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Frequency-dependent Switching Control for
Disturbance Attenuation of Linear Systems

Jingjing Zhang, Jan Heiland, Peter Benner, Xin Du

Abstract

The generalized Kalman–Yakubovich–Popov lemma as established by Iwasaki and Hara in 2005 marks
a milestone in the analysis and synthesis of linear systems from a finite-frequency perspective. Given a
pre-specified frequency band, it allows us to produce passive controllers with excellent in-band disturbance
attenuation performance at the expense of some of the out-of-band performance. This paper focuses on
control design of linear systems in the presence of disturbances with non-strictly or non-stationary limited
frequency spectrum. We first propose a class of frequency-dependent excited energy functions (FD-EEF)
as well as frequency-dependent excited power functions (FD-EPF), which possess a desirable frequency-
selectiveness property with regard to the in-band and out-of-band excited energy as well as excited power
of the system. Based upon a group of frequency-selective passive controllers, we then develop a frequency-
dependent switching control (FDSC) scheme that selects the most appropriate controller at runtime. We
show that our FDSC scheme is capable to approximate the solid in-band performance while maintaining
acceptable out-of-band performance with regard to global time horizons as well as localized time horizons.
The method is illustrated by a commonly used benchmark model.

Index Terms

Disturbance attenuation, frequency-dependent excited energy function, frequency-dependent excited
power function, frequency spectrum, frequency-dependent switching control.

I. INTRODUCTION

D ISTURBANCE attenuation is one of the most important problems in control theory and engineering
practice, which can be traced back to 1940s and has attracted increasing attention since the 1980s.

A controller with fixed gain based on H∞ norm probably was firstly designed by George Zames [1].
Thanks to the outstanding contributions from J. William Helton, Doyle John and other pioneers [2]-[5],
H∞ control theory was established and recognized as a standard control design framework for disturbance
attenuation. The most appealing feature of H∞ control is the worst-case optimality in presence of arbitrary
L2 bounded disturbances, which makes it become the most appropriate scheme if there does not exist a
priori knowledge regarding the disturbance signal.
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From a frequency-domain perspective, H∞ control intrinsically treats the component of disturbance at
any frequency point equally. Due to this property, H∞ control can be viewed as an indispensable tool
for dealing with disturbance of uniform or quasi-uniform spectrum over the full infinite frequency range,
such as white noise or pseudo white noise. In practice, the spectrum of disturbances may only span a
limited frequency range, or the dominating components of the spectrum may focus on a limited frequency
range. For example, seismic wave signals causing building vibration are focused on the frequency range
from 0.3Hz to 8.8Hz [6], the critical source effecting the positioning accuracy of a hard disk drives servo
system is the high-frequency narrow-band disturbance between 8kHz and 10kHz [7]. A fundamental tool
for focusing the considerations on predefined frequency ranges is provided by the generalized Kalman-
Yakubovich-Popov (gKYP) lemma as it has been developed from the standard KYP lemma by Iwasaki
and Hara [8], [9] in 2005. With the aid of gKYP lemma, the framework of H∞ control theory was
extended from the entire-frequency setting to the finite-frequency setting [10], [11], [12]. The gKYP
lemma based control design method is capable to produce passive controllers that obviously improve
the in-band disturbance attenuation performance, while sacrificing the out-of-band performance. Many
successful applications of gKYP lemma based control design were reported in the last decade [13], [14],
[15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26].

The gKYP lemma based control design methods achieve in-band performance improvement by mini-
mizing the in-band maximum singular value of the closed-loop transfer function. On the other side, the
out-of-band maximum singular value of the closed-loop transfer function generally becomes very large
at a certain frequencies (or frequency ranges). In many applications, however, the assumption that the
frequency spectrum of the disturbances are strictly limited is an oversimplification and non-negligible out-
of-band disturbances are very likely to occur [19], [20]. Besides, due to the change of system operational
conditions, the dominating frequency range may occasionally switch from the supposed one to another.
For example, the road roughness is the main source causing vehicle vibration [14]. Normally a vehicle
moves along flat roads, the roughness-induced disturbance varies slowly so that it exhibits low-frequency
(LF) dominance. However, high-frequency (HF) components will be the dominating part when the vehicle
passes through severely uneven road segments. In smart grid systems, the statistical data often show that the
fluctuation of wind power, photovoltaic power as well as load may take a fast and slow separated feature
over different time windows in hourly or daily scale [24], [25], [26]. Correspondingly, the dominating
frequency components of the disturbance may be of significant difference with regard to moving time
windows. In those cases, the overall disturbance attenuation capability of the gKYP lemma designed
passive controller may significantly deteriorate even in the presence of tiny out-of-band components. In
particular, it may lead to disastrous and unacceptable system response over certain time slots due to the
non-stationary of the dominating frequency band. One possible solution is to enlarge the frequency range
or introduce multiple frequency ranges in the gKYP lemma based control design, however, the in-band
performance decays quickly in this manner.

In this paper, we develop appropriate improvements of the gKYP lemma based passive control design
method. Inspired by the time-domain interpretation of the gKYP lemma [9], we first introduce a class of
frequency-dependent excited energy functions (FD-EEF) and frequency-dependent excited power functions
(FD-EPF) with respect to the system state and its derivative. We unveil the frequency-selectiveness
property of FD-EEF and FD-EPF on indicating the density of accumulated energy over moving time
windows, as well as instantaneous power excited by in-band and out-of-band components of the dis-
turbance. Based upon the frequency-selectiveness property, we propose a frequency-dependent switching
control (FDSC) scheme orchestrating an in-band and a group of out-of-band oriented passive controllers,
which are generated by the gKYP lemma based control design while setting different frequency ranges.
Moreover, a performance analysis of the closed-loop system implemented with FDSC is carried out through
an extensive re-exploitation of the gKYP lemma. It is shown that the proposed FDSC scheme provides an
appealing balance between the in-band performance and out-of-band performance. To a great extent, the
solid in-band performance of the in-band oriented passive controller can be inherited, while the effects
caused by out-of-band components are well counteracted by the out-of-band oriented passive controllers. In
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particular, the proposed FDSC scheme preserves good asymptotic performance while avoiding intolerable
transient system responses during the out-of-band components dominated short-term time phases.

The rest of this paper is organized as follows. Section II starts by revisiting the gKYP lemma based
control design. Section III introduces the concept of FD-EEF and FD-EPF and investigates its frequency-
selectiveness property. The mechanism of the FDSC scheme as well as the switching logic design are
presented in Section IV. Simulation results based on a generic and a common benchmark model are
illustrated in Section VI to verify the effectiveness and advantages of the proposed FDSC control scheme.
Section VII concludes this paper with some remarks.

Notations: For a matrix M , MT , M∗ and M⊥ means its transpose, complex conjugate transpose and
orthogonal complement, respectively. M < (>)0 and M ≤ (≥)0 mean the matrix M is negative (positive)
and semi-negative (semi-positive) definite, respectively. For matrices Φ and P , Φ ⊗ P represents their
Kronecker product. Ωe := (−∞,∞) defines the entire frequency range. Given a finite frequency range
Ω, Ω̄ := Ωe \ Ω represents its complement.

