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Abstract. The deviation of the tool center point (TCP) of a machine
tool from its desired location needs to be assessed correctly to ensure an
accurate and safe operation of the machine. A major source of TCP devi-
ation are thermal loads, which are constantly changing during operation.
Numerical simulation models help predicting these loads, but are typically
large and expensive to solve. Especially in (real-time feedback) control set-
tings, but also to ensure an efficient design phase of machine tools, it is
inevitable to use compact reduced-order surrogate models which approx-
imate the behavior of the original system but are much less computation-
ally expensive to evaluate. Model order reduction (MOR) methods gener-
ate computationally efficient surrogates. Classic intrusive methods require
explicit access to the assembled system matrices. However, commercial
software packages, which are typically used for the design of machine
tools, do not always allow an unrestricted access to the required matri-
ces. Non-intrusive data-driven methods compute surrogates requiring only
input and output data of a dynamical system and are therefore indepen-
dent of the discretization method. We evaluate the performance of such
data-driven approaches to compute cheap-to-evaluate surrogate models of
machine tools and compare their efficacy to intrusive MOR strategies. A
focus is put on modeling the machine tool via individual substructures,
which can be reduced independently of each other.

Keywords: Model order reduction · Loewner framework · Balanced
truncation · Rational interpolation · Machine tools

1 Introduction

Model order reduction (MOR) plays an important role in the energy efficient
correction of thermally induced errors of machine tools during the production
process [10,18]. Therefore, compact simulation models for fast computations
are required for the efficient operation of machine tools enabling, e.g., online
correction of the thermally induced displacement of the tool center point (TCP),
predictive maintenance, or online parameter estimation. Such models are also an
enabler-technology for digital twins of machine tools [12].
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Machine tools are complex technical systems consisting of a number of inter-
connected machine components, which can move relative to each other. In the
following, these components will be referred to as subassemblies. The thermal
behavior of the machine and its subassemblies is often modeled using the finite
element method (FEM). Due to the need to resolve also small geometrical fea-
tures of the machine tool, the number of degrees of freedom in such numerical
models is typically high, and methods to reduce the computational complexity
of solving the associated systems of equations are required. System-theoretic
MOR methods have proven to be able to reduce these computational costs by
computing surrogate models approximating the input/output behavior of the
original model but having a much smaller size [2]. These methods have also been
successfully applied to machine tool models [11,14,18]. They often show a better
performance compared to modal methods [5,16], which are not recommended for
the reduction of thermal problems [4,8].

An alternative to system-theoretic or modal methods are data-driven proce-
dures. They construct surrogate models approximating the input/output behav-
ior of the original model using snapshot data, e.g., evaluations of its transfer
function. Data-driven methods can also be referred to as non-intrusive methods,
because unlike intrusive system-theoretic or modal MOR methods, they do not
require access to the matrices describing the numerical model. Especially when
closed-source or proprietary finite element software solutions are employed, as it
is often the case in industrial applications, these matrices are difficult or incon-
venient to obtain and intrusive MOR methods might not always fit the design
workflow of machine tools. However, the snapshot data required for data-driven
MOR methods can be obtained from standard finite element software by per-
forming, e.g., a frequency sweep analysis.

An efficient modeling of the time-varying coupling conditions between sub-
assemblies is crucial for a successful simulation of different work processes. Using
an approach originally presented by Hernández-Becerro et al. [11], it is possible
to precompute parts of the coupling terms required to model the thermal flow
between subassemblies. Depending on the position of the coupling at the current
simulation time, the coupling condition can be assembled by a linear combina-
tion of the precomputed values. As no further modifications of the numerical
model are required, the same numerical model can be used to model any rel-
ative movements between subassemblies. The precomputed coupling terms can
be added as additional inputs and outputs to the original system description,
such that the coupling can also be realized in the reduced space.

