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a b s t r a c t 

Instantaneous and peak frequency changes in neural oscillations have been linked to many perceptual, motor, 
and cognitive processes. Yet, the majority of such studies have been performed in sensor space and only occasion- 
ally in source space. Furthermore, both terms have been used interchangeably in the literature, although they 
do not reflect the same aspect of neural oscillations. In this paper, we discuss the relation between instantaneous 
frequency, peak frequency, and local frequency, the latter also known as spectral centroid. Furthermore, we pro- 
pose and validate three different methods to extract source signals from multichannel data whose (instantaneous, 
local, or peak) frequency estimate is maximally correlated to an experimental variable of interest. Results show 

that the local frequency might be a better estimate of frequency variability than instantaneous frequency under 
conditions with low signal-to-noise ratio. Additionally, the source separation methods based on local and peak fre- 
quency estimates, called LFD and PFD respectively, provide more stable estimates than the decomposition based 
on instantaneous frequency. In particular, LFD and PFD are able to recover the sources of interest in simulations 
performed with a realistic head model, providing higher correlations with an experimental variable than multiple 
linear regression. Finally, we also tested all decomposition methods on real EEG data from a steady-state visual 
evoked potential paradigm and show that the recovered sources are located in areas similar to those previously 
reported in other studies, thus providing further validation of the proposed methods. 
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. Introduction 

Neuronal oscillations have been functionally linked to many percep-
ual, motor, and cognitive functions ( Blankertz et al., 2009; Buzsaki and
raguhn, 2004; Nierhaus et al., 2021; Vidaurre et al., 2020 ). While a
ajority of previous studies focused primarily on the relevance of os-

illatory amplitude to these diverse functions, there is a growing un-
erstanding that the frequency of oscillations is also important for the
unctioning of large-scale neuronal dynamics at rest and during differ-
nt tasks ( Gammaitoni and Nov, 0000; Mierau et al., 2017; Sutherland
t al., 2009; Tuckwell et al., 2009 ). 
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Understanding brain function requires the investigation of neuronal
ctivity at different spatio-temporal scales, ranging from microseconds
f individual spiking neurons to minutes or even hours of sleep record-
ngs (e.g. obtained with electroencephalography, EEG). Such investiga-
ion has become increasingly popular due to the study of temporal fluc-
uations of peak and instantaneous frequency estimates in oscillatory
ctivity at specific frequency bands. A special emphasis on alpha os-
illations exists in the literature because it represents the most salient
hythmic phenomenon in human EEG and magnetoencephalographic
MEG) recordings. The review presented in Mierau et al. (2017) dis-
usses several phenomena that cause a temporal shift of the alpha peak
23 
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requency (APF). For example, APF is age dependent, demonstrating an
ncrease during childhood, stabilizing during adulthood, and then de-
reasing with age or due to neurological pathologies such as Alzheimer’s
isease. Also, APF shifts are dependent on the individual’s state. For
nstance, an APF decrease has been observed with emotions such as
ear or sorrow, whereas joy or anger resulted in an increase in APF
 Hülsdünker et al., 2016 ). It was also shown that APF decreases when
he state of consciousness is lower ( Lechinger et al., 2013 ). 

Moreover, a number of studies suggest that peak frequency changes
re a function of task demand or input intensity. For example, the
erformance of working memory tasks showed to accelerate APF ac-
ording to the intensity of the task (a higher load is related to a
igher APF) ( Haegens et al., 2014; Maurer et al., 2015 ). Higher APF
as been previously associated with a more refined sampling of vi-
ual information ( Samaha and Postle, 2015 ). An increase in APF has
een also observed during demanding physical tasks ( Hülsdünker et al.,
016 ) due to increased attention and somatosensory input. Recently,
ahjoory et al. (2020) showed a significant relationship between the

radient of the APF along the posterior-anterior axis and its corre-
pondence to cortical thickness in resting MEG from healthy partic-
pants. This relation was connected to the global cortical hierarchy
rom early sensory to higher-order areas. In another recent work,
undqvist et al. (2020) , using neuronal spikes and local field poten-
ials simultaneously recorded from monkeys, showed that theta, al-
ha, beta, and gamma rhythms have similar functions across the cor-
ex, and their (peak) frequencies in all bands increase with the cor-
ical hierarchy. Additionally, Nelli et al. (2017) showed that fluctua-
ions of instantaneous frequency predict alpha amplitude in a visual
iscrimination task, thus concluding that they are not independent. Fi-
ally, Valdés-Hernández et al. (2010) showed that alpha peak inter-
ndividual differences are related to brain connectivity variations. Fur-
hermore, an increasing number of experimental results clearly indicate
hat peak frequency shifts are a common occurrence in brain signals,
ot limited to particular tasks ( Benwell et al., 2019 ). However, the
ink between peak changes and neural processing states is still poorly
nderstood. 

To a large extent, the investigation of peak frequency fluctuations is
hallenging because of methodological reasons. First, frequency fluctu-
tions are difficult to estimate due to the often low signal-to-noise ratio
f EEG signals, especially in higher frequency bands such as beta and
amma, which are commonly analyzed in neuroscientific experiments.
oreover, due to volume conduction and source mixing, sources re-

ated to frequency shifts cannot be directly observed at the sensor level.
econd, there is a general lack of methods that allow extracting brain
ources related to changes in peak or instantaneous frequency char-
cteristics. Usually, correlations are performed in sensor space. How-
ver, sensor space approaches present several drawbacks, including a
ack of interpretability due to the mixing of different sources and dis-
egarding the generative model of neuroimaging signals ( Haufe et al.,
014b ). These shortcomings can be addressed by methods that de-
ompose multivariate EEG/MEG data into a set of source components,
here the decomposition is based on the information contained in a

arget variable. Finally, two different estimates related to frequency
uctuations are studied as reflecting a similar process - peak and in-
tantaneous frequency. However, they are generally not equivalent,
endering general statements about peak frequency fluctuations rather
hallenging. 

In this work, we shortly explain the relation between different fre-
uency shift estimates and then propose different methods to find brain
ources whose frequency measure of interest is maximally correlated
o an external or internal (experimental) variable. This variable can
e related to the previously discussed user state, sensory or motor in-
ut/output ( Dähne et al., 2014b; Maurer et al., 2015; Mierau et al.,
017; Samaha and Postle, 2015; Vidaurre et al., 2019a; 2013 ). In this
ontext, our methods result in a spatial filter that maximizes the lin-
ar correlation between the target variable and the measure of the fre-
2 
uency shift of the spatially filtered signal. We then demonstrate the
iability of the methods using extensive simulations based on a realistic
ead model. We also apply our methods to real EEG data relating to
teady-state visual evoked responses. Finally, we discuss the obtained
esults and provide considerations for the application and limitations of
he proposed methods. 

. Methods and experimental data 

.1. Notation 

We denote vectors with boldface lower-case letters (e.g. 𝒙 ) and matri-
es with boldface capital letters (e.g. 𝑿 ). Scalars are indicated by regular
etters (e.g. 𝑥 ). Fourier transformed vector time series are represented
y  ( 𝑓 ) . 

The imaginary number 
√
−1 is denoted by 𝑗, and the complex con-

ugate of a complex number 𝑧 ∈ ℂ is denoted by 𝑧 ∗ . The operators
hat return the real part, imaginary part, the absolute value, and the
rgument of a complex number are denoted by ℜ { . } , ℑ {} , |. |, and
rg ( . ) , respectively. The subscript 𝑎 denotes the analytic signal built
sing Hilbert transform. Formally, if 𝑥 ( 𝑡 ) is a real valued signal with
{ 𝑥 ( 𝑡 )} being its Hilbert transform, the corresponding analytic signal is
 𝑎 ( 𝑡 ) = 𝑥 ( 𝑡 ) + 𝑗𝐻{ 𝑥 ( 𝑡 )} . 

.2. The generative model of EEG/MEG data 

Both EEG and MEG are non-invasive techniques to measure brain
ctivity. Despite both techniques having an excellent temporal reso-
ution in the order of milliseconds, their spatial resolution is heav-
ly compromised by volume conduction and signal mixing, leading to
he detection of activity from even one source in almost all sensors
 Schaworonkow and Nikulin, 2022 ). For frequencies under 1 kHz, this
uperposition is linear and instantaneous, thus it is possible to find a lin-
ar model of EEG/MEG data ( Baillet et al., 2001; Hashemi et al., 2021;
aufe et al., 2014b; Nunez and Srinivasan, 2006; Parra et al., 2005 ) as

he following: 

( 𝑡 ) = 𝐀𝐬 ( 𝑡 ) + 𝝐( 𝑡 ) (1) 

here 𝐱( 𝑡 ) ∈ ℝ 

𝑁 𝑥 is a vector of data measured by 𝑁 𝑥 sensors at time t,
 ( 𝑡 ) ∈ ℝ 

𝑁 𝑠 is a vector of 𝑁 𝑠 source signals, and the matrix 𝐀 ∈ ℝ 

𝑁 𝑥 ×𝑁 𝑠 is
he mixing matrix with its i-th column being the spatial activation pat-
ern of the i-th source. Finally, 𝝐( 𝑡 ) represents the additive noise. Often,
he noise part is discarded and Equation 1 can be rewritten as: 

( 𝑡 ) = 𝑨 𝐬 ( 𝑡 ) (2) 

Equation 2 is generally denoted as the forward model of the
EG/MEG. The objective of many neuroimaging methods is to (semi-
blindly decompose multi-channel data to the source signals and their
ctivation patterns according to this model. In most of source separation
echniques, one is not interested in building the whole generative model
or the observed data, as in Equation 2 . Rather, there is an interest in
he extraction of a specific type of source with a special characteristic.
herefore, the separation of the sources is done by estimating a linear
ubspace, on which the projections of the measured data 𝐱( 𝑡 ) are estima-
ions of the sources of interest. The linear mapping from the subspace of
he observed data to the latent source signals is a matrix 𝑾 ∈ ℝ 

𝑁 𝑥 ×𝑁 𝑠 ,
hose columns are spatial filters that extract the estimates of the specific

ources as the following: 

̂
 ( 𝑡 ) = 𝑾 

⊤𝐱( 𝑡 ) (3) 

The above equation is usually referred to as the backward model . Fur-
hermore, these linear models can be written in the frequency domain.
pplying a Fourier transform to both sides of Equations 2 and 3 , they
an be written as: 

 ( 𝑓 ) = 𝑨  ( 𝑓 ) (4) 
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Fig. 1. Exemplar power spectra and the estimated peak, local, and instantaneous frequencies. (A) a simulated spectrum with a symmetric spectral peak at 10 Hz, 
for which 𝑓 peak , 𝑓 loc and ⟨𝑓 𝑖 ⟩ coincide. Other panels: power spectral density of real EEG data of one channel where 𝑓 peak does not coincide with 𝑓 loc and ⟨𝑓 𝑖 ⟩. 
Note that 𝑓 loc and ⟨𝑓 𝑖 ⟩ estimates have very similar, almost coincident, values. The light gray shaded area indicates the bandwidth in which frequency estimates were 
computed. 
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 ( 𝑓 ) = 𝑾 

⊤
 ( 𝑓 ) (5) 

ith  ( 𝑓 ) and ̂ ( 𝑓 ) being the Fourier representations of the time series
( 𝑡 ) and ̂𝐬 ( 𝑡 ) at frequency 𝑓 . 

.3. Definitions: instantaneous, local, and peak frequency 

In neural data analyses two measures are commonly used to investi-
ate frequency changes in oscillatory signals. One is the peak frequency
 𝑓 peak ) estimate. This is the frequency location of the spectral peak of

he frequency domain signal in the band of interest. The second fre-
uency measure is the instantaneous frequency ( 𝑓 𝑖 ), which is defined in
he time domain as: 

 𝑖 ( 𝑡 ) = 

1 
2 𝜋

𝑑 

𝑑𝑡 
arg 

(
𝑥 𝑎 ( 𝑡 ) 

)
(6)

here 𝑥 𝑎 ( 𝑡 ) ∈ ℂ is the complex analytic signal of 𝑥 ( 𝑡 ) . 
𝑓 𝑖 ( 𝑡 ) is known to be highly susceptible to noise, especially when

he signal-to-noise ratio (SNR) is low, as in EEG data ( Sameni and
eraj, 2017 ). Some alternatives have been suggested to ameliorate this
roblem. For example, Cohen (2014) suggested using a median filter
hat has a smoothing/averaging effect on the instantaneous estimates.
n the same spirit, let us define the following weighted average of 𝑓 𝑖 ( 𝑡 )
ver time: 

𝑓 𝑖 ⟩ = 

∫ +∞
−∞ 𝑓 𝑖 ( 𝑡 ) ||𝑥 𝑎 ( 𝑡 ) ||2 𝑑𝑡 
∫ +∞
−∞ |𝑥 𝑎 ( 𝑡 ) |2 𝑑𝑡 (7) 

here the operator ⟨. ⟩ is the average operator. Equation 7 is also a
mooth estimate of 𝑓 ( 𝑡 ) thanks to averaging. Interestingly, ⟨𝑓 ⟩ is equal
𝑖 𝑖 

3 
o the local frequency ( 𝑓 loc ) or average frequency of the spectrum
 Boashash, 1992 ), defined as: 

 loc = 

∫ +∞
−∞ 𝑓 || 𝑎 ( 𝑓 ) ||2 𝑑𝑓 
∫ +∞
−∞ | 𝑎 ( 𝑓 ) |2 𝑑𝑓 (8) 

here  𝑎 ( 𝑓 ) is the Fourier representation of the analytic signal 𝑥 𝑎 ( 𝑡 ) . 
The complete derivation of Equations 7 and 8 is available in

 Ville, 1948 ). Equation 8 , is a power spectral centroid, thus it shows
hat when the power spectrum in the band of interest has a symmet-
ic peak, 𝑓 loc will be located at its maximum value (at the peak), and
 loc and 𝑓 peak will coincide. However, this is hardly ever the case in

ractice, because the EEG power spectrum follows a power-law decay
nd the spectral peaks are quite often asymmetric. As an illustration, the
op left panel of Fig. 1 shows an artificially generated symmetric peak
round the frequency band of interest (7 to 13 Hz), where all frequency
stimates ( 𝑓 peak , 𝑓 loc and ⟨𝑓 𝑖 ⟩) coincide. The remaining panels in the

ame figure show different examples on real EEG data where 𝑓 peak , 𝑓 loc 
nd ⟨𝑓 𝑖 ⟩ do not coincide. One can also observe that, the time averaged
 𝑖 and 𝑓 loc are very similar. 

.4. Problem Formulation 

In this paper, the goal is to extract source signals from multi-channel
ata whose 𝑓 peak , 𝑓 loc or ⟨𝑓 𝑖 ⟩ are maximally co-modulated (i.e. they

re maximally (anti)-correlated) with another experimental variable.
his can be an external variable like the subject’s demographics or be-
avior, or an internal one, for instance, amplitude-envelope fluctuations
f brain oscillatory activities. 
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ing the optimization. 
Assume that the multi-channel data 𝐱( 𝑡 ) are segmented to 𝑛 𝑒 epochs
 𝑛 ( 𝑡 ) , 𝑛 = 1 , ⋯ , 𝑛 𝑒 - the subscript 𝑛 denoting the n-th epoch. Additionally,
here is a target variable 𝑧 𝑛 associated with each epoch of data. In this
ork, we aim at finding one or more latent sources such that their in-

tantaneous, local, or peak frequency is maximally correlated with the
arget variable. For simplicity of the formulation, let’s assume we want
o find one latent source. Formally, we want to solve a backward prob-
em 𝑠 𝑛 ( 𝑡 ) = 𝐰 

𝑇 𝐱 𝑛 ( 𝑡 ) for each epoch of data. Note that the spatial filter 𝐰
s the same for all epochs of data. We use a least square optimization for
ormulating our problem as the following: 

in 
𝐰 

𝑛 𝑒 ∑
𝑛 =1 

(
𝑧 𝑛 − 𝛽𝑓 src 

(
𝐰𝐱 𝑛 ( 𝑡 ) 

))2 (9) 

here the source frequency 𝑓 src ( 𝐰𝐱 𝑛 ) can be either ⟨𝑓 𝑖 ⟩, 𝑓 loc or 𝑓 peak 
f the projection of the multi-channel data on the subspace defined by
 , that is 𝑠 𝑛 ( 𝑡 ) = 𝐰𝐱 𝑛 ( 𝑡 ) . 

In the following three sections, we formulate the instantaneous, lo-
al, and peak frequency as a function of the spatial filter 𝐰 and multi-
hannel data 𝐱 𝑛 ( 𝑡 ) . 

.5. Instantaneous Frequency Decomposition, IFD 

The instantaneous frequency 𝑓 𝑖 ( 𝑡 ) of 𝐬 ( 𝑡 ) = 𝐰 

𝑇 𝐱( 𝑡 ) can be computed
ample by sample as in Equation 6 . It can be shown that 𝑓 𝑖 ( 𝑡, 𝐰 ) can
e obtained from the following equation (details are provided in Ap-
endix A): 

 𝑖 ( 𝑡, 𝐰 ) = 

1 
2 𝜋

ℑ 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝐰 

⊤ 𝑑𝐱 𝑎 ( 𝑡 ) 
𝑑𝑡 

𝐰 

⊤𝐱 𝑎 ( 𝑡 ) H 

𝐰 

⊤𝐱 𝑎 ( 𝑡 ) 𝐱 𝑎 ( 𝑡 ) H 𝐰 

⎫ ⎪ ⎬ ⎪ ⎭ (10)

here H denotes the conjugate transpose. 
In practice, one can avoid computing the numerical time derivative

f 𝐱 𝑎 ( 𝑡 ) by writing it in terms of its discrete Fourier transform (DFT): 

 𝑎 ( 𝑡 ) = 

1 
𝑇 

𝑓 2 ∑
𝑓= 𝑓 1 

 𝑎 ( 𝑓 ) 𝑒 
𝑗2 𝜋𝑓𝑡 
𝑇 = 

1 
𝑇 

𝑓 2 ∑
𝑓= 𝑓 1 

2  ( 𝑓 ) 𝑒 
𝑗2 𝜋𝑓𝑡 
𝑇 (11)

here  ( 𝑓 ) is the DFT of the multi-channel signal 𝐱( 𝑡 ) and 𝑇 is the num-
er of available time samples. Then, its corresponding time derivative
s: 

𝑑 𝐱 𝑎 ( 𝑡 ) 
𝑑𝑡 

= 

𝑗4 𝜋
𝑇 2 

𝑓 2 ∑
𝑓= 𝑓 1 

𝑓  ( 𝑓 ) 𝑒 
𝑗2 𝜋𝑓𝑡 
𝑇 (12)

Thus, in order to obtain 𝑓 𝑖 ( 𝑡, 𝐰 ) we substitute 𝐱 𝑎 ( 𝑡 ) and 
𝑑 𝐱 𝑎 ( 𝑡 ) 
𝑑𝑡 

in

quation 10 with Equations 11 and 12 . 
Finally, the estimation of 𝑓 𝑖 ( 𝑡, 𝐰 ) can be improved by averaging its

alues over windows of data. In this case, we average 𝑓 𝑖 ( 𝑡, 𝐰 ) over time
ithin each trial. If a trial consists of 𝑁 samples, in the n-th epoch we
btain: 

𝑓 𝑖 ( 𝑛, 𝐰 ) ⟩ = 

𝑡 = 𝑁 ∑
𝑡 =1 

𝑓 𝑖 ( 𝑡, 𝐰 ) 

𝑁 

(13)

Note that this averaged estimate of 𝑓 𝑖 ( 𝑡 ) is not the same as the one
n Equation 7 , where the average was weighted with the squared signal
alues. The estimate of Equation 7 coincides with 𝑓 loc , for which we
rovide a decomposition approach in the next section. Thus, for IFD we
elected the usual mean estimate and, from now on, ⟨𝑓 𝑖 ⟩ refers to the
stimate in Equation 13 . 