II. PRELIMINARIES AND PROBLEM STATEMENTS

A. Frequency-limited signals and frequency-dominated signals
We briefly recall the connection between a signal d : [0,∞) → R on the time-domain and its represen-

tation
D(ω) =

∫ ∞

0

d(t)e−ȷωt,

in the frequency-domain as it is obtained by the Fourier Transform (FT) under the tacit assumption that
d(t) is square integrable. The inverse FT recovers d(t) from its frequency representation D(ω) via

d(t) =
1

2π

∫ +∞

−∞
D(ω)eȷωtdω. (1)

Furthermore, we note that if D(ω) = 0 for ω /∈ Ωi, then

d(t) =
1

2π

I∑
i=1

∫
Ωi

D(ω)eȷωtdω, (2)

where Ωi, i = 1, 2, . . . , I are finite frequency ranges.

Definition 1. (Frequency-Limited Signals)

A signal d(t) will be referred as frequency-limited with respect to a pre-specified finite frequency range
Ωi, if it spectrum is zero beyond Ωi, i.e.,

D(ω) = 0, ∀ω /∈ Ωi. (3)

Generally, a finite-frequency range Ωi is defined within the category of low-frequency (LF), or middle-
frequency (MF), or high-frequency (HF). Specifically, LF, MF, HF are finite frequency ranges which can
be explicitly described as

Ωi := Ωl = [−ϖl,+ϖl], LF case,

Ωi := Ωm = [−ϖ2,−ϖ1] ∪ [+ϖ1,+ϖ2], MF case,

Ωi := Ωh = (−∞,−ϖh] ∪ [ϖh,+∞), HF case.

Definition 2. (Frequency-Dominated Signals)
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A signal d(t) will be referred as frequency-dominated with respect to a pre-specified finite frequency
range Ωi, if the energy of in-band and out-of-band components satisfies∫

Ωi

D∗(ȷω)D(ȷω)dω >

∫
Ω̄i

D∗(ȷω)D(ȷω)dω. (4)

Furthermore, the ratio between the energy of in-band components and the total energy

α(Ωi) =

∫
Ωi
D∗(ȷω)D(ȷω)dω∫

Ωe
D∗(ȷω)D(ȷω)dω

,

will be referred as the dominance degree of Ωi.

Frequency-dominance provides a more realistic index to characterize the importance of a concerned
frequency range. In fact, frequency-limited signals can be viewed as the extreme case of frequency-
dominance with α(Ωi) = 1.

Noting that the properties in Definition 1 and 2 are both presented from an infinite time horizon
perspective. If we turns to a localized time horizon viewpoint, a frequency-dominated signal may exhibit
more complicated characteristics. The dominance degree with respect to the given frequency range may
vary slowly over a long time window or dramatically over a short time slot. One way to reveal the
time-localized behavior of a given non-stationary signal is to use the well-known Short Time Fourier
Transform (STFT). The essential idea of STFT is to perform the FT on each segmented narrow time
interval of the total time series to find out instantaneous frequency spectra. In this paper, to present the
non-stationary frequency dominance of a given signal, we resort to the notion of time-localized pseudo
frequency spectrum.

Definition 3. (Time-Localized Pseudo Frequency Spectrum)

A function DTl
(ω) will be referred as time-localized pseudo frequency spectrum of d(t) over time interval

Tl : [tl, tl+1)(l = 1, 2, . . .), if d(t) over Tl can be recovered from DTl
(ω) by the following inverse FT

d(t) = 1
2π

∫ +∞
0

DTl
(ω)eȷωtdω, t ∈ Tl. (5)

With the time-localized pseudo frequency spectrum in mind, a signal d(t) can be expressed in a joint
time-frequency manner as follows:

d(t) =



I∑
i=i

∫
Ωi
DT1(ȷω)e

ȷωtdω,∀t ∈ T1 : [0, t1),

I∑
i=1

∫
Ωi
DT2(ȷω)e

ȷωtdω,∀t ∈ T2 : [t1, t2),

. . .
I∑

i=1

∫
Ωi
DTl

(ȷω)eȷωtdω,∀t ∈ Tl : [tl−1, tl),

. . . ,

where {Tl, T2, . . . , Tl, . . .} are successive segmented time slots, {Ω1,Ω2, . . . ,ΩI} are non-overlapping
frequency ranges. Correspondingly, a group of indices α(Ωi, Tl) can be generated as:

α(Ωi, Tl) =

∫
Ωi
D∗

Tl
(ȷω)DTl

(ȷω)dω∫
Ωe

D∗
Tl
(ȷω)DTl

(ȷω)dω
,

and used to describe the time-localized frequency dominance level of the in-band frequency compo-
nents. Furthermore, in case that the time-localized frequency dominance level is varying over time, i.e.,
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α(Ωi, Tl) ̸= α(Ωi, Tr), l ̸= r, then d(t) will be referred as non-stationary frequency-dominated signal
with respect to a pre-specified finite frequency range Ωi. In practice, the frequency components of a
signal may mainly fall into a frequency range Ωj over a short-time window, while itself is a globally
frequency-dominated signal with respect to Ωi, where i ̸= j and Ωi ∩ Ωj = ∅.

B. Revisit of gKYP lemma based passive controller design
Consider the following linear time-invariant system

ẋ(t) = Ax(t) +Bd(t),

z(t) = Cx(t) +Dd(t),
(6)

where x(t) ∈ Rn is the state vector, d(t) ∈ Rnd the disturbance vector and z(t) ∈ Rnz the regulated
output. Let A, B, C, and D be real constant matrices with appropriate dimensions. To make the paper
self-contained, we briefly include the L2-gain analysis oriented form of generalized Kalman-Yakubovich-
Popov (gKYP) lemma as it has been developed by Iwasaki and Hara to deal with finite-frequency analysis
in controller synthesis:

Lemma 1. Generalized Kalman-Yakubovich-Popov (gKYP) Lemma

Given a linear system (6), the following two statements are equivalent.
(1) For a finite frequency range Ωi, there exist matrices P = P ∗, Q = Q∗ > 0 such that the following
linear matrix inequality holds[

A B
I 0

]∗
(Φ⊗ P +Ψ⊗Q)

[
A B
I 0

]
+

[
C D
0 I

]∗ [
I 0
0−γf

2

] [
C D
0 I

]
< 0, (7)

where Ψ are frequency variables, and

Ψ =

[
−1 0
0 ϖ2

l

]
, if Ωi = Ωl

Ψ =

[
−1 ȷϖc

−ȷϖc −ϖ1ϖ2

]
, if Ωi = Ωm

Ψ =

[
1 0
0−ϖ2

h

]
, if Ωi = Ωh.

(2) If the input signal d(t) is frequency-limited with respect to Ωi, the input-output gain in the L2-norm
sense satisfies ∫ +∞

0
z∗(t)z(t)dt∫ +∞

0
d∗(t)d(t)dt

< γi, (8)

where γi is a positive scalar.

Based on the gKYP lemma, routines for seeking sub-optimal gains of a passive controller which attenuates
a frequency-limited disturbance were developed [10], [11], [12]. Given a finite frequency range Ωi, these
methods define a sub-optimal passive state feedback law

u(t) = Kix(t), (9)

so that for the linear system

ẋ(t) = Ax(t) +B1d(t) +B2u(t),

z(t) = Cx(t) +D1d(t) +D2u(t),
(10)

with a control input u and the regulated output z (and A, B1, B2, C, D1 and D2 are real constant matrices



GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX XXXX 6

with appropriate dimensions), the transfer function Gi : d → z of the corresponding closed-loop system
satisfies

σmax(Gi(ȷω)) < γi(Ωi, Ki), ∀ω ∈ Ωi (11)

with γi(Ωi, Ki) specified by the gKYP lemma.