In this contribution, we show how a data-driven MOR strategy based on the
Loewner framework [15] can be used to obtain reduced-order models of machine
tool systems consisting of multiple subassemblies. Surrogate models computed by
the Loewner framework can be expressed as state space systems. Therefore they
can easily be integrated into existing modeling workflows. We also evaluate the
impact of the high number of system inputs and outputs added by the coupling
conditions on the approximation quality and reduction efficacy. The performance
of the resulting surrogate models is compared to reduced-order models computed
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using balanced truncation, an intrusive MOR method. Balanced truncation is
especially suited for the reduction of thermal problems as it shows a global error
behavior and an a priori error bound can be computed efficiently [1].

This contribution is structured as follows: In Sect. 2 we show some modeling
aspects of machine tools. In Sect. 3 we discuss suitable intrusive and non-intrusive
MOR techniques. Numerical investigations including a comparison of different
reduction methods for a simplified 3-axis machine tool model are described in
Sect. 4. A summary of our findings in Sect. 5 concludes the contribution.

2 Modeling of Machine Tools

The thermal behavior of a body of homogeneous and temporally constant mate-
rial can be expressed by a partial differential equation (PDE) for the temperature
field T (t, δ) at time t and location δ as

ρcp
∂

∂t
T (t, δ) − ΔλT (t, δ) = q̇(t, δ). (1)

The external thermal load is given by q̇ and the material is characterized by its
density ρ, heat capacity cp, and conductivity λ. The dot defines a derivative in
time and Δ = ∇ · ∇ is the Laplace operator.

2.1 System-Theoretic Approach

Discretizing this PDE in space with, e.g., the finite element method allows to
formulate the system in a state-space representation

Σ :

{
Eẋ(t) = Ax + Bu(t),
y(t) = Cx,

(2)

with capacity and conductivity matrices E,A ∈ R
n×n, input and output map-

pings B ∈ R
n×m, C ∈ R

p×n, states x ∈ R
n, inputs u ∈ R

m, and outputs y ∈ R
p.

Many MOR methods require the original system to be described in frequency
domain. This transformation is performed using the Laplace transform and set-
ting the Laplace constant to s = iω, where ω is the excitation frequency. An
important analysis tool of frequency domain systems is the transfer function,
which depicts the input to output mapping of the system. For a thermal system
in state-space form (2), the transfer function is given by

H(s) = C (sE − A)−1 B. (3)

2.2 Efficient Modeling of Time-Varying Thermal Couplings

Machine tools are composed of different subassemblies which can move rela-
tive to each other. This results in time-varying coupling conditions between the
subassemblies, which have to be represented efficiently in the modeling process,
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as a re-meshing of the complete model after each relative movement is not fea-
sible. Another benefit of modeling the subassemblies independent of each other
is that individual parts can be exchanged during the design process without
affecting the other parts of the machine.

In the following, the heat transfer between machine subassemblies is mod-
eled with bushing interface conditions, a type of multi point constraint. Here,
the heat flux q̇ between two coupled boundaries is defined by relating the aver-
age temperature at the boundaries θ̄1, θ̄2 and scaling it with the heat transfer
coefficient h:

q̇ = h
(
θ̄1 − θ̄2

)
. (4)

The benefit of this approach is that it is independent of the discretization of
the boundaries and that no matching grids are required. It should be noted that
bushing interface conditions are not accurate for interfaces with high tempera-
ture gradients due to the averaging performed in (4). Many coupling interfaces
in machine tool models, for example the interaction between a rail and a car-
riage, are relatively small and have a rather uniform temperature distribution,
so bushing conditions can be applied efficiently in this setting [10].