.6. Local Frequency Decomposition, LFD 

𝑓 loc ( Boashash, 1992 ) is an estimate of the first central moment of a
requency distribution normalized by its energy (see Equation 8 ), some-
imes also denominated spectral centroid. We show in Appendix B that
4 
 loc can be computed for the frequency band 
[
𝑓 1 , 𝑓 2 

]
Hz from the fol-

owing equation: 

 loc ( 𝑛, 𝐰 ) = 

𝐰 

⊤

( 

𝑓 2 ∑
𝑓= 𝑓 1 

𝑓 ℜ {  ( 𝑓, 𝑛 )  

H ( 𝑓, 𝑛 )} 

) 

𝐰 

𝐰 

⊤

( 

𝑓 2 ∑
𝑓= 𝑓 1 

ℜ {  ( 𝑓, 𝑛 )  

H ( 𝑓, 𝑛 )} 

) 

𝐰 

(14) 

.7. Peak Frequency Decomposition, PFD 

Computationally, it is possible to approach 𝑓 peak using a slight mod-

fication of the 𝑓 loc definition such that in Equation 8 the term 

|| 𝑎 ( 𝑓 ) || is
aised to the power 𝑝 > 2 . Then, the weighting of the peak frequency will
e much larger than other frequencies in Equation 14 and therefore, 𝑓 loc 
oves closer to 𝑓 peak of the power spectrum computed using || 𝑎 ( 𝑓 ) ||𝑝 .

ig. 2 shows an example of this behavior, where 𝑓 loc and 𝑓 peak are

omputed with the power spectrum (PS, left panel), with 𝑝 = 5 (mid-
le) 𝑝 = 15 (right). As the exponent increases, the estimates of 𝑓 loc and
 peak get closer to each other. 

Thus, an approximation of 𝑓 peak can be found using the formulation

f 𝑓 loc in Equation 8 by substituting || 𝑎 ( 𝑓 ) ||2 by || 𝑎 ( 𝑓 ) ||𝑝 . Therefore,
quation 14 is changed to the following: 

 peak ( 𝑛, 𝐰 ) ≈

𝑓 2 ∑
𝑓= 𝑓 1 

𝑓 
(
𝐰 

⊤ℜ {  ( 𝑓, 𝑛 )  

H ( 𝑓, 𝑛 )} 𝐰 

)
𝑝 

𝑓 2 ∑
𝑓= 𝑓 1 

(
𝐰 

⊤ℜ {  ( 𝑓, 𝑛 )  

H ( 𝑓, 𝑛 )} 𝐰 

)
𝑝 

(15) 

ith 𝑝 ≫ 2 . The bigger the exponent 𝑝 , the closer the result of
quation 15 to the actual 𝑓 peak . However, increasing the power makes

he function “too peaky ”. In practice, an exponent value between 5 and
5 might be a good trade-off between the required shallowness of the
ptimization function and the precision of the results. 

.8. The optimization problem 

As discussed in Section 2.4 , the goal in this study is to find brain
ources whose ⟨𝑓 𝑖 ⟩, 𝑓 loc , or 𝑓 peak is maximally correlated to a target

ariable 𝑧 in all epochs of data. We also introduced the least squares op-
imization problem in Equation 9 , which is simplified as the following:

in 
𝐰 

𝑛 𝑒 ∑
𝑛 =1 

(
𝑧 𝑛 − 𝛽𝑓 src ,𝑛 ( 𝐰 ) 

)2 (16) 

ith 𝑓 src ,𝑛 ( 𝐰 ) = 𝑓 src 
(
𝐰𝐱 𝑛 ( 𝑡 ) 

)
. 

Equation 16 follows the standard formulation of an ordinary linear
egression. By vectorizing 𝑧 𝑛 and 𝑓 𝑠,𝑛 ( 𝐰 ) of all epochs in 𝐳 and 𝒇 𝑠 ( 𝐰 ) ,
espectively, 𝛽 can be analytically computed as follows: 

= 

(
𝐟 src ( 𝐰 ) ⊤𝐟 src ( 𝐰 ) 

)
𝐟 src ( 𝐰 ) ⊤𝐳 (17) 

Using this 𝛽 as a function of 𝐰 the optimization problem in 16 can
e solved using the Matlab® function lsqnonlin . Two technical consid-
rations in using this function are: 

1. It converges to a local minimum. The solutions of 50 runs of the
function (with different initial values) were used to select the one
with the best fit, i.e. the one with the smallest sum of residuals. 

2. Both vectors 𝐳 and 𝐟 src ( 𝐰 ) were normalized after each iteration dur-
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Fig. 2. Estimation of 𝑓 loc and 𝑓 peak using PS 

(left panel) and higher powers of bins of PS 
(middle panel exponent 5 and right panel ex- 
ponent 15). 
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Finally, the spatial pattern of the source signal was obtained by
ultiplying the spatial filter with the data covariance matrix for IFD

nd with the real cross-spectral matrix for LFD and PFD (see e.g.
aufe et al. (2014b) ; Parra et al. (2005) ; Vidaurre et al. (2019b) for
ore details). The spatial location of the sources in the brain can be

ound using inverse modeling techniques such as eLORETA ( Pascual-
arqui et al., 2011 ) or beamformers ( Van Veen et al., 1997 ) applied on

he computed spatial patterns. 
Note that our decomposition methods return only one spatial filter,

hus they only obtain the source whose frequency shift measure is max-
mally correlated with the experimental variable of interest. If one is
nterested in finding more than one source, a deflation method can be
mployed. 

.9. Simulations 

.9.1. Parameter description for artificially generated data 

General parameter description The epoch length (or trial length) is a
arameter of all three methods IFD, LFD, and PFD. Additionally, the
ignal-to-noise ratio has a direct impact on the performance of any
ource separation method. We performed our simulations with differ-
nt values of epoch length and SNR to study how our methods perform
ith different parameter settings. 

Also, the band in which the EEG data is generated might have an
mpact on the performance of all decomposition techniques. Therefore,
e generated data in different frequency bands; delta (1-4 Hz), theta

4-8 Hz), alpha (8-13 Hz), beta (13-28 Hz), and gamma (40-70 Hz). 
Finally, in the case of PFD, the impact of the exponent 𝑝 was assessed

y using four values of 5, 10, 12, and 15. This is a range covering di-
erse scenarios. For example, for noisy data where the power spectrum
ight present several peaks, a lower exponent might be advisable to

void overfit to noise peaks. On the contrary, if data are clean, a higher
xponent might provide more accurate results. 

Parameter settings for different analyses 

We studied the performance of our decomposition methods in detail
or the alpha band, defined between 8 and 13 Hz. There we investigated
he effect of different epoch lengths (namely 500 ms, 1000 ms, 2000 ms,
nd 3000 ms) and also different SNR values (0.1, 0.5, and 1). 

IFD, LFD and PFD are, to the best of our knowledge, the first methods
elating to the maximization of the correlation between the frequency
uctuations and a target variable. Therefore, we compared the results

rom our methods with a multivariate approach based on multiple linear
egression using ⟨𝑓 𝑖 ⟩, 𝑓 loc and 𝑓 peak of each channel and trial as predic-

ors. Additionally, we used the best correlation obtained in sensor space
sing Laplacian derivations. The comparison with a single best chan-
el was included because this type of sensor-based analysis approach is
sually employed in studies analyzing frequency shifts over time (see
ierau et al. (2017) for a review of studies). In these analyses, we are

nterested in the performance obtained with data generated in the alpha
and at four different epoch lengths and three different SNR values. 
5 
Finally, in order to assess the impact of the operating frequency band
n the performance of our decomposition methods, we restricted the
poch length to 2000 ms and the SNR to 0.5 and changed the frequency
anges in which EEG data was generated to delta, theta, alpha, beta, and
amma oscillations. 

.9.2. Recovery of ground truth patterns 

Decomposition methods return a spatial filter that, as previously dis-
ussed, can be converted to a brain pattern. In order to analyze how
imilar the spatial pattern of the recovered source is to the ground truth
attern we estimated a “pattern recovery error ” or RecErr that takes
alues between 0 (no error) and 1. The formula takes advantage of the
calar product between two vectors and can be defined as follows: 

ecErr = 1 − 

|𝒂 ⊤
𝑜 
𝒂 𝑟 |‖‖𝒂 𝑜 ‖‖ ⋅ ‖‖𝒂 𝑟 ‖‖ (18)

ith 𝒂 𝑜 the original simulated pattern, 𝒂 𝑟 the pattern recovered by the
orresponding decomposition method and ‖. ‖ the vector norm. 

.9.3. Artificially generated data description 

Our proposed methods should find spatial filters whose frequency
stimate of interest ( ⟨𝑓 𝑖 ⟩, 𝑓 loc or 𝑓 peak ) is maximally correlated to

n experimental variable. To statistically test this goal we generated
our different EEG sources. Their frequency and amplitude individually
hanged from trial to trial within the selected band and a total of 400
rials were generated. The trial length was a varying parameter (500 to
000 ms), as discussed in Section 2.9.1 . As an experimental variable,
e selected the changing frequency of one of the four sources, thus the
ethod should find the spatial filter related to this source. 

To generate these artificial data, 40 EEG channels were fitted to the
utermost layer of the standard Montreal Neurological Institute (MNI)
ead ( Evans et al., 1994 ). The EEG forward solutions were obtained with
 head model based on a three-compartment realistic volume conductor
 Nolte and Dassios, 2005 ). The brain sources were defined as pseudo-
andom cortical dipoles. EEG oscillations were generated by band-pass
ltering independent white noise in the frequency band of interest (a dif-

erent one per trial and per source). In the case of the correlated source,
he peak frequency of the source was also the target variable. A band-
idth of 2 Hz (1 Hz on each side of the peak frequency) was applied to
enerate the time series of the correlated source. As mentioned before,
he target frequency changed every trial and the amplitude was modu-
ated randomly. This target frequency was selected as an experimental
ariable, i.e. 𝑧 𝑛 in Equation 16 , because its correlation to the source of
nterest is ideally one. 

Background EEG noise was generated with 500 uncorrelated dipoles
f random orientation and distribution on the cortex. The noise sources
ad 1∕ 𝑓 type spectra. The SNR was calculated as the ratio between the
ean variance across channels for the projected sources and the mean

ariance of additive noise (produced by all noise dipoles) in the center
requency of the brain source. 
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Fig. 3. Selected channels to analyse SSVEP data. 
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The sampling frequency of the simulation was 200 Hz. 
In order to perform statistical analyses on simulation results, arti-

cial data for each parameter combination were generated 200 times
sing random source locations and random peak frequencies for each
rial and source. 

.10. SSVEP BCI data 

We used data from a steady-state visual evoked potential (SSVEP)
rain-computer interface (BCI) for assessing the performance of our pro-
osed methods on real data. SSVEP data are a good choice for this study
ecause the ground truth peak frequency is known (the flickering fre-
uency at which the participant stares) and serves as a real test for all
ecomposition methods presented. 

.10.1. Data description 

We used the publicly available dataset from ( Iscan and
ikulin, 2018 ). It consists of data from 24 subjects who under-
ent an offline session where the participants were attending four
ifferent stimuli (circles) in distinct locations and flickering frequencies:
.45 (up), 8.57 (down), 12 (right), and 15 (left) Hz. The participants
erformed a total of 100 trials, with 25 trials of each class. The
ampling rate was originally 1000 Hz, but after bandpass filtering the
ata between 3 and 40 Hz, the data were downsampled to 200 Hz. EEG
ata were segmented using the stimuli markers that specify the start
nd end of the flickering. Four different epoch lengths were studied
500, 1000, 2000, and 3000 ms). 60 EEG channels were recorded with
 reference electrode on the left mastoid. After removing electrodes on
he most external positions, 41 channels were left for further analyses
s presented in Fig. 3 . 

Data analysis was performed in MATLAB (2018b; The MathWorks,
atick, MA) using the BBCI toolbox ( Blankertz et al., 2016 ), the Field-

rip toolbox ( Oostenveld et al., 2011 ), the EEGlab toolbox ( Delorme and
akeig, 2004 ) and custom programmed software. 

.10.2. Data preprocessing 

The preprocessing of the data included a dimensionality reduction
tep using Spatio-Spectral Decomposition (SSD, Haufe et al. (2014a) ;
ikulin et al. (2011) ; Vidaurre et al. (2021) ) in the frequency band 5-
7 Hz. The top ten SSD filters (ten times less than the number of trials)
ere selected based on their SNR, and then stacked in a matrix to build a
6 
ulti-channel data matrix. IFD, LFD, and PFD were applied to this data
atrix. In this way, the data in the SSD subspace were decomposed.
herefore, the computed mixing patterns of the decomposition methods
hould be projected back to the sensor space. Formally, if 𝐩 ∈ ℝ 

10×1 is
he mixing pattern in the SSD subspace, and 𝐀 ssd ∈ ℝ 

40×10 is the mix-
ng matrix of the ten SSD components, the final spatial pattern of the
xtracted source on the sensor space is 𝐚 = 𝐀 ssd 𝐩 . 

.11. Benchmark methods 

In order to benchmark our results against conventional methods, we
erformed comparisons with multiple linear regression (MLR) and the
est correlation result from Laplacian channels. 

.11.1. The best correlation from Laplacian channels 

Although these are single-channel results, they are interest-
ng because they are often reported in the literature (see e.g.
ierau et al. (2017) ). To obtain the desired results, all channels were

patially filtered with a small Laplacian derivation ( Sannelli et al.,
011 ). Those sensors that did not have enough neighboring channels
ere filtered with the available neighbors. Then, ⟨𝑓 𝑖 ⟩, 𝑓 loc , and 𝑓 peak 
ere computed for each of the filtered channels, obtaining one value per

poch. These values were then correlated with the variable of interest
nd the result providing the highest correlation was selected for further
omparisons. 

.11.2. Multiple linear regression (MLR) 

MLR is a multivariate method often used to maximize the corre-
ation between a dependent variable and multiple independent mea-
ures ( Gasser et al., 1988; Iemi et al., 2022; Stephani et al., 2021; Thut
t al., 2006; Zimmermann et al., 2010 ). This approach is often used
o benchmark against novel multivariate approaches (see for example
ähne et al. (2014a) ). Here, we computed instantaneous/local/peak fre-
uencies of all the channels as regressors. The variable of interest (peak
requency of the generated trial) was used as a response variable. This
ay, a correlation value of the estimated target variable and the ground

ruth target variable was obtained. 
Finally, it is worth noting that, in this case, the weights obtained from

pplying multiple linear regression cannot be interpreted in terms of
opographies (sources) because they do not follow the generative model
f the EEG/MEG signals. 

.12. Statistical analyses 

Statistical analyses were performed in R ( Team-R-Core, 2018 ) using
eta regression models with betareg ( Zeileis et al., 2016 ), version 3.1-4.
eta regression models were used since the dependent variables varied
rimarily between 0 and 1, and these models assume that the data follow
 beta distribution. The performance of each decomposition method was
valuated with correlation values and recovery errors, such that higher
orrelation values and lower recovery error values were indicative of
etter performance. To compare the performance of different decompo-
ition methods, correlation and recovery error were each modeled sep-
rately as functions of the method and epoch length . This procedure was
arried out for each level of SNR. SNR was not included as a factor be-
ause we were not interested in its interaction with the other variables. It
s known from real data analyses that better results are expected when
he quality of data improves. Moreover, in real applications, the SNR
alue is usually not known. 

Additionally, the performance of different frequency bands was ana-
yzed using a fixed SNR and epoch length, with factors method and band .

The correlations obtained with MLR and the best Laplacian deriva-
ion using different frequency estimates ( ⟨𝑓 𝑖 ⟩, 𝑓 loc , 𝑓 peak ) were also in-

estigated. Thus, beta regression models were built separately for MLR
nd Laplancian derivations. As before, the procedure was carried out for
ach level of SNR, using factors method and epoch length . 
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Fig. 4. Bar plot of averaged correlation values over 200 repetitions for 
each of the three methods (IFD, LFD, PFD) with different parameters. On 
the top, results with SNR = 0.1 are visible, the middle panel displays re- 
sults for SNR = 0.5, and the bottom panel for SNR = 1. The four groups of 
bars were obtained with different epoch lengths (500, 1000, 2000 and 
3000 ms). Finally, the last four bars of each group are related to PFD with 
four different exponents (5, 10, 12, and 15, respectively). The error bars 
indicate the standard error of the mean. 
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Finally, for each frequency shift estimate, the corresponding decom-
osition method, MLR and the best Laplacian derivation performances
ere compared between each other. 

Differences in performance within the previously described beta
odels were quantified by the estimated marginal means of pair-wise
ifferences between factor levels, using the R package emmeans . Esti-
ated marginal means are group means adjusted for means of other

actors in the model ( Searle et al., 1980 ). The p-values were adjusted
sing Tukey’s HSD (honestly significant difference) test ( Tukey, 1949 ). 

