logic is not a promising research direction. In fact, the
di�erences between correctness and incorrectness are often quite blurred in probabilistic examples.
Since some amount of error is typically expected, it is not possible to reason about correctness
without reasoning about incorrectness. It is therefore sensible that a uni�ed theory captures both.

8 RELATED WORK

Incorrectness reasoning and program analysis. In motivating Incorrectness Logic (IL), O’Hearn
[2019] posed the twin challenges of sound and scalable incorrectness reasoning: program logics
for incorrectness must guarantee true positive bugs, while also supporting under-approximation

7This order is de�ned pointwise: `1 ⊑ `2 i� ∀G.`1 (G) ≤ `2 (G) .

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 93. Publication date: April 2023.

93:24 Noam Zilberstein, Derek Dreyer, and Alexandra Silva

in order to scale to large codebases. Outcome Logic (OL) takes inspiration from those challenges,
but o�ers a solution that is closer to traditional Hoare Logic [Hoare 1969] and, as such, is also
compatible with correctness reasoning.
Outcome Logic was also inspired in part by Lisbon triples, which were �rst described in a

published article by Möller et al. [2021, §5] under the name backwards under-approximate triples.8

The semantics of Lisbon triples is based on Hoare’s [1978] calculus of possible correctness: for any
initial state satisfying the precondition, there exists some trace of execution leading to a �nal state
satisfying the postcondition. As such, Lisbon triples describe true positives (behaviors that are
witnessed by an actual trace, assuming the pre is satis�able). As recounted by O’Hearn [2019,
§7], Lisbon triples predate Incorrectness Logic; Derek Dreyer and Ralf Jung suggested them as a
foundation for incorrectness reasoning during a discussion with Peter O’Hearn and Jules Villard
that took place at POPL’19 in Lisbon (hence the name “Lisbon Triples”).
Shortly thereafter, O’Hearn developed the semantics of IL triples. His major motivation for

developing IL (instead of further exploring Lisbon triples) was the goal of �nding a logical foundation
for scalable bug-catching static analysis tools (such as Pulse-X [Le et al. 2022]), and one key to
scalability is the ability to discard program paths (aka “drop disjuncts”) during analysis. More
concretely, the analysis accumulates a disjunction of assertions which symbolically represents the
set of possible states at each program point. If this set gets too large, then it is important to be
able to drop some of the disjuncts in order to save memory and computation time. Thanks to its
reverse rule of consequence—which supports strengthening of the postcondition—IL provides a
sound logical foundation for dropping disjuncts, whereas Lisbon triples do not.

One can see OL as a generalization of Lisbon triples which supports discarding of program paths
in a di�erent way than IL does: namely, via the outcome conjunction connective, which enables
reasoning about multiple executions at the same time.9 Speci�cally, “disjuncts” arise in a program
analysis when the program makes a choice to branch based on either a logic condition (e.g., an if
statement or while loop) or a computational e�ect (e.g., nondeterminism or randomization). In IL,
both types of choice are encoded by standard disjunction. In OL, on the other hand, we distinguish
these two forms of choice by using disjunction (∨) for the former and outcome conjunction (⊕) for
the latter. This leads to a di�erent approach for supporting discarding of program paths, but one
which we believe can serve as an alternative logical foundation for practical static analyses.

Let us �rst consider the case of choices arising from computational e�ects. Incorrectness Logic
includes a Choice rule that allows analyses to drop one branch of a nondeterministic choice. An
analogous derived rule is also sound in OL [Zilberstein et al. 2023, §B.2]; both are shown below.

[%] �1 [&]

[%] �1 +�2 [&]
Choice (IL)

⟨%⟩ �1 ⟨&⟩

⟨%⟩ �1 +�2 ⟨& ⊕ ⊤⟩
Under-Approx (OL)

Given that nondeterministic variants of OL provide reachability guarantees, it may appear surprising
that a conclusion about �1 +�2 can be made without showing that �2 terminates. However, the
assertion ⊤ encompasses all outcomes (including nontermination), so this inference is valid. Note
that there are also symmetric versions of these rules where the �2 branch is instead taken.
Let us now consider the case of choices arising from logical conditions, where the di�erences

between OL and IL are more pronounced. Consider the following program, which will only fail in
the case that 1 is true.