In order to realize an efficient time-varying thermal coupling of the sub-
assemblies, we use an approach by Hernández-Becerro et al. [11]. This strategy
precomputes general boundary terms, which are valid for any relative position
of the two subassemblies, and makes a re-evaluation of the coupling terms for
changing positions unnecessary. The moving interface is defined by a weighting
function w (d, dc) on the boundaries with the location of the respective mesh node
on the boundary d and the center position of the interface dc. An interaction
between the boundaries only happens for w (d, dc) �= 0. The gist of the approach
is to separate the variables d and dc, such that all contributions depending on d
can be precomputed. This is done by approximating the weighting function by
a Fourier series

w (d, dc) = a0 +
nh∑

k=1

ak (dc) cos (2πkd) +
nh∑

k=1

bk (dc) sin (2πkd) ,

and precomputing the terms which are not depending on dc for all nodes on the
boundary. In practice, this can be achieved by applying corresponding loads on
the boundary. A vector b defining the weighted average over the corresponding
boundary, given the location of the coupling dc, can then be formed by a linear
combination of the precomputed vector quantities and some scalar factors:

b (dc) = b0 +
nh∑

k=1

ak (dc)bk,cos +
nh∑

k=1

bk (dc)bk,sin.

This vector b acts as input and output in the system-theoretic formulation of
the thermal system (2), as, on the one hand, it averages the temperature on the
boundary according to the weighting function, on the other hand, it maps the
resulting heat flux from (4) back onto the boundary.
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3 Model Order Reduction for Machine Tools

The computational cost for evaluating numerical models of machine tools (2) and
(3) is often very high and thus may hinder an efficient design phase and prohibit
their direct use for online control. A large part of the computational complexity
roots in the need for (repeated) decompositions of matrices of order n, which is
the number of degrees of freedom of the model. In practical applications, n can
be very large, as also complex geometric features need to be resolved by a fine
mesh. MOR methods find a surrogate model

Σ̂ :

{
Ê ˙̂x(t) = Âx̂ + B̂u(t),

ŷ(t) = Ĉx̂,
(5)

with the reduced matrices Ê, Â ∈ R
r×r, B̂ ∈ R

r×m, Ĉ ∈ R
p×r and the states in

reduced space x̂ ∈ R
r. The model (5) can serve as a surrogate for the original

model (2), if the reduced-order model’s output is up to a specific tolerance ε
similar to the original output, i.e.

‖y − ŷ‖ ≤ ε ‖u‖ ,

under an appropriate norm ‖·‖ and for all feasible inputs u. The transfer function
of the reduced-order model is given by

Ĥ(s) = Ĉ
(
sÊ − Â

)−1

B̂. (6)

The underlying reduced-order model is an appropriate surrogate, if∥∥∥H − Ĥ
∥∥∥ ≤ ε,

as for appropriately chosen norms,

‖y − ŷ‖ ≤
∥∥∥H − Ĥ

∥∥∥ · ‖u‖ .

Among other methods, the reduced quantities in (5) and (6) can be obtained
from projecting the original system matrices onto a lower dimensional subspace,
which contains the sought after solution [2]. This subspace V ⊂ C

n and the
corresponding test space W ⊂ C

n are spanned by two truncation matrices
V,W ∈ C

n×r, respectively. The reduced-order quantities can then be computed
by

Ê = WHEV, Â = WHAV, B̂ = WHB, Ĉ = CV. (7)

Note, that it is often convenient to choose real-valued truncation matrices V,W
to preserve the realness of the original model also in reduced space.
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3.1 Intrusive MOR with Balanced Truncation

Balanced truncation (BT) is a widely used projection-based MOR method. Bal-
ancing in this context means to transform the system to a form where reachability
and observability of the system states are equivalent concepts. This transforma-
tion does not influence the input/output behavior, as it leads to a different
realization of the same system. States which are at the same time hard to reach
and yield little observation energy can be identified given such representation.
Truncating these states reduces the size of the system while the input/output
behavior is not greatly influenced. Balanced truncation also offers a computable
a priori error bound relating the energy of the truncated states to the approxi-
mation error of the surrogate model [1]. The truncation matrices V,W for (7)
are computed by performing a singular value decomposition (SVD) of the sys-
tem Gramians and truncating all singular vectors whose corresponding singular
values do not contribute considerably to the truncation error. Solving the dual
Lyapunov equations

