
Abstract The European land carbon uptake has been heavily impacted by several recent severe droughts, 
yet quantitative estimates of carbon uptake anomalies are uncertain. Atmospheric CO2 inverse models (AIMs) 
provide observation-based estimates of the large-scale carbon flux dynamics, but how well they capture drought 
impacts on the terrestrial carbon uptake is poorly known. Here we assessed the capacity of state-of-the-art 
AIMs in monitoring drought impacts on the European carbon uptake over 2001–2015 using observations 
of environmental variability and vegetation function and made comparisons with bottom-up estimates of 
carbon uptake anomalies. We found that global inversions with only limited surface CO2 observations give 
divergent estimates of drought impacts. Regional inversions assimilating denser CO2 observations over Europe 
demonstrated some improved consistency, with all inversions capturing a reduction in carbon uptake during 
the 2012 drought. However, they failed to capture the reduction caused by the 2015 drought. Finally, we found 
that a set of inversions that assimilated satellite XCO2 or assimilated environmental variables plus surface CO2 
observations better captured carbon uptake anomalies induced by both the 2012 and 2015 droughts. In addition, 
the recent Orbiting Carbon Observatory—2 XCO2 inversions showed good potential in capturing drought 
impacts, with better performances for larger-scale droughts like the 2018 drought. These results suggest that 
surface CO2 observations may still be too sparse to fully capture the impact of drought on the carbon cycle at 
subcontinental scales over Europe, and satellite XCO2 and ancillary environmental data can be used to improve 
observational constraints in atmospheric inversion systems.

Plain Language Summary Atmospheric CO2 inverse models (AIMs) are useful tools for 
quantifying the response of large-scale carbon uptake to climate extremes, but their capacity for monitoring 
drought impacts, particularly at regional scales, is not fully explored. In this study, we assessed the capacity 
of state-of-the-art AIMs for monitoring drought impacts on the European land carbon uptake over 2001–2015 
using a large array of observational and model data sets. We found: (a) global inversions with only limited 
surface CO2 observations face a great challenge in monitoring drought impacts on the European carbon 
uptake; (b) Regional inversions assimilated denser CO2 observations over Europe, for the EUROCOM project, 
demonstrated some improved consistency but are still deficient, showing divergent estimates in interannual 
variability of carbon uptake for most years; and (c) A set of inversion systems that assimilated satellite XCO2 
or assimilated environmental variables plus surface CO2 observations better captured annual and seasonal 
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Key Points:
•  Global inversions with only limited 

surface CO2 observations give 
divergent estimates of drought impacts 
on the European carbon uptake

•  Regional inversions assimilating 
denser CO2 observations over 
Europe demonstrate some improved 
consistency but are still deficient

•  The inversions assimilating satellite 
XCO2 or environmental variables 
in addition to surface CO2 largely 
improve the estimates
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1. Introduction
In recent decades, large-scale extreme droughts have frequently hit various regions over the globe, and Europe 
is becoming a hotspot (Ciais et al., 2005; Flach et al., 2018; Laaha et al., 2017; Peters et al., 2020; S. Wang 
et al., 2020). Such droughts have been known to strongly influence the inter-annual variations (IAV) of terrestrial 
carbon uptake at both regional (Wolf et al., 2016) and global (Ahlström et al., 2015) scales. Accurately monitor-
ing the behavior of terrestrial ecosystems in response to droughts is critical for understanding the carbon-climate 
interaction and feedbacks (Xiao et al., 2016).

Atmospheric CO2 inverse models (AIMs) infer the surface carbon dioxide (CO2) fluxes from atmospheric mole 
fraction observations through adjusting prior surface fluxes (often provided by terrestrial biosphere models 
[TBMs]) to minimize the gap between simulated concentration and observed concentration within model–
data fusion frameworks. These models have been utilized for more than two decades in carbon cycle research 
(Chevallier et al., 2019; Gurney et al., 2004; Peters et al., 2007; Rödenbeck et al., 2003; van der Laan-Luijkx 
et al., 2017). Over most of their history, AIMs have primarily been employed to study the continental-to-global 
scale carbon cycle by assimilating CO2 measurements from a sparse network of surface sites. However, AIMs 
are increasingly being applied to regional carbon flux estimation (Byrne, Liu, Lee, et al., 2020; Friedlingstein 
et al., 2019; He, Jiang, Wu, et al., 2022; He, van der Velde, et al., 2018; Monteil et al., 2020) and assess carbon 
cycle response to climate extremes (He, Ju, et al., 2018; J. Liu et al., 2018; Molina et al., 2015; van der Laan-Luijkx 
et al., 2015; Wolf et al., 2016).

AIMs offer a formal way to assess the impact of climate extremes (e.g., drought) on the carbon cycle. However, 
the sparse sampling of CO2 measurements has generally been insufficient to capture the carbon cycle response 
to these regional climate extremes. Recently, increasing observational coverage from an expanded network of 
surface sites has been improving our ability to capture regional fluxes (Monteil et al., 2020). Further, assimilating 
satellite measurements of column-averaged dry-air mole fractions of CO2 (XCO2) (Byrne, Liu, Lee, et al., 2020; 
Jiang et al., 2021; J. Liu et al., 2018) or land surface data (Rödenbeck et al., 2018b; Scholze et al., 2019) are also 
now being utilized to refine CO2 flux estimates. Still, the capacity of current AIMs in capturing the impacts of 
large-scale droughts on ecosystems has not been fully studied.

Assessing the accuracy of carbon flux products is critical for improving our understanding of the link between the 
terrestrial carbon cycle and climate change. Validation of large-scale carbon fluxes is a common challenge. As 
suggested by Schewe et al. (2019), research efforts of model development and evaluation need to be shifted away 
from mean conditions toward extremes. For example, several studies have systematically examined state-of-the-
art land surface models for monitoring the carbon cycle responses to typical large-scale drought events (He 
et al., 2021; Peters et al., 2020; Schewe et al., 2019). Similarly, previous studies have shown that the performance 
of AIMs can be evaluated through comparisons of IAV in the driving environmental variables and against inde-
pendent CO2 flux estimates. For example, Byrne et al. (2019) evaluated the ability of AIMs to reproduce CO2 flux 
IAV against variability in the environmental drivers (e.g., temperature and moisture) as well as observations of 
vegetation function (e.g., solar-induced chlorophyll fluorescence [SIF]) and independent CO2 flux estimates (e.g., 
FLUXCOM). They found that comparisons against these data sets proved to be an effective method for evaluat-
ing the performance of AIMs, and were even able to characterize the impact of the flux inversion set-up on IAV 
estimates. Similarly, Yin et al. (2020) demonstrated that anomalies in SIF were closely linked to net ecosystem 
production (NEP) anomalies caused by extreme flooding in the Midwest USA during the spring of 2019. These 
studies demonstrate that we should expect a substantial level of agreement among variations in environmental 
quantities, measurements of vegetation function, and IAV estimated by AIMs.