. Results 

.1. Simulations in the alpha band 

.1.1. Correlation results with decomposition methods 

Simulations were conducted for validating the performance of the
hree proposed methods, namely IFD, LFD, and PFD. In Fig. 4 , the cor-
elation strengths averaged over 200 repetitions for IFD, LFD, and PFD
re depicted in bar plots for different parameter values, i.e. different
poch length and SNR values. IFD performed consistently worse than
FD and PFD for all parameter combinations. Additionally, correlation
esults improved with longer epochs and, as expected, with higher SNR.

In order to investigate whether any of the methods obtained sig-
ificantly higher correlations than the others, we performed three beta
egressions with factors method and epoch length (one for each SNR).
he performance of PFD was averaged over all exponents to obtain a
omposite result. The interaction and the main effects were all signifi-
ant in all tests (see Table C.1 ). Post-hoc analyses carried out with HSD,
howed that IFD performed significantly worse than LFD and PFD for
ll epoch lengths and in all SNRs. IFD showed much lower correlation
alues, with differences compared to LFD and PFD ranging from 0.26 to
.49 (see Table C.2 ). PFD and LFD were not found significantly different
or SNR = 0.1. Otherwise, PFD was significantly better than LFD. Differ-
nces in correlation between them were small, ranging from 0.012 to
7 
.031. The smallest differences were found for higher SNRs and longer
poch lengths. 

Post-hoc analyses concerning the difference between epoch lengths
ithin methods showed that the longer the epoch, the higher the cor-

elation obtained, except for SNR = 0.5 and epoch lengths 2000 ms and
000 ms, where results were not significantly different. The difference
n performance w.r.t. epoch length seems to be higher for IFD (see
able C.3 ). To summarize, IFD was the worst method and although PFD
erformed significantly better than LFD, their correlation values were
ery close to each other. 

.1.2. Accuracy of pattern recovery 

All decomposition methods proposed in this study return a spatial
lter from which the spatial patterns of the sources are computed and
an be localized by source reconstruction methods. The simulated data
llow for the comparison between the location of the recovered source
nd the ground truth. This comparison can be quantified in terms of
he “pattern recovery error ” defined in Equation 18 . Averaged recovery
rrors over repetitions for all decomposition methods are depicted in
he bar plots of Fig. 5 . 

The beta regression for SNR = 0.1 showed significant interactions be-
ween factors ( method and epoch length ) and significant main effects,
hereas the two beta regressions for SNR = 0.5 and SNR = 1 showed only

ignificant main effects (see Table C.4 ). For all SNRs, post-hoc analyses
howed that LFD and PFD recovered sources significantly better than
FD for all epoch lengths. Also, LFD was significantly better than PFD in
ll cases, but differences between them were 10 times smaller in com-
arison to those found against IFD (see Table C.5 ). 

Considering differences in Recovery Errors across epoch lengths
ithin a method, the higher the SNR the lower the differences in errors

n different lengths. In fact, for SNR = 1, the differences between epochs
ith different lengths are not significant or are rather very small (for
000 ms vs 500 ms). Also, for SNR = 0.5, differences between 1000, 2000,
nd 3000 ms are not significant for any of the decomposition methods.
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Fig. 5. Bar plot of averaged (over 200 repetitions) RecErr of IFD, LFD and 
PFD. The upper panel displays results with SNR = 0.1, the middle panel 
with SNR = 0.5, and the bottom panel with SNR = 1. The four groups of 
bars were obtained with different epoch lengths (500, 1000, 2000 and 
3000 ms). 

Table 1 

Average correlation values of benchmarking methods over 200 repetitions for 
each frequency shift measure, SNR and epoch length. 

SNR MLR Corr. Lap. Corr. 

Epoch length(ms) Epoch length(ms) 

500 1000 2000 3000 500 1000 2000 3000 

⟨𝑓 𝑖 ⟩ 0.1 0.35 0.39 0.44 0.45 0.15 0.19 0.23 0.24 
0.5 0.47 0.56 0.65 0.66 0.24 0.31 0.39 0.41 
1 0.53 0.63 0.72 0.74 0.29 0.38 0.46 0.49 

𝑓 loc 

0.1 0.35 0.41 0.47 0.52 0.15 0.19 0.24 0.26 
0.5 0.48 0.60 0.69 0.73 0.25 0.33 0.40 0.44 
1 0.55 0.68 0.76 0.80 0.31 0.41 0.48 0.52 

𝑓 peak 

0.1 0.34 0.39 0.41 0.43 0.14 0.17 0.21 0.23 
0.5 0.44 0.52 0.61 0.64 0.23 0.29 0.69 0.38 
1 0.51 0.61 0.68 0.72 0.28 0.36 0.43 0.46 
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owever, with a low SNR of 0.1, longer epochs obtain significantly bet-
er results, with 500 ms being not long enough to provide acceptable
esults in comparison to 1000, 2000, and 3000 ms (see Table C.6 ). 

The recovered topographies (spatial patterns) of the sources ex-
racted with the three proposed methods in an exemplar simulation are
epicted in Fig. 6 . This figure shows that LFD and PFD with different
xponents could accurately recover the original source. IFD displayed
uch higher RecErr than LFD and PFD, but the recovered topography

esembled well the original one. However, it is not possible to recover
atterns of sources with the coefficients obtained from applying MLR.
hus, the difference between the original source and the regression co-
fficient was remarkably high. Therefore, researchers performing this
ype of analysis need to bear in mind that it is not possible to interpret
egression coefficients in terms of brain sources. 

.1.3. Correlation results with benchmark methods 

Table 1 shows the average correlation values over 200 repetitions
hat resulted from applying MLR (columns 3 to 6) and Laplacian filters
8 
columns 7 to 10) to ⟨𝑓 𝑖 ⟩, 𝑓 loc and 𝑓 peak . As expected MLR values are

reater than the best Laplacian derivation results. Also, 𝑓 loc appears to
btain better results than ⟨𝑓 𝑖 ⟩ and 𝑓 peak . 

Three beta regressions were performed to compare results from MLR
sing different frequency shift estimates, one for each SNR. The inter-
ction between factors and the main effects were all significant (see
able C.7 ). HSD post-hoc analyses showed that MLR with 𝑓 loc achieved
ignificantly better correlation values than with 𝑓 peak and ⟨𝑓 𝑖 ⟩. Finally,

𝑓 𝑖 ⟩ was found significantly better than 𝑓 peak as well. However, dif-

erences between frequency shift estimates were not big, ranging from
pproximately 0.09 to 0.02 (see Table C.8 ). As before, longer epochs
mplied better correlation results, with differences getting smaller with
ncreasing epoch lengths (see Table C.9 ). 

The same procedure was applied to the correlation obtained with the
est Laplacian derivation. Beta regression models on all SNRs returned
ignificant main effects, but no significant interactions (see Table C10 ).
ost-hoc analyses showed that 𝑓 loc correlations were always signifi-
antly better than 𝑓 peak results. Furthermore, 𝑓 loc correlations were

nly not significantly different than ⟨𝑓 𝑖 ⟩ for SNR = 1.0. Finally, no signif-
cant differences were found between ⟨𝑓 𝑖 ⟩ and 𝑓 peak . Comparing results

ver different epoch lengths for the same frequency estimates revealed
hat the correlations at longer epochs were always significantly stronger
han at shorter ones, except for 2000 and 3000 ms, where differences
ere not significant (see Table C.11 and C.12 ). 

.1.4. Comparison of decomposition methods with multiple linear 

egression and best Laplacian derivation 

The comparison between decomposition and benchmark methods
as performed with beta regression models, one for each SNR and for

ach frequency shift measure ( ⟨𝑓 𝑖 ⟩, 𝑓 loc or 𝑓 peak ). After fixing the SNR

nd the frequency measure, the factors were two: method (MLR, best
aplacian channel, and the corresponding decomposition method) and
poch length . The results of interest for each frequency estimate were
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Fig. 6. Top: left, topography of the original generated source; 
middle, topography recovered with IFD and the corresponding 
RecErr ; right, topography recovered with LFD and correspond- 
ing RecErr . Middle: topographies recovered with PFD and dif- 
ferent exponents. RecErr of each of them is also displayed. Bot- 
tom: regression coefficients depicted over the scalp. Although 
they do not correspond to sources, we computed RecErr to 
highlight their deviation from the original pattern. 
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oncerning whether one method was significantly better than the rest
n each of the epoch lengths. 

Results indicated for ⟨𝑓 𝑖 ⟩ that main effects were significant for all
NRs, whereas the interaction was significant only for SNR = 0.5 (see
able C.13 ). Post-hoc analyses showed that MLR obtained better corre-

ation values than IFD and the best Laplacian channel for all SNRs, with
 difference of around 0.2 between MLR and the rest. Also, IFD and best
aplacian were not significantly different for SNR = 0.1 regardless of the
poch length. However, for SNR = 0.5 and SNR = 1, IFD results were sig-
ificantly better than those obtained with the best Laplacian derivation,
n a range between 0.06 and 0.09 approximately (see Table C.14 , first
ine rows). 

Conversely, in the case of 𝑓 loc , interactions and main effects were all
ignificant (see rows 10 to 18 of Table C.13 ). Regarding post-hoc com-
arisons, LFD was significantly better than MLR and the best Laplacian
hannel on 𝑓 loc in all epoch lengths and for all SNRs, with differences
n correlation around 0.2 to 0.15 and 0.5 to 0.3 respectively. Also, MLR
as significantly better than Laplacian with differences ranging between
.25 and 0.19 approximately (see rows 10 to 18 of Table C.14 ). 

Concerning 𝑓 peak , interactions and main effects were all significant

see last nine rows of Table C.13 ). PFD was significantly better than
LR (differences between 0.33 and 0.19 in correlation) and the best

aplacian channel (differences ranging between 0.57 and 0.37) for all
poch lengths and SNRs. MLR was also significantly better than the best
aplacian derivation (between 0.24 and 0.17 difference in correlation).

.2. Simulations in different frequency bands 

It is also of relevance to analyze how the performance of our de-
omposition methods is affected by the frequency range of the analyzed
rain oscillations. To this end, we averaged the performance obtained
y each method in different bands, after fixing SNR to 0.5 and epoch
ength to 2000 ms. Fig. 7 shows averaged correlation values (top) and
9 
ecovery errors (bottom) of the three decomposition methods for each
and. The value of PFD is an averaged composite of all exponents. 

Two beta regression models with factors frequency band and method

ere performed, one for correlation values and another one for recov-
ry errors. All main effects and both interactions were significant (see
ables C.15 and C.18 ). Fig. 7 shows that IFD does not perform as well as
FD and PFD in terms of correlation values (differences between 0.52
nd 0.31, see rows 1 to 10 of Table C.16 ) or recovery errors (differ-
nces between 0.21 and 0.17, see Table C.19 ), just as expected from the
revious analysis in the alpha band in Section 3.1.1 . The differences be-
ween LFD and PFD were much lower (from 0.07 in the delta band to
.043 in alpha for correlation values and 0.031 in recovery errors, see
able C16 and C19 , respectively). 

Concerning the performance of IFD in different bands, IFD in the
elta band performs worse than the rest, with differences in correlation
alues between 0.21 and 0.29. Although some differences between the
est of the frequency bands are significant, they perform fairly similarly,
ith differences in correlation values ranging from 0.07 to 0.01 (see
rst 10 rows of Table C.17 ). Considering recovery errors, these are not
o different from each other in comparison to the correlation values.
ifferences between the delta band and the other frequency bands are
etween 0.08 and 0.02 (the latter is not significant). Differences among
he other frequency bands are also small and oscillate between 0.06 and
 (see first ten rows of Table C20 ). 

Similar results were found for the performance of LFD, i.e., larger
ifferences were found comparing correlation values of the delta band
ith correlation values of the other frequency bands (ranging between
.28 and 0.21) than among the other frequency bands (0.077 to 0.01),
ee rows 11 to 20 in Table C.17 . Comparable differences in recovery
rrors were also present for LFD (differences between 0.082 and 0.018
or delta band versus the other frequency bands and between 0.064 and
.001 among the rest of frequency bands), see Table C.20 . 

Finally, PFD showed smaller differences between bands, but again,
he difference in correlation values was larger comparing the delta band
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Fig. 7. Upper panel: bar plot of averaged correlation values over 200 repeti- 
tions for each of the three methods (IFD, LFD, PFD) in each frequency band. 
Bottom panel: bar plot of averaged recovery errors over 200 repetitions for 
each of the three methods (IFD, LFD, PFD) in each frequency band. 
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Table 2 

Average correlation values over subjects and standard error 
of the mean. 

Method Epoch length Correlation value 

(ms) (mean ± sem) 

IFD 

500 0.48 ± 0.02 
1000 0.61 ± 0.02 
2000 0.73 ± 0.02 
3000 0.76 ± 0.02 

LFD 

500 0.75 ± 0.02 
1000 0.86 ± 0.02 
2000 0.91 ± 0.02 
3000 0.92 ± 0.01 

PFD 

500 0.78 ± 0.02 
1000 0.88 ± 0.02 
2000 0.95 ± 0.01 
3000 0.96 ± 0.01 
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ith the rest of the frequency bands (0.11 to 0.088) than among the
ther frequency bands (0.028 to 0.003), see last 10 rows of Table C.17 .
oncerning recovery errors, differences between the delta band vs. the
ther frequency bands were again larger (0.082 to 0.018) than among
he other frequency bands (0.064 to 0.001), see Table C.20 . 

.3. Real data from SSVEP BCI 

We applied the three proposed methods to EEG data recorded from
articipants performing an SSVEP BCI experiment. As aforementioned,
hese data were selected because the ground truth is ideally the fre-
uency the participant stares at. Thus, it is the same type of data as the
ne used in simulations, where the correlation of frequency shifts along
he experiment and the frequency used as the target variable must be
ery high. The final goal of this analysis was to find out whether the
btained sources had a plausible topography with respect to the nature
f the visual BCI experiment. 

The results of simulations with SNR = 0.5 showed that for short time
indows (500 and 1000 ms) an exponent of 5 was good and for longer
nes an exponent between 10 and 15 would give good results (see
ig. 4 ). Thus, to obtain correlation values with PFD in these experiments
e selected exponent 5 for 500 and 1000 ms epochs and exponent 12

or 2000 and 3000 ms. 

.3.1. Correlation values of decomposition methods 

Average correlation values over participants for each decomposition
ethod are summarized in Table 2 together with the standard error of

he mean (sem). As observed in the simulations, IFD correlations were
uch lower than LFD and PFD. In this case, PFD returned higher corre-

ation values than LFD. 
Beta regression models comparing methods and epoch lengths

howed that the main effects and the interaction were all significant
see Table C.21 ). The post-hoc analyses revealed that IFD was signifi-
antly worse than LFD and PFD for all epoch lengths, with differences
n correlation results ranging from 0.14 to 0.33 and 0.44 to 0.17, re-
pectively. LFD was significantly worse than PFD, with differences (0.1
o 0.04) decreasing as the epoch length increased (see Table C.22 ). Re-
arding epoch lengths, the longer the epoch, the better the correlation,
xcept for 2000 and 3000 ms, where differences were not significantly
ifferent. Also, differences for PFD and LFD seem smaller than for IFD
see Table C.23 ). 
10 
.3.2. Comparison of decomposition against benchmark methods 

The scatter plots of correlations obtained with decomposition meth-
ds versus MLR and best Laplacian derivation for each frequency shift
stimate (columns) and each epoch length (rows) are depicted in Fig. 8 .
ach participant is represented as an orange circle (the best Laplacian
erivation vs. decomposition method) or a blue cross (MLR vs. decom-
osition method). Similar to the simulations, LFD and PFD obtained bet-
er results than MLR and the best Laplacian channel, whereas IFD was
orse than MLR but better than the best Laplacian derivation for all

poch lengths tested. Analogously to the simulations, LFD and PFD ob-
ained better results than MLR and the best Laplacian channel, whereas
FD was worse than MLR but better than the best Laplacian derivation
or all epoch lengths tested. 

Three beta regression models for each of the frequency shift esti-
ates were performed with factors method (the corresponding decom-
osition methods, MLR, and best Laplacian) and epoch length . All interac-
ions and main effects were significant (see Table C.24 ). Post-hoc anal-
ses showed that Laplacian derivations were significantly worse than
LR (differences in correlation between 0.52 and 0.33) and IFD (range

f differences between 0.36 and 0.24) for all epoch lengths. Otherwise,
LR was significantly better than IFD (differences between 0.16 and

.09), see Table C.25 . 
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Fig. 8. Scatter plot of correlation results of real SSVEP data. Each row depicts results for one epoch length, from 500 ms (upper row) to 3000 ms (bottom row). Each 
column is obtained with a different frequency shift estimate. Column 1: IFD vs. benchmark methods computed using ⟨𝑓 𝑖 ⟩. Column 2: LFD vs. benchmark methods 
computed using 𝑓 loc . Column 3: PFD vs. benchmark methods estimated using 𝑓 peak . In each plot, the x-axis represents results delivered by the corresponding 

decomposition method and the y-axis results of MLR (blue crosses) and best Laplacian derivation (orange circles) using the corresponding frequency shift estimate. 
Each point on the scatter plot represents the correlation results of one subject. All values below the diagonal indicate that the correlation of the corresponding 
decomposition method was higher than the correlation of the corresponding benchmark method for that specific subject. 
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With respect to local and peak frequencies, their corresponding de-
omposition methods were significantly better than MLR and the best
aplacian derivation. Differences between LFD and MLR ranged be-
ween 0.06 and 0.03, and between PFD and MLR they were in the in-
erval 0.22 to 0.11. The differences against Laplacian derivations were
etween 0.6 and 0.4 for local frequency and between 0.75 and 0.44 for
eak frequency. Also, MLR was significantly better than the best Lapla-
ian in both cases (0.56 to 0.36 for local frequency and 0.53 to 0.33 for
eak frequency, see Table C25 ). 
11 
.3.3. Spatial pattern dissimilarities 

Finally, grand averages of EEG patterns for each decomposition
ethod were computed over all participants. Before averaging, a global

ign of each topography was adjusted across the subjects to avoid polar-
ty cancellation. Results are depicted on the top panel of Fig. 9 , together
ith some PFD topographies of three exemplar subjects on the bottom
anel. The cortical sources corresponding to each of the patterns were
lso computed. The inverse modeling was performed with eLORETA
 Pascual-Marqui et al., 2011 ) using the S-Meth Toolbox ( Nolte, 2023 ).
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Fig. 9. Top: average across subjects spatial patterns obtained with IFD, LFD and PFD. On their right, the corresponding source localization using eLORETA also for 
IFD, LFD, and PFD. Bottom: subject-specific spatial patterns of PFD and their corresponding source localizations. 
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he active sources displayed in all sub-figures were primarily localized
ver the occipital cortex. 