⟨ok : G ↦→ −⟩ if 1 then free(G) else skip # [G] ← 1 ⟨(ok : G ↦→ 1) ∨ (er : G ̸↦→)⟩

8Though Le et al. [2022, §3.2] also mention backwards under-approximate triples, their potential has gone largely unexplored.
9In Zilberstein et al. [2023, §C], we show that Lisbon triples are in fact a special case of OL.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 93. Publication date: April 2023.

Outcome Logic: A Unifying Foundation for Correctness and Incorrectness Reasoning 93:25

The semantics of OL does not permit us to simply drop one of the disjuncts in the postcondition.
If we want to only explore the program path in which the error occurs, then we need to push
information about the logical condition 1 backwards into the precondition.

⟨ok : G ↦→ − ∧ 1⟩ if 1 then free(G) else skip # [G] ← 1 ⟨er : G ̸↦→⟩

This is in contrast to Incorrectness Logic, in which we can drop disjuncts, but in return we need
to ensure that every state described by the postcondition is reachable. More precisely, (er : G ̸↦→)
is not a strong enough IL postcondition for the aforementioned program because it includes the
unreachable state in which G ̸↦→, but 1 is false. In IL, one must therefore specify the bug as follows:

[G ↦→ −] if 1 then free(G) else skip # [G] ← 1 [er : G ̸↦→ ∧ 1]

So, in either case we must record the same amount of information about the logical condition 1.
The di�erence is whether this information appears in the pre- or postcondition. As we discussed in
Section 6.6, there are advantages to having a more precise precondition (as OL does): it enables us
to easily determine how to trigger a bug and characterize manifest errors. Conversely, the precise
postconditions required by IL make it di�cult to design abstract domains, suggesting that IL is not
compatible with popular analysis techniques like abstract interpretation [Ascari et al. 2022].

Furthermore, in order to generate more useful bug reports and error traces for the user, practical
static analysis tools like Pulse-X [Le et al. 2022] do in any case push logical conditions backwards to
the pre-condition using a technique called bi-abduction [Calcagno et al. 2009, 2011]. This suggests
that while the theories of OL and IL di�er substantially, it may be possible to build practical static
analysis tools atop OL in a similar manner to IL-based tools like Pulse-X. We plan to investigate
this further in future work.

Unifying correctness and incorrectness. Parallel e�orts have been made to unify correctness
and incorrectness reasoning within a single program logic. Bruni et al. [2021, 2023] introduced
Local Completeness Logic (LCL), which is based on Incorrectness Logic, but with limits on the rule
of consequence such that an over-approximation of the reachable states can always be recovered
from the postcondition. Similarly, Exact Separation Logic (ESL) [Maksimović et al. 2022] combines
the semantics of IL and Hoare Logic in triples that exactly describe the reachable states.
Both of these logics are capable of proving correctness properties as well as �nding true bugs.

But they achieve this by compromising the ability to use the rule of consequence, which is crucial
to scalable analysis algorithms. Analyses based on Hoare Logic use consequences to abstract the
postcondition, reducing the information overhead and aiding in �nding loop invariants. Analyses
based on IL use consequences to drop disjuncts and consider fewer program paths. Since neither
type of consequence is valid in LCL and ESL, it remains unclear whether those theories can feasibly
serve as the foundation of practical tools. By contrast, Outcome Logic enjoys the full power of the
(forward) rule of consequence and can also drop nondeterministic paths.