Recent droughts in Europe provide us with a good opportunity for evaluating the state-of-the-art capacities 
of AIMs in capturing drought-induced IAV and seasonal variations of land-atmosphere carbon fluxes. Newly 
developed remote sensing products provide useful information on the spatial and temporal variations of carbon 
fluxes, which can be used to benchmark carbon flux products. An increasing array of satellite land surface 
metrics, such as SIF, near-infrared reflectance index (NIRv), microwave satellite soil moisture (SM), and total 

anomalies caused by droughts. Our study demonstrates that surface CO2 observations may still be too sparse to 
fully capture the impact of drought on the carbon cycle at subcontinental scales over Europe, whereby satellite 
XCO2 and ancillary environmental data can offer observational constraints for improving the estimates.
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terrestrial water storage (TWS), are available for assessing the impacts of climate extremes on terrestrial ecosys-
tems (Palmer, 2018; Peters et al., 2020; Smith et al., 2020; S. Wang et al., 2020). Moreover, satellite data-driven 
GPP products, including FluxSat (Joiner et al., 2018) and GOSIF GPP (Li & Xiao, 2019b), can be used to eval-
uate the performance of AIMs-estimated NEP in response to droughts. That is because, there is a strong link 
between the temporal variations of NEP and GPP from both models (Piao et al., 2020; Wieder et al., 2021; L. 
Zhang et al., 2019) and observations (Baldocchi, 2008; Baldocchi et al., 2018; Shiga et al., 2018). In addition, in 
situ eddy covariance flux data can be used to indicate drought-induced changes in the seasonal cycles of carbon 
fluxes. A study synthesizing different sources of observations and diverse models under a unified drought context 
would help advance our understanding of the responses of the terrestrial carbon cycle to droughts and the perfor-
mance of carbon cycle models.

In this study, we aimed to assess the capacities of state-of-the-art AIMs with diverse model formations and 
different assimilated data sources, including both in situ based and satellite-based, in capturing realistic terrestrial 
carbon uptake anomalies associated with European droughts during the period 2001–2015. To this end, obser-
vations of environmental variability and vegetation function and in situ eddy covariance flux data were used to 
evaluate the IAV and seasonal variation of NEP at regional scales, with bottom-up estimates of carbon uptake 
anomalies by the TRENDY models and the FLUXCOM data set for comparisons.

2. Data and Methods
2.1. Study Area

Our study area spans over 33°–73°N, 15°W–35°E (Figure S1 in Supporting Information S1), which covers most 
areas of Europe. Since 2003, several severe drought events occurred in this area, which caused a large loss of 
terrestrial carbon uptake (Bastos et al., 2020; Ciais et al., 2005). In order to evaluate the model performance on 
capturing drought impacts over different parts of Europe, the study area is divided into four subregions (Figure 
S1b in Supporting Information S1) following EUROCOM: northern Europe (Scandinavia, Finland, and the Baltic 
states), southern Europe (the Iberian Peninsula, Italy, Greece, Romania, and the Balkan states), western Europe 
(France, Benelux, the UK, and Ireland), and central Europe (the remaining countries, up to the eastern border of 
Poland) (Monteil et al., 2020).

2.2. Carbon Fluxes Constrained by Atmospheric CO2 Observations

We included estimated carbon fluxes from inversions constrained by either in situ CO2 or satellite data. The data 
sets used in this study are summarized in Table 1, with additional details on the inversion systems summarized in 
Table S1 in Supporting Information S1 (global in situ based inversions), Table S2 in Supporting Information S1 
(regional in situ based inversions), and Table S3 in Supporting Information S1 (satellite-based inversions).

Carbon flux estimates from five in situ CO2 based global inversions were examined in this study, including Carbon-
Tracker Europe (CTE2018) (Peters et al., 2010; van der Laan-Luijkx et al., 2017), CarbonTracker (CT2019B) 
(Peters et  al.,  2007), CAMS (Chevallier et  al.,  2010), and Jena CarboScope standard inversion (Rödenbeck 
et al., 2003). The newly extended inversions of NEE–T (Rödenbeck et al., 2018b) and NEE–T–W  (Rödenbeck 
et al., 2020) of Jena CarboScope were used for comparison. The CarbonTracker Europe (CTE) (Peters  et al., 2010; 
van der Laan-Luijkx et al., 2017) developed at Wageningen University (http://www.carbontracker.eu) assimilates 
global air samples of CO2 mole fractions to adjust prior surface carbon fluxes. Here we used the monthly CTE2018 
fluxes with a spatial resolution of 1° × 1°. Another similar atmospheric CO2 inversion product, CarbonTracker 
(CT) 2019 (Jacobson et al., 2020; Peters et al., 2005, 2007), is developed at NOAA (www.carbontracker.noaa.gov). 
We used the monthly CT2019B fluxes at a spatial resolution of 1° × 1° in this study. Four other inversion-based 
flux estimates, from CAMS (v18r2) and Jena CarboScope (s99_v4.3, NEE–T_v4.3, and NEE–T–W_v4.3), were 
also used. The CAMS (v18r2) product provides global monthly fluxes at a spatial resolution of 3.75° × 1.875°. 
The Jena CarboScope product provides global monthly fluxes at a spatial resolution of 5° × 4°. The Jena s99_v4.3 
inversion starts in 1999 and uses observations from 50 stations that cover this entire period. The Jena NEE–T 
inversion differs from the standard one only by replacing the explicitly time-dependent inter-annual NEE vari-
ations with a linear NEE–T (surface temperature) regression term plus residual terms, and by using a larger set 
of measurement stations (Rödenbeck et al., 2018b). The surface temperature data is from Goddard Institute for 
Space Studies analysis (Hansen et  al.,  2010; Lenssen et  al.,  2019). In addition to the temperature constraint, 
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the Jena NEE–T–W inversion uses the six-monthly accumulated Standardized Precipitation-Evapotranspiration 
Index (SPEI) as an extra constraint (Rödenbeck et al., 2020). Here, the Jena NEE–T/NEE–T –W inversions were 
used as references due to their known improved performances in characterizing the IAV of large-scale NEP 
compared to the standard inversion (Rödenbeck et al., 2018b, 2020).

We included seven in situ CO2 based regional inversions from the EUROCOM project (https://eurocom.
icos-cp.eu/; Monteil et  al.,  2020), including CarboScope-Regional (Kountouris et  al.,  2018), LUMIA 
(Monteil & Scholze, 2021), EnKF-RAMS (Meesters et al., 2012), FLEXINVERT (Thompson & Stohl, 2014), 
PYVAR-CHIMERE (Fortems-Cheiney et al., 2021), and CTE for EUROCOM (Smith et al., 2020). These inver-
sions used enhanced surface CO2 observations of 39 stations over Europe (see Figure 1b), and their inversion 
systems built upon either Eulerian or Lagrangian models.

We used three satellite XCO2 based inversions, including the one from combined GOSAT, surface, and TCCON 
data with three different prior biosphere fluxes generated by Byrne, Liu, Lee, et al. (2020) (hereafter Byrne2020), 
GCASv2 (Jiang et al., 2021; Jiang, Ju, et al., 2022), and CMS-Flux NBE 2020 (J. Liu et al., 2020). The Byrne2020 
flux was estimated at 4°  ×  5° at a 14-day scale from 2010 to 2015 based on the GEOS-Chem atmospheric 
transport model and Bayesian data assimilation technique. GCASv2 assimilates GOSAT XCO2 retrievals, while 
CMS-Flux assimilates the XCO2 retrievals from both GOSAT and OCO-2. More details about the system setup 
for these satellite inversions can be found in Table S3 in Supporting Information S1. We aggregated the fluxes 
temporally to monthly fluxes. For Byrne2020, the arithmetic average of the three inversions with different prior 
biosphere fluxes was used for the analyses.

In addition, we employed the estimated carbon fluxes constrained by in situ CO2 and satellite SM and vegetation 
data within the Carbon Cycle Data Assimilation System (CCDAS) (Rayner et al., 2005). CCDAS is a variational 
data assimilation system built on the terrestrial biosphere model, Biosphere Energy Transfer and Hydrology 
scheme (Knorr, 2000), and coupled to the atmospheric transport model, Transport Model, version 3 (Heimann & 
Korner, 2003) for assimilating atmospheric CO2 data. CCDAS jointly assimilated remotely sensed SM and vege-
tation optical depth (VOD) data, combined with in situ CO2 air samples, to constrain global surface carbon fluxes 
through parameter optimization of its underlying biosphere model. The SM data is from the SMOS-IC product 
(Souza et al., 2018). The VOD data is from the SMOS-IC L-VOD product (Wigneron et al., 2021), for which 
the annual mean VOD was assimilated in CCDAS. This result proved to well constrain the European terrestrial 
carbon sink (Scholze et al., 2019). The readers are referred to Scholze et al. (2019) for more details.