C. Problem statement
Consider the linear system (10) in the presence of frequency-dominated disturbance d(t). From an

infinite time horizon perspective, we assume the dominating frequency range Ωin is known a priori while
its dominance degree α(Ωin) is sufficiently large but unknown, i.e., α(Ωin) → 1. From the viewpoint of
localized time horizon, we assume the dominance degree α(Ωin, Tl) could be stationary or non-stationary.
In particular, we assume that an arbitrary small time-localized dominance degree over a time interval or
intervals (i.e., α(Ωin, Tx) → 0) is an admissible scenarios in our problem setting.

Based upon the gKYP lemma, an in-band passive state feedback controller

u(t) = Kinx(t) (12)

can be generated and assumed to be available in our design. To combat with the out-of-band components,
a heuristic way is to assign a group of concerned frequency ranges {Ωout

i |Ωout
i ∩Ωin = ∅, i = 1, 2, . . . , I}

and produce a group of state feedback passive controllers

u(t) = Kout
i x(t), i = 1, 2, . . . , I (13)

also by applying the gKYP lemma based control design method in the first stage, and then facilitate those
candidates in a proper way.

Based on the in-band as well as the out-of-band passive controllers, the control objective of this work
is to develop an adaptive mechanism which can utilize the passive controllers such that:

(P.1) On the global disturbance attenuation performance:
The adaptive mechanism inherits the solid global disturbance attenuation performance over
infinite time horizon of the in-band controller (12) as close as possible∫∞

0
z∗(t)z(t)dt∫∞

0
d∗(t)d(t)dt

→ γ(Ωin, Kin). (14)

(P.2) On the localized disturbance attenuation performance:
The adaptive mechanism ensures an acceptable disturbance attenuation performance over
an arbitrarily selected time window Tl∫

Tl
z∗(t)z(t)dt∫

Tl
d∗(t)d(t)dt

< γtol, (15)

where γtol generally is set up as a smaller value of γ(Ωout
i , Kin).

III. FREQUENCY-DEPENDENT SWITCHING CONTROL

A. Frequency-selective functions
Beside the input-output analysis, sometimes it is of great importance to observe the response of system

states under the excitation of the input signal d(t). From the state space equation of linear system (6), we
have

x(t) := eAtx(0) + eAt

∫ t

0

e−AτBd(τ)dτ, t ∈ [0,+∞), (16)
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where x(0) is the initial condition. Generally, one could use the following excited energy function to
measure the excitation degree of the system caused by input signal d(t) over an infinite time horizon, i.e.,

S(Q) =

∫ +∞

0

x∗(t)Qx(t)dt, (17)

where Q = Q∗ > 0 is a user-defined matrix. The excited energy function reduces to the well-known
controllability or observability Gramian by setting Q = I . Furthermore, to measure the excitation degree
by input signal d(t) over a given finite time horizon Tl : [tl, tl+1), we define the excited energy function
as

S(Q, Tl) =

∫ tl+1

tl

x∗(t)Qx(t)dt, (18)

in which the lower and upper bounds of the integral is replaced by the starting and ending time instants
of the given time window, respectively.

Definition 4 ( Frequency-Dependent Excited Energy Function (FD-EEF)).

▷ Infinite time horizon case. Given a linear system (6) with input signal d(t), a finite-frequency range
Ωi and a positive definite matrix Qi, the function

S(Ωi, Qi) =

∫ +∞

0

[ẋ∗(t) x∗(t)](Ψi ⊗Qi)[ẋ
∗(t) x∗(t)]∗dt (19)

will be referred to as frequency-dependent excited energy function (FD-EEF) of the linear system
(6) with respect to (Ωi, Qi).

▷ localized-time horizon case. Given a linear system (6) with input signal d(t), a finite-frequency
range Ωi and a positive definite matrix Qi, the function

S(Ωi, Qi, Tl) =

∫ tl+1

tl

[ẋ∗(t) x∗(t)](Ψi ⊗Qi)[ẋ
∗(t) x∗(t)]∗dt (20)

will be referred to as frequency-dependent excited energy function (FD-EEF) of the linear system
(6) with respect to (Ωi, Qi) over the time window Tl.

Proposition 1. (Frequency-Selectiveness of FD-EEF)

FD-EEF exhibits a frequency-dependent selectiveness property with respect to the frequency spectrum
of the system state x(t), specifically,

1) Infinite time horizon case. Suppose that x(t) has a frequency-limited spectrum X (ȷω) over the
infinite time horizon with respect to Ωi. For given frequency range Ωin satisfying Ωin ⊃ Ωi and
frequency range Ωout satisfying Ωout ∩ Ωi = ∅, we have

S(Ωin, Qin) > 0, (21a)
S(Ωout, Qout) < 0. (21b)

where Qin and Qout are positive definite matrices.
2) Localized-time horizon case. Suppose that x(t) has a frequency-limited pseudo spectrum XTl

(ȷω)
over a finite time horizon Tl with respect to Ωi, For given frequency range Ωin satisfying Ωin ⊃ Ωi

and frequency range Ωout satisfying Ωout ∩ Ωi = ∅, we have

S(Ωin, Qin, Tl) > 0, (22a)
S(Ωout, Qout, Tl) < 0. (22b)
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Proof. 1) Infinite time horizon case. According to Parseval’s theorem and inverse FT, the equivalent
formulation of FD-EEF in frequency-domain is

F−1(S(Ωin, Qin)) =
1

2π

∫ +∞

−∞
[(ȷω)∗ 1]Ψin[(ȷω)∗ 1]∗X∗(ȷω)QinX(ȷω)dω, (23a)

F−1(S(Ωout, Qout)) =
1

2π

∫ +∞

−∞
[(ȷω)∗ 1]Ψout[(ȷω)∗ 1]∗X∗(ȷω)QoutX(ȷω)dω. (23b)

For a given matrix Ψi characterizing a frequency range Ωi, we have

[(ȷω)∗ 1]Ψf [(ȷω)
∗ 1]∗ =

 (ϖl − ȷω)(ϖl + ȷω) > 0, if Ωi ⊂ Ωl

(ω −ϖ1)(ϖ2 − ω) > 0, if Ωi ⊂ Ωm

(ȷω −ϖh)(ȷω +ϖh) > 0, if Ωi ⊂ Ωh.

Noting the relationship between Ωin,Ωout and Ωi, we have

[(ȷω)∗ 1]Ψin[(ȷω)∗ 1]∗ ≥ 0, ∀ω ∈ Ωi, (24a)
[(ȷω)∗ 1]Ψout[(ȷω)∗ 1]∗ ≤ 0,∀ω /∈ Ωi. (24b)

With the frequency-limited assumption imposed on x(t), it is easy to derive that

F−1(S(Ωin, Qin)) > 0, (25a)
F−1(S(Ωout, Qout)) < 0. (25b)

2) The counterpart to prove the localized-time horizon case can be easily obtained by following the
same routine.