There has also been work to connect the theories of correctness and incorrectness algebraically
using Kleene Algebra with Tests (KAT) [Kozen 1997], an equational theory for reasoning about
program equivalence. Möller et al. [2021]; Zhang et al. [2022] showed that both Hoare Logic and IL
can be embedded in variants of KAT and used this insight to formalize connections between the
two types of speci�cations. While this provides an algebraic theory powerful enough to capture
Hoare Logic and IL, this connection does not go as deep as the uni�cation o�ered by OL and does
not provide a clear path to shared analyses for both program veri�cation and bug �nding.
Since our paper was conditionally accepted to OOPSLA, a closely related paper has appeared

on arXiv, which presents a program logic, called Hyper Hoare Logic, for proving and disproving
program hyper-properties (properties relating multiple program traces) [Dardinier and Müller
2023]. It achieves this using the same underlying semantics as Outcome Logic instantiated to the

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 93. Publication date: April 2023.

93:26 Noam Zilberstein, Derek Dreyer, and Alexandra Silva

powerset monad. Their work shows the applicability of the OL model beyond the usage scenarios
that we envisioned in this paper.

Separation logic and Iris. While both separation logic [O’Hearn et al. 2001; Reynolds 2002] and
Outcome Logic employ Bunched Implications [O’Hearn and Pym 1999] as a fundamental part of
their metatheories, the way in which BI is used in each case is substantially di�erent.
In separation logic and its extensions such as Iris [Jung et al. 2018, 2015], the value of the BI

resource monoid is neatly demonstrated by the Frame Rule, which enables local reasoning by
adding assertions about unused resources to the pre- and postconditions of some smaller proof
derivation. In this way, framing allows us to talk about the same program execution with additional
(unused) resources. By contrast, the outcome conjunction deals with assertions about di�erent
program executions.

The Frame Rule is in general unsound with respect to the outcome conjunction. To demonstrate
this, we use the same counterexample that Reynolds [2002] used to demonstrate that the Rule of
Constancy is unsound in separation logic:

⟨G ↦→ −⟩ [G] ← 4 ⟨G ↦→ 4⟩

⟨G ↦→ − ⊕ ~ ↦→ 3⟩ [G] ← 4 ⟨G ↦→ 4 ⊕ ~ ↦→ 3⟩
Frame

It is easy to see that this is an invalid inference. The outcome conjunction does not preclude that G
and ~ are aliased, in which case it must be that ~ ↦→ 4 in the postcondition. Instead, we have the
Split rule (Figure 4), which allows us to analyze a program separately for each outcome in the
precondition and then compose the resulting outcomes in the postcondition.

This example shows that, although both separation logic and OL use BI, the two logics are model-
ing two very di�erent aspects of the program (resource usage vs. program outcomes, respectively),
and the resulting program logics are therefore di�erent.

OL and separation logic are not mutually exclusive. In Section 6, we saw how separation logic can
be embedded in OL. In addition, we believe that combining OLwith Iris is a very interesting direction
for future research: Iris o�ers advanced mechanisms to reason modularly about concurrency, and
OL o�ers a way to extend Hoare Logic to be amenable to both correctness and incorrectness
reasoning. Combining the two would result in a program logic capable of proving the existence
of bugs in concurrent programs (while a concurrent version of Incorrectness Logic already exists
[Raad et al. 2022], it is not built atop Iris and does not support the full capabilities o�ered by Iris).
In a concurrent version of Outcome Logic, outcomes would model possible interleavings of

concurrent branches. In an assertion of the form % ⊕⊤, the predicate % could describe an undesirable
outcome that occurs in some of those interleavings (i.e., a bug), which is not currently possible to
express in Iris.

Probabilistic and quantitative program analysis. Probabilistic variants of Hoare Logic [Barthe
et al. 2018; den Hartog 2002; Rand and Zdancewic 2015; Tassarotti and Harper 2019] were a major
source of inspiration for the design of Outcome Logic. Whereas pre- and postconditions of standard
Hoare Logic describe individual program states, probabilistic variants of Hoare Logic use assertions
that describe distributions over program states. These logics also include connectives similar to the
outcome conjunction, but specialized to probability distributions. In Outcome Logic, we generalize
from probability distributions to support a wider variety of PCMs.