Figure 1. Spatiotemporal anomalies of air temperature (Ta), precipitation (Prep), soil moisture (SM), vapor pressure deficit (VPD), reconstructed contiguous 
solar-induced fluorescence, and near-infrared reflectance index (NIRv) in Europe over 2001–2015. Monthly anomalies are calculated as the variable value subtract 
multiple-year mean over the whole period. The spatial patterns show for the summer time (June–August). The boxes indicate the selected drought-impacted regions in 
2012 and 2015 used for further analyses. The regions were selected according to the anomalies in VPD and SM.
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In this study, we refer land carbon uptake to NEP. In order to make the targeted fluxes consistent with each other 
across all inversions, we summed up fire emission and biosphere fluxes (net biome production) for some inver-
sion results, for example, for CTE2018, CT2019B, and the EUROCOM inversions.

2.3. Carbon Fluxes Simulated by Terrestrial Biosphere Models (TRENDY DGVMs)

We used terrestrial carbon fluxes simulated by seven process-based dynamic global vegetation models, including 
ORCHIDEE (Krinner et al., 2005), ORCHIDEE-MICT (Krinner et al., 2005), CABLE (Y. Wang et al., 2010), 
DLEM (Tian et al., 2015), ISAM (Jain et al., 2013), VEGAS (N. Zeng et al., 2005), and VISIT (Kato et al., 2013), 
which were involved in the TRENDY v6 project (Sitch et al., 2015). The simulations under scenario S3, which 
considered impacts from climate, CO2, and land use change, were used. These simulations were conducted using 
the CRUNCEP v8 data set and provided monthly fluxes at a spatial resolution of 0.5° × 0.5°.

2.4. Machine Learning-Based Upscaling of Eddy-Covariance Measurements (FLUXCOM)

The FLUXCOM product (www.fluxcom.org) is produced by upscaling FLUXNET eddy-covariance flux meas-
urements over the globe. Using machine learning (ML) algorithms, it scales in situ flux measurements into 
time-resolved 0.5° × 0.5° grids of NEP, ecosystem respiration (Reco), and GPP with remote sensing data and 
meteorological data (FLUXCOM-RS  +  METEO) (Jung et  al.,  2019,  2020; Tramontana et  al.,  2016). Here 
we used the latest data version, FLUXCOM2020. There are 3 ML algorithms (Multivariate Adaptive Regres-
sion Splines [MARS], Artificial Neural Networks [ANN], and Random Forests [RF]) for generating the 
FLUXCOM-RS + METEO product, and two methods used for separating GPP and Reco from tower-based NEP 
(Lasslop et al., 2010; Reichstein et al., 2005). FLUXCOM-RS + METEO is generated using two reanalysis mete-
orological data, CRUJRA v1.1 and ERA5, respectively. In this study, we used the ensemble estimates generated 
with different ML algorithms and gross flux separating methods over the period from 2001 to 2015 at a monthly 
temporal resolution.

2.5. Satellite-Based GPP Models

Two satellite-based data-driven GPP models, FluxSat (Joiner et al., 2018) and GOSIF GPP (Li & Xiao, 2019b), 
were employed in this study. FluxSat is derived from a data-driven approach relying on FLUXNET measurements 
and Moderate Resolution Imaging Spectroradiometer (MODIS) reflectances in seven spectral bands and cali-
brated against FLUXNET measurements. It is noteworthy that FluxSat does not use any meteorological forcing. 
A dual-calibration procedure is applied by discriminating low versus high productive FLUXNET sites, where the 
identification is based on satellite SIF products derived from the Global Ozone Monitoring Experiment 2 obser-
vations. GOSIF GPP is derived from the global OCO-2 based SIF product (GOSIF) and the linear relationships 
between OCO-2 SIF and tower-based GPP. The GOSIF product (Li & Xiao, 2019a) is based on discrete OCO-2 
SIF soundings, MODIS data, and meteorological reanalysis data. GOSIF GPP has a high spatial and temporal 
resolution (i.e., 0.05°, 8-day) over 2000–2020 (Li & Xiao, 2019b). We used the latest version (v2) for GOSIF 
GPP here.

2.6. Satellite Land Surface Data

Four satellite land surface metrics were employed for drought impact related analyses: microwave satellite SM, 
SIF, and NIRv.

The stress of soil water on carbon uptake was investigated using the Global Land-surface Evaporation Amsterdam 
Methodology (GLEAM) root-zone SM data in this study. GLEAM root-zone SM was produced from the satellite 
surface SM product ESA-CCI SM through data assimilation (Martens et al., 2017; Miralles et al., 2011). We 
used the v3.3a products with aggregated monthly fluxes at a spatial resolution of 0.25° × 0.25° over 1981–2018 
(Dorigo et al., 2017).

Remotely sensed SIF has shown great promise for probing spatiotemporal variations of GPP (Guanter et al., 2014; 
Li et al., 2018) and is also sensitive to water (Alden et al., 2016; J.-E. Lee et al., 2013; Sun et al., 2015) and 
temperature stresses (Song et al., 2018). Here we used a reconstructed contiguous SIF data set over 2000–2018 
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(Y. Zhang et al., 2018) based on OCO-2 data and MODIS data (named contiguous solar-induced fluorescence 
[CSIF], version 2), which covers the study period. We aggregated the data into monthly time steps.

Finally, we included a new photosynthesis indicator, near-infrared reflectance index (NIRv). NIRv is expressed as 
the product of NDVI and near infra-red reflectance (Badgley et al., 2017), which is proved to be a useful indicator 
of GPP and has been used to indicate global photosynthesis (Badgley et al., 2019; Y. Zeng et al., 2019). NIRv 
used here was calculated directly from the MODIS vegetation product (MOD13C2, v6).

2.7. Meteorological Data

We used air temperature and precipitation data with a spatial resolution of 0.5° × 0.5° from the CRUNECP 
reanalysis data set (v9) to assess the impacts of water and temperature anomalies on GPP. The CRUNCEP v9 data 
set was produced by the Institute Pierre Simon Laplace (IPSL) of France (Wei et al., 2014), which is a merged 
product of Climate Research Unit observation-based monthly 0.5° × 0.5° climate variables (New et al., 2000) 
(1901–2017) and the 6-hourly reanalysis of National Centers for Environmental Prediction. This data set was also 
used to drive the TRENDY models.

The vapor pressure deficit (VPD) was used to indicate atmospheric moisture limitations on vegetation growth 
and carbon uptake. It was derived from air temperature (Ta), specific humidity (Q), and atmospheric pressure 
(P) provided by the CRUNCEP data set. VPD is defined as the difference between the saturated vapor pressure 
(e_sat) and the actual atmospheric vapor pressure (e):

VPD = e
_

sat − e (1)

First, the saturated vapor pressure (vpsat, in kPa) at a given temperature is calculated according to the Buck 
Equation (Buck, 1996):

e
_

sat = 0.61121
∗
exp((18.678 − Ta ∕ 234.5)

∗
(Ta ∕ (257.14 + Ta))) (2)

Then, the actual atmospheric vapor pressure (e, in kPa) is calculated using the equation derived from the relation 
between vapor pressure, specific humidity, and atmospheric pressure, described in Monteith and Unsworth (2008):

e = Q
∗
P ∕ [𝜀𝜀 + (1 − 𝜀𝜀)

∗
Q] (3)

where ε is the ratio between the molecular weight of water vapor and that of dry air (0.622).