Remark 1. If x(t) is not a strictly frequency-limited signal, then the positiveness or negativeness of
FD-EEF can not be guaranteed. However, with the following in-band and out-of-band decomposition

F−1(S(Ωi, Qi)) = F−1(Sin(Ωi, Qi, ) + F−1(Sout(Ωi, Qi)), (26)

where
F−1(Sin(Ωi, Qi)) =

1

2π

∫
ω∈Ωi

[(ȷω)∗ 1]Ψi[(ȷω)
∗ 1]∗X∗(ȷω)QiX(ȷω)dω > 0,

F−1(Sout(Ωi, Qi)) =
1

2π

∫
ω/∈Ωi

[(ȷω)∗ 1]Ψi[(ȷω)
∗ 1]∗X∗(ȷω)QiX(ȷω)dω < 0,

the value of FD-EEF could reveal the dominance degree of a given frequency range Ωi. Specifically
speaking, a positive value of FD-EEF means that the in-band excited energy is stronger than the out-
of-band excited energy and vice versa. Furthermore, the larger value of FD-EEF we have, the larger
dominance degree with respect to Ωi can be concluded.

Remark 2. The FD-EEF S(Ωi, Qi) can be viewed as frequency-weighted extension of the standard excited
energy function S(Q) (17) , which can be equivalently interpreted in frequency-domain as follows:

F−1(S(Q)) =
1

2π

∫ +∞

−∞
X∗(ȷω)QX(ȷω)dω, (27)

according to Parseval’s theorem and inverse FT. While the standard excited energy function S(Q) measures
the sum of energy excited by all the frequency components in a uniform way, the FD-EEF S(Ωi, Qi) treats
the in-band components with positive weighting factors and introduces negative weighting factors to the
out-of-band components.



GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX XXXX 9

In conjunction with the concept of energy, power is another crucial index to measure the strength of
signals. Physically, power is defined as the amount of energy consumed per unit time. On the basis of
FD-EEF, we define a group of frequency-dependent excited power functions as follows:

Definition 5. (Frequency-Dependent Excited Power Function (FD-EPF))

1) Given a linear system (6), the function

Pa(Ωi, Qi, Tl) = S(Ωi, Qi, Tl)/(tl+1 − tl) (28)

will be referred to as the average finite frequency-dependent excited power function with respect
to the finite-frequency range Ωi and the time window Tl : [t1, tl+1).

2) Given a linear system (6), the function

Pt(Ωi, Qi, t) = [ẋ∗(t) x∗(t)](Ψi ⊗Qi)[ẋ
∗(t) x∗(t)]∗ (29)

as the instantaneous finite frequency-dependent excited power function of the linear system (6).

It is easily observed that Pt(Ωi, Qi, t) = lim
tl+1−tl→0

Pa(Ωi, Qi, Tl). Similarly to FD-EEF, average FD-EPF or

instantaneous FD-EPF also process a similar frequency-selectiveness property, which can be manifested
by direct differentiation or integration.

B. Frequency-dependent switching logic and system configuration
In the light of the frequency selectiveness property of FD-EEF and FD-EPF, picking up the most

significant frequency range that dominates the system response in real-time becomes techniquely feasible.
In this work, we simplely choose the instantaneous FD-EPF as the candidate function to construct a
switching law. Mathematically, our proposed frequency-dependent switching control (FDSC) scheme can
be written as

u(t) = Kσ(t)x(t), (30)

where σ(t) is the switching signal satisfing the following rule

σ(t) = argmax
i∈{1,2,...,I}

P(Ωi, Qi, t) = argmax
i∈{1,2,...,I}

[ẋ∗(t) x∗(t)](Ψi ⊗Qi)[ẋ
∗(t) x∗(t)]∗, (31)

σ(t) is a piece-wise function taking values in {1, 2, . . . , I}, and I denotes the number of passive controller
gains {K1, K2, . . . , KI}. The closed-loop paradigm with the FDSC scheme is illustrated in Fig. 1.
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Fig. 1: Frequency-dependent switching control system
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Implementing the FDSC scheme, the closed-loop system will be a switched system as follows:

ẋ(t) = Aσ(t)x(t) +Bσ(t)d(t),

z(t) = Cσ(t)x(t) +Dσ(t)d(t),
(32)

where
Aσ(t) = A+B2Kσ(t), Bσ(t) = B1,
Cσ(t) = C +B2Kσ(t), Dσ(t) = D1.

The switching instants are expressed by a sequence:

T : {t1, t2, . . . , tl, tl+1, . . .},

and the sequence of switch-in instants of the ith passive control gain is represented by

T i
i : {ti1 , ti2 , . . . , tim , ti(m+1)

, . . .},

while the sequence of its switch-out instants is represented by

T o
i : {ti1+1, ti2+1, . . . , tim+1, ti(m+1)+1, . . .}.

Both T i
i and T o

i are subsets of T . The subsystem that is active over the time interval [tl−1, t
−
l ) be denoted

by i(i ∈ {1, 2, . . . , I}), and the index of the subsystem that is active over the time interval [tl, t−l+1) be
denoted by j(i ̸= j ∈ {1, 2, . . . , I}).

Since the passive control gains {K1, K2, . . . , KI} are supposed to be available by applying the gKYP
lemma based control design method, the design task is reduced to find out appropriate matrices Qi, i =
1, 2, . . . , I , to meet the control objectives. The result given in the following theorem presents conditions
that connecting the matrices Qi, i = 1, 2, . . . , I , and the disturbance attenuation performance of the FDSC
controller (30).

Theorem 1. Suppose d(t) is L2-norm bounded and the initial state is zero, i.e., x(0) = 0. Consider the
closed-loop switched system (32). Assume that there exist a symmetric matrix Pi and positive-definite
symmetric matrices P s

i , Qi such that the following inequalities hold:[
A∗

i I
]
(Φ⊗ P s

i +Ψi ⊗Qi −Ψj ⊗Qj)
[
A∗

i I
]∗

< 0, (33)[
Ai Bi

I 0

]∗
(Φ⊗ Pi +Ψi ⊗Qi −Ψj ⊗Qj)

[
Ai Bi

I 0

]
+

[
Ci Di

0 I

]∗ [
I 0
0−γi

2I

] [
Ci Di

0 I

]
< 0,

(34)
for i, j = 1, 2, . . . , I, i ̸= j. If no sliding motion occurs [27], then the following statements are true.
(1) The autonomous closed-loop switched system (32) with d(t) = 0 is asymptotically stable under
the switching law (31) , i.e., for any given initial condition x(t0), we have lim

t→∞
x(t) → 0.

(2) The transient disturbance attenuation performance of the closed-loop switched system satisfies∫
T
z∗(t)z(t)dt∫

T
d∗(t)d(t)dt

< max(γ2
1 , γ2

2, . . . , γ2
I ) + ϵT (35)

for any given time interval T := [ts, t
−
m), where ts and tm are the starting and terminal time instants,

respectively, and ϵT is the switching caused residue with small value.
(3) The asymptotic disturbance attenuation performance of the closed-loop switched system satisfies

lim
t→∞

∫ t
0 z∗(t)z(t)dt∫ t
0 d∗(t)d(t)dt

<
∑
i

βiγ
2
i + ϵ∞, (36)
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where T i
l := [til, (t

i
l+1)

−), βi = T i
l /

∑
i

T i
l , and ϵ∞ is the switching caused residue with small value.

Moreover, βi increase along with the increase of dominance degree α(Ωi, Tl), and vice versa.