Starting with the seminal work of Kozen [1979, 1983], expected values have been a favorite choice
for probabilistic program analysis. Morgan et al. [1996]’s weakest-pre-expectation (wpe) calculus
computes expected values of program expressions with an approach similar to Dijkstra’s [1976]
Weakest Precondition calculus. Many extensions to wpe have arisen, including to handle nonde-
terminism, runtimes [Kaminski 2019], and Separation Logic [Batz et al. 2019]. This line of work

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 93. Publication date: April 2023.

Outcome Logic: A Unifying Foundation for Correctness and Incorrectness Reasoning 93:27

has not intersected with Incorrectness Logic since the semantics of weakest-pre is incompatible
with IL, although Batz et al. [2019] hinted at the nuanced interaction between correctness and
incorrectness in quantitative settings with their “faulty garbage collector” example. We hope that
our new perspective—using Hoare Logic for incorrectness—will encourage the use of wpe calculi
for bug-�nding.

Zhang and Kaminski [2022] developed a Quantitative Strongest Post (QSP) calculus and noted its
connections to IL, whichwas originally characterized byO’Hearn [2019] in terms of Dijkstra’s [1976]
strongest-post. QSP is an interesting foundation for studying the Galois Connections between types
of quantitative program speci�cations, although the goals are somewhat orthogonal to our own in
that we sought to unify correctness and incorrectness rather than explore dualities.

9 CONCLUSION

Formal methods for incorrectness remain a young �eld. The foundational work of O’Hearn [2019]
has already led to several program logics for proving the existence of bugs such as memory errors,
memory leaks, data races, and deadlocks [Le et al. 2022; Raad et al. 2020, 2022]. However, as with
any new �eld there are growing pains—manifest errors and probabilistic programs are an awkward
�t in the original formulation of IL. This has inspired us to pursue a new theory incorporating
O’Hearn’s [2019] core tenets of incorrectness—true positives and under-approximation—while
also accounting for more evaluation models and di�erent types of incorrectness. Outcome Logic
achieves just that, with the added bene�t of unifying the theories of correctness and incorrectness
in a single program logic. Our Falsi�cation Theorem (Theorem 5.1) shows that any OL triple can
be disproven within the logic. So, any bug invalidating a correctness speci�cation can be expressed.
OL also o�ers a cleaner characterization of manifest errors, suggesting it may be semantically
closer to the way that programmers reason about bugs.

In this paper, we introduced OL as a theoretical basis for incorrectness reasoning, but in the future
we plan to further explore its practical potential as well. Incorrectness Logic has been shown to scale
well as an underlying theory for bug-�nding in large part due to its ability to drop disjuncts [Le et al.
2022; Raad et al. 2020]; analysis algorithms accumulate a disjunction of possible outcomes as they
move forward through a program, and due to the semantics of IL, these disjuncts can be soundly
pruned to keep the search space small. Hoare Logics (including OL) cannot drop disjuncts. However,
as we saw in Section 2 and Section 4, OL can drop outcomes, which we believe is su�cient to make
the algorithm scale to large codebases (although this remains to be demonstrated). Furthermore,
since OL triples can be used both for correctness and incorrectness reasoning, we plan to develop a
bi-abductive [Calcagno et al. 2009, 2011] algorithm to infer procedure summaries that can be used
by both correctness veri�cation and bug-�nding analyses.

When O’Hearn [2019] remarked that “program correctness and incorrectness are two sides of the
same coin,” he was expressing that just as programmers spend signi�cant mental energy debugging
(reasoning about incorrectness), we in the formal methods community must invent sound reasoning
principles for incorrectness. We take this idea one step further, suggesting that program correctness
and incorrectness are two usages of the same program logic. We hope that this unifying perspective
will continue to invigorate the �eld of incorrectness reasoning and invite the reuse of tools and
techniques that have already been successfully deployed for correctness reasoning.