2.8. In Situ Flux Measurements

We included in situ eddy covariance flux measurements from the ICOS-Drought2018 project (https://www.
icos-cp.eu/data-products/YVR0-4898) (Drought, 2020). A total of 19 stations with long-term observations gener-
ally spanned over the study period (at least having 5-year data) and data roughly covered the drought occurrence 
areas in 2012 and 2015 were chosen. These data cover different ecosystem types: 6 crop sites (BE-Lon, CH-Oe2, 
DE-Geb, DE-Kli, DE-RuS, and IT-BCi), 4 grass sites (CH-Fru, DE-Gri, DE-RuR, and IT-Tor), 3 deciduous 
broadleaf forest sites (DBF, including CZ-Stn, DE-Hai, and DE-Hzd), 6 evergreen needle leaf forest sites (ENF, 
including CZ-Bk1, DE-THa, DE-Obe, DE-RuW, NL-Loo, and RU-Fyo). Most of these sites locate in Central 
Europe. The locations of these sites are shown in Figure S1a in Supporting Information S1, and more details 
about these stations are provided in Table S4 in Supporting Information S1. Monthly NEE data from NEE_VUT_
REF and monthly GPP data from GPP_NT_VUT_REF were used in this study. They were used as a reference 
to evaluate the seasonal variation of drought impacts on ecosystem carbon fluxes by grouping into forest and 
non-forest (crop/grass) categories.

2.9. Data Processing and Analysis Framework

To facilitate calculations, all data sets used in this study were resampled to 0.5°  ×  0.5° grids at a monthly 
step. The spatial aggregation was done by simply replicating and averaging over grid domains. For example, the 
process to resample a data set with a spatial resolution of 3.75° × 1.875° – 0.5° × 0.5° is: (a) splitting each grid 
into subgrids with 0.125° × 0.125°, which produces 20 × 15 subgrids and (b) averaging the values within each 
4 × 4 square of the subgrids, which makes a 0.5° × 0.5° grid.
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In this study, we focus on anomaly analyses related to the terrestrial carbon cycle and climate conditions. We 
calculated the anomalies of carbon fluxes, meteorological data, hydrological data, and vegetation metrics relative 
to the baseline, here using the mean values over the study period (2001–2015). For monthly anomalies, mean 
seasonal cycles were previously subtracted. The annual values were calculated by summing monthly anoma-
lies. To calculate IAV and correlation between two time series variables that exclude the influence of external 
forcing (i.e., global warming), the anomalies of carbon fluxes and vegetation variables were linearly detrended 
using the “detrend” function within the “signal” collection of the “scipy” package in Python. To clearly present 
spatial differences of these anomalies among different variables, we also used the standardized anomalies (called 
“Z-score”), the anomalies divided by the standard deviation of the variable over the study period. In addition, 
Pearson's correlation coefficients were used to quantify the correlation relationship or temporal consistency 
between different data sets.

In the following, we first assess the drought conditions in Europe during 2001–2015 using environmental varia-
bles (e.g., temperature and water status) and vegetation function proxies (e.g., SIF and GPP). Then we take these 
environmental variables and vegetation function proxies to evaluate the capacity of atmosphere inverse models 
(AIMs) in characterizing the IAV of NEP at both the continental scale and subregional scales using correlation 
analyses. Finally, we choose the core areas impacted by the drought events in 2012 and 2015, and we assess the 
reasonability of AIMs for quantifying regional total annual anomalies and the seasonal anomalies of NEP. During 
the assessment, these environmental variables and vegetation function proxies are used as references, while the 
estimates from TRENDY models and FLUXCOM are used for comparison.

3. Results
3.1. Spatiotemporal Anomalies of Environmental Variables and Vegetation Function During 2001–2015

The anomalies of hydrological indicators (Prep, SM, and VPD) and vegetation variables (CSIF and NIRv) 
revealed several drought events in Europe, mainly during summer time (Figure 1a). Considering mainly based on 
the anomalies of precipitation and SM, together with suppressed vegetation activity, the droughts in 2003, 2006, 
2012, and 2015 were chosen for analysis. These drought (and/or heatwave) events have been reported previously 
(Ciais et al., 2005; Laaha et al., 2017; Peters et al., 2018; Teuling et al., 2010; Zahradníček et al., 2015). With 
respect to the magnitude of hydrological anomalies (Figure 1a), the 2003 drought was the severest one, followed 
by the droughts in 2006, 2012, and 2015.

Figure 1b shows the spatial patterns of drought impacts revealed by meteorological, hydrological, and vegeta-
tion metrics in these drought years. In general, strong negative hydrological anomalies (e.g., in SM) generally 
corresponded to large positive anomalies in air temperature (Ta) and VPD, and vice versa. Precipitation and 
SM exhibited generally consistent anomalies in the regions influenced by droughts, coinciding well with the 
impacted pattern on vegetation function indicated by the changes in CSIF and NIRv, for example, most of 
Europe in 2003, North Europe in 2006, South Europe in 2012, and Central and East Europe in 2015. The 
summer anomalies of GPP estimated by FluxSat and GOSIF showed similar patterns (Figure S2a in Support-
ing Information S1). Overall, the drought in 2003 was the largest with respect to drought extent and severity 
(pixels with large negative Z-score values), followed by the 2006 and 2015 droughts. It is worth noting that 
the 2012 drought was more southern than the others. These droughts largely affected non-forest ecosystems, 
that is, croplands in western, central, and eastern Europe and grasslands in southern Europe, which are often 
more vulnerable to droughts and regarded as the major ecosystems dominating the IAV of regional land carbon 
uptake (He, Ju, et al., 2018).

3.2. Inter-Annual Variations of Terrestrial Carbon Uptake Estimated by AIMs

3.2.1. Continental Scale

First, we examined the full 2001–2015 period for the global AIMs assimilating surface CO2 data. Figure 2a shows 
the IAV of NEP in Europe estimated by a set of global AIMs over 2001–2015. These classic global AIMs (CT, 
CTE, CAMS, and Jena) showed quite divergent IAV of NEP and in some years even anomalies with opposite signs 
(e.g., in 2003 and 2006). These global AIMs inconsistently captured the expected negative impacts of drought 
on NEP in years including 2003, 2006, and 2012, but not in 2015. In comparison, the inversions by Jena NEE–T 
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and Jena NEE–T–W, in conjunction with the ensemble mean NEP of TRENDY models (Figure 2b), identified 
the four drought years (2003, 2006, 2012, and 2015), which roughly agreed with the timing of satellite-based 
land surface variables (see Figure 1a, Figure S2b in Supporting Information S1). The FLUXCOM RS + METEO 
estimates, driven either by CRUJRA and ERA5, captured drought years, like 2003, 2012, and 2015 (Figure 2c). 
However, large discrepancies were found among atmospheric inversions and bottom-up estimates by TBMs or 
flux upscaling, and drought-induced NEP anomalies cannot be robustly captured for all cases.

We now focus on the 2010–2015 period (Figures 2d–2f), which is covered by all AIMs examined here. This 
period contains the two drought years of 2012 and 2015. In these two years, the TRENDY model ensemble mean 
NEP, the FLUXCOM RS + METEO NEP estimates, as well as both FluxSat and GOSIF GPP, exhibited negative 
anomalies (see Figures 2b and 2c, Figure S2b in Supporting Information S1). In contrast, the AIMs assimilat-
ing only surface CO2 measurements showed a large spread between models for both 2012 (range: −263.71 to 
13.32 TgC/yr) and 2015 (range: −15.87 to 217.18 TgC/yr). However, the AIMs applied regression relationships 
with temperature and water stress data, that is, Jena NEE–T (−18.69 TgC/yr) and Jena NEE–T–W (−47.75 TgC/
yr), also showed a negative anomaly in 2015 (Figure 2a). The EUROCOM regional inversions all captured a 
consistent reduction in NEP during 2012 (range: −169.57 to −80.47 TgC/yr) (Figure 2d). However, these inver-
sions showed divergent estimates for other years, and did not capture an NEP reduction for 2015 (range: −197.57 
to 166.67 TgC/yr). Finally, the satellite-based inversions (Byrne2020, CMS-Flux2020, GCASv2, and CCDAS) 
captured the reduction in NEP by both the 2012 (range: −170.32 to −112.88 TgC/yr) and 2015 (range: −218.00 
to −91.85 TgC/yr) droughts (Figure 2e). We further found that the inclusion of satellite XCO2 measurements was 
critical for capturing the drought-induced NEP reductions for the Byrne2020 flux inversions, as a set of inversion 
that only assimilated the surface in situ data were unable to capture the negative anomaly in 2015 (Figure 2f).