Additionally, we computed the mutual dissimilarity of the spatial
atterns among all participants using Equation 18 . Here the main idea
as to see the consistency of the topographies across participants. It

anged between 0.55 and 0.85. This in turn indicates a high variability
f neural sources between subjects. 

As expected by the experimental paradigm, all subjects show occipi-
al patterns. However, dissimilarities between them exist, demonstrating
hat our decomposition methods can be used to study individual differ-
nces between subjects. 

. Discussion 

Three methods were presented to find spatial projections for multi-
hannel sensor data (i.e. the latent source) leading to maximum (anti-
correlation between its instantaneous frequency, local frequency, or
eak frequency and an experimental variable. All methods are based on
he minimization of the mean squared error. Our simulations showed
hat the introduced algorithms are capable of recovering sources with
hanging frequencies even with very low SNR and that they can recover
hysiologically meaningful sources in real EEG recordings. Below, we
iscuss different aspects relating to their application. 

.1. Which decomposition method performs better? 

IFD, LFD, and PFD allow the recovery of source components whose
requency shift estimates are maximally correlated to an external vari-
ble of interest. To the best of our knowledge, this is not possible with
ny other method. The neural sources corresponding to spatial pat-
erns can be then reconstructed using inverse models such as eLORETA
 Pascual-Marqui et al., 2011 ) or beamformers ( Van Veen et al., 1997 ). 

The most important result with respect to the developed algorithms
nd their ability to maximize correlations is related to the differences
etween IFD and the two methods LFD and PFD, which are applied to
ata in the frequency domain. IFD obtained significantly worse results
or all parameters tested (SNR and epoch length) and also worse results
egarding the recovery of the generated source of interest (see Fig. 4 ).
his means that not only the correlation was not high (0.5 to 0.27 less
orrelation than LFD and PFD), but also the pattern recovery error (see
ig. 5 ) was much larger than for LFD and PFD (up to 0.27 more), mean-
ng that the recovered source does not resemble the original source as
ccurately as PFD and LFD. 

IFD appears more sensitive to noise than LFD and PFD. This may re-
ate to the calculation of instantaneous frequency as a local derivative
f phase. Despite the applied averaging, the derivative amplifies the
12 
oise present in the frequency band of interest leading to phase jumps
 Freeman, 2004 ). This in turn leads to worse results in comparison to
he spectral counterparts, which are defined directly in the frequency
omain. Furthermore, because the definition of 𝑓 𝑖 is related to the mul-
iplication of two numbers, (see the numerator in Equation 10 ), there is
o guaranty that the final result lies in the frequency band of interest. 

The statistical analyses on simulation results showed that PFD ex-
ibits a slight advantage over LFD (up to 0.03 difference in correlation).
hese small values suggest that both LFD and PFD are competitive meth-
ds to find sources related to frequency shifts over time. 

Concerning the accuracy of recovering mixing patterns of sources,
ig. 5 shows that LFD and PFD could accurately recover the ground-truth
enerated pattern, even though three other sources with frequency-
uctuating oscillatory components were also present in the simulated
ata. Although differences between PFD and LFD were significant, both
ethods returned low recovery errors, especially for higher SNR values

nd longer windows. This was, however, not the case for IFD, which
erformed worse in all settings, similar to the results of the correlation
alues. The results also show that under low SNR conditions epochs of
referably 1000 ms or longer should be used. 

.2. Instantaneous, local, or peak frequency estimates in sensor space, 

hich one obtains better correlation values? 

Despite the presence of noise in all EEG channels, previous stud-
es investigating peak frequency or instantaneous frequency have been
arried out primarily in sensor space ( Mierau et al., 2017 ). To take
uch approaches into account, here we also performed some simula-
ions to benchmark our newly developed methods against sensor-space
pproaches. Regarding correlations of frequency estimates using Lapla-
ian derivations with a variable of interest, 𝑓 loc offered the highest accu-
acy, and ⟨𝑓 𝑖 ⟩ was slightly better than 𝑓 peak . We hypothesize that 𝑓 loc 
s a more stable estimate against noise present in channel data: on the
ne hand, its formula is not based on derivatives like the formula of 𝑓 𝑖 ,
hich in low signal to noise ratio situations might mainly reflect noise,
nd on the other hand, its definition is not related to peaks, whose loca-
ion might be unstable in the presence of noise. Yet, these results were
nferior compared to LFD and PFD decomposition methods. 

Concerning MLR results, 𝑓 loc delivered the best correlation values.
n the other hand, ⟨𝑓 𝑖 ⟩ obtained quite similar results to 𝑓 peak , es-

ecially for low SNRs. Although MLR is a multivariate method, when
t is applied to measures involving non-linear transformations such as
 peak , 𝑓 loc , or ⟨𝑓 𝑖 ⟩, it cannot separate noise from the signal of inter-

st ( Dähne et al., 2014b ). Thus MLR is as sensitive to channel noise as
aplacian channel based results. As before, 𝑓 peak and ⟨𝑓 𝑖 ⟩ seem to be
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ore sensitive to noise, and thus results obtained with them are worse
han those of 𝑓 loc . 

Hence, and in agreement with the mathematical discussion on the
elationship between 𝑓 loc and ⟨𝑓 𝑖 ⟩ presented in Section 2.4 , we recom-
end choosing 𝑓 loc over ⟨𝑓 𝑖 ⟩ if averages can be performed over data
indows or epochs. 

.3. Are decomposition methods better than regression or channel-based 

odels? 

Decomposition methods are in general preferable in comparison to
ingle channel or regression approaches ( Dähne et al., 2014b; Haufe
t al., 2014a; Idaji et al., 2020; Nikulin et al., 2011 ). First, they are able
o separate source information from noise and improve the interpretabil-
ty of the estimates. In contrast, single-channel methods and regression
odels based on channel estimates involving non-linear operations suf-

er from the mixing of noise and signals from multiple oscillatory sources
 Vidaurre et al., 2019b ). 

Second, the mixture of signal and noise poses a serious problem also
n relation to the interpretation of results and the location of their cor-
ical origin. Although spatial filters such as Laplacian derivations can
educe the effect of noise from remote sources, they might also remove
scillations that contribute to the sources of interest. 

Regarding the first point (interpretability of the results), the correla-
ion results obtained for MLR of 𝑓 loc and 𝑓 peak were significantly lower

han correlations obtained with LFD and PFD. LFD and PFD correla-
ion results were also significantly better than results obtained using the
aplacian derivation with the highest correlation. These single-channel
esults were also significantly worse than MLR analyses. 

Considering the second aspect (source unmixing), the spatial filters
ound by PFD and LFD reflect sources but were also able to remove part
f the noise contribution from the 500 noise dipoles included in the sim-
lation. Thus, they were able to separate signal and noise and improve
he interpretation of the obtained results. However, this was not the case
or IFD which, as previously discussed, is too sensitive to the effect of
oise on phase estimation and could not obtain better correlation values
ompared to MLR. 

Another advantage of decomposition methods, such as the ones pre-
ented in this study, is their ability to provide patterns or data topogra-
hies of cortical sources that are related to the research hypothesis. For
xample, in Fig. 6 one can see that LFD and PFD can accurately recover
he original source, whereas the weights of the different MLR proce-
ures do not reflect the cortical origin of the source of interest. Such
atterns facilitate the following reconstruction of the neural data since
hey reflect a small set of contributing neuronal elements. 

It should be remarked that inverse source localization techniques are
ften used to extract brain sources. However, these methods typically
equire an accurate forward model and generate a large amount of data
hich in turn leads to the application of statistical methods compensat-

ng multiple comparisons. Finally, source localization techniques do not
ypically incorporate information about the research variable of interest
hich is an advantage of LFD and PFD approaches. 

.4. Performance of decomposition methods in different frequency bands 

Frequency shifts related to experimental variables might be of inter-
st in any of the frequency bands in which EEG/MEG oscillations are
ategorized. Thus, we also studied the performance of our decomposi-
ion methods over different frequency bands. 

As discussed for results in the alpha band, IFD performed worse than
FD and PFD for all bands, and also achieved worse recovery errors. 

Concerning the frequency domain methods, results show that LFD
nd PFD perform similarly in the theta, alpha, beta, and gamma bands,
ith differences in performance that are in some cases significant, but

mall. Furthermore, in the delta band, the average correlation is still
igh (above 0.6) for both methods. The difference observed between
13 
he delta band and the other frequency bands is probably related to the
ength of the segment employed, which in the case of delta contains less
ycles of the oscillation of interest due to its low frequency rate. 

.5. Application to real data 

The averaged topographies obtained from the application of de-
omposition methods on SSVEP BCI data were related to activities in
he occipital areas, a result that is in agreement with previous studies
 Jorajuría et al., 2020; 2021; Srinivasan et al., 2006 ). Although we used
LORETA for source localization, any other inverse modeling technique
ould be utilized ( Michel et al., 2004 ). 

Note that the patterns can also be studied in a subject-dependent
anner, as visible in Fig. 9 . Although these patterns generally indicate

he location of neural sources in occipito-parietal cortex, one can also
bserve subject-specific spatial configurations. In fact, the dissimilarity
etween patterns was in some cases relatively high, thus indicating that
he analysis in sensor space across subjects might lead to inconclusive
esults due to a selective mixture of neural sources at each electrode
 Vidaurre et al., 2019b ). Therefore, in addition to conventional sensor
pace analysis, we recommend running PFD or LFD for more consistent
esults across participants when using frequency shift estimations. 

In fact, the EEG data projected onto the spatial filters obtained by de-
omposition methods provide time courses that directly represent source
ctivity. These time courses can be used to investigate temporal dynam-
cs of the corresponding sources without the use of inverse modeling . For
nstance, when investigating the dependency of behavioral performance
ith some experimental variable or the generation of evoked responses
epending on the frequency of pre-stimulus alpha oscillations, one can
se the projected data obtained with PFD or LFD. As shown in our sim-
lations this approach should lead to better detection of dependencies
ompared to sensor space approaches. 

We also believe that PFD and LFD can be used for tracking changes in
lpha peak frequency induced by transcranial alternating current stim-
lation (tACS) ( Gundlach et al., 2020 ). In these studies. one can inves-
igate whether and how the peak frequency of alpha oscillations is en-
rained by tACS with a varying stimulation frequency. Due to the excel-
ent performance of PFD/LFD even with very low SNR one is more likely
o detect subtle changes in the dynamics of ongoing alpha oscillations
ompared to conventional sensor-space analysis. 

.6. Limitations and future work 

Although the proposed methods were extensively tested with simu-
ations and real data, there are still limitations linked to them, which
e elaborate upon in the following. 

Similar to almost all data decomposition methods, the performance
f the presented algorithms depends on the data quality, i.e., SNR. Our
imulations show that LFD and PFD perform well even in a very low
NR value of 0.1, and that as the SNR increases, the methods perform
ore reliably. 

Another limitation of the proposed methods is related to the tempo-
al and frequency resolution, i.e. the length of the trials or the sliding
indows. While IFD obtains one instantaneous frequency value per time

ample, LFD and PFD obtain one frequency estimate per data window in
hich the frequency transforms are applied. In real data, the operating

requency of the oscillations is not known a priori. In general, the tem-
oral and frequency resolution defined by the window length impose
 limitation on how well the methods can capture frequency changes.
n experimental paradigms where the external variable changes faster
han the temporal resolution of the decomposition methods, a sliding
indow technique may be useful. The above-mentioned means that, if
ne is interested in changes occurring in a narrow band, one should be
ware that those variations should be slow in time, because the high
requency resolution required to study effects in narrow bands, is in-
vitably linked to a low temporal resolution ( Bruns, 2004 ). 
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We would like to remark that, as shown in Bruns (2004) , Fourier-,
ilbert- and wavelet-based signal analyses are all formally equivalent
nd none of them provides an advantage over the rest, meaning that
FD does not contain more information than LFD and PFD, provided
hat all of them are applied using similar sets of parameters. Yet, as our
esults show, LFD and PFD allow a better extraction of the corresponding
euronal sources. 

Finally, peak frequencies can be affected by aperiodic 1∕ 𝑓 noise,
specially in situations where the SNR is very low. In that case, dis-
ntangling the effect of the background noise on the peak frequency
an be achieved by estimating the slope of the 1∕ 𝑓 part of spectra
n sequential time windows (for instance with the FOOOF algorithm,
 Donoghue et al., 2020 )) and then relating it to the changes in the fre-
uency of oscillations. This would allow ensuring that the changes in
he frequencies are not driven primarily by the changes in the aperiodic
art of spectra. For instance in a recent study ( Cesnaite et al., 2023 ) it
as shown that aging affects peak frequency and 1∕ 𝑓 noise differently

hus providing evidence for the distinct neuronal mechanisms relating
o both phenomena. 

Considering possible future works that are beyond the scope of this
aper, we think that an interesting extension might be adapting our de-
omposition methods to a discriminative framework where the external
ariable of interest can only take two discrete values. 

. Conclusions 

Understanding which brain activities hold the key to comprehend
rain function when analyzing experiments in cognitive neuroscience is
 challenge. So far, typically sensor space analyses are applied and unsu-
ervised models are used. Here, we have contributed novel approaches
or source space analysis, that are supervised, i.e. they directly relate to
abels. 

Specifically, three different source separation methods to find oscil-
atory sources whose frequency fluctuates in maximal (anti-) correla-
ion to an experimental variable of interest are proposed. We explained
he mathematical relation between all estimates and showed that both
ethods based on measures computed in the frequency domain (i.e. lo-

al frequency LFD and peak frequency PFD) provide significantly better
esults than the method based on instantaneous frequency, IFD. Also,
FD and PFD provide significantly better results than multivariate linear
egression. Furthermore, our source separation methods, unlike MLR,
rovide spatial filters that can be related to networks of sources whose
requency fluctuations are correlated to the experimental variable of in-
erest. Results on real EEG data further show the ability of LFD and PFD
o obtain neurophysiologically plausible sources. 

In summary, we consider our proposed source separation methods
elpful tools to broadly investigate and gain better insights on percep-
ual, motor and cognitive processes in the brain. 
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ppendix A. Derivation of the instantaneous frequency of a brain 

ource 

This appendix describes the mathematical derivations necessary to
efine 𝑓 𝑖 of one brain source according to the linear model of the EEG.
f 𝑠 𝑎 ( 𝑡 ) is the analytical signal of 𝑠 ( 𝑡 ) and we denote its argument as 𝜙( 𝑡 ) ,
 𝑎 ( 𝑡 ) can be written as: 

 𝑎 ( 𝑡 ) = |𝑠 𝑎 ( 𝑡 ) |𝑒 𝑗𝜙( 𝑡 ) (A.1)

nd: 

 

𝑗𝜙( 𝑡 ) = 

𝑠 𝑎 ( 𝑡 ) |𝑠 𝑎 ( 𝑡 ) | (A.2)

aking derivatives over time on the above equation: 

𝑑𝜙( 𝑡 ) 
𝑑𝑡 

𝑗 𝑒 𝑗𝜙( 𝑡 ) = 

𝑑 

𝑑 𝑡 

𝑠 𝑎 ( 𝑡 ) |𝑠 𝑎 ( 𝑡 ) | (A.3)

ubstituting Equation A.2 in Equation A.3 and rearranging: 

𝑑𝜙( 𝑡 ) 
𝑑𝑡 

= 

|𝑠 𝑎 ( 𝑡 ) |
𝑗𝑠 𝑎 ( 𝑡 ) 

𝑑 

𝑑𝑡 

𝑠 𝑎 ( 𝑡 ) |𝑠 𝑎 ( 𝑡 ) | = 

𝑑𝑠 𝑎 ( 𝑡 ) 
𝑑𝑡 

|𝑠 𝑎 ( 𝑡 ) | − 𝑠 𝑎 ( 𝑡 ) 
𝑑|𝑠 𝑎 ( 𝑡 ) |

𝑑𝑡 

𝑗𝑠 𝑎 ( 𝑡 ) |𝑠 𝑎 ( 𝑡 ) | (A.4)

On the other hand: 

𝑑|𝑠 𝑎 ( 𝑡 ) |
𝑑𝑡 

= 

𝑑 
√
𝑠 𝑎 ( 𝑡 ) 𝑠 ∗ 𝑎 ( 𝑡 ) 
𝑑𝑡 

= 

𝑑𝑠 𝑎 ( 𝑡 ) 
𝑑𝑡 

𝑠 ∗ 
𝑎 
( 𝑡 ) + 𝑠 𝑎 ( 𝑡 ) 

𝑑𝑠 ∗ 𝑎 ( 𝑡 ) 
𝑑𝑡 

2 |𝑠 𝑎 ( 𝑡 ) | (A.5)

here ∗ denotes complex conjugate. Substituting Equation A.5 on
quation A.4 we arrive to: 

𝑑𝜙( 𝑡 ) 
𝑑𝑡 

= 

𝑑𝑠 𝑎 ( 𝑡 ) 
𝑑𝑡 

𝑠 ∗ 
𝑎 
( 𝑡 ) − 𝑠 𝑎 ( 𝑡 ) 

𝑑𝑠 ∗ 𝑎 ( 𝑡 ) 
𝑑𝑡 

2 𝑗|𝑠 𝑎 ( 𝑡 ) |2 = ℑ 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝑑𝑠 𝑎 ( 𝑡 ) 
𝑑𝑡 

𝑠 ∗ 
𝑎 
( 𝑡 ) |𝑠 𝑎 ( 𝑡 ) |2 

⎫ ⎪ ⎬ ⎪ ⎭ (A.6)

Thus, 𝑓 𝑖 ( 𝑡 ) in Equation 6 can be written as: 

 𝑖 ( 𝑡 ) = 

1 
2 𝜋

ℑ 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝑑𝑠 𝑎 ( 𝑡 ) 
𝑑𝑡 

𝑠 ∗ 
𝑎 
( 𝑡 ) |𝑠 𝑎 ( 𝑡 ) |2 

⎫ ⎪ ⎬ ⎪ ⎭ (A.7)
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riting the previous equation in terms of the backward model in
quation 3 , we arrive at Equation 10 . 