APET + EPAT + BBT = 0

ATQE + ETQA + CTC = 0
(8)

yields the required reachability Gramian P and observability Gramian ETQE.
The system matrices in (8) are often large and sparse. In this case, there is a
variety of established and efficient solution algorithms, which compute low-rank
approximations of the Gramians, such that P ≈ ZP ZT

P and ETQE ≈ ZQZT
Q;

see, e.g., [6]. If the states corresponding to the r largest singular values Σ1 =
diag (σ1, . . . , σr) of the SVD

SΣT = [S1S2]
[
Σ1

Σ2

]
[T1T2]

T = ZT
QZP

should be preserved in the reduced-order model, the corresponding truncation
matrices are formed from the left and right singular vectors as

V = ZP T1Σ
− 1

2
1 , W = ZQS1Σ

− 1
2

1 .

Balanced truncation preserves the stability of the original system automatically.

3.2 Non-intrusive MOR with the Loewner Framework

The computation of system Gramians or their low-rank factors requires direct
access to the original system matrices. However, these matrices are often not
readily available or inconvenient to obtain explicitly. The Loewner framework
[15] uses solely transfer function measurements or evaluations to find a surrogate
model, which interpolates the transfer function of the original system (3), and
provides a realization of this interpolant as a state-space system. The general
procedure is shortly summarized in the following.
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Given N measurements Hk ∈ C
p×m, k = 1, . . . , N of the transfer function at

some locations sk ∈ C, the data is partitioned into two disjoint sets{
(λi, ri,wi) , where λi = si, wi = Hiri, i = {1, . . . , ρ} ,

(μj , lj ,vj) , where μj = sρ+j , vH
j = lHj Hρ+j , j = {1, . . . , ν} ,

with N = ρ + ν and right and left tangential directions ri, lj . For numerical
reasons it is often beneficial to partition the data in an alternating way. The
partitioned data is now arranged in the Loewner and shifted Loewner matrices
L and Lσ given by

L =

⎡
⎢⎢⎢⎢⎢⎣

v1r1 − l1w1

μ1 − λ1
· · · v1rρ − l1wρ

μ1 − λρ
...

. . .
...

vνr1 − lνw1

μν − λ1
· · · vρrρ − lρwρ

μρ − λρ

⎤
⎥⎥⎥⎥⎥⎦ ,

Lσ =

⎡
⎢⎢⎢⎢⎢⎣

μ1v1r1 − λ1l1w1

μ1 − λ1
· · · μ1v1rρ − λρl1wρ

μ1 − λρ
...

. . .
...

μνvνr1 − λ1lνw1

μν − λ1
· · · μνvρrρ − λρlρwρ

μρ − λρ

⎤
⎥⎥⎥⎥⎥⎦ .

If the matrix pencil (Lσ,L) is regular, Hr (z) = Y (Lσ − zL)−1 X tangentially
interpolates the given data, such that Hr (λi) ri = wi, lHj Hr (μj) = vH

j . A state
space realization of the surrogate is thus given by

EL = −L, AL = −Lσ,

BL = X =
[
vH
1 , . . . ,vH

ν

]H
, CL = Y =

[
w1, . . . ,wρ

]
.

(9)

The dimension of this system can further be reduced by projection. The
required truncation matrices V,W are concatenations of the right and left sin-
gular vectors obtained from an SVD of L. Truncating the matrices of singular
vectors after r columns and projecting the Loewner realization (9) using (7)
yields a reduced-order model of order r. Note, that it is also possible to use
uncompressed transfer function data, i.e. omitting the tangential directions. This
results in Loewner matrices with a block structure, as every transfer function
evaluation has dimension p × m. However, if the system that shall be approx-
imated has a high number of inputs and outputs, the Loewner matrices grow
fast. In such cases the resulting surrogate may be either too large for an effi-
cient use or the SVD may be not computationally feasible anymore. Therefore,
the compression of the original via tangential directions is often a more efficient
approach, although it involves a loss of information for the reduced-order model.
Other interpolation-based MOR methods employ similar strategies [1].