To evaluate the robustness of the IAV indicated by these global inversions, regional inversions, and satellite 
inversions, we calculated the correlation coefficients between the IAVs of estimated NEP by these models and 
environmental variables and covariates (Figure 3). We found that the IAVs in Jena NEE–T and NEE–T–W, some 
regional inversions (e.g., EnKF-RAMS, FLEXINVERT, CarboScope-Regional, and NAME-HB), and satellite 

Figure 2. Annual net ecosystem production (NEP) anomalies estimated by global in situ CO2 based global Atmospheric CO2 inverse models (AIMs), EUROCOM in 
situ based regional AIMs, satellite-based AIMs, the TRENDY models, and FLUXCOM over 2001–2015 or 2010–2015. The shallow green shaded band in the bottom 
plot stands for the mean plus/minus the standard deviation for the NEP anomaly.
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inversions (e.g., GCAS v2 and CCDAS_SM + VOD), as well as the TRENDY model ensemble mean, highly 
correlated with the IAVs of most environmental variables and covariates, indicating the good representation of 
IAVs for these NEP estimates. Among global AIMs using only in situ CO2 observations, CTE2018 correlated 
with environmental variables mostly strongly, which could be resulted from more in situ CO2 observations assim-
ilated over Europe and the higher model resolution in the domain of Europe in comparison to other global inver-
sions. We also noticed some inversions, for example, CAMS, Jena Standard, and PYVAR-CHIMERE, show very 
low or even negative correlations with environmental variables and covariates, which may indicate a low capacity 
in constraining the NEP IAV over the continental scale of Europe. In addition, the IAVs in Jena NEE–T and 
NEE–T–W, the TRENDY model ensemble mean, and FLUXCOM estimates trained with meteorological data, 
show a high correlation with that of precipitation, while it is not so for most regional inversions and all satellite 
inversions, which may indicate an overestimated sensitivity to precipitation for these models directly constraining 
the IAV of NEP with meteorological data.

To further understand the role of observational constraints used for the AIMs in uncovering drought-induced NEP 
reductions, we examined the performance of their prior fluxes in capturing drought impacts (Figures S3 and S4 
in Supporting Information S1). Effective constraints can be found in these posterior estimates. Here we took the 
regional inversions and satellite inversions as examples. Previous studies have shown that prior IAV applied in 
inversion systems can strongly impact posterior IAV estimates (Byrne et al., 2019), thus it is important to exam-
ine the impact of these prior constraints on flux estimates. The prior NEP estimates for the EUROCOM regional 
AIMs generally did capture the NEP reductions in 2012 and 2015. For 2012, the prior spread (range: −251.03 
to 56.64 TgC/yr) was clearly larger than the optimized fluxes (range: −169.57 to −80.47 TgC/yr), suggesting 
that the AIMs were better able to capture this event than the prior fluxes. However, for 2015, the prior fluxes 
showed a more consistent reduction in NEP (range: −150.52 to 8.52 TgC/yr) than the optimized fluxes (range: 
−197.57 to 166.67 TgC/yr). Thus, the assimilation of CO2 measurements generally resulted in large changes in 
NEP anomalies for the EUROCOM AIMs, however, the impact of these data was not always consistent between 
models. For the AIMs assimilating satellite data, we found that the priors generally did not capture the drought 
impacts (except that the GCAS prior captured reduced NEP in 2012, note Byrne2020 did not employ prior IAV). 
This suggests that the AIMs obtained consistent posterior NEP reductions for 2012 and 2015 despite the fact that 

Figure 3. Heat map of the correlation between environmental variables and estimated net ecosystem production by global Atmospheric CO2 inverse models (AIMs), 
EUROCOM in situ based regional AIMs, satellite-based AIMs, the ensemble mean of TRENDY models, and FLXUCOM.
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these events were generally not well captured by the prior fluxes. This result gives increased confidence in the 
ability of these systems assimilating satellite data to uncover drought-induced reduction in NEP over Europe.

3.2.2. Subcontinental Scale

We further looked into the ability of AIMs in tracking the IAV of NEP across different regions (defined in 
Figure S1b in Supporting Information S1). We analyzed the correlations between the IAVs in the inverted NEP 
fluxes by inversions and the IAVs in environmental variables and covariates (Figure 4). The IAV in FluxSat and 
GOSIF GPP showed significant correlations with the IAVs in most environmental variables (e.g., Ta, Prep, SM, 
and VPD) and vegetation functions (e.g., NIRv and CSIF) (see Table S5 in Supporting Information S1), thus we 
expect that the AIMs to show some consistency with the IAVs of these environmental variables and covariates 
on subcontinental scales.

First, we analyzed the correlations between annual NEP from in situ based global AIMs and that from the environ-
mental variables and covariates across the four subregions. We found that the in situ based global inversions were 
generally in low correlation with the environmental variables and covariates. However, there were exceptions, 
Jena NEE–T and Jena NEE–T–W inversions, for which the performances in most of the four subregions and the 
entire area showed much stronger correlations. Compared with the Jena standard inversion, these inversions with 
additional constraints from surface variables (temperature or/and water) largely increase the correlation with envi-
ronmental variables and covariates. This could be an important improvement, which means the surface variables 

Figure 4. Correlation between the anomalies in the ensemble mean of TRENDY models or contiguous solar-induced fluorescence and annual net ecosystem 
production estimated by Atmospheric CO2 inverse models (in situ based global inversions, EUROCOM regional inversions, and satellite-based inversions) across the 
four subregions. The Jena NEE-T and NEE-T-W inversions have several versions: sEXT indicates the inversion included in situ observations of global 87 stations by 
default, and sEXT10 indicates the inversion additionally included most recently in situ observations since 2010.

 19422466, 2023, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022M

S003150 by M
PI 322 C

hem
ical E

cology, W
iley O

nline L
ibrary on [06/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Advances in Modeling Earth Systems

HE ET AL.

10.1029/2022MS003150

12 of 24

add useful information that enables AIMs to reflect more detailed spatial patterns. In comparison, the correlations 
with most environmental variables and covariates were quite low in the northern region and the southern region, 
even for these Jena NEE–T and Jena NEE–T–W inversions, which may indicate low confidence  in constraining 
NEP IAV in these regions due to limited in situ CO2 observations. When looking at the correlations with vegeta-
tion variables, this phenomenon is even more obvious.