Proof.
Proof of statement 1)
Let us define the following Lyapunov function:

V(t) = x∗(t)P s
σ(t)x(t). (37)

Without loss of generality, let us consider an interval Tl := [tl, t
−
l+1) between two consecutive switching

instants tl and tl+1 and let σ(ti) = i and σ(ti+1) = j and i, j ∈ {1, 2, . . . , I}. Then, for t ∈ [tl, t
−
l+1),

subsystem (Ai,Bi,Ci,Di) is activated at the mth time, i.e., tl = tim , tl+1 = tim+1. During the time
interval from tim to t−im+1, the derivative of V(t) with respect to time is

V̇(t) = x∗(t)(A∗
iP

s
i + P s

i Ai)x(t). (38)

Multiplying the inequality (33) by [ẋ∗(t) x∗(t)] from the left and by its conjugate transpose from the
right, we have

x∗(t)(A∗
iP

s
i + P s

i Ai)x(t) + [ẋ∗(t) x∗(t)](Ψi ⊗Qi −Ψj ⊗Qj)[ẋ
∗(t) x∗(t)]∗|i ̸=j < 0. (39)

From the definition of switching law (31), we have

V̇(t) < −[ẋ∗(t) x∗(t)](Ψi ⊗Qi −Ψj ⊗Qj)[ẋ
∗(t) x∗(t)]∗|i ̸=j < 0, (40)

which implies that closed-loop switched system is asymptotically stable if no sliding motion occurs.
Proof of statement 2)
Multiplying the inequality (34) by [x∗(t) d∗(t)] from the left and by its conjugate transpose from the right
yields [

ẋ∗(t) x∗(t)
]
(Φ⊗ Pi +Ψi ⊗Qi −Ψj ⊗Qj)

[
ẋ(t)

x(t)

]
+
[
z∗(t) d∗(t)

] [I 0
0−γi

2I

][
z(t)

d(t)

]
= d

dt
(x∗(t)Pix(t)) + Pt(Ωi, Qi, t)− Pt(Ωj, Qj, t) + z∗(t)z(t)− γ2

i d
∗(t)d(t) < 0.

(41)

With a slight abuse of notation, let
m−1⋃
l=1

[tl, t
−
l+1) denotes the set including the switching instants {t2, . . . , tm−1}

plus the starting time t1 := ts and the terminal time instant tm, then integrating the inequality (41) over
given time interval T := [ts, t

−
m) gives rise to

x∗(t)Pix(t) |t
−
m
ts +

∫ t−m
ts

(z∗(t)z(t)− γ2
i d

∗(t)d(t))dt+
∫ t−m
ts

(P(Ωi, Qi, t)− P(Ωj, Qj, t))dt < 0. (42)

According to the switching law, we have P(Ωσ(t), Qσ(t), t) − P(Ωj, Qj, t) > 0,∀t ∈ T , thus one can
conclude ∫ t−m

ts
(z∗(t)z(t)−max{γ2

1 , γ
2
2 , . . . , γ

2
I}d∗(t)d(t))dt

<
∫ t−m
ts

(z∗(t)z(t)− γ2
i d

∗(t)d(t))dt

< −
∫ t−m
ts

(P(Ωi, Qi, t)− P(Ωj, Qj, t))dt− x∗(t)Pix(t) |t
−
m
ts .

(43)

Letting

ϵT = max{0,−
∫ t−m
ts

(P(Ωi,Qi,t)−P(Ωj ,Qj ,t))dt∫ t−m
ts

d∗(t)d(t)dt
− x∗(t)Pix(t)|

t−m
ts∫ t−m

ts
d∗(t)d(t)dt

}, (44)

leads us to ∫
T z∗(t)z(t)dt∫
T d∗(t)d(t)dt

=
∫ t−m
ts

z∗(t)z(t)dt∫ t−m
ts

d∗(t)d(t)dt
< max(γ2

1 , γ2
2, . . . , γ2

I ) + ϵT . (45)
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Proof of statement 3)
We consider the excited energy of the regulated output over a time interval T i

l := [til, (t
i
l+1)

−), in which
the closed-loop subsystem (Ai,Bi,Ci,Di) is activated,∫ (til+1)

−

til
z∗(t)z(t)dt

< γ2
i

∫ (til+1)
−

til
d∗(t)d(t)dt−

∫ (til+1)
−

til
(P (Ωi, Qi, t)− P(Ωj, Qj, t))dt− x∗(t)Pix(t) |

(til+1)
−

til
.

(46)

The total excited energy of the regulated output is

lim
t→∞

∫ t

0
z∗(t)z(t)dt =

∑
i

∑
l

∫ (til+1)
−

til
z∗(t)z(t)dt

<
∑
i

∑
l

γ2
i

∫ (til+1)−
til

d∗(t)d(t)dt−
∑
i

∑
l

∫ (til+1)
−

til
(P (Ωi, Qi, t)− P(Ωj, Qj, t))dt−

∑
i

∑
l

x∗(t)Pix(t) |
(til+1)

−

til
.

(47)
Without loss of generality, the input signal can be expressed as d(t) =

∑
k

D(ωk)e
ȷωkt and its energy can

be rewritten in a time-segmented manner as follows:∑
i

∑
l

γ2
i

∫ (til+1)
−

til
d∗(t)d(t)dt

=
∑
i

∑
l

γ2
i

∫ (til+1)
−

til

∑
k

∑
κ

D∗(ωk)e
−ȷωkteȷωκtD(ωκ)dt

=
∑
i

∑
l

γ2
i

∫ (til+1)
−

til

∑
k=κ

D∗(ωk)D(ωκ)e
ȷ(ωκ−ωk)tdt+

∑
i

∑
l

γ2
i

∫ (til+1)
−

til

∑
k ̸=κ

D∗(ωk)D(ωκ)e
ȷ(ωκ−ωk)tdt

= lim
t→∞

∑
i

∑
l

γ2
i βi

∫ t

0
d∗(t)d(t)dt.

Therefore, we have

lim
t→∞

∫ t

0
z∗(t)z(t)dt∫ t

0
d∗(t)d(t)dt

<
∑
i

βiγ
2
i + ϵ∞, (48)

where

ϵ∞ = max{0,−
lim
t→∞

∫ t
0 (P(Ωi,Qi,t)−P(Ωj ,Qj ,t))dt

lim
t→∞

∫ t
0 d∗(t)d(t)dt

−
∑
i

∑
l

x∗(t)Pix(t)|
(til+1)

−

ti
l

lim
t→∞

∫ t
0 d∗(t)d(t)dt

}. (49)

Now, let us focus on the state response of the closed-loop system during a time slot: Tl := [tl, t
−
l+1),

where tl, tl+1 are two consecutive switching time instants. The system state response and its derivative
over [tl, t−l+1) are given as follows:

x(t) =
∑
k

(D(ωk)e
ȷωktI −D(ωk)e

ȷωktleAi(t−tl))(ȷωkI −Ai)
−1Bi + eAi(t−tl)x(tl), (50)

ẋ(t) =
∑

k(ȷωkD(ωk)e
ȷωktI −D(ωk)Aie

ȷωktleAi(t−tl))(ȷωkI −Ai)
−1Bi +Aie

Ai(t−tl)x(tl), (51)

where x(tl) is the system state at the switching instant. A detailed analysis of the FD-EPFs can be
presented as follows:

P(Ωi, Qi, t) = [ẋ∗(t) x∗(t)](Ψ⊗Qi)[ẋ
∗(t) x∗(t)]∗

= Pa(Ψi, Qi,Ai,Bi, t) + Pe(Ψi, Qi,Ai,Bi, e
Ai(t−tl)),
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where the first term is
Pa(Ψi, Qi,Ai,Bi, t)
= Γ(Ψi, Qi,

∑
ωk

eȷωkt(ȷωkI −Ai)
−1Bi,

∑
ωk

ȷωke
ȷωkt(ȷωkI −Ai)