ppendix B. Derivation of the local frequency of a brain source 

This appendix describes how 𝑓 loc of a brain source can be mathe-
atically derived according to the linear model of the EEG. Recall here

hat the spectrum of the analytic signal is 0 for negative frequencies, it
oincides with the value of the real signal at 𝑓 = 0 and it is twice the
alue otherwise. For a band-limited signal between 𝑓 1 ≠ 0 and 𝑓 2 ≠ 0 ,
quation 8 can be rewritten as the following: 

 loc = 

∫ 𝑓 2 
𝑓 1 

𝑓 | 𝑎 ( 𝑓 ) |2 𝑑𝑓 
∫ 𝑓 2 
𝑓 1 

| 𝑎 ( 𝑓 ) |2 𝑑𝑓 = 

∫ 𝑓 2 
𝑓 1 

𝑓 |2 ( 𝑓 ) |2 𝑑𝑓 
∫ 𝑓 2 
𝑓 1 

|2 ( 𝑓 ) |2 𝑑𝑓 = 

∫ 𝑓 2 
𝑓 1 

𝑓 |( 𝑓 ) |2 𝑑𝑓 
∫ 𝑓 2 
𝑓 1 

|( 𝑓 ) |2 𝑑𝑓 (B.1) 

here ( 𝑓 ) is the spectrum of the real-valued signal. In practice, the
ignal was divided into overlapping time segments, with each segment
indowed using a Hann function. Its corresponding spectrum was de-

ermined using fast Fourier transform (FFT). Finally, the squared magni-
ude of the spectrum was computed. Taking into account that all signals
re sampled, the 𝑓 loc formula is then: 

 loc ( 𝑛 ) = 

𝑓 2 ∑
𝑓= 𝑓 1 

𝑓 ( 𝑓 , 𝑛 ) ( 𝑓 , 𝑛 ) ∗ 

𝑓 2 ∑
𝑓= 𝑓 1 

 ( 𝑓, 𝑛 )  ∗ ( 𝑓, 𝑛 ) 

(B.2) 

here ( 𝑓, 𝑛 ) denotes the FFT of the n-th epoch (windowed by a Hann
unction) at frequency bin 𝑓 . Then, employing the backward model in
quation 3 , we can rewrite the square magnitude of the spectrum of the
-th epoch of a brain source signal 𝑠 ( 𝑡 ) = 𝐰 

⊤𝐱( 𝑡 ) as: 

𝑆 ( 𝑛, 𝑓 ) |2 = 𝑆 ( 𝑓, 𝑛 ) 𝑆 ( 𝑓, 𝑛 ) ∗ = 𝐰 

⊤ℜ {  ( 𝑓, 𝑛 )  

H ( 𝑓, 𝑛 )} 𝐰 (B.3) 

here  ( 𝑓, 𝑛 ) is the spectrum of sensor signals 𝐱( 𝑡 ) (windowed by the
ann function) at frequency bin 𝑓 and centered in window 𝑛 , and
 

H ( 𝑓, 𝑛 ) is its conjugate transpose (or Hermitian transpose). Taking the
eal part of the product of Fourier transforms in Equation B.3 is enough,
ecause as  ( 𝑓, 𝑛 )  

H ( 𝑓, 𝑛 ) is hermitian, the final result after multiplying
ith 𝒘 

⊤ and 𝒘 is a real value. 
Substituting equation B.3 in Equation B.2 and given that the weights

re not frequency nor epoch dependent, we obtain: 

 loc ( 𝑛, 𝐰 ) = 

𝑓 2 ∑
𝑓= 𝑓 1 

𝑓 𝐰 

⊤ℜ {  ( 𝑓 , 𝑛 )  

H ( 𝑓 , 𝑛 )} 𝐰 

𝑓 2 ∑
𝑓= 𝑓 1 

𝐰 

⊤ℜ {  ( 𝑓, 𝑛 )  

H ( 𝑓, 𝑛 )} 𝐰 

(B.4) 

= 

𝑓 2 ∑
𝑓= 𝑓 1 

𝐰 

⊤𝑓 ℜ {  ( 𝑓 , 𝑛 )  

H ( 𝑓 , 𝑛 )} 𝐰 

𝑓 2 ∑
𝑓= 𝑓 1 

𝐰 

⊤ℜ {  ( 𝑓, 𝑛 )  

H ( 𝑓, 𝑛 )} 𝐰 

(B.5) 

= 

𝐰 

⊤
( 𝑓 2 ∑

𝑓= 𝑓 1 

𝑓 ℜ {  ( 𝑓 , 𝑛 )  

H ( 𝑓 , 𝑛 )} 
)
𝐰 

𝐰 

⊤

( 𝑓 2 ∑
𝑓= 𝑓 1 

ℜ {  ( 𝑓, 𝑛 )  

H ( 𝑓, 𝑛 )} 
)
𝐰 

(B.6) 

hich is the same as Equation 14 . 
15 
ppendix C. Results of statistical analyses performed 

Performance of the different methods was operationalised as corre-
ations and recovery errors, and these performance measures were mod-
led using beta regressions, and the pairwise differences between meth-
ds were quantified using estimated marginal means. Beta regression
odels were used since recovery error values lie in the interval [0,1] and

n practice, the correlation values were primarily positive. To account
or the few negative correlation values, the vectors were rescaled from
-1,1] to [0,1] (see Douma and Weedon (2019) ) for the purposes of mod-
ling, and then the estimated marginal means were back-transformed to
he original scale. To keep analyses and results consistent and compa-
able between the different variables, we followed this same procedure
or all variables. 

.1. Statistical tests of IFD, LFD and PFD with factors method and epoch 
ength 

Table C.1 

Interaction and main effects for correlation values ob- 
tained with decomposition methods in each SNR. Meth- 
ods are IFD, LFD and PFD. 

SNR Factor Df Chisq Pr( > Chisq) 

0.1 
Method 2 1897.82 < 0.001 ∗ ∗ ∗ 

Epoch 3 453.36 < 0.001 ∗ ∗ ∗ 

Method:Epoch 6 192.50 < 0.001 ∗ ∗ ∗ 

0.5 
Method 2 5904.03 < 0.001 ∗ ∗ ∗ 

Epoch 3 968.81 < 0.001 ∗ ∗ ∗ 

Method:Epoch 6 187.18 < 0.001 ∗ ∗ ∗ 

1.0 
Method 2 6970.40 < 0.001 ∗ ∗ ∗ 

Epoch 3 1239.50 < 0.001 ∗ ∗ ∗ 

Method:Epoch 6 148.94 < 0.001 ∗ ∗ ∗ 

Signif. codes: < 0.001 ’ ∗ ∗ ∗ ’, < 0.01 ’ ∗ ∗ ’, < 0.05 ’ ∗ ’, > 0.05 
n.s. 

Table C.2 

Estimated marginal means of correlation difference between methods at dif- 
ferent epochs. 

SNR Contrast 500 ms 1000 ms 2000 ms 3000 ms 

0.1 
IFD - LFD -0.435 ∗ ∗ ∗ -0.398 ∗ ∗ ∗ -0.366 ∗ ∗ ∗ -0.350 ∗ ∗ ∗ 

IFD - PFD -0.437 ∗ ∗ ∗ -0.399 ∗ ∗ ∗ -0.367 ∗ ∗ ∗ -0.351 ∗ ∗ ∗ 

LFD - PFD -0.001 n.s. -0.001, n.s. -0.001, n.s. -0.001, n.s. 

0.5 
IFD - LFD -0.465 ∗ ∗ ∗ -0.391 ∗ ∗ ∗ -0.325 ∗ ∗ ∗ -0.315 ∗ ∗ ∗ 

IFD - PFD -0.496 ∗ ∗ ∗ -0.415 ∗ ∗ ∗ -0.344 ∗ ∗ ∗ -0.333 ∗ ∗ ∗ 

LFD - PFD -0.031 ∗ ∗ ∗ -0.024 ∗ ∗ ∗ -0.019 ∗ ∗ ∗ -0.018 ∗ ∗ ∗ 

1.0 
IFD - LFD -0.431 ∗ ∗ ∗ -0.341 ∗ ∗ ∗ -0.277 ∗ ∗ ∗ -0.264 ∗ ∗ ∗ 

IFD - PFD -0.454 ∗ ∗ ∗ -0.357 ∗ ∗ ∗ -0.29 ∗ ∗ ∗ -0.276 ∗ ∗ ∗ 

LFD - PFD -0.023 ∗ ∗ ∗ -0.017 ∗ ∗ ∗ -0.013 ∗ ∗ ∗ -0.012 ∗ ∗ ∗ 

Signif. codes: < 0.001 ’ ∗ ∗ ∗ ’, < 0.01 ’ ∗ ∗ ’, < 0.05 ’ ∗ ’, > 0.05 n.s. 
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Table C.3 

Estimated marginal means of correlation difference between epoch 
lengths within different decomposition methods. 

SNR Contrast IFD LFD PFD 

500 ms. - 1000 ms. -0.141 ∗ ∗ ∗ -0.104 ∗ ∗ ∗ -0.103 ∗ ∗ ∗ 

500 ms. - 2000 ms. -0.238 ∗ ∗ ∗ -0.169 ∗ ∗ ∗ -0.168 ∗ ∗ ∗ 

500 ms. - 3000 ms. -0.281 ∗ ∗ ∗ -0.196 ∗ ∗ ∗ -0.195 ∗ ∗ ∗ 

0.1 1000 ms. - 2000 ms. -0.097 ∗ ∗ ∗ -0.065 ∗ ∗ ∗ -0.065 ∗ ∗ ∗ 

1000 ms.- 3000 ms. -0.141 ∗ ∗ ∗ -0.092 ∗ ∗ ∗ -0.092 ∗ ∗ ∗ 

2000 ms.- 3000 ms. -0.043 ∗ -0.027 ∗ -0.027 ∗ 

500 ms. - 1000 ms. -0.143 ∗ ∗ ∗ -0.069 ∗ ∗ ∗ -0.062 ∗ ∗ ∗ 

500 ms. - 2000 ms. -0.259 ∗ ∗ ∗ -0.118 ∗ ∗ ∗ -0.106 ∗ ∗ ∗ 

500 ms. - 3000 ms. -0.275 ∗ ∗ ∗ -0.125 ∗ ∗ ∗ -0.112 ∗ ∗ ∗ 

0.5 1000 ms. - 2000 ms. -0.115 ∗ ∗ ∗ -0.049 ∗ ∗ ∗ -0.044 ∗ ∗ ∗ 

1000 ms. - 3000 ms. -0.132 ∗ ∗ ∗ -0.056 ∗ ∗ ∗ -0.05 ∗ ∗ ∗ 

2000 ms. - 3000 ms. -0.016, n.s. -0.007, n.s. -0.006, n.s. 

500 ms. - 1000 ms. -0.143 ∗ ∗ ∗ -0.069 ∗ ∗ ∗ -0.062 ∗ ∗ ∗ 

500 ms. - 2000 ms. -0.259 ∗ ∗ ∗ -0.118 ∗ ∗ ∗ -0.106 ∗ ∗ ∗ 

500 ms. - 3000 ms. -0.275 ∗ ∗ ∗ -0.125 ∗ ∗ ∗ -0.112 ∗ ∗ ∗ 

1.0 1000 ms. - 2000 ms. -0.115 ∗ ∗ ∗ -0.049 ∗ ∗ ∗ -0.044 ∗ ∗ ∗ 

1000 ms. - 3000 ms. -0.132 ∗ ∗ ∗ -0.056 ∗ ∗ ∗ -0.05 ∗ ∗ ∗ 

Signif. codes: < 0.001 ’ ∗ ∗ ∗ ’, < 0.01 ’ ∗ ∗ ’, < 0.05 ’ ∗ ’, > 0.05 n.s. 

Table C.4 

Interaction and main effects for recovery errors of decom- 
position methods for different SNR. 

SNR Factor Df Chisq Pr( > Chisq) 

0.1 
Method 2 572.733 < 0.001 ∗ ∗ ∗ 

Epoch 3 329.739 < 0.001 ∗ ∗ ∗ 

Method:Epoch 6 30.337 < 0.001 ∗ ∗ ∗ 

0.5 
Method 2 1473.080 < 0.001 ∗ ∗ ∗ 

Epoch 3 45.245 < 0.001 ∗ ∗ ∗ 

Method:Epoch 6 10.060 0.1222 n.s. 

1.0 
Method 2 1544.8262 < 0.001 ∗ ∗ ∗ 

Epoch 3 8.6975 0.0336 ∗ 

Method:Epoch 6 8.4801 0.2050 n.s. 

Signif. codes: < 0.001 ’ ∗ ∗ ∗ ’, < 0.01 ’ ∗ ∗ ’, < 0.05 ’ ∗ ’, > 0.05 
n.s. 

Table C.5 

Estimated marginal means of errors obtained with decomposition 
methods at different epochs. 

SNR Contrast 500 ms 1000 ms 2000 ms 3000 ms 

0.1 
IFD - LFD 0.234 ∗ ∗ ∗ 0.262 ∗ ∗ ∗ 0.270 ∗ ∗ ∗ 0.274 ∗ ∗ ∗ 

IFD - PFD 0.205 ∗ ∗ ∗ 0.231 ∗ ∗ ∗ 0.239 ∗ ∗ ∗ 0.243 ∗ ∗ ∗ 

LFD - PFD -0.028 ∗ -0.031 ∗ -0.031 ∗ -0.032 ∗ 

0.5 
IFD - LFD 0.185 ∗ ∗ ∗ 0.186 ∗ ∗ ∗ 0.186 ∗ ∗ ∗ 0.186 ∗ ∗ ∗ 

IFD - PFD 0.167 ∗ ∗ ∗ 0.168 ∗ ∗ ∗ 0.168 ∗ ∗ ∗ 0.168 ∗ ∗ ∗ 

LFD - PFD -0.018 ∗ ∗ -0.018 ∗ ∗ -0.018 ∗ ∗ -0.018 ∗ ∗ 

1.0 
IFD - LFD 0.133 ∗ ∗ ∗ 0.134 ∗ ∗ ∗ 0.134 ∗ ∗ ∗ 0.134 ∗ ∗ ∗ 

IFD - PFD 0.123 ∗ ∗ ∗ 0.123 ∗ ∗ ∗ 0.123 ∗ ∗ ∗ 0.123 ∗ ∗ ∗ 

LFD - PFD -0.01 ∗ -0.01 ∗ -0.01 ∗ -0.01 ∗ 

Signif. codes: < 0.001 ’ ∗ ∗ ∗ ’, < 0.01 ’ ∗ ∗ ’, < 0.05 ’ ∗ ’, > 0.05 n.s. 

Table C.6 

Estimated marginal means of recovery error difference between epoch 
lengths within different decomposition methods. 

SNR Contrast IFD LFD PFD 

0.1 

500 ms. - 1000 ms. 0.122 ∗ ∗ ∗ 0.15 ∗ ∗ ∗ 0.147 ∗ ∗ ∗ 

500 ms. - 2000 ms. 0.174 ∗ ∗ ∗ 0.21 ∗ ∗ ∗ 0.207 ∗ ∗ ∗ 

500 ms. - 3000 ms. 0.204 ∗ ∗ ∗ 0.244 ∗ ∗ ∗ 0.241 ∗ ∗ ∗ 

1000 ms. - 2000 ms. 0.052 ∗ ∗ ∗ 0.06 ∗ ∗ ∗ 0.06 ∗ ∗ ∗ 

1000 ms. - 3000 ms. 0.082 ∗ ∗ ∗ 0.094 ∗ ∗ ∗ 0.094 ∗ ∗ ∗ 

2000 ms. - 3000 ms. 0.03, n.s. 0.034, n.s. 0.034, n.s. 

0.5 

500 ms. - 1000 ms. 0.025 ∗ ∗ ∗ 0.026 ∗ ∗ ∗ 0.026 ∗ ∗ ∗ 

500 ms. - 2000 ms. 0.038 ∗ ∗ ∗ 0.039 ∗ ∗ ∗ 0.039 ∗ ∗ ∗ 

500 ms. - 3000 ms. 0.03 ∗ ∗ ∗ 0.032 ∗ ∗ ∗ 0.032 ∗ ∗ ∗ 

1000 ms. - 2000 ms. 0.013, n.s. 0.013, n.s. 0.013, n.s. 
1000 ms. - 3000 ms. 0.005, n.s. 0.005, n.s. 0.005, n.s. 
2000 ms. - 3000 ms. -0.007, n.s. -0.008, n.s. -0.008, n.s. 

1.0 

500 ms. - 1000 ms. 0.01, n.s. 0.01, n.s. 0.01, n.s. 
500 ms. - 2000 ms. 0.011 ∗ 0.012 ∗ 0.012 ∗ 

500 ms. - 3000 ms. 0.006, n.s. 0.006, n.s. 0.006, n.s. 
1000 ms. - 2000 ms. 0.001, n.s. 0.001, n.s. 0.001, n.s. 
1000 ms. - 3000 ms. -0.004, n.s. -0.004, n.s. -0.004, n.s. 
2000 ms. - 3000 ms. -0.005, n.s. -0.005, n.s. -0.005, n.s. 

Signif. codes: < 0.001 ’ ∗ ∗ ∗ ’, < 0.01 ’ ∗ ∗ ’, < 0.05 ’ ∗ ’, > 0.05 n.s. 
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.2. Statistical tests of MLR with factors frequency shift estimate and 

poch length for different SNR 

Table C.7 

Interaction and main effects for correlation values obtained with 
MLR and different frequency estimates ( ⟨𝑓 𝑖 ⟩, 𝑓 loc , 𝑓 peak ). 