Then, we analyzed the correlations between annual NEP from regional inversions constrained by enhanced in 
situ CO2 observations or global inversions constrained by satellite data and that from the environmental vari-
ables and covariates across the four subregions. Stronger correlations were found between these regional or 
satellite inversions and the environmental variables and covariates for these different subregions, typically in 
the western, central, and southern Europe, and the correlations reached as high as 0.91 (between NIRv and 
CarboScope-Regional) for the whole area. Some regional inversions (e.g., FLEXINVERT, CarboScope-Regional, 
and NAME-HB) and satellite-based inversions (e.g., Byrne2020 and GCASv2) had a comparable performance 
with the Jena NEE–T and NEE–T–W inversions. One clear difference was that the Jena NEE–T and NEE–T–W 
inversions had stronger correlations with environmental variables (e.g., Prep, VPD, and SM) for northern Europe 
while the regional and satellite-based inversions did not correlate as strongly. In comparison, the latter had 
stronger correlations in southern Europe where the Jena NEE–T and NEE–T–W inversions did not. To make 
sure the improvement in tracking IAV of NEP is from observations but not from the priors, we also checked the 
correlation between the AIMs priors and the environmental variables and covariates (Figure S5 in Supporting 
Information S1). The results show that the priors are more strongly correlated with the environmental variables 
and covariates, which may associate with that the priors are taken from biosphere models that are driven directly 
by climate variables. After constraining with enhanced surface CO2 observations, the correlation reduction means 
that observations take effect and the correlation by the prior could have been overestimated. Overall, the correla-
tion analysis with different variables showed a similar pattern, with a clearly higher correlation with GPP and its 
proxies (i.e., NIRv, CSIF) than environmental variables (i.e., Ta, Prep, VPD, and SM). One noticeable common 
low correlation among all variables was found in northern Europe, which may be explained by the difficulty for 
these inversions to capture relatively mild IAV with limited CO2 observations over there. We also noticed some 
negative or very low correlations with GPP and its proxies in different regions, which may indicate a limited 
capacity of the inversions in constraining NEP IAV in these regions or physical reasons for why NEP should not 
necessarily correspond to GPP, e.g., if respiration fluxes have offsetting effects.

Furtherly, we analyzed the improvement in the correlations between the optimized NEP fluxes of global AIMs, 
EUROCOM regional inversions, and satellite-based inversions) and the ensemble mean of environmental variables 
and covariates in comparison to prior estimates (Figure S6 in Supporting Information S1). We found substantial 
improvements in the correlations in optimized fluxes compared to those in priors for the satellite-based inversions 
(Figures S6b and S6d in Supporting Information S1), while most priors in EUROCOM inversions have better 
correlations than posteriors (optimized fluxes). In some way, this means the surface CO2 observations used for 
EUROCOM are still insufficient if we are expected to constrain carbon flux estimates at the subcontinental scale.

3.3. Regional Analysis of Drought Impacts on Terrestrial Carbon Uptake Revealed by AIMs

We investigated the NEP anomalies estimated by different AIMs in the selected drought-impacted regions (shown 
in Figure 1b) in 2012 and 2015 in comparison to those of the TRENDY model ensemble and the FLUXCOM 
estimates (Figure 5). For 2012, we found ensemble mean NEP anomalies of −49.74 PgC/yr for the global surface 
CO2 AIMs, −149.73 TgC/yr for EUROCOM regional AIMs, −80.18 TgC/yr for the AIMS with space-based 
constraints, −130.72 TgC/yr for the TRENDY model ensemble mean, and an average of −38.35 TgC/yr for the 
two FLUXCOM estimates. For 2015, we found ensemble mean NEP anomalies of +37.91 TgC/yr for the global 
surface CO2 AIMs, +39.70 TgC/yr for EUROCOM regional AIMs, −104.65 PgC/yr for the AIMS with space-based 
constraints, and −31.71 TgC/yr for the TRENDY model ensemble mean, and an average of −17.20 TgC/yr for the 
two FLUXCOM estimates. Although a large spread of the magnitudes of flux anomaly across AIMs existed, the 
global inversions constrained by both in situ CO2 and ancillary data (i.e., Jena NEE–T and NEE–T–W), some in 
situ based regional inversions (e.g., CarboScope-Regional and LUMIA), satellite-based inversions, the TRENDY 
model ensemble mean, and the two FLUXCOM estimates captured reduction in NEP in the two drought years. 
Overall, these models pointed to a negative sign of flux changes in 2012. Most in situ based global inversions 
failed to capture the negative sign of flux changes in 2015. However, the Jena NEE–T and NEE–T–W inver-
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sions did show a negative flux anomaly though very small. The optimized fluxes of the in situ based regional 
inversions demonstrated some improved consistency in capturing the total flux anomalies compared to those in 
priors (Figure S7a in Supporting Information S1). For example, the uncertainty for a flux reduction in 2012 was 
reduced obviously, with the standard deviation reduced from 84.6 TgC in the priors to 27.7 TgC in the posteriors. 
Similarly, the optimized fluxes of the satellite-based inversions showed substantial improvements compared to 
those in priors (note Byrne2020 did not employ prior IAV), for example, the GCASv2 prior indicated an opposite 
direction of flux anomaly (carbon uptake increase) in 2015 compared with others, but after optimization, all these 
inversions indicated the carbon uptake reduction (Figure S7b in Supporting Information S1).

We further analyzed the seasonal anomalies of carbon fluxes according to meteorological, remotely sensed hydro-
logical, and vegetation variables in the drought-impacted regions over the two drought years (Figure 6). For 2012, 
most EUROCOM regional inversions and satellite-based inversions (except for CCDAS) appeared a double-valley 
of NEP anomalies, which was similar to those indicated by the TRENDY model ensemble (Figure 6d), FLUX-
COM (Figure 6e), NIRv and CSIF (Figure 6i) and two GPP data sets (Figure 6j). In addition, the optimized fluxes 
of the satellite-based inversions were quite consistent in capturing the seasonal anomalies and agreed better with 
EUROCOM regional inversions and bottom-up estimates (i.e., by TRENDY and FLUXCOM) compared to those 
in priors (Figure S8b in Supporting Information S1). In contrast, the in situ based global inversions showed large 
model-to-model differences in the NEP anomalies over 2012, which were also largely different from those of in 
situ based regional inversions and satellite-based inversions. This suggests that the assimilated CO2 observations 
in these global AIMs were insufficient to uncover the regional NEP anomaly. Similarly, for 2015, there was good 
consistency in the seasonal anomalies between the EUROCOM regional inversions, the TRENDY model ensem-
ble mean (Figure 7n), FLUXCOM (Figure 7o), NIRv and CSIF (Figure 7s), and GPP data sets (Figure 7t). In 
particular, all data sets showed a maximum reduction in August. However, the global in situ inversions generally 
showed divergent NEP anomaly estimates (Figure 7k). Also, the ensemble mean of EUROCOM optimized fluxes 
exhibited clearly more reasonable seasonal anomalies of carbon fluxes, that is, spring enhancement followed 
by summer reduction (Figure 7i), in 2015 than that of prior fluxes (Figure S8c in Supporting Information S1) 

Figure 5. Annual net ecosystem production anomalies estimated by in situ based global inversions, EUROCOM in situ 
based regional Atmospheric CO2 inverse models (AIMs), satellite-based AIMs, the TRENDY models, and FLXUCOM in 
the selected drought-impacted regions in 2012 and 2015 as indicated in Figure 2. The error bar for the TRENDY models 
indicates one standard deviation.
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considering the corresponding seasonal meteorological anomalies. It is worth noting that the seasonal redistribu-
tion phenomenon (Butterfield et al., 2020; Wieder et al., 2021) in 2015 as mentioned above is well captured by 
the EUROCOM ensemble mean, which is in line with those in the TRENDY ensemble mean and FLUXCOM. 
In addition, the optimized fluxes of the satellite-based inversions (Figure 7m) clearly showed improvements in 
capturing the seasonal anomalies compared to their priors, for example, the priors of most inversion models failed 
to capture uptake reduction during the drought (Figure S8d in Supporting Information S1). It should be noted that 
the seasonal anomalies of satellite-based inversions do not outperform in situ based global inversions and regional 
inversions. For example, in 2012, satellite-based inversions do not show a double valley of NEP anomalies; in 
2015, three of four satellite-based inversions show large positive anomalies in July, which are not consistent with 
other estimates. These indicate there is still space for further improvements in satellite-based inversions.