−1Bi)

=
∑

ωk,ωκ,k=κ

τ(Ψi, ωk, ωκ)e
−ȷωkteȷωκt[(ȷωκI −Ai)

−1Bi]
∗Qi[(ȷωkI −Ai)

−1Bi)]

+
∑

ωk,ωκ,k ̸=κ

τ(Ψi, ωk, ωκ)e
−ȷωkteȷωκt[(ȷωκI −Ai)

−1Bi]
∗Qi[(ȷωkI −Ai)

−1Bi)]

=
∑

ωk,ωκ,k=κ
ωk∈Ωi

τ(Ψi, ωk, ωk)[(ȷωkI −Ai)
−1Bi]

∗Qi[(ȷωkI −Ai)
−1Bi)]

︸ ︷︷ ︸
Pin
a (Ψi,Qi,Ai,Bi)>0

+
∑

ωk,ωκ,k=κ
ωk /∈Ωi

τ(Ψi, ωk, ωk)[(ȷωkI −Ai)
−1Bi]

∗Qi[(ȷωkI −Ai)
−1Bi)]

︸ ︷︷ ︸
Pout
a (Ψi,Qi,Ai,Bi)<0

+
∑

ωk,ωκ,k ̸=κ

τ(Ψi, ωk, ωκ)e
ȷ(ωκ−ωk)t[(ȷωκI −Ai)

−1Bi]
∗Qi[(ȷωkI −Ai)

−1Bi)]︸ ︷︷ ︸
Pe(Ψi,Qi,Ai,Bi,e

ȷωkt)

with

τ(Ψi, ωk, ωκ) =

 (ϖl − ωk)(ωκ +ϖl), if Ωi ∈ Ωl

(ϖ2 − ωk)(ωκ −ϖ1), if Ωi ∈ Ωm

(ωk −ϖh)(ωκ +ϖh), if Ωi ∈ Ωh,

and the second term can be written as

Pe(Ψi, Qi,Ai,Bi, e
Ai(t−tl))

=
∑
ωk

Γ(Ψi, Qi,
∑
ωk

eȷωkt(ȷωkI −Ai)
−1Bi, ȷωke

ȷωkt(ȷωkI −Ai)
−1Bi)

+
∑
ωk

Γ(Ψi, Qi,
∑
ωk

eȷωkt(ȷωkI −Ai)
−1Bi,Aie

ȷωktleAi(t−tl)(ȷωkI −Ai)
−1Bi)

+
∑
ωk

Γ(Ψi, Qi, e
ȷωkt(ȷωkI −Ai)

−1Bi,Aie
Ai(t−tl)x(tl))

+
∑
ωk

Γ(Ψi, Qi,
∑
ωk

eȷωktleAi(t−tl)(ȷωkI −Ai)
−1Bi, ȷωke

ȷωkt(ȷωkI −Ai)
−1Bi)

+
∑
ωk

Γ(Ψi, Qi,
∑
ωk

eȷωktleAi(t−tl)(ȷωkI −Ai)
−1Bi,Aie

ȷωktleAi(t−tl)(ȷωkI −Ai)
−1Bi)

+
∑
ωk

Γ(Ψi, Qi, e
ȷωktleAi(t−tl)(ȷωkI −Ai)

−1Bi,Aie
Ai(t−tl)x(tl))

+
∑
ωk

Γ(Ψi, Qi, e
Ai(t−tl)x(tl), ȷωke

ȷωkt(ȷωkI −Ai)
−1Bi)

+
∑
ωk

Γ(Ψi, Qi, e
Ai(t−tl)x(tl),Aie

ȷωktleAi(t−tl)(ȷωkI −Ai)
−1Bi)

+ Γ(Ψi, Qi, e
Ai(t−tl)x(tl),Aie

Ai(t−tl)x(tl))

with
Γ(Ψi, Qi, X, Y ) =

∑
ωk,ωκ

τ(Ψi, ωk, ωκ)XQiY.

As the closed-loop switched system is stable, the integral of the terms with eȷ(ωκ−ωk)t will be uniformly
bounded, i.e.,

lim
t→∞

∫ t

0

Pe(Ψi, Qi,Ai,Bi, e
ȷωkt)dt < B1i,

where B1i denotes the i-th upper bound with finite value. Since Ai are Hurwitz matrices and the closed-
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loop system is asymptotically stable, it can be proved that all terms associated with eAi(t−tl) are uniformly
bounded according to a simple extension of the Lemma A.1. in reference [9]. Furthermore, we have

lim
t→∞

∫ t

0

Pe(Ψi, Qi,Ai,Bi, e
Ai(t−tl))dt < B2i,

where B2i also represents a finite upper bound.
With the above analysis on FD-EPFs as well as the relationship between FD-EEFs and FD-EPFs, we

have
lim
t→∞

S(Ωi, Qi, [0, t))

= lim
t→∞

∫ t

0
Pt(Ωi, Qi, t)dt

= lim
t→∞

∫ t

0
Pin
a (Ωi, Qi,Ai,Bi)dt+ lim

t→∞

∫ t

0
Pout
a (Ωi, Qi,Ai,Bi)dt

+ lim
t→∞

∫ t

0
Pe(Ψi, Qi,Ai,Bi, e

ȷωkt)dt+ lim
t→∞

∫ t

0
Pe(Ψi, Qi,Ai,Bi, e

Ai(t−tκ))dt

< lim
t→∞

(Pin
a (Ωi, Qi,Ai,Bi) + Pout

a (Ωi, Qi,Ai,Bi))t+ B1i + B2i.

It can be observed that the value of the FD-EPFs mainly depends on the invariant in-band component
Pin
a (Ωi, Qi,Ai,Bi) and the invariant out-of-band component Pout

a (Ωi, Qi,Ai,Bi). On the other hand, the
invariant components coincide with the average FD-EPF of its associated subsystem over infinite time
horizon, specifically, we have

lim
t→∞

Pa(Ωi, Qi, t) = lim
t→∞

(Pin
a (Ωi, Qi,Ai,Bi) + Pout

a (Ωi, Qi,Ai,Bi)).

According to our switching mechanism, it is more likely to activate the subsystem which is associated to
larger average FD-EPF over a long time horizon. The changing principal of a group of terms with respect
to the variation of αi can be derived and presented in the following Table I.

TABLE I: Increase and decrease of a group of terms with changing αi

αi(Ωi, Tl) ↑ αi(Ωi, Tl) ↓

|P in
a (Ωi, Qi,Ai,Bi)| ↑ ↓

|P out
a (Ωi, Qi,Ai,Bi)| ↓ ↑

Pa(Ωi, Qi,Ai,Bi) ↑ ↓

max{Pa(Ωj, Qj,Aj,Bj)}, j ̸= i ↓ ↑

Ti =
∑

l T
i
l ↑ ↓∑

j Tj =
∑

j

∑
l T

j
l , j ̸= i ↓ ↑

βi ↑ ↓

This concludes the proof of our theorem.