SNR Factor Df Chisq Pr 

0.1 Fr. Est. 2 215.915 < 0.001 ∗ ∗ ∗ 

Epoch 3 936.2833 < 0.001 ∗ ∗ ∗ 

Fr. Est.:Epoch 6 99.292 < 0.001 ∗ ∗ ∗ 

0.5 Fr. Est. 2 275.442 < 0.001 ∗ ∗ ∗ 

Epoch 3 2233.399 < 0.001 ∗ ∗ ∗ 

Fr. Est.:Epoch 6 64.395 < 0.001 ∗ ∗ ∗ 

1.0 Fr. Est. 2 298.268 < 0.001 ∗ ∗ ∗ 

Epoch 3 2558.223 < 0.001 ∗ ∗ ∗ 

Fr. Est.:Epoch 6 55.894 < 0.001 ∗ ∗ ∗ 

Signif. codes: < 0.001 ’ ∗ ∗ ∗ ’, < 0.01 ’ ∗ ∗ ’, < 0.05 ’ ∗ ’, > 0.05 n.s. 
Table C.8 

Estimated marginal means of correlations obtained with MLR and differ- 
ent frequency shift estimates. 

SNR Contrast 500 ms 1000 ms 2000 ms 3000 ms 

0.1 
⟨𝑓 𝑖 ⟩ − 𝑓 loc -0.038 ∗ ∗ ∗ -0.036 ∗ ∗ ∗ -0.035 ∗ ∗ ∗ -0.033 ∗ ∗ ∗ ⟨𝑓 𝑖 ⟩ − 𝑓 peak 0.02 ∗ ∗ ∗ 0.019 ∗ ∗ ∗ 0.018 ∗ ∗ ∗ 0.018 ∗ ∗ ∗ 

𝑓 loc − 𝑓 peak 0.058 ∗ ∗ ∗ 0.056 ∗ ∗ ∗ 0.053 ∗ ∗ ∗ 0.051 ∗ ∗ ∗ 

0.5 
⟨𝑓 𝑖 ⟩ − 𝑓 loc -0.051 ∗ ∗ ∗ -0.044 ∗ ∗ ∗ -0.037 ∗ ∗ ∗ -0.034 ∗ ∗ ∗ ⟨𝑓 𝑖 ⟩ − 𝑓 peak 0.039 ∗ ∗ ∗ 0.034 ∗ ∗ ∗ 0.029 ∗ ∗ ∗ 0.027 ∗ ∗ ∗ 

𝑓 loc − 𝑓 peak 0.091 ∗ ∗ ∗ 0.079 ∗ ∗ ∗ 0.066 ∗ ∗ ∗ 0.061 ∗ ∗ ∗ 

1.0 
⟨𝑓 𝑖 ⟩ − 𝑓 loc -0.058 ∗ ∗ ∗ -0.047 ∗ ∗ ∗ -0.038 ∗ ∗ ∗ -0.035 ∗ ∗ ∗ ⟨𝑓 𝑖 ⟩ − 𝑓 peak 0.034 ∗ ∗ ∗ 0.028 ∗ ∗ ∗ 0.023 ∗ ∗ ∗ 0.021 ∗ ∗ ∗ 

𝑓 loc − 𝑓 peak 0.092 ∗ ∗ ∗ 0.076 ∗ ∗ ∗ 0.061 ∗ ∗ ∗ 0.055 ∗ ∗ ∗ 

Signif. codes: < 0.001 ’ ∗ ∗ ∗ ’, < 0.01 ’ ∗ ∗ ’, < 0.05 ’ ∗ ’, > 0.05 n.s. 
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Table C.9 

Estimated marginal means of correlation difference between epoch 
lengths within different frequency shift estimates for MLR. 

SNR Contrast ⟨𝑓 𝑖 ⟩ 𝑓 loc 𝑓 peak 

0.1 

500 ms. - 1000 ms. -0.041 ∗ ∗ ∗ -0.039 ∗ ∗ ∗ -0.041 ∗ ∗ ∗ 

500 ms. - 2000 ms. -0.094 ∗ ∗ ∗ -0.091 ∗ ∗ ∗ -0.096 ∗ ∗ ∗ 

500 ms. - 3000 ms. -0.122 ∗ ∗ ∗ -0.117 ∗ ∗ ∗ -0.124 ∗ ∗ ∗ 

1000 ms. - 2000 ms. -0.054 ∗ ∗ ∗ -0.052 ∗ ∗ ∗ -0.055 ∗ ∗ ∗ 

1000 ms. - 3000 ms. -0.081 ∗ ∗ ∗ -0.078 ∗ ∗ ∗ -0.082 ∗ ∗ ∗ 

2000 ms. - 3000 ms. -0.027 ∗ ∗ ∗ -0.026 ∗ ∗ ∗ -0.028 ∗ ∗ ∗ 

0.5 

500 ms. - 1000 ms. -0.102 ∗ ∗ ∗ -0.095 ∗ ∗ ∗ -0.107 ∗ ∗ ∗ 

500 ms. - 2000 ms. -0.192 ∗ ∗ ∗ -0.178 ∗ ∗ ∗ -0.202 ∗ ∗ ∗ 

500 ms. - 3000 ms. -0.225 ∗ ∗ ∗ -0.208 ∗ ∗ ∗ -0.238 ∗ ∗ ∗ 

1000 ms. - 2000 ms. -0.09 ∗ ∗ ∗ -0.083 ∗ ∗ ∗ -0.095 ∗ ∗ ∗ 

1000 ms. - 3000 ms. -0.123 ∗ ∗ ∗ -0.113 ∗ ∗ ∗ -0.131 ∗ ∗ ∗ 

2000 ms. - 3000 ms. -0.033 ∗ ∗ ∗ -0.03 ∗ ∗ ∗ -0.035 ∗ ∗ ∗ 

1.0 

500 ms. - 1000 ms. -0.112 ∗ ∗ ∗ -0.101 ∗ ∗ ∗ -0.118 ∗ ∗ ∗ 

500 ms. - 2000 ms. -0.197 ∗ ∗ ∗ -0.177 ∗ ∗ ∗ -0.208 ∗ ∗ ∗ 

500 ms. - 3000 ms. -0.226 ∗ ∗ ∗ -0.203 ∗ ∗ ∗ -0.24 ∗ ∗ ∗ 

1000 ms. - 2000 ms. -0.085 ∗ ∗ ∗ -0.075 ∗ ∗ ∗ -0.09 ∗ ∗ ∗ 

1000 ms. - 3000 ms. -0.115 ∗ ∗ ∗ -0.102 ∗ ∗ ∗ -0.122 ∗ ∗ ∗ 

2000 ms. - 3000 ms. -0.03 ∗ ∗ ∗ -0.026 ∗ ∗ ∗ -0.032 ∗ ∗ ∗ 

Signif. codes: < 0.001 ’ ∗ ∗ ∗ ’, < 0.01 ’ ∗ ∗ ’, < 0.05 ’ ∗ ’, > 0.05 n.s. 

C
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Table C.12 

Estimated marginal means of correlation difference between epoch 
lengths within different frequency shift estimates for the best Laplacian 
derivation. 

SNR Contrast ⟨𝑓 𝑖 ⟩ 𝑓 loc 𝑓 peak 

0.1 

500 ms. - 1000 ms. -0.042 ∗ ∗ ∗ -0.042 ∗ ∗ ∗ -0.042 ∗ ∗ ∗ 

500 ms. - 2000 ms. -0.088 ∗ ∗ ∗ -0.088 ∗ ∗ ∗ -0.089 ∗ ∗ ∗ 

500 ms. - 3000 ms. -0.11 ∗ ∗ ∗ -0.109 ∗ ∗ ∗ -0.111 ∗ ∗ ∗ 

1000 ms. - 2000 ms. -0.046 ∗ ∗ ∗ -0.046 ∗ ∗ ∗ -0.047 ∗ ∗ ∗ 

1000 ms. - 3000 ms. -0.068 ∗ ∗ ∗ -0.068 ∗ ∗ ∗ -0.068 ∗ ∗ ∗ 

2000 ms. - 3000 ms. -0.022, n.s. -0.022, n.s. -0.022, n.s. 

0.5 

500 ms. - 1000 ms. -0.083 ∗ ∗ ∗ -0.082 ∗ ∗ ∗ -0.085 ∗ ∗ ∗ 

500 ms. - 2000 ms. -0.165 ∗ ∗ ∗ -0.161 ∗ ∗ ∗ -0.167 ∗ ∗ ∗ 

500 ms. - 3000 ms. -0.196 ∗ ∗ ∗ -0.193 ∗ ∗ ∗ -0.2 ∗ ∗ ∗ 

1000 ms. - 2000 ms. -0.081 ∗ ∗ ∗ -0.079 ∗ ∗ ∗ -0.083 ∗ ∗ ∗ 

1000 ms. - 3000 ms. -0.113 ∗ ∗ ∗ -0.11 ∗ ∗ ∗ -0.115 ∗ ∗ ∗ 

2000 ms. - 3000 ms. -0.032, n.s. -0.031, n.s. -0.033, n.s. 

1.0 

500 ms. - 1000 ms. -0.1 ∗ ∗ ∗ -0.098 ∗ ∗ ∗ -0.102 ∗ ∗ ∗ 

500 ms. - 2000 ms. -0.186 ∗ ∗ ∗ -0.181 ∗ ∗ ∗ -0.19 ∗ ∗ ∗ 

500 ms. - 3000 ms. -0.22 ∗ ∗ ∗ -0.213 ∗ ∗ ∗ -0.225 ∗ ∗ ∗ 

1000 ms. - 2000 ms. -0.086 ∗ ∗ ∗ -0.083 ∗ ∗ ∗ -0.088 ∗ ∗ ∗ 

1000 ms. - 3000 ms. -0.12 ∗ ∗ ∗ -0.116 ∗ ∗ ∗ -0.123 ∗ ∗ ∗ 

2000 ms. - 3000 ms. -0.034, n.s. -0.033, n.s. -0.035, n.s. 

Signif. codes: < 0.001 ’ ∗ ∗ ∗ ’, < 0.01 ’ ∗ ∗ ’, < 0.05 ’ ∗ ’, > 0.05 n.s. 

C
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.3. Statistical tests of best Laplacian channel with factors frequency shift 
stimate and epoch length for each SNR 
Table C.10 

Interaction and main effects for correlation values and differ- 
ent frequency estimates used for the best Laplacian deriva- 
tion and different SNR. 

SNR Factor Df Chisq Pr( > Chisq) 

0.1 
Fr. Est. 2 11.5909 0.003 ∗ ∗ 

Fr. Est. 3 150.9316 < 0.001 ∗ ∗ ∗ 

Method:Fr. Est.h 6 2.4612 0.872780 n.s. 

0.5 
Fr. Est. 2 15.8600 < 0.001 ∗ ∗ ∗ 

Fr. Est. 3 227.5349 < 0.001 ∗ ∗ ∗ 

Method:Fr. Est. 6 1.7247 0.9432 n.s. 

1.0 
Fr. Est. 2 19.0568 < 0.001 ∗ ∗ ∗ 

Epoch 3 257.2585 < 0.001 ∗ ∗ ∗ 

Method:Fr. Est. 6 1.9902 0.9206 n.s. 

Signif. codes: < 0.001 ’ ∗ ∗ ∗ ’, < 0.01 ’ ∗ ∗ ’, < 0.05 ’ ∗ ’, > 0.05 n.s. 

Table C.11 

Estimated marginal means of correlations obtained with the best Laplacian 
derivation and different frequency shift estimates. 

SNR Contrast 500 ms 1000 ms 2000 ms 3000 ms 

0.1 
⟨𝑓 𝑖 ⟩ − 𝑓 loc -0.01, n.s. -0.009, n.s. -0.009, n.s. -0.009, n.s. ⟨𝑓 𝑖 ⟩ − 𝑓 peak 0.019, n.s. 0.019, n.s. 0.019, n.s. 0.019, n.s. 

𝑓 loc − 𝑓 peak 0.029 ∗ ∗ 0.028 ∗ ∗ 0.028 ∗ ∗ 0.028 ∗ ∗ 

0.5 
⟨𝑓 𝑖 ⟩ − 𝑓 loc -0.028, n.s. -0.027, n.s. -0.025, n.s. -0.024, n.s. ⟨𝑓 𝑖 ⟩ − 𝑓 peak 0.025, n.s. 0.024, n.s. 0.022, n.s. 0.021, n.s. 

𝑓 loc − 𝑓 peak 0.053 ∗ ∗ ∗ 0.05 ∗ ∗ ∗ 0.047 ∗ ∗ ∗ 0.046 ∗ ∗ ∗ 

1.0 
⟨𝑓 𝑖 ⟩ − 𝑓 loc -0.036 ∗ -0.034 ∗ -0.031 ∗ -0.029 ∗ ⟨𝑓 𝑖 ⟩ − 𝑓 peak 0.026, n.s. 0.024, n.s. 0.022, n.s. 0.021, n.s. 

𝑓 loc − 𝑓 peak 0.062 ∗ ∗ ∗ 0.058 ∗ ∗ ∗ 0.053 ∗ ∗ ∗ 0.05 ∗ ∗ ∗ 

Signif. codes: < 0.001 ’ ∗ ∗ ∗ ’, < 0.01 ’ ∗ ∗ ’, < 0.05 ’ ∗ ’, > 0.05 n.s. 

17 
.4. Comparison between decomposition methods, MLR and the best 

aplacian Derivation for each frequency shift estimate 
Table C.13 

Interaction and main effects for correlation values obtained using dif- 
ferent frequency shift estimates and applied to all decomposition meth- 
ods, MLR and best Laplacian derivation. 

SNR Fr. Est. Factors Df Chisq Pr( > Chisq) 

Method 2 1159.255 < 0.001 ∗ ∗ ∗ 

0.1 Epoch 3 202.755 < 0.001 ∗ ∗ ∗ 

Method:Epoch 6 6.979 < 0.3228 n.s. 

Method 2 798.122 < 0.0011 ∗ ∗ ∗ ⟨𝑓 𝑖 ⟩ 0.5 Epoch 3 536.548 < 0.001 ∗ ∗ ∗ 

Method:Epoch 6 14.448 0.025 ∗ 

1.0 Method 2 694.669 < 0.001 ∗ ∗ ∗ 

Epoch 3 642.231 < 0.001 ∗ ∗ ∗ 

Method:Epoch 6 10.632 0.1004 n.s. 

0.1 Method 2 1735.8471 < 0.001 ∗ ∗ ∗ 

Epoch 3 325.459 < 0.001 ∗ ∗ ∗ 

Method:Epoch 6 52.114 < 0.001 ∗ ∗ ∗ 

Method 2 2402.695 < 0.001 ∗ ∗ ∗ 

𝑓 loc 0.5 Epoch 3 620.913 < 0.001 ∗ ∗ ∗ 

Method:Epoch 6 28.821 < 0.001 ∗ ∗ ∗ 

Method 2 2193.283 < 0.001 ∗ ∗ ∗ 

1.0 Epoch 3 643.576 < 0.001 ∗ ∗ ∗ 

Method:Epoch 6 19.245 0.004 ∗ ∗ 

Method 2 2337.949 < 0.001 ∗ ∗ ∗ 

0.1 Epoch 3 470.13 < 0.001 ∗ ∗ ∗ 

Method:Epoch 6 393.27 < 0.001 ∗ ∗ ∗ 

0.5 
Method 2 3682.15 < 0.001 ∗ ∗ ∗ 

𝑓 peak Epoch 3 627.04 < 0.001 ∗ ∗ ∗ 

Method:Epoch 6 100.981 < 0.001 ∗ ∗ ∗ 

1.0 Method 2 3412.693 < 0.001 ∗ ∗ ∗ 

Epoch 3 606.259 < 0.001 ∗ ∗ ∗ 

Method:Epoch 6 48.832 < 0.001 ∗ ∗ ∗ 

Signif. codes: < 0.001 ’ ∗ ∗ ∗ ’, < 0.01 ’ ∗ ∗ ’, < 0.05 ’ ∗ ’, > 0.05 n.s. 
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Table C.14 

Estimated marginal means of correlations obtained with different frequency shift 
estimates and SNRs, comparison between decomposition method, MLR and best 
Laplacian derivation. 

Fr. Est. SNR contrast 500 1000 2000 3000 

⟨𝑓 𝑖 ⟩

0.1 MLR - Lap 0.197 ∗ ∗ ∗ 0.192 ∗ ∗ ∗ 0.186 ∗ ∗ ∗ 0.185 ∗ ∗ ∗ 

MLR - IFD 0.201 ∗ ∗ ∗ 0.196 ∗ ∗ ∗ 0.19 ∗ ∗ ∗ 0.189 ∗ ∗ ∗ 

IFD - Lap -0.004, n.s. -0.004, n.s. -0.004, n.s. -0.004, n.s. 