As the resulting surrogates should be used in time domain, they have to
preserve the realness and stability of the original model. Realness can be enforced
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in the Loewner framework by adding also the complex conjugates of the transfer
function measurements to the database. In practice, this is performed by pre- and
post-multiplying the Loewner and shifted Loewner matrices by block-diagonal
matrices

J = I ⊗
(

1√
2

[
1 −i
1 i

])
,

where I is an identity matrix of appropriate size. X,Y in (9) have to be modified
accordingly [3].

Realizations computed with the Loewner framework do not automatically
preserve the stability of the original model, so the surrogate computed with the
Loewner framework has to be post-processed. Different strategies for ensuring
the stability of the Loewner surrogate can be identified: (i) truncating the unsta-
ble part of the model, (ii) flipping the unstable part, or (iii) computing a stable
approximation to the original interpolant that is optimal regarding an appropri-
ate norm [9,13]. In the following, we will use the first strategy and truncate all
states of the identified system (9) which correspond to unstable eigenvalues, i.e.
eigenvalues with a positive real part. For this, the unstable and infinite parts of
the system need to be identified. This can be achieved by finding transformation
matrices TL,TR, such that

TL (λEL − AL)TR = λ

⎡
⎣Es

Eu

E∞

⎤
⎦ −

⎡
⎣As

Au

A∞

⎤
⎦ .

Here, subscript ·s stands for the stable, ·u for the unstable, and ·∞ for the infi-
nite part of the system. In practice, such transformation can be achieved with
the help of the matrix disk and sign functions; see, e.g., [7]. Using the ingredi-
ents summarized above, it is possible to compute real and stable realizations of
systems, from which only transfer function data are available.

4 Numerical Experiments

For the following numerical experiments, we consider a model of a general 3-
axis machine tool. The machine consists of four subassemblies: the machine
bed and three sliders for independent movements in x, y, and z-direction. The
geometry has been described in [17]; a sketch of the geometry is given in Fig. 1.
The differential equation for the temperature field acting on the machine (1) is
discretized with a finite element method using the MATLAB Partial Differential
Equation Toolbox. As only a movement in y-direction is modeled in the following
experiments, two subassemblies are formed: one consisting of the machine bed
and the x-slider, referred to as A1 in the following, and A2 consisting of the sliders
for the y and z-directions. The guide rail along which A2 is moving measures
1400 mm. The resulting numerical models have orders of nA1 = 22 799 and nA2 =
18 685, respectively. The system is subject to two external heat fluxes, one at
the TCP location and one at the top of the workpiece. Additionally, we apply
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Heat
sources

Convection
surface

Evaluation point rail

Evaluation
point TCP

Fig. 1. Left: Sketch of the 3-axis machine tool model consisting of machine bed (brown)
and three sliders (x-direction: dark green; y-direction: cyan; z-direction: yellow). The
guide rail for the y-slider is marked in red. Right: Subassembly A2 is visualized as wire
frame. The guide cars attached to A2 and moving along the guide rail are drawn solid
and marked in cyan.

heat fluxes at the guide cars of A2 to model heat resulting from friction (cf.
Fig. 1). Exchange of heat between the subassemblies due to radiation is neglected.
Energy is dissipated by convection boundary conditions applied to the outer walls
of the machine bed.

The subassemblies are coupled via four guide cars, two moving along the
upper and lower rail of A1 each. This coupling is realized with the method
described in Sect. 2.2 and adds 44 inputs and outputs to A1, respectively 4 inputs
and outputs to A2. Only one input/output per location is required for A2, as
the coupling location only moves along the rail and is stationary at the coupling
points on the y-slider. These additional inputs and outputs are equivalent in
original space. However, this is not the case in reduced space, as often V �= W.
Therefore it is important to use the reduced outputs Ĉ = CV to obtain the
average temperatures θ̄1, θ̄2 in (4) and the reduced inputs B̂ = WHB to apply
the resulting load q̇ to the interface. The slider moves for 600 s with constant
velocity along the guide in y-direction and changes direction when one end of
the rail is reached. After this time, the machine stops and enters a cooling phase.
Here, the external heat flux is set to zero. The movement profile of subassembly
A2 is given in Fig. 2. We evaluate the temperature at the TCP and at a point
located in the middle of the upper rail of A1 during the complete work process.