Remark 3. Besides the matrices Qi, i = 1, 2, . . . , I , to be designed, the achievable performance of our
FDSC controller also depends on the passive control gains Ki, i = 1, 2, . . . , I . With the assumption that
the disturbance is frequency dominated with respect to Ωi , the in-band passive controller always has to be
included (i.e., setting Ki = Kin). In case that there does not exist a priori time-frequency characteristics
about the out-of-band components, picking up only one controller gain from the available out-of-band
controller pool Kout

i , i = 1, 2, . . . , I , becomes the simplest option. To choose the most appropriate out-
of-band controller, a promising way is to compare the maximum singular value gap between the transfer
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functions resulting from the in-band and out-of-band. The gap function can be explicitly rewritten as:

gap(Kin, Kout
i , ω) = σmax(G(ȷω), Kin)− σmax(G(ȷω), Kout

i ), ∀ω ∈ Ωi, i = 1, 2, . . . , I. (52)

Since the proposed FDSC scheme is aimed to balance the in-band and the out-of-band attenuation perfor-
mance in a sophisticated way, Kout

i will be a good choice if the value of the gap function gap(Kin, Kout
i , ω)

are positive over the entire frequency band Ωin (or its major subsets) and negative over the entire out-of-
band Ωout (or its major subsets). In case that the out-of-band components are dominated over multiple
discriminative frequency bands, introducing multiple associated out-of-band controllers into the FDSC
scheme becomes an attemptable option.

Remark 4. To avoid unacceptable out-of-band performance both in finite or infinite time horizon, a simple
but reasonable way is to set γj = γtol, j ̸= i, in the LMI condition (34), then produce the Qi by solving
an optimization problem as follows:

min
γi,P s

i ,Pi,Qi

γi,

subject to (33)(34).
(53)

Remark 5. In the gKYP lemma based passive controller design [10], it is known that there exists
a gap between the a priori upper bound γ and the a posteriori actual in-band disturbance attenua-
tion performance, which can be accurately evaluated by frequency sweeping maximum singular value
σmax(G(ȷω), K), ω ∈ Ω. Noting that the design conditions in Theorem 1 are also sufficient, thus the
indices γi, i = 1, 2, . . . , I , as well as the a priori bounds are larger than the actual disturbance attenuation
performance, the existence of the gap can be observed from the inequality (43). Unfortunately, it is hard
to give accurate a posteriori disturbance attenuation performance analysis directly from the maximum
singular value of subsystems σmax(G(ȷω), Ki), ω ∈ Ωi, i = 1, 2, . . . , I , as accurate frequency-domain
analysis of switched systems is intrinsically difficult. However, maximum singular values are also useful
to characterize the attenuation performance of FDSC under certain circumstances. Specifically, in case
that the frequency dominant with respect to Ωi is very high, e.g. close to αi → 1 or even be strictly
frequency-limited αi → 1 over a time window T , the control gain Ki will be the dominate one among all
passive gains, in other word, the behavior of FDSC will mimic the in-band passive controller, thus we
have ∫

T
z∗(t)z(t)dt∫

T
d∗(t)d(t)dt

< σmax(G(ȷω), Ki) + ϵ < γi + ϵ, ω ∈ Ωi, (54)

where ϵ is a small positive constant.

Remark 6. In our proposed FDSC scheme, only the FD-EPF is facilitated to formulate the switching
law using the state-derivative. Noticing that both FD-EPF and FD-EEF possess frequency-selectiveness
properties, it is probably feasible to develop a FD-EEF or FD-EEF & FD-EPF based switching law
as alternatives, in which the state integral will be involved. Although further discussion on this issue is
beyond the scope of this paper, to some extent, the design methodology behind our switching law coincides
with the underlying principal of the classical Proportional-Integral-Derivative controller (PID) control
theory.

Remark 7. Theorem 1 only confirms the stability and disturbance attenuation performance of the closed-
loop switched system under the sliding motion free assumption. In fact, sliding motion very rarely occurs
in practical applications due to the limited precision and time-varying disturbance. However, providing a
theoretical analysis on the existence of sliding motion [18], [27], [28] under our proposed switching law
is still meaningful to be discussed in future work. Moreover, it is known that the sliding motion can be
strictly avoided by slightly modifying the switching law, for example, introducing hysteresis or minimum
dwell time between switching instants [29].
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IV. SIMULATION

The code and the raw data of the presented numerical results are available as noted in Figure 2.

Fig. 2: Code and Data Availability.

The source code of the implementations used to compute the presented results is available from

doi:10.5281/zenodo.7990805

under the CC-BY SA license and is authored by Jingjing Zhang.

Consider the longitudinal axis flight control system design of an aircraft with the decoupled linearized
longitudinal dynamical equation of motion described as follows, see, also [30] for a detailed description
of this common benchmark example:[

α̇(t)

q̇(t)

]
= Along

[
α(t)

q(t)

]
+Bu

long

[
δE(t)

δPTV (t)

]
+Bw

longd(t),

z(t) = Clong

[
α(t)

q(t)

]
+Dlong

[
δE(t)

δPTV (t)

]
,

where α(t) is the angle of attack , q(t) is the perturbational pitch rate, δE(t) is the symmetric horizontal
tail deflection, δPTV (t) is the symmetric pitch thrust vectoring nozzle deflection. d(t) is the disturbance
caused by wind shear or mechanical oscillation, z(t) is the regulated output that balances the state variation
and control input.

We borrow the following data from [31]:

Along =

[
−1.175 0.9871
−8.458 − 0.8776

]
, Bu

long =

[
−0.194 − 0.03593
−19.29 − 3.803

]
,

Bw
long =

[
1
4

]
, Clong =

[
0 4
0 0
0 0

]
, Dlong =

[
0 0
2 0
0 2

]
.

Hereby we use the concept of LF/MF/HF and consider the following three finite-frequency ranges by
simply letting 100, 101 as the crossover frequencies, i.e.

LF ω ∈ Ω1 : (−1, 1),

MF ω ∈ Ω2 : (−10,−1] ∪ [1, 10),

HF ω ∈ Ω3 : (−∞,−10] ∪ [10,+∞).

(55)

Suppose the dominating frequency components are located in the HF range Ω3. By applying the gKYP
lemma based finite-frequency control design approach established by Iwasaki and Hara, a group of passive
state-feedback controllers can be derived. The control gains as well as their in-band disturbance attenuation
performance are given for the LF case, MF case, HF case, respectively, as follows:

Kf1 =

[
0.1048 15.0897
0.0205 2.9760

]
, σmax(G(ȷω), Kf1) < 0.3443, ∀ω ∈ Ω1,

Kf2 =

[
−1.6368 39.1121
−0.3229 7.7111

]
, σmax(G(ȷω), Kf2) < 0.4025, ∀ω ∈ Ω2,

Kf3 =

[
−0.4217 − 0.0433
−0.0832 − 0.0085

]
, σmax(G(ȷω), Kf3) < 0.1714, ∀ω ∈ Ω3.

For comparison, the standard passive state-feedback controller resulting optimal disturbance attenuation

https://doi.org/10.5281/zenodo.7990805
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performance over EF, i.e., the standard optimal H∞ controller as well as its EF disturbance attenuation
performance are generated as follows:

Ke =

[
−1.6360 39.0849
−0.3228 7.7057

]
, σmax(G(ȷω), Ke) < 0.7125, ∀ω ∈ Ωe : (−∞,+∞).

To show the disturbance attenuation performance over different frequency ranges, the maximum singular
value of closed-loop system models with passive controllers Kf1 , Kf2 , Kf3 , Ke are plotted, see Figure 3.
Obviously, Kf3 provides best HF disturbance attenuation performance while it suffers from a significantly
deteriorating LF performance.