In order to further verify the revealed seasonal anomalies, we investigated the seasonal variations of NEP in 
2012 and 2015 using eddy covariance measurements (Figure 8). Crop/grass showed clearly stronger seasonal 
anomalies than forest did in both years. These measurements in 2015 showed consistent anomalies as those 
in the remotely sensed variables, while not in 2012, due to the very limited available flux sites in eastern and 
southeastern Europe where the 2012 drought mainly impacted. In 2015, spring warming slightly increased NEP, 
which partly offset the loss during the following summer drought. This kind of seasonal compensation has also 
been found in eastern North America (Byrne, Liu, Bloom, et al., 2020) and in the 2012 North American drought 
(He, Ju, et al., 2018; Wolf et al., 2016) and the 2018 European drought (Smith et al., 2020; S. Wang et al., 2020).

Figure 6. Seasonal anomalies of net ecosystem production estimated by an ensemble of in situ based global Atmospheric 
CO2 inverse models (AIMs), EUROCOM regional AIMs, satellite-based AIMs, the TRENDY models, and FLUXCOM, and 
seasonal anomalies of corresponding hydroclimate and vegetation variables for the selected drought-impacted regions in 2012.
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In addition, we investigated which land cover types within the selected regions were dominantly affected by the 
droughts in 2012 and 2015. The regions were selected according to the anomalies in VPD and SM (Figure 1b). 
Here the MODIS landcover was used as the base map for the statistics. For 2012, the top three dominant land 
covers are barren or sparsely vegetated (20.83%), crops (11.61%), and grasslands (7.33%); in 2015, the top three 
land covers are crops (31.11%), mixed forests (20.46%), and cropland or natural vegetation mosaic (12.46%). In 
both years, a large portion of drought areas was covered by crops or grasses, which contributed to the large nega-
tive flux anomalies. In the year 2015, the considerable amount of forest increased carbon uptake during warm 
spring, which compensated for carbon loss in the following summer. For 2015, the impacted area of crops and 
relative types outweigh that of forests, thus the annual NEP was likely reduced, which was consistent with the 
estimates by partial in situ based global inversions (Jena NEE–T and NEE–T–W) and EUROCOM regional inver-
sions (i.e., FLEXPART, CarboScope-Regional, and LUMIA), satellite-based inversions, the TRENDY ensemble 
mean, and the FLUXCOM RS + METEO estimates (see Figure 7).

3.4. Detected Recent Droughts by OCO-2 XCO2 Inversions

The recently available OCO-2 XCO2 inversions provide a great chance to examine the capacity of satellite XCO2 
inversions on detecting the impact of droughts that occurred since 2015 on the European land carbon sink. 
We conducted some analyses using the more recent satellite inversions with OCO-2 XCO2 retrievals, namely 
OCO-2 v10 MIP (Byrne et al., 2023; more details about the inversion models refer to Table S6 in Supporting 
Information S1) and the GGAS OCO-2 inversion (Jiang et al., 2021), to investigate the recent droughts in 2015 
and 2018. Both the ensemble median of OCO-2 v10 MIP inversions and the GGAS OCO-2 inversion successfully 
detected the carbon sink reductions in 2015 and 2018 caused by large-scale drought impacts, albeit with consid-
erable inter-model discrepancies, while not well captured by their prior estimates (Figure 9).

Figure 7. Similar to Figure 6, but for the drought 2015.
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We chose the 2015 drought and the 2018 drought to further analyze seasonal anomalies (Figure 10). The inversions 
revealed clear seasonal dynamics for both drought years while their prior estimates did not. The seasonal climate 
conditions of the two droughts have been well-documented by previous studies (Smith et al., 2020; Thompson 
et  al., 2020). The 2015 drought has a similar seasonal climate feature as the 2018 drought, namely, a spring 
warming followed by a summer drought. The OCO-2 inversions show slight advantages in indicating the spring 
NEP enhancement in 2015, moreover, they are able to track the impact of the 2018 spring warming and  summer 
drought very well. Compared with the 2015 drought, the 2018 drought was better detected in seasonal anomalies, 
possibly due to the much larger drought scale for the 2018 event and the impact on the ecosystem carbon sink is 
much severer. In principle, stronger carbon sink anomalies can be easier to be detected by satellite signals.

4. Discussion
4.1. Benefits of Increasing In Situ CO2 Observations to Capturing Regional Drought Impacts

The global inversions based on only limited surface CO2 data generally face difficulties in reflecting regional 
drought impacts on terrestrial carbon uptake, which is in line with the findings of Byrne et al. (2019) and E. Lee 
et al. (2020). This originates from the sparse network of CO2 observations used for constraining carbon fluxes, 
which do not provide sufficient information to precisely constrain subcontinental CO2 flux anomalies. Encour-
agingly, the recent developing regional inversions with enhanced surface CO2 observations by the EUROCOM 
project better capture the drought-induced carbon uptake reduction for 2012 relative to the common global inver-

Figure 8. Seasonal variations of net ecosystem production in 2012 and 2015 based on eddy covariance measurements. The 
mean flux of 10 crop/grass sites (6 crop sites and 4 grass sites) and that of 9 forest sites (6 ENF sites and 3 DBF sites) were 
calculated, respectively. A same group of eddy flux sites roughly located in the impacted area by the two events (total of 19 
sites) was chosen for the analyses, where these sites better represent the impact by the 2015 event. Note that the land cover 
type is characterized by the actual landcover reported in each site. The shallow bands indicate one standard deviation.
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sions, however, these inversions also show some deficiencies. In particular, 
the EUROCOM inversions show a large spread in NEP anomalies for most 
years and do not consistently capture a reduction in NEP for 2015.

Several recent studies provide extra evidence for the importance of increas-
ing CO2 observational coverage for capturing drought impacts. For the 
CTE inversion system, it showed no drought response of the European 
carbon uptake in the 2018 summer with the default CO2 data (around 10 
stations) as used for global purposes, but it showed drought response when 
including extensive surface CO2 data (in total 48 stations) in Europe (Smith 
et al., 2020). Similarly, the Jena CarboScope s10 inversion performed better 
in capturing the 2018 European drought impact than the s99 inversion due 
to the additional CO2 stations (Rödenbeck et al., 2020). These indicate that 
increased CO2 observations are critical for constraining anomalies in carbon 
fluxes at subcontinental scales.

Despite the recent expansion of the network of surface CO2 measurements, 
we find that there are still difficulties for in situ based regional inversions to 
accurately track seasonal anomalies of carbon fluxes in 2012 and 2015. This 
is likely partially due to an uneven distribution of sampling locations, with 
the sparse surface CO2 observations in the drought-impacted regions in east-
ern Europe (see Figure S1b in Supporting Information S1). More surface CO2 
observations, especially in eastern Europe, are critically needed for better 
constraining the subcontinental scale carbon fluxes. As climate-sensitive 
regions, the south and the central east areas dominated the IAV of NEP in 
Europe, but these areas did not have as many observations as the central west 
region; more attention needs to be paid to the south and central east areas in 
the future.

A notable finding of this work is that EUROCOM ensemble models show a large spread in inverted fluxes. This 
demonstrates the sensitivity of individual flux inversions to aspects of the inversion set-up, such as the choice of 
prior fluxes and the specification of their uncertainties, lateral boundary conditions, transport models, and the 
design of optimization schemes (i.e., what variables are exactly optimized). This further motivates the use of flux 
inversion ensemble experiments to more fully characterize uncertainties in posterior flux estimates.

Figure 9. Annual net ecosystem production anomalies over Europe estimated 
by the GCASv2 OCO-2 inversion and OCO-2 v10 MIP (a) during the period 
2015–2020 in comparison to prior estimates (b). Although large inter-model 
discrepancies existed, the posterior flux estimate captured the drought impacts 
in 2015 and 2018 while the prior did not.