0.5 MLR - Lap 0.243 ∗ ∗ ∗ 0.225 ∗ ∗ ∗ 0.201 ∗ ∗ ∗ 0.198 ∗ ∗ ∗ 

MLR - IFD 0.174 ∗ ∗ ∗ 0.16 ∗ ∗ ∗ 0.141 ∗ ∗ ∗ 0.14 ∗ ∗ ∗ 

IFD - Lap 0.069 ∗ ∗ ∗ 0.065 ∗ ∗ ∗ 0.059 ∗ ∗ ∗ 0.058 ∗ ∗ ∗ 

1.0 MLR - Lap 0.245 ∗ ∗ ∗ 0.217 ∗ ∗ ∗ 0.188 ∗ ∗ ∗ 0.182 ∗ ∗ ∗ 

MLR - IFD 0.149 ∗ ∗ ∗ 0.13 ∗ ∗ ∗ 0.112 ∗ ∗ ∗ 0.108 ∗ ∗ ∗ 

IFD - Lap 0.096 ∗ ∗ ∗ 0.086 ∗ ∗ ∗ 0.076 ∗ ∗ ∗ 0.074 ∗ ∗ ∗ 

𝑓 loc 

0.1 MLR - Lap 0.224 ∗ ∗ ∗ 0.215 ∗ ∗ ∗ 0.204 ∗ ∗ ∗ 0.196 ∗ ∗ ∗ 

MLR - LFD -0.192 ∗ ∗ ∗ -0.179 ∗ ∗ ∗ -0.164 ∗ ∗ ∗ -0.155 ∗ ∗ ∗ 

LFD - Lap 0.417 ∗ ∗ ∗ 0.394 ∗ ∗ ∗ 0.368 ∗ ∗ ∗ 0.351 ∗ ∗ ∗ 

0.5 MLR - Lap 0.269 ∗ ∗ ∗ 0.238 ∗ ∗ ∗ 0.209 ∗ ∗ ∗ 0.195 ∗ ∗ ∗ 

MLR - LFD -0.224 ∗ ∗ ∗ -0.185 ∗ ∗ ∗ -0.155 ∗ ∗ ∗ -0.141 ∗ ∗ ∗ 

LFD - Lap 0.493 ∗ ∗ ∗ 0.422 ∗ ∗ ∗ 0.364 ∗ ∗ ∗ 0.336 ∗ ∗ ∗ 

1.0 MLR - Lap 0.266 ∗ ∗ ∗ 0.225 ∗ ∗ ∗ 0.192 ∗ ∗ ∗ 0.177 ∗ ∗ ∗ 

MLR - LFD -0.206 ∗ ∗ ∗ -0.161 ∗ ∗ ∗ -0.131 ∗ ∗ ∗ -0.118 ∗ ∗ ∗ 

LFD - Lap 0.473 ∗ ∗ ∗ 0.386 ∗ ∗ ∗ 0.323 ∗ ∗ ∗ 0.295 ∗ ∗ ∗ 

𝑓 peak 

0.1 MLR - Lap 0.199 ∗ ∗ ∗ 0.191 ∗ ∗ ∗ 0.181 ∗ ∗ ∗ 0.176 ∗ ∗ ∗ 

MLR - PFD -0.255 ∗ ∗ ∗ -0.235 ∗ ∗ ∗ -0.215 ∗ ∗ ∗ -0.206 ∗ ∗ ∗ 

PFD - Lap 0.454 ∗ ∗ ∗ 0.425 ∗ ∗ ∗ 0.397 ∗ ∗ ∗ 0.381 ∗ ∗ ∗ 

0.5 MLR - Lap 0.236 ∗ ∗ ∗ 0.216 ∗ ∗ ∗ 0.193 ∗ ∗ ∗ 0.183 ∗ ∗ ∗ 

MLR - PFD -0.337 ∗ ∗ ∗ -0.288 ∗ ∗ ∗ -0.243 ∗ ∗ ∗ -0.225 ∗ ∗ ∗ 

PFD - Lap 0.573 ∗ ∗ ∗ 0.504 ∗ ∗ ∗ 0.436 ∗ ∗ ∗ 0.408 ∗ ∗ ∗ 

1.0 MLR - Lap 0.242 ∗ ∗ ∗ 0.214 ∗ ∗ ∗ 0.188 ∗ ∗ ∗ 0.176 ∗ ∗ ∗ 

MLR - PFD -0.309 ∗ ∗ ∗ -0.254 ∗ ∗ ∗ -0.211 ∗ ∗ ∗ -0.193 ∗ ∗ ∗ 

PFD - Lap 0.551 ∗ ∗ ∗ 0.469 ∗ ∗ ∗ 0.398 ∗ ∗ ∗ 0.369 ∗ ∗ ∗ 

Signif. codes: < 0.001 ’ ∗ ∗ ∗ ’, < 0.01 ’ ∗ ∗ ’, < 0.05 ’ ∗ ’, > 0.05 n.s. 
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Table C.16 

Estimated marginal means of correlation values obtained 
with decomposition methods at different bands. 

Contrast Band EMM 

IFD - LFD 

delta -0.455 ∗ ∗ ∗ 

theta -0.342 ∗ ∗ ∗ 

alpha -0.312 ∗ ∗ ∗ 

beta -0.318 ∗ ∗ ∗ 

gamma -0.354 ∗ ∗ ∗ 

IFD - PFD 

delta -0.528 ∗ ∗ ∗ 

theta -0.39 ∗ ∗ ∗ 

alpha -0.355 ∗ ∗ ∗ 

beta -0.361 ∗ ∗ ∗ 

gamma -0.404 ∗ ∗ ∗ 

LFD - PFD 

delta -0.072 ∗ ∗ ∗ 

theta -0.048 ∗ ∗ ∗ 

alpha -0.043 ∗ ∗ ∗ 

beta -0.044 ∗ ∗ ∗ 

gamma -0.05 ∗ ∗ ∗ 

Signif. codes: < 0.001 ’ ∗ ∗ ∗ ’, < 0.01 ’ ∗ ∗ ’, < 0.05 ’ ∗ ’, > 0.05 n.s. 

Table C.17 

Estimated marginal means of correlation values obtained with de- 
composition methods at different bands. 

Method Contrast EMM 

IFD 

delta - theta -0.234 ∗ ∗ ∗ 

delta - alpha -0.288 ∗ ∗ ∗ 

delta - beta -0.279 ∗ ∗ ∗ 

delta - gamma -0.211 ∗ ∗ ∗ 

theta - alpha -0.054 ∗ ∗ ∗ 

theta - beta -0.044 ∗ ∗ 

theta - gamma 0.023, n.s. 
alpha - beta 0.01, n.s. 
alpha - gamma 0.077 ∗ ∗ ∗ 

beta - gamma 0.067 ∗ ∗ ∗ 

LFD 

delta - theta -0.121 ∗ ∗ ∗ 

delta - alpha -0.145 ∗ ∗ ∗ 

delta - beta -0.141 ∗ ∗ ∗ 

delta - gamma -0.11 ∗ ∗ ∗ 

theta - alpha -0.024 ∗ ∗ ∗ 

theta - beta -0.02 ∗ ∗ 

theta - gamma 0.011, n.s. 
alpha - beta 0.004, n.s. 
alpha - gamma 0.035 ∗ ∗ ∗ 

beta - gamma 0.031 ∗ ∗ ∗ 

PFD 

delta - theta -0.096 ∗ ∗ ∗ 

delta - alpha -0.115 ∗ ∗ ∗ 

delta - beta -0.112 ∗ ∗ ∗ 

delta - gamma -0.088 ∗ ∗ ∗ 

theta - alpha -0.019 ∗ ∗ ∗ 

theta - beta -0.016 ∗ ∗ 

theta - gamma 0.008, n.s. 
alpha - beta 0.003, n.s. 
alpha - gamma 0.028 ∗ ∗ ∗ 

beta - gamma 0.024 ∗ ∗ ∗ 

Signif. codes: < 0.001 ’ ∗ ∗ ∗ ’, < 0.01 ’ ∗ ∗ ’, < 0.05 ’ ∗ ’, > 0.05 n.s. 

Table C.18 

Interaction and main effects for error values in different frequency 
bands. Methods are IFD, LFD and PFD. 

Factor Df Chisq Pr( > Chisq) 

Method 2 1687.79 < 0.001 ∗ ∗ ∗ 

Band 4 211.63 < 0.001 ∗ ∗ ∗ 

Method:Band 8 102.24 < 0.001 ∗ ∗ ∗ 

Signif. codes: < 0.001 ’ ∗ ∗ ∗ ’, < 0.01 ’ ∗ ∗ ’, < 0.05 ’ ∗ ’, > 0.05 n.s. 
.5. Statistical tests comparing different frequency bands for different 

ecomposition methods at fixed epoch length and SNR 

Table C.15 

Interaction and main effects for correlation values in dif- 
ferent frequency bands. Methods are IFD, LFD and PFD. 

Df Chisq Pr( > Chisq) 

Method 2 5698.74 < 0.001 ∗ ∗ ∗ 

Band 4 997.74 < 0.001 ∗ ∗ ∗ 

Method:Band 8 408.29 < 0.001 ∗ ∗ ∗ 

Signif. codes: < 0.001 ’ ∗ ∗ ∗ ’, < 0.01 ’ ∗ ∗ ’, < 0.05 ’ ∗ ’, > 0.05 
n.s. 
18 
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Table C.19 

Estimated marginal means of error values obtained with decomposi- 
tion methods at different bands. 

Contrast Band EMM 

IFD - LFD 

delta 0.207 ∗ ∗ ∗ 

theta 0.212 ∗ ∗ ∗ 

alpha 0.212 ∗ ∗ ∗ 

beta 0.21 ∗ ∗ ∗ 

gamma 0.208 ∗ ∗ ∗ 

IFD - PFD 

delta 0.176 ∗ ∗ ∗ 

theta 0.18 ∗ ∗ ∗ 

alpha 0.18 ∗ ∗ ∗ 

beta 0.179 ∗ ∗ ∗ 

gamma 0.177 ∗ ∗ ∗ 

LFD - PFD 

delta -0.031 ∗ ∗ ∗ 

theta -0.031 ∗ ∗ ∗ 

alpha -0.031 ∗ ∗ ∗ 

beta -0.031 ∗ ∗ ∗ 

gamma -0.031 ∗ ∗ ∗ 

Signif. codes: < 0.001 ’ ∗ ∗ ∗ ’, < 0.01 ’ ∗ ∗ ’, < 0.05 ’ ∗ ’, > 0.05 n.s. 

Table C.20 

Estimated marginal means of errors obtained with decomposition 
methods at different bands. 

Method Contrast EMM 

IFD 

delta - theta 0.078 ∗ ∗ ∗ 

delta - alpha 0.077 ∗ ∗ ∗ 

delta - beta 0.05 ∗ ∗ ∗ 

delta - gamma 0.017, n.s. 
theta - alpha 0, n.s. 
theta - beta -0.028 ∗ ∗ ∗ 

theta - gamma -0.061 ∗ ∗ ∗ 

alpha - beta -0.027 ∗ ∗ ∗ 

alpha - gamma -0.06 ∗ ∗ ∗ 

beta - gamma -0.033 ∗ ∗ ∗ 

LFD 

delta - theta 0.082 ∗ ∗ ∗ 

delta - alpha 0.082 ∗ ∗ ∗ 

delta - beta 0.053 ∗ ∗ ∗ 

delta - gamma 0.018, n.s. 
theta - alpha -0.001, n.s. 
theta - beta -0.029 ∗ ∗ ∗ 

theta - gamma -0.064 ∗ ∗ ∗ 

alpha - beta -0.028 ∗ ∗ ∗ 

alpha - gamma -0.063 ∗ ∗ ∗ 

beta - gamma -0.035 ∗ ∗ ∗ 

PFD 

delta -theta 0.082 ∗ ∗ ∗ 

delta - alpha 0.081 ∗ ∗ ∗ 

delta - beta 0.053 ∗ ∗ ∗ 

delta - gamma 0.018, n.s. 
theta - alpha -0.001, n.s. 
theta - beta -0.029 ∗ ∗ ∗ 

theta - gamma -0.064 ∗ ∗ ∗ 

alpha - beta -0.028 ∗ ∗ ∗ 

alpha - gamma -0.063 ∗ ∗ ∗ 

beta - gamma -0.035 ∗ ∗ ∗ 

Signif. codes: < 0.001 ’ ∗ ∗ ∗ ’, < 0.01 ’ ∗ ∗ ’, < 0.05 ’ ∗ ’, > 0.05 n.s. 
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.6. Statistical tests of decomposition methods IFD, LFD and PFD applied 

o real SSVEP data 

Table C.21 

Interaction and main effects for correlation values obtained 
using different decomposition methods applied to real SSVEP 
data. The method here means IFD, LFD or PFD. 

Factor Df Chisq Pr( > Chisq) 

Method 2 387.388 < 0.001 ∗ ∗ ∗ 

Epoch 3 218.410 < 0.001 ∗ ∗ ∗ 

Method:Epoch 6 38.277 < 0.001 ∗ ∗ ∗ 

Signif. codes: < 0.001 ’ ∗ ∗ ∗ ’, < 0.01 ’ ∗ ∗ ’, < 0.05 ’ ∗ ’, > 0.05 n.s. 

Table C.22 

Estimated marginal means of correlations obtained with dif- 
ferent decomposition methods and real SSVEP data. 

Contrast 500 1000 2000 3000 

IFD - LFD -0.334 ∗ ∗ ∗ -0.237 ∗ ∗ ∗ -0.153 ∗ ∗ ∗ -0.137 ∗ ∗ ∗ 

IFD - PFD -0.443 ∗ ∗ ∗ -0.308 ∗ ∗ ∗ -0.196 ∗ ∗ ∗ -0.175 ∗ ∗ ∗ 

LFD - PFD -0.109 ∗ ∗ ∗ -0.07 ∗ ∗ ∗ -0.042 ∗ ∗ ∗ -0.037 ∗ ∗ ∗ 

Signif. codes: < 0.001 ’ ∗ ∗ ∗ ’, < 0.01 ’ ∗ ∗ ’, < 0.05 ’ ∗ ’, > 0.05 n.s. 

Table C.23 

Estimated marginal means of correlation differences between 
epoch lengths within different decomposition methods. 

Contrast IFD LFD PFD 

500 ms. - 1000 ms. -0.192 ∗ ∗ ∗ -0.096 ∗ ∗ ∗ -0.057 ∗ ∗ ∗ 

500 ms. - 2000 ms. -0.342 ∗ ∗ ∗ -0.161 ∗ ∗ ∗ -0.095 ∗ ∗ ∗ 

500 ms. - 3000 ms. -0.369 ∗ ∗ ∗ -0.173 ∗ ∗ ∗ -0.101 ∗ ∗ ∗ 

1000 ms. - 2000 ms. -0.15 ∗ ∗ ∗ -0.066 ∗ ∗ ∗ -0.038 ∗ ∗ ∗ 

1000 ms. - 3000 ms. -0.177 ∗ ∗ ∗ -0.077 ∗ ∗ ∗ -0.044 ∗ ∗ ∗ 

2000 ms. - 3000 ms. -0.027, n.s. -0.011, n.s. -0.006, n.s.. 

Signif. codes: < 0.001 ’ ∗ ∗ ∗ ’, < 0.01 ’ ∗ ∗ ’, < 0.05 ’ ∗ ’, > 0.05 n.s. 

.7. Statistical tests comparing decomposition methods, MLR and best 

aplacian derivation for each frequency shift estimate applied to real 

SVEP data 

Table C.24 

Interaction and main effects for correlation values ob- 
tained using different decomposition methods, MLR and 
best Laplacian derivation applied to real SSVEP data. 

Fr. Est. Factor Df Chisq Pr( > Chisq) 

⟨𝑓 𝑖 ⟩ Method 2 424.738 < 0.001 ∗ ∗ ∗ 

Epoch 3 194.039 < 0.001 ∗ ∗ ∗ 

Method:Epoch 6 51.709 < 0.001 ∗ ∗ ∗ 

𝑓 loc 

Method 2 700.261 < 0.001 ∗ ∗ ∗ 

Epoch 3 101.741 < 0.001 ∗ ∗ ∗ 

Method:Epoch 6 23.409 < 0.001 ∗ ∗ ∗ 

𝑓 peak 

Method 2 610.549 < 0.001 ∗ ∗ ∗ 

Epoch 3 108.951 < 0.001 ∗ ∗ ∗ 

Method:Epoch 6 44.161 < 0.001 ∗ ∗ ∗ 

Signif. codes: < 0.001 ’ ∗ ∗ ∗ ’, < 0.01 ’ ∗ ∗ ’, < 0.05 ’ ∗ ’, > 0.05 n.s. 
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Table C.25 

Estimated marginal means of correlations obtained with different decom- 
position methods, MLR and best laplacian derivation in real SSVEP data. 

Fr. Est. Contrast 500 1000 2000 3000 

⟨𝑓 𝑖 ⟩ MLR - Lap 0.524 ∗ ∗ ∗ 0.443 ∗ ∗ ∗ 0.351 ∗ ∗ ∗ 0.335 ∗ ∗ ∗ 

MLR - IFD 0.158 ∗ ∗ ∗ 0.125 ∗ ∗ ∗ 0.094 ∗ ∗ ∗ 0.089 ∗ ∗ ∗ 

IFD - Lap 0.366 ∗ ∗ ∗ 0.318 ∗ ∗ ∗ 0.257 ∗ ∗ ∗ 0.246 ∗ ∗ ∗ 

𝑓 loc 

MLR - Lap 0.564 ∗ ∗ ∗ 0.467 ∗ ∗ ∗ 0.395 ∗ ∗ ∗ 0.366 ∗ ∗ ∗ 

MLR - LFD -0.06 ∗ ∗ -0.045 ∗ ∗ -0.035 ∗ ∗ -0.032 ∗ ∗ 

LFD - Lap 0.623 ∗ ∗ ∗ 0.512 ∗ ∗ ∗ 0.43 ∗ ∗ ∗ 0.398 ∗ ∗ ∗ 

𝑓 peak 

MLR - Lap 0.527 ∗ ∗ ∗ 0.46 ∗ ∗ ∗ 0.352 ∗ ∗ ∗ 0.332 ∗ ∗ ∗ 

MLR - PFD -0.224 ∗ ∗ ∗ -0.175 ∗ ∗ ∗ -0.117 ∗ ∗ ∗ -0.109 ∗ ∗ ∗ 

PFD - Lap 0.751 ∗ ∗ ∗ 0.635 ∗ ∗ ∗ 0.469 ∗ ∗ ∗ 0.441 ∗ ∗ ∗ 

Signif. codes: < 0.001 ’ ∗ ∗ ∗ ’, < 0.01 ’ ∗ ∗ ’, < 0.05 ’ ∗ ’, > 0.05 n.s. 

R

B  

B  

 

B  

 

B  

 

 

B

B  

B  

C  

 

 

 

C  

D  

 

D  

 

D  

D  

 

D  

 

E  

 

 

F  

G  

G  

 

G  

 

H  

H  

 

H  

H  

 

H  

 

I  

 

I  

 

 

I  

 

J  

 

J  

 

L  

 

L  

 

M  

M  

 

M  

M  

 

N  

 

N  

 

N  

 

N  

N  

N  

O  

 

P  

P  

 

 

S  

S  

 

S  

 

S  

 

S  

 

S  

 

S  

 

S  

T  
eferences 

aillet, S., Mosher, J., Leahy, R., 2001. Electromagnetic brain mapping. IEEE Signal Pro-
cess. Mag. 18, 14–30 . 

enwell, C.S., London, R.E., Tagliabue, C.F., Veniero, D., Gross, J., Keitel, C., Thut, G.,
2019. Frequency and power of human alpha oscillations drift systematically with
time-on-task. NeuroImage 192, 101–114 . 

lankertz, B., Acqualagna, L., Dähne, S., Haufe, S., Schultze-Kraft, M., Sturm, I., Uscum-
lic, M., Wenzel, M., Curio, G., Müller, K., 2016. The berlin brain-computer interface:
Progress beyond communication and control. Frontiers in Neuroscience 10 . 

lankertz, B., Tangermann, M., Vidaurre, C., Dickhaus, T., Sannelli, C., Popescu, F., Fa-
zli, S., Danóczy, M., Curio, G., Müller, K.R., 2009. Detecting mental states by machine
learning techniques: the berlin brain–computer interface. In: Brain-computer inter-
faces. Springer, pp. 113–135 . 

oashash, B., 1992. Estimating and interpreting the instantaneous frequency of a signal –
part 1: Fundamentals. In: In: PROCEEDINGS OF THE IEEE., pp. 520–538 . 

runs, A., 2004. Fourier-, hilbert- and wavelet-based signal analysis: are they really dif-
ferent approaches? Journal of Neuroscience Methods 137 (2), 321–332 . 

uzsaki, G., Draguhn, A., 2004. Neuronal oscillations in cortical networks. science 304
(5679), 1926–1929 . 

esnaite, E., Steinfath, P., Jamshidi Idaji, M., Stephani, T., Kumral, D., Haufe, S.,
Sander, C., Hensch, T., Hegerl, U., Riedel-Heller, S., Röhr, S., Schroeter, M.L.,
Witte, A., Villringer, A., Nikulin, V.V., 2023. Alterations in rhythmic and non-rhyth-
mic resting-state eeg activity and their link to cognition in older age. NeuroImage
268, 119810 . 

ohen, M.X., 2014. Fluctuations in oscillation frequency control spike timing and coordi-
nate neural networks. Journal of Neuroscience 34 (27), 8988–8998 . 