ACKNOWLEDGMENTS

We thank Peter O’Hearn, Josh Berdine, Azalea Raad, Jules Villard, Quang Loc Le, and Julien Vanegue
for their helpful feedback. This work has been supported in part by the Defense Advanced Research
Projects Agency under Contract HR001120C0107.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 93. Publication date: April 2023.

93:28 Noam Zilberstein, Derek Dreyer, and Alexandra Silva

REFERENCES

Krzysztof R. Apt. 1981. Ten Years of Hoare’s Logic: A Survey–Part I. ACM Trans. Program. Lang. Syst. 3, 4 (oct 1981), 431–483.
https://doi.org/10.1145/357146.357150

Flavio Ascari, Roberto Bruni, and Roberta Gori. 2022. Limits and di�culties in the design of under-approximation abstract
domains. In Foundations of Software Science and Computation Structures, Patricia Bouyer and Lutz Schröder (Eds.). Springer
International Publishing, Cham, 21–39. https://doi.org/10.1007/978-3-030-99253-8_2

Gilles Barthe, Thomas Espitau, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. 2018. An Assertion-
Based Program Logic for Probabilistic Programs. In Programming Languages and Systems, Amal Ahmed (Ed.). Springer
International Publishing, Cham, 117–144. https://doi.org/10.1007/978-3-319-89884-1_5

Gilles Barthe, Justin Hsu, and Kevin Liao. 2019. A Probabilistic Separation Logic. Proc. ACM Program. Lang. 4, POPL, Article
55 (Dec. 2019), 30 pages. https://doi.org/10.1145/3371123

Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Thomas Noll. 2019. Quantitative
Separation Logic: A Logic for Reasoning about Probabilistic Pointer Programs. Proc. ACM Program. Lang. 3, POPL, Article
34 (Jan 2019), 29 pages. https://doi.org/10.1145/3290347

Roberto Bruni, Roberto Giacobazzi, Roberta Gori, and Francesco Ranzato. 2021. A Logic for Locally Complete Abstract
Interpretations. In 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). 1–13. https://doi.org/10.
1109/LICS52264.2021.9470608

Roberto Bruni, Roberto Giacobazzi, Roberta Gori, and Francesco Ranzato. 2023. A Correctness and Incorrectness Program
Logic. J. ACM (feb 2023). https://doi.org/10.1145/3582267 Just Accepted.

Cristiano Calcagno, Dino Distefano, Peter O’Hearn, and Hongseok Yang. 2009. Compositional Shape Analysis by Means
of Bi-Abduction. In Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (Savannah, GA, USA) (POPL ’09). Association for Computing Machinery, New York, NY, USA, 289–300.
https://doi.org/10.1145/1480881.1480917

Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. 2011. Compositional Shape Analysis by Means
of Bi-Abduction. J. ACM 58, 6, Article 26 (Dec 2011), 66 pages. https://doi.org/10.1145/2049697.2049700

Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang. 2007. Local Action and Abstract Separation Logic. In 22nd

Annual IEEE Symposium on Logic in Computer Science (LICS 2007). 366–378. https://doi.org/10.1109/LICS.2007.30
Thibault Dardinier and Peter Müller. 2023. Hyper Hoare Logic: (Dis-)Proving Program Hyperproperties (extended version).

https://doi.org/10.48550/ARXIV.2301.10037
Edsko de Vries and Vasileios Koutavas. 2011. Reverse Hoare Logic. In Software Engineering and Formal Methods, Gilles

Barthe, Alberto Pardo, and Gerardo Schneider (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 155–171. https:
//doi.org/10.1007/978-3-642-24690-6_12

Jerry den Hartog. 2002. Probabilistic Extensions of Semantical Models. Ph.D. Dissertation. Vrije Universiteit Amsterdam.
https://core.ac.uk/reader/15452110