10-1 100 101 102 103 104

frequency

10-3

10-2

10-1

100

101

102

103

1 2 3

Fig. 3: The maximum singular value of closed-loop system model with passive controllers

In this example, we only use the LF and HF passive controllers (i.e., setting K1 = Kf1 and K2 = Kf3)
to realize our proposed FDSC scheme. By solving the LMI optimization problem based upon the design
conditions in Theorem 1, the matrices Q1 and Q2 in the switching law can be computed as

Q1 = 106 ×
[

0.8559 − 0.2207
−0.2207 0.0613

]
, Q2 =

[
0.0211 0.0285
0.0285 0.1449

]
.

Let us consider two stationary cases with respect to the spectrum of disturbance. To generate frequency-
limited disturbance with LF and HF spectrum, a natural way is to set the disturbance as a sum of sinusoidal
signals. For our first simulation, we set the disturbance as the LF disturbance

d(t) = sin(0.1t) + sin(0.2t) + sin(0.3t) (56)

with spectrum Ω1. Fig. 4a-Fig. 4c show the perturbation pitch rate q(t), symmetric horizontal tail deflection
δE(t) and symmetric pitch thrust vectoring nozzle deflection δPTV (t) of the closed-loop system with PassC-
EF, PassC-LF, PassC-HF and FDSC, as the simulation results. From Fig. 4a-Fig. 4c, we can notice that
the fluctuation range of the red line is close to zero, which means the anti-disturbance performance of
PassC-LF is the best. On the contrary, the disturbance attenuation performance of PassC-HF is the worst,
because the fluctuation range of the yellow line is up to a thousand times greater than for the others.
Although the fluctuation range of the purple line is not the smallest, the gap between the purple and red
lines is far less than the gap between the purple and yellow lines. In case of LF signal input, our proposed
FDSC scheme can provide pretty good anti-disturbance performance that is similar to PassC-LF.
Similarly, we set the disturbance as the HF disturbance

d(t) = sin(100t) + sin(200t) + sin(300t) (57)



GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX XXXX 18

0 50 100 150 200 250 300 350 400 450 500
t

-100

-50

0

50

100

150
The perturbation pitch rate q(t) with LF disturbance signal

PassC-EF
PassC-LF
PassC-HF
FDSC

0 100 200 300 400 500

-0.2
0

0.2 PassC-EF
PassC-LF
PassC-HF
FDSC

(a)

0 50 100 150 200 250 300 350 400 450 500
t

-40

-20

0

20

40
The symmetric horizontal tail deflection 

E
(t) with LF disturbance signal

PassC-EF
PassC-LF
PassC-HF
FDSC

(b)

0 50 100 150 200 250 300 350 400 450 500
t

-10

-5

0

5

10
The symmetric pitch thrust vectoring nozzle deflection 

PTV
(t) with LF disturbance signal

PassC-EF
PassC-LF
PassC-HF
FDSC

(c)

Fig. 4: The perturbation of the regulated output signal z(t) = [q(t) δE(t) δPTV (t)]
T

with spectrum Ω3. Fig. 5 and Fig. 6 show the perturbation of the regulated output signal z(t) and L2

induced norm of the closed-loop system with PassC-EF, PassC-LF, PassC-HF and FDSC , as the simulation
results. In Fig. 5a, the four lines are almost coincident and the fluctuation range of these lines is less than
0.15, while in Fig. 6, the L2 induced norm of PassC-EF and PassC-LF is nearly twice that of PassC-HF
and FDSC which illustrates that the performance of FDSC is better than PassC-EF, PassC-LF and close
to PassC-HF in this scenario. It is easy to see that the gap between the purple and yellow lines is far less
than the gap between the purple and red lines from Fig. 5b-Fig. 5c. In case of an HF signal input, FDSC
can still provide excellent disturbance attenuation performance which is similar to PassC-HF.

To test the disturbance attenuation capability of the passive controllers and our FDSC schemes, we first
consider the scenario that an assumed HF disturbance is corrupted by some LF components, i.e.,

d(t) = dh(t) + ρpdl(t)
= sin(100t) + sin(200t) + sin(300t) + ρp(sin(0.1t) + sin(0.2t) + sin(0.3t)),

where ρp represents the relative power intensity of the mixed out-of-band LF components. We set the
simulation time to t ∈ [0, 500], and choose different ρp over [0, 0.5]. For a clear illustration, we repeat
the simulation with respect to different chosen ρp.
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Fig. 5: The perturbation of the regulated output signal z(t) = [q(t) δE(t) δPTV (t)]
T
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Fig. 6: The L2 induced norm between HF disturbance and regulated output signals

It should be noted that since the energy of PassC-HF has reached 106, there is a big difference with
the other controllers, hence we use 1/5000 energy value of PassC-HF to compare with others. Fig. 7
shows the excited energy of the regulated outputs with respect to different controllers. It is seen that the
PassC-HF controller is very sensitive to the mixed out-of-band (LF) components, using it actually becomes



GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX XXXX 20

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
t

0

200

400

600
The excited energy of regulated outputs 

PassC-EF
PassC-LF
PassC-HF
FDSC

Fig. 7: The excited energy of regulated outputs over t ∈ [0, 500] with different ρp

unacceptable even if the mixed LF out-of-band components are very small. Nevertheless, the proposed
FDSC gives rise to excellent balanced performance in case that the out-of-band components are relative
small (ρp ≤ 0.2). Certainly, as expected, in case that the out-of-band components are of comparatively
large magnitude (ρp > 0.2), using the standard EF H∞ controller or PassC-LF maybe a better option.

Next, we consider the scenario that the assumed HF disturbance is varied in a frequency-spectrum
fluctuation manner, i.e., we insert an out-of-band LF signal in the running time of the in-band HF signal,
i.e., the disturbance is expressed in sum of sinusoidal signals

d(t) =

 sin(100t) + sin(200t) + sin(300t), ∀t ∈ [0, T ),
ρ∗p(sin(0.1t) + sin(0.2t) + sin(0.3t)), ∀t ∈ [T, T + ρtT ),
sin(100t) + sin(200t) + sin(300t), ∀t ∈ [T + ρtT, 2T + ρtT ),

(58)

where ρt ∈ [0, 0.5] is the radio of the embedded. We set T = 500 and ρ∗p = 0.1 in the following group of
simulations.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
t

0

200

400
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800
The excited energy of regulated outputs 

PassC-EF
PassC-LF
PassC-HF
FDSC

Fig. 8: The excited energy of regulated outputs over t ∈ [0, 1000 + 500ρt] with different ρt

Due to a big energy value gap between PassC-HF and other controllers, 1/100 of the energy value of
PassC-HF is used to compare with other controllers. In Fig. 8, we see a severe deterioration of the PassC-
HF disturbance attenuation performance-even the embedded out-of band (LF) components persist in a very
short time window, but the proposed FDSC technique displays excellent in rejecting disturbances of the
system, unsurprisingly. With the increase of the ratio of out-of-band components, the banded dominance
characterization of the frequency spectrum becomes more and more vague, it is hard to consider d(t) is
a HF-dominated signal. Under such a circumstance, using the standard EF H∞ controller or PassC-LF
maybe a better option.

V. CONCLUSION

We have revealed the frequency-selectiveness property of a class of frequency-dependent functions
with respect to the system state and its derivative for linear time-invariant systems. Based on this, we
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propose a frequency-dependent switching mechanism on the basis of a couple of or a group of frequency-
selective passive controllers. An example illustrats the proposed FDSC control scheme and demonstrates
its effectiveness on adjusting the in-band and out-of-band disturbance attenuation performance.
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