Surrogate models for an efficient time simulation of the work process are
computed using balanced truncation and the Loewner framework as described
in Sect. 3. For the Loewner framework, we first compute samples of the
transfer function at 200 logarithmically distributed frequencies between ω =[
1 · 10−6, 1 · 10−2

]
rad s−1 for both subassemblies. The main dynamics of both

systems can be observed in this frequency range and the sampling rate ensures
a sufficiently high resolution to capture all important features of the transfer
functions. The samples are post-processed to obtain real-valued Loewner and
shifted Loewner matrices as described in Sect. 3.2. Their normalized singular
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Fig. 2. Movement of subassembly A2 along the rails on A1. The position of the midpoint
of A2 is plotted in relation to the total length of the rail.
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Fig. 3. Singular values of the Loewner matrices L for A1 (left) and A2 (right).

values are given in Fig. 3 and show a rapid decay for A2, but a slower decay for
A1. This means that a larger reduced-order model is required to approximate
A1 accurately. The reason for this is the higher number of inputs and outputs of
A1 compared to A2.

We truncate all states of the surrogate model which correspond to singular
values σi < 1 · 10−12 and remove unstable poles. This leads to stable and real-
valued surrogates with order rA1 = 92 and rA2 = 14, respectively. The sizes
of the reduced-order models computed from balanced truncation are set to the
same values to allow a fair comparison. The time simulation results for both
surrogate models as well as the reference solution obtained from the full-order
model and the corresponding errors relative to the solution of the full-order
model are given in Figs. 4 and 5. At the TCP the temperature rises smoothly, as
a constant heat flux is applied here until t = 600 s. After this, the machine cools
slowly. The effect of the moving interface is clearly visible in Fig. 5, where the
temperature at the midpoint of the upper rail in the subassembly A1 is evaluated.
As the heat sources are located on the guide cars on A2, which are constantly
moving along the rail, the increase in temperature is oscillating, depending on
where the cars are located. Both surrogates approximate the full order model
with acceptable errors. It should be noted that also the dynamic behavior of
the moving interface can be approximated well by the reduced-order models.
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Fig. 4. Temperature change at TCP during the simulated work process. Time responses
of the reference full order model and the surrogate models computed by the Loewner
framework and balanced truncation as well as the corresponding relative errors.
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Fig. 5. Temperature change at the midpoint of the upper rail in A1 during the simu-
lated work process. Time responses of the reference full order model and the surrogate
models computed by the Loewner framework and balanced truncation as well as the
corresponding relative errors.
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As expected, the accuracy of the reduced-order model computed with balanced
truncation is better over nearly the complete time range for both evaluation
points.

5 Conclusion

In this contribution, we showed and compared two methods to compute compact
surrogate models describing the thermal behavior of machine tools. The time-
varying heat flows between subassemblies resulting from relative movements of
the machine were modeled using a weighted average on the interaction surfaces.
The coupling was preserved in the reduced space and the reduction processes
of different subassemblies were therefore independent of each other. This theo-
retically also allows the reduction of the subassemblies using different reduction
methods, e.g., based on model properties like local nonlinearities [19]. The rela-
tively high number of inputs and outputs did not pose problems to the reduction
algorithms.

We compared reduced-order models computed with balanced truncation, an
intrusive MOR method, to surrogates obtained from the non-intrusive Loewner
framework. While the reduced-order models computed with balanced trunca-
tion were more accurate, the Loewner framework does not require access to the
assembled system matrices of the full order model and is, therefore, especially
suited for an industrial setting.

Acknowledgment. Funded by the German Research Foundation – Project-ID
174223256 – TRR 96.
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