Edsger W. Dijkstra. 1975. Guarded Commands, Nondeterminacy and Formal Derivation of Programs. Commun. ACM 18, 8
(Aug 1975), 453–457. https://doi.org/10.1145/360933.360975

Edsger W. Dijkstra. 1976. A Discipline of Programming. Prentice-Hall. I–XVII, 1–217 pages.
Simon Docherty. 2019. Bunched logics: a uniform approach. Ph.D. Dissertation. University College London. https:

//discovery.ucl.ac.uk/id/eprint/10073115/
Michèle Giry. 1982. A categorical approach to probability theory. In Categorical Aspects of Topology and Analysis, B. Ba-

naschewski (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 68–85. https://doi.org/10.1007/BFb0092872
C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun. ACM 12, 10 (Oct. 1969), 576–580.

https://doi.org/10.1145/363235.363259
C. A. R. Hoare. 1978. Some Properties of Predicate Transformers. J. ACM 25, 3 (Jul 1978), 461–480. https://doi.org/10.1145/

322077.322088
Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the ground

up: A modular foundation for higher-order concurrent separation logic. Journal of Functional Programming 28 (2018).
https://doi.org/10.1017/S0956796818000151

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris:
Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In Proceedings of the 42nd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Mumbai, India) (POPL ’15). Association for
Computing Machinery, New York, NY, USA, 637–650. https://doi.org/10.1145/2676726.2676980

Benjamin Lucien Kaminski. 2019. Advanced weakest precondition calculi for probabilistic programs. Dissertation. RWTH
Aachen University, Aachen. https://doi.org/10.18154/RWTH-2019-01829 Verö�entlicht auf dem Publikationsserver der
RWTH Aachen University; Dissertation, RWTH Aachen University, 2019.

Michael J. Kearns and Umesh V. Vazirani. 1994. An Introduction to Computational Learning Theory. MIT Press, Cambridge,
MA, USA.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 93. Publication date: April 2023.

https://doi.org/10.1145/357146.357150
https://doi.org/10.1007/978-3-030-99253-8_2
https://doi.org/10.1007/978-3-319-89884-1_5
https://doi.org/10.1145/3371123
https://doi.org/10.1145/3290347
https://doi.org/10.1109/LICS52264.2021.9470608
https://doi.org/10.1109/LICS52264.2021.9470608
https://doi.org/10.1145/3582267
https://doi.org/10.1145/1480881.1480917
https://doi.org/10.1145/2049697.2049700
https://doi.org/10.1109/LICS.2007.30
https://doi.org/10.48550/ARXIV.2301.10037
https://doi.org/10.1007/978-3-642-24690-6_12
https://doi.org/10.1007/978-3-642-24690-6_12
https://core.ac.uk/reader/15452110
https://doi.org/10.1145/360933.360975
https://discovery.ucl.ac.uk/id/eprint/10073115/
https://discovery.ucl.ac.uk/id/eprint/10073115/
https://doi.org/10.1007/BFb0092872
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/322077.322088
https://doi.org/10.1145/322077.322088
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.18154/RWTH-2019-01829

Outcome Logic: A Unifying Foundation for Correctness and Incorrectness Reasoning 93:29

Dexter Kozen. 1979. Semantics of probabilistic programs. In 20th Annual Symposium on Foundations of Computer Science

(SFCS ’79). 101–114. https://doi.org/10.1109/SFCS.1979.38
Dexter Kozen. 1983. A Probabilistic PDL. In Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing

(STOC ’83). Association for Computing Machinery, New York, NY, USA, 291–297. https://doi.org/10.1145/800061.808758
Dexter Kozen. 1997. Kleene Algebra with Tests. ACM Trans. Program. Lang. Syst. 19, 3 (May 1997), 427–443. https:

//doi.org/10.1145/256167.256195
Quang Loc Le, Azalea Raad, Jules Villard, Josh Berdine, Derek Dreyer, and Peter W. O’Hearn. 2022. Finding Real Bugs

in Big Programs with Incorrectness Logic. Proc. ACM Program. Lang. 6, OOPSLA1, Article 81 (Apr 2022), 27 pages.
https://doi.org/10.1145/3527325