ähne, S., Meinecke, F.C., Haufe, S., Höhne, J., Tangermann, M., Müller, K.-R.,
Nikulin, V.V., 2014. Spoc: A novel framework for relating the amplitude of neuronal
oscillations to behaviorally relevant parameters. NeuroImage 86, 111–122 . 

ähne, S., Nikulin, V., Ramírez, D., Schreier, P., Müller, K., Haufe, S., 2014. Finding
brain oscillations with power dependencies in neuroimaging data. Neuroimage 96,
334–348 . 

elorme, A., Makeig, S., 2004. EEGLAB: an open source toolbox for analysis of single-trial
eeg dynamics. Journal of Neuroscience Methods 134, 9–21 . 

onoghue, T., Haller, M., Peterson, E.J., Varma, P., Sebastian, P., Gao, R., Noto, T.,
Lara, A.H., Wallis, J.D., Knight, R.T., et al., 2020. Parameterizing neural power spectra
into periodic and aperiodic components. Nature neuroscience 23 (12), 1655–1665 . 

ouma, J.C., Weedon, J.T., 2019. Analysing continuous proportions in ecology and evo-
lution: A practical introduction to beta and dirichlet regression. Methods in Ecology
and Evolution 10 (9), 1412–1430 . 

vans, A.C., Kamber, M., Collins, D.L., Mac Donald, D., 1994. An mri-based probabilistic
atlas of neuroanatomy. In: Shorvon, S.D., Fish, D.R., Andermann, F., Bydder, G.M.,
Stefan, H. (Eds.), Magnetic Resonance Scanning and Epilepsy. Springer US, Boston,
MA, pp. 263–274 . 

reeman, W.J., 2004. Origin, structure, and role of background eeg activity. part 2. ana-
lytic phase. Clinical Neurophysiology 115 (9), 2089–2107 . 

ammaitoni, L., Nov 1995. Stochastic resonance and the dithering effect in threshold
physical systems. Phys. Rev. E 52, 4691–4698. doi: 10.1103/PhysRevE.52.4691 . 

asser, T., Verleger, R., Bächer, P., Sroka, L., 1988. Development of the eeg of school-age
children and adolescents. i. analysis of band power. Electroencephalography and Clin-
ical Neurophysiology 69 (2), 91–99 . 

undlach, C., Müller, M.M., Hoff, M., Ragert, P., Nierhaus, T., Villringer, A., Sehm, B.,
2020. Reduction of somatosensory functional connectivity by transcranial alternating
current stimulation at endogenous mu-frequency. NeuroImage 221, 117175 . 

aegens, S., Cousijn, H., Wallis, G., Harrison, P.J., Nobre, A.C., 2014. Inter- and intra-in-
dividual variability in alpha peak frequency. NeuroImage 92, 46–55 . 

ashemi, A., Cai, C., Kutyniok, G., Müller, K.-R., Nagarajan, S.S., Haufe, S., 2021. Unifi-
cation of sparse bayesian learning algorithms for electromagnetic brain imaging with
the majorization minimization framework. NeuroImage 239, 118309 . 

aufe, S., Dähne, S., Nikulin, V.V., 2014. Dimensionality reduction for the analysis of
brain oscillations. NeuroImage 101, 583–597 . 
20 
aufe, S., Meinecke, F., Görgen, K., Dähne, S., Haynes, J.-D., Blankertz, B., Bießmann, F.,
2014. On the interpretation of weight vectors of linear models in multivariate neu-
roimaging. Neuroimage 87, 96–110 . 

ülsdünker, T., Mierau, A., Strüder, H.K., 2016. Higher balance task demands are as-
sociated with an increase in individual alpha peak frequency. Frontiers in Human
Neuroscience 9, 695 . 

daji, M.J., Müller, K.-R., Nolte, G., Maess, B., Villringer, A., . Nikulin, V.V., 2020. Non-
linear interaction decomposition (nid): A method for separation of cross-frequency
coupled sources in human brain. NeuroImage 211, 116599 . 

emi, L., Gwilliams, L., Samaha, J., Auksztulewicz, R., Cycowicz, Y.M., King, J.-R.,
Nikulin, V.V., Thesen, T., Doyle, W., Devinsky, O., Schroeder, C.E., Melloni, L., Hae-
gens, S., 2022. Ongoing neural oscillations influence behavior and sensory represen-
tations by suppressing neuronal excitability. NeuroImage 247, 118746 . 

scan, Z., Nikulin, V., 01 2018. steady state visual evoked potential (ssvep) based brain-
computer interface (bci) performance under different perturbations. PLOS ONE 13(1),
1–17. 

orajuría, T., Gómez, M., Vidaurre, C., 2020. A fast ssvep-based brain-computer inter-
face. In: International Conference on Hybrid Artificial Intelligence Systems. Springer,
pp. 49–60 . 

orajuría, T., Idaji, M.J., İş can, Z., Gómez, M., Nikulin, V.V., Vidaurre, C., 2021. Oscil-
latory source tensor discriminant analysis (ostda): a regularized tensor pipeline for
ssvep-based bci systems. Neurocomputing . 

echinger, J., Bothe, K., Pichler, G., Michitsch, G., Donis, J., Klimesch, W., Schabus, M.,
2013. Crs-r score in disorders of consciousness is strongly related to spectral eeg at
rest. Journal of Neurology 260 (9), 2348–2356 . 

undqvist, M., Bastos, A.M., Miller, E.K., 2020. Preservation and changes in oscillatory
dynamics across the cortical hierarchy. Journal of Cognitive Neuroscience 32 (10),
2024–2035 . 

ahjoory, K., Schoffelen, J.-M., Keitel, A., Gross, J., 2020. The frequency gradient of hu-
man resting-state brain oscillations follows cortical hierarchies. eLIFE 9, e53715 . 

aurer, U., Brem, S., Liechti, M., Maurizio, S., Michels, L., Brandeis, D., 2015. Frontal
midline theta reflects individual task performance in a working memory task. Brain
topography 28 (1), 127–134 . 

ichel, C.M., Murray, M.M., Lantz, G., Gonzalez, S., Spinelli, L., . de Peralta, R.G., 2004.
Eeg source imaging. Clinical neurophysiology 115 (10), 2195–2222 . 

ierau, A., Klimesch, W., Lefebvre, J., 2017. State-dependent alpha peak frequency shifts:
Experimental evidence, potential mechanisms and functional implications. Neuro-
science 360, 146–154 . 

elli, S., Itthipuripat, S., Srinivasan, R., Serences, J.T., 2017. Fluctuations in instantaneous
frequency predict alpha amplitude during visual perception. Nature Communications
8 (1), 2017 . 

ierhaus, T., Vidaurre, C., Sannelli, C., Müller, K.-R., Villringer, A., 2021. immediate brain
plasticity after one hour of brain-computer interface (bci). The Journal of Physiology
599 (9), 2435–2451. doi: 10.1113/jp278118 . 

ikulin, V.V., Nolte, G., Curio, G., 2011. A novel method for reliable and fast extraction
of neuronal eeg/meg oscillations on the basis of spatio-spectral decomposition. Neu-
roimage 55 (4), 1528–1535 . 

olte, G., 2011-2023. sfb 936 meg & eeg toolbox (s-meth).
https://www.sfb936.net/sfb-936-toolbox . 

olte, G., Dassios, G., 2005. Analytic expansion of the eeg lead field for realistic volume
conductors. Phys. Med. Biol 50, 3807–3823 . 

unez, P., Srinivasan, R., 2006. Electric Fields of the Brain: The Neurophysics of EEG.
Oxford University Press . 2nd Edition 

ostenveld, R., Fries, P., Maris, E., Schoffelen, J.M., 2011. Fieldtrip: Open source software
for advanced analysis of MEG, EEG, and invasive electrophysiological data. Compu-
tational Intelligence and Neuroscience 2011, 156869 . 

arra, L., Spence, C., Gerson, A., Sajda, P., 2005. Recipes for the linear analysis of eeg.
Neuroimage 28, 326–341 . 

ascual-Marqui, R.D., Lehmann, D., Koukkou, M., Kochi, K., Anderer, P., Saletu, B.,
Tanaka, H., Hirata, K., John, E., Prichep, L., Biscay-Lirio, R., Kinoshita, T., 2011.
Assessing interactions in the brain with exact low-resolution electromagnetic tomog-
raphy. Philos Trans A Math Phys Eng Sci 369 (1952), 3768–3784 . 

amaha, J., Postle, B.R., 2015. The speed of alpha-band oscillations predicts the temporal
resolution of visual perception. Current Biology 25 (22), 2985–2990 . 

ameni, R., Seraj, E., 2017. A robust statistical framework for instantaneous electroen-
cephalogram phase and frequency estimation and analysis. Physiological Measure-
ment 38 (12), 2141–2163 . 

annelli, C., Vidaurre, C., Müller, K.-R., Blankertz, B., 2011. Csp patches: an ensemble of
optimized spatial filters. an evaluation study. Journal of Neural Engineering 8 (2),
025012 . 

chaworonkow, N., Nikulin, V.V., 2022. Is sensor space analysis good enough? spatial
patterns as a tool for assessing spatial mixing of eeg/meg rhythms. Neuroimage 253,
119093 . 

earle, S.R., Speed, F.M., Milliken, G.A., 1980. Population marginal means in the lin-
ear model: An alternative to least squares means. The American Statistician 34 (4),
216–221 . 

rinivasan, R., Bibi, F.A., Nunez, P.L., 2006. Steady-state visual evoked potentials: dis-
tributed local sources and wave-like dynamics are sensitive to flicker frequency. Brain
topography 18 (3), 167–187 . 

tephani, T., Hodapp, A., Jamshidi Idaji, M., Villringer, A., Nikulin, V.V., 2021. Neural
excitability and sensory input determine intensity perception with opposing directions
in initial cortical responses. eLife 10, e67838 . 

utherland, C., Doiron, B., Longtin, A., 2009. Feedback-induced gain control in stochastic
spiking networks. Biological Cybernetics 100 (6), 475 . 

eam-R-Core, 2018. R: A language and environment for statistical computing 2014. R
Foundation for Statistical Computing: Vienna, Austria. 

http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0001
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0002
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0003
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0004
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0005
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0006
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0007
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0008
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0009
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0010
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0011
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0012
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0013
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0014
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0015
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0016
https://link.aps.org/doi/10.1103/PhysRevE.52.4691
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0017
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0018
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0019
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0020
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0021
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0022
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0023
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0024
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0025
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0026
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0027
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0028
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0029
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0030
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0031
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0032
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0033
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0034
https://doi.org/10.1113/jp278118
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0036
https://www.sfb936.net/sfb-936-toolbox
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0037
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0038
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0038
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0039
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0040
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0041
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0042
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0043
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0044
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0045
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0046
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0047
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0048
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0049


C. Vidaurre, K. Gurunandan, M.J. Idaji et al. NeuroImage 276 (2023) 120178 

T  

 

T  

 

T  

V  

 

 

V  

 

V  

 

V  

 

V  

 

V  

 

 

V  

 

V  

Z  

Z  

 

hut, G., Nietzel, A., Brandt, S.A., Pascual-Leone, A., 2006. 𝛼-band electroencephalo-
graphic activity over occipital cortex indexes visuospatial attention bias and predicts
visual target detection. Journal of Neuroscience 26 (37), 9494-9502 . 

uckwell, H., Jost, J., Gutkin, B., 09 2009. inhibition and modulation of rhythmic neuronal
spiking by noise. Physical review. E, Statistical, nonlinear, and soft matter physics 80,
031907. 

ukey, J.W., 1949. Comparing individual means in the analysis of variance. Biometrics
99–114 . 

aldés-Hernández, P.A., Ojeda-González, A., Martínez-Montes, E., Lage-Castellanos, A.,
Virués-Alba, T., Valdés-Urrutia, L., Valdes-Sosa, P.A., 2010. White matter architecture
rather than cortical surface area correlates with the eeg alpha rhythm. NeuroImage
49 (3), 2328–2339 . 

an Veen, B.D., Van Drongelen, W., Yuchtman, M., Suzuki, A., 1997. Localization of brain
electrical activity via linearly constrained minimum variance spatial filtering. IEEE
Transactions on biomedical engineering 44 (9), 867–880 . 

idaurre, C., Haufe, S., Jorajuría, T., Müller, K.-R., Nikulin, V.V., 2020. Sensorimotor func-
tional connectivity: a neurophysiological factor related to bci performance. Frontiers
in Neuroscience 1278 . 

idaurre, C., Jorajuría, T., Ramos-Murguialday, A., Müller, K.R., Gómez, M., Nikulin, V.V.,
2021. Improving motor imagery classification during induced motor perturbations.
Journal of neural engineering 18 (4), 0460b1 . 
21 
idaurre, C., Murguialday, A.R., Haufe, S., Gómez, M., Müller, K.-R., Nikulin, V.V., 2019.
Enhancing sensorimotor bci performance with assistive afferent activity: an online
evaluation. Neuroimage 199, 375–386 . 

idaurre, C., Nolte, G., de Vries, I.E., Gómez, M., Boonstra, T.W., Müller, K.-R., Vill-
ringer, A., Nikulin, V.V., 2019. Canonical maximization of coherence: a novel tool
for investigation of neuronal interactions between two datasets. Neuroimage 201,
116009 . 

idaurre, C., Pascual, J., Ramos-Murguialday, A., Lorenz, R., Blankertz, B., Birbaumer, N.,
Müller, K.R., 2013. Neuromuscular electrical stimulation induced brain patterns to
decode motor imagery. Clinical Neurophysiology 124 (9), 1824–1834 . 

ille, J., 1948. Theorie et application dela notion de signal analytique. Câbles et transmis-
sions 2 (1), 61–74 . 

eileis, A., Cribari-Neto, F., Gruen, B., Kosmidis, I., Simas, A. B., Rocha, A. V., Zeileis, M.
A., Package ’betareg’. R package2016. 3, 2. 

immermann, R., Gschwandtner, U., Wilhelm, F.H., Pflueger, M.O., . Riecher-Rössler, A.,
Fuhr, P., 2010. Eeg spectral power and negative symptoms in at-risk individuals pre-
dict transition to psychosis. Schizophrenia Research 123 (2), 208–216 . 

http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0050
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0051
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0052
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0053
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0054
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0055
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0056
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0057
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0058
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0059
http://refhub.elsevier.com/S1053-8119(23)00329-4/sbref0060

	Novel multivariate methods to track frequency shifts of neural oscillations in EEG/MEG recordings
	1 Introduction
	2 Methods and experimental data
	2.1 Notation
	2.2 The generative model of EEG/MEG data
	2.3 Definitions: instantaneous, local, and peak frequency
	2.4 Problem Formulation
	2.5 Instantaneous Frequency Decomposition, IFD
	2.6 Local Frequency Decomposition, LFD
	2.7 Peak Frequency Decomposition, PFD
	2.8 The optimization problem
	2.9 Simulations
	2.9.1 Parameter description for artificially generated data
	2.9.2 Recovery of ground truth patterns
	2.9.3 Artificially generated data description

	2.10 SSVEP BCI data
	2.10.1 Data description
	2.10.2 Data preprocessing

	2.11 Benchmark methods
	2.11.1 The best correlation from Laplacian channels
	2.11.2 Multiple linear regression (MLR)

	2.12 Statistical analyses

	3 Results
	3.1 Simulations in the alpha band
	3.1.1 Correlation results with decomposition methods
	3.1.2 Accuracy of pattern recovery
	3.1.3 Correlation results with benchmark methods
	3.1.4 Comparison of decomposition methods with multiple linear regression and best Laplacian derivation

	3.2 Simulations in different frequency bands
	3.3 Real data from SSVEP BCI
	3.3.1 Correlation values of decomposition methods
	3.3.2 Comparison of decomposition against benchmark methods
	3.3.3 Spatial pattern dissimilarities


	4 Discussion
	4.1 Which decomposition method performs better?
	4.2 Instantaneous, local, or peak frequency estimates in sensor space, which one obtains better correlation values?
	4.3 Are decomposition methods better than regression or channel-based models?
	4.4 Performance of decomposition methods in different frequency bands
	4.5 Application to real data
	4.6 Limitations and future work

	5 Conclusions
	Data and Code Availability Statement
	Declaration of Competing Interest
	Credit authorship contribution statement
	Acknowledgements
	Appendix A Derivation of the instantaneous frequency of a brain source
	Appendix B Derivation of the local frequency of a brain source
	Appendix C Results of statistical analyses performed
	C.1 Statistical tests of IFD, LFD and PFD with factors method and epoch length
	C.2 Statistical tests of MLR with factors frequency shift estimate and epoch length for different SNR
	C.3 Statistical tests of best Laplacian channel with factors frequency shift estimate and epoch length for each SNR
	C.4 Comparison between decomposition methods, MLR and the best Laplacian Derivation for each frequency shift estimate
	C.5 Statistical tests comparing different frequency bands for different decomposition methods at fixed epoch length and SNR
	C.6 Statistical tests of decomposition methods IFD, LFD and PFD applied to real SSVEP data
	C.7 Statistical tests comparing decomposition methods, MLR and best Laplacian derivation for each frequency shift estimate applied to real SSVEP data

	References