Figure 10. Seasonal anomalies of net ecosystem production during the drought years of 2015 and 2018 estimated by the 
GCASv2 OCO-2 inversion and OCO-2 v10 MIP (a, b) in comparison to prior estimates (c, d).
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4.2. Importance of Satellite XCO2 for Capturing Regional Drought Impacts

The global inversion that assimilates satellite XCO2 data in addition to in situ CO2 data also indicate an improved 
ability to capture flux anomalies at subcontinental scales. For example, the Byrne2020 inversions which 
assimilated GOSAT XCO2 data reasonably capture the reduction of carbon uptake in 2015, while unable to do so 
when assimilating only in situ CO2 data (see Figure S4 in Supporting Information S1). Although the prior flux 
prescribed in the Byrne2020 inversion did not contain any interannual anomalies, the posterior flux reproduced 
the right pattern of drought-induced NEP reductions. Similarly, for GCASv2, with the constraint from GOSAT 
XCO2, the posterior flux usefully uncovers the NEP reduction in 2015 (Figure S4 in Supporting Information S1). 
Most encouragingly, with the constraint of satellite XCO2, the different inversion systems reached a convergence 
for indicating drought impact at the regional scale of Europe (Figure 2e), and improved consistency with the 
inversion estimates from EUROCOM, Jena NEE–T and NEE-T-W, and CCDAS compared to their priors. These 
satellite inversions also largely improve the correlations with environmental variables and vegetation functions 
(Figure S6 in Supporting Information S1).

Compared to in situ CO2 observations, satellite XCO2 provides better data coverage and improved spatial repre-
sentativeness, which could largely contribute to the improvement of drought-impacted carbon flux detection. That 
is because, data coverage and spatial representativeness are always important aspects determining the capacity 
of atmospheric inverse modeling to reveal fine-scale spatial patterns, where trade-offs between adjacent regions 
often happen if there are insufficient constraints (Peylin et al., 2013). A few studies have also reported successful 
applications of satellite XCO2 based inversions for assessing climate extreme impacts on terrestrial carbon fluxes 
(Byrne et al., 2019; Ishizawa et al., 2016; Kwon et al., 2021; J. Liu et al., 2017, 2018; Yin et al., 2020). Comple-
mented with them, we confirmed the advantages of utilizing satellite XCO2 in atmospheric inverse modeling for 
monitoring regional climate extreme impacts.

It should be noted that some deficiencies existed in the XCO2 inversions for drought impact monitoring, for 
example, the inversions did not reasonably reproduce the full seasonal anomalies, for example, failed to indicate 
a likely enhancement of NEP in the spring of 2015 (See Figures 6 and 7). One possible reason for explaining this 
could be that the inverted fluxes are less constrained at the early glowing season due to less data coverage than 
that at peak growing season in Europe (as illustrated by Jiang, He, et al. (2022) and Ishizawa et al. (2016)). In 
addition, satellite-based inversions like Byrne2020 and CMS-Flux2020 seem to perform not as well as regional 
inversions and Jena inversions in Western Europe where a dense network of in situ measurements exists, which 
may associate with the coarse model resolution used (4° × 5° used for and Byrne2020 and CMS-Flux2020). 
These issues call for further investigations.

4.3. Importance of Ancillary Environmental Variables for Capturing Regional Drought Impacts

In our analyses, the inclusion of extra environmental constraints, such as moisture conditions (e.g., CCDAS) 
result in drought-induced NEP anomaly estimates that better agree with anomalies in environmental variables, 
remote sensing of vegetation, and the ensemble mean of the TRENDY models. In atmospheric inversions, criti-
cal environmental variables, either from meteorological reanalysis data or satellite land surface data, are able to 
better reveal drought impacts.

The CCDAS inversion with constraints from remotely sensed land variables is able to reasonably indicate 
drought-induced NEP reductions in both 2012 and 2015, yet not so in the prior simulated by TBM. The CCDAS flux 
estimates have also been effective in indicating environmental stresses in previous studies (He, Jiang, Wu, et al., 2022; 
Wu et al., 2020). Different from the way adopted by Jena inversions, CCDAS assimilates remote sensing data (e.g., 
SM, VOD, and FAPAR) in addition to in situ atmospheric CO2 concentrations to constrain carbon fluxes through 
the optimization of underlying parameters in TBM. In CCDAS, the IAV of carbon fluxes could be improved through 
the information on nature variability contained in the land surface data, for example, SM and vegetation variables.

It is worth noting that there were still some deficiencies in the inversions for drought impact monitoring, for 
example, the CCDAS inversion did not reasonably reproduce the seasonal anomalies for example, failed to indi-
cate a likely enhancement of NEP in the spring of 2015 (Figure 7), and likely overestimated the magnitude of 
drought-induced annual NEP reduction in 2015 (See Figure 5).
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For the Jena NEE-T and NEE-T-W inversions, it is implemented in a different way. They applied extra constraints 
of surface temperature or plus SPEI obtained from meteorological reanalysis data, clearly outperforming the 
inversion using only atmospheric CO2 data in characterizing IAV and impacts of extreme droughts on NEP. This 
advantage has also been documented in previous studies for impact assessments of the historical El Niño events 
(Rödenbeck et al., 2018a) and the 2018 European drought (Rödenbeck et al., 2020). They directly constrain the 
response of NEP to climate variations on inter-annual timescales by applying the relationship between inter-annual 
NEP anomalies and surface temperature or/and water anomalies to atmospheric inverse modeling. This operation 
clearly improved its performance for capturing climate impacts on NEP at regional scales.

4.4. Other Issues and Limitations

Recently, a collection of inversion studies (Peters et  al.,  2020) assessed the impact of the 2018 European 
drought and heatwave on the terrestrial carbon cycle. The collection mainly included the EUROCOM inversions 
(Thompson et al., 2020), a new version of CTE assimilated more observations and adapted with prior flux from 
the Simple Biosphere Model Version 4 that better-represented water stress (Smith et al., 2020), and the Jena 
NEE-T and NEE-T-W inversions (Rödenbeck et al., 2020). They successfully tracked the impact of the 2018 
European drought and heatwave. In this study, we provided a more comprehensive evaluation of the capacity of 
current AIMs, both in situ based and satellite-based, in capturing drought impacts on ecosystem carbon uptake 
in Europe over the period 2001–2015. We additionally included satellite-constrained carbon flux estimates for 
investigations, and make the intercomparison of the different categories of inversion models in a unified analysis 
framework, which offers a useful perspective on the capacity of state-of-the-art atmospheric CO2 inverse mode-
ling for capturing regional drought impact on the European land carbon uptake.

In comparison to the 2012 drought, the 2015 drought impact seems to be more difficult to be well captured. This could 
be due to the effect of orography since it is centered around the Alps. Usually, modeling the atmospheric signals with 
transport models in mountainous area has higher uncertainties than in flat areas. Also, the seasonal compensation 
partially mitigated the impact, resulting in a much weaker carbon uptake reduction than a continuous reduction like 
the case of 2012. We also found for similar drought cases with seasonal compensation, the 2018 drought was clearly 
better detected in seasonal anomalies than the 2015 drought. We know that the 2018 event has a much larger impacted 
region and the impact on the ecosystem carbon sink is much severer. Compared to bigger drought events like the 2018 
event, smaller ones like the 2015 event could be more difficult to be captured by inversion models.

Our analyses highlighted the importance of including satellite XCO2 and ancillary environmental variables in the 
inversions for better uncovering regional carbon flux dynamics. In the future, the sustained development of satel-
lite XCO2 observations, such as OCO-2/3 (Kiel et al., 2021), GOSAT-1/2 (Suto et al., 2021), Tansat-1/2 (Y. Liu 
et al., 2