Sheng Liang, Paul Hudak, and Mark Jones. 1995. Monad Transformers and Modular Interpreters. In Proceedings of the 22nd

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Francisco, California, USA) (POPL ’95).
Association for Computing Machinery, New York, NY, USA, 333–343. https://doi.org/10.1145/199448.199528

Christoph Lüth and Neil Ghani. 2002. Composing Monads Using Coproducts. In Proceedings of the Seventh ACM SIGPLAN

International Conference on Functional Programming (Pittsburgh, PA, USA) (ICFP ’02). Association for Computing
Machinery, New York, NY, USA, 133–144. https://doi.org/10.1145/581478.581492

Petar Maksimović, Caroline Cronjäger, Julian Sutherland, Andreas Lööw, Sacha-Élie Ayoun, and Philippa Gardner. 2022.
Exact Separation Logic. https://doi.org/10.48550/ARXIV.2208.07200

BernhardMöller, Peter O’Hearn, and TonyHoare. 2021. OnAlgebra of ProgramCorrectness and & Incorrectness. In Relational
and Algebraic Methods in Computer Science: 19th International Conference, RAMiCS 2021, Marseille, France, November 2–5,

2021, Proceedings. Springer-Verlag, Berlin, Heidelberg, 325–343. https://doi.org/10.1007/978-3-030-88701-8_20
Carroll Morgan, Annabelle McIver, and Karen Seidel. 1996. Probabilistic Predicate Transformers. ACM Trans. Program.

Lang. Syst. 18, 3 (may 1996), 325–353. https://doi.org/10.1145/229542.229547
Peter W. O’Hearn. 2004. Resources, Concurrency and Local Reasoning. In CONCUR 2004 - Concurrency Theory, Philippa

Gardner and Nobuko Yoshida (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 49–67. https://doi.org/10.1016/j.tcs.
2006.12.035

Peter W. O’Hearn. 2019. Incorrectness Logic. Proc. ACM Program. Lang. 4, POPL, Article 10 (Dec. 2019), 32 pages.
https://doi.org/10.1145/3371078

Peter W. O’Hearn and David J. Pym. 1999. The Logic of Bunched Implications. The Bulletin of Symbolic Logic 5, 2 (1999),
215–244. http://www.jstor.org/stable/421090

Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. 2001. Local Reasoning about Programs That Alter Data Structures.
In Proceedings of the 15th International Workshop on Computer Science Logic (CSL ’01). Springer-Verlag, Berlin, Heidelberg,
1–19. https://doi.org/10.1007/3-540-44802-0_1

Benjamin C. Pierce. 1991. Basic Category Theory for Computer Scientists. MIT Press. https://doi.org/10.7551/mitpress/1524.
001.0001

Azalea Raad, Josh Berdine, Hoang-Hai Dang, Derek Dreyer, Peter O’Hearn, and Jules Villard. 2020. Local Reasoning About
the Presence of Bugs: Incorrectness Separation Logic. In Computer Aided Veri�cation, Shuvendu K. Lahiri and Chao Wang
(Eds.). Springer International Publishing, Cham, 225–252. https://doi.org/10.1007/978-3-030-53291-8_14

Azalea Raad, Josh Berdine, Derek Dreyer, and Peter W. O’Hearn. 2022. Concurrent Incorrectness Separation Logic. Proc.
ACM Program. Lang. 6, POPL, Article 34 (Jan 2022), 29 pages. https://doi.org/10.1145/3498695

Robert Rand and Steve Zdancewic. 2015. VPHL: A Veri�ed Partial-Correctness Logic for Probabilistic Programs. In Electronic

Notes in Theoretical Computer Science, Vol. 319. 351–367. https://doi.org/10.1016/j.entcs.2015.12.021 The 31st Conference
on the Mathematical Foundations of Programming Semantics (MFPS XXXI).

J.C. Reynolds. 2002. Separation logic: a logic for shared mutable data structures. In Proceedings 17th Annual IEEE Symposium

on Logic in Computer Science. 55–74. https://doi.org/10.1109/LICS.2002.1029817
Joseph Tassarotti and Robert Harper. 2019. A Separation Logic for Concurrent Randomized Programs. Proc. ACM Program.

Lang. 3, POPL, Article 64 (Jan 2019), 30 pages. https://doi.org/10.1145/3290377
Hongseok Yang. 2001. Local Reasoning for Stateful Programs. Ph.D. Dissertation. USA. Advisor(s) Reddy, Uday S. https:

//dl.acm.org/doi/10.5555/933728
Cheng Zhang, Arthur Azevedo de Amorim, and Marco Gaboardi. 2022. On Incorrectness Logic and Kleene Algebra with

Top and Tests. Proc. ACM Program. Lang. 6, POPL, Article 29 (jan 2022), 30 pages. https://doi.org/10.1145/3498690
Linpeng Zhang and Benjamin Lucien Kaminski. 2022. Quantitative Strongest Post: A Calculus for Reasoning about the

Flow of Quantitative Information. Proc. ACM Program. Lang. 6, OOPSLA1, Article 87 (apr 2022), 29 pages. https:
//doi.org/10.1145/3527331

Noam Zilberstein, Derek Dreyer, and Alexandra Silva. 2023. Outcome Logic: A Unifying Foundation of Correctness and
Incorrectness Reasoning (Full Version). https://doi.org/10.48550/arXiv.2303.03111

Received 2022-10-28; accepted 2023-02-25

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 93. Publication date: April 2023.

https://doi.org/10.1109/SFCS.1979.38
https://doi.org/10.1145/800061.808758
https://doi.org/10.1145/256167.256195
https://doi.org/10.1145/256167.256195
https://doi.org/10.1145/3527325
https://doi.org/10.1145/199448.199528
https://doi.org/10.1145/581478.581492
https://doi.org/10.48550/ARXIV.2208.07200
https://doi.org/10.1007/978-3-030-88701-8_20
https://doi.org/10.1145/229542.229547
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.1145/3371078
http://www.jstor.org/stable/421090
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.7551/mitpress/1524.001.0001
https://doi.org/10.7551/mitpress/1524.001.0001
https://doi.org/10.1007/978-3-030-53291-8_14
https://doi.org/10.1145/3498695
https://doi.org/10.1016/j.entcs.2015.12.021
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1145/3290377
https://dl.acm.org/doi/10.5555/933728
https://dl.acm.org/doi/10.5555/933728
https://doi.org/10.1145/3498690
https://doi.org/10.1145/3527331
https://doi.org/10.1145/3527331
https://doi.org/10.48550/arXiv.2303.03111

	Abstract
	1 Introduction
	2 Overview: A Landscape of Triples
	2.1 Unifying Correctness and Incorrectness
	2.2 A Broader Characterization of Correctness and Incorrectness
	2.3 Semantic Characterizations of Bugs

	3 A Modular Programming Language
	4 Outcome Logic
	4.1 A Logic for Monoidal Assertions: Modeling the Outcome Conjunction
	4.2 Outcome Triples
	4.3 Proof Systems

	5 Modeling Correctness and Incorrectness via Outcomes
	5.1 Falsification in Nondeterministic Programs
	5.2 Falsification in Probabilistic Programs

	6 Outcome Logic for Memory Errors
	6.1 Heap Assertions
	6.2 Reasoning about Errors
	6.3 Execution Model
	6.4 Proof Rules for Memory Errors
	6.5 Proof of a Bug
	6.6 Manifest Errors

	7 Probabilistic Incorrectness
	7.1 Error Bounds for Machine Learning
	7.2 Probabilistic Incorrectness Logic

	8 Related Work
	9 Conclusion
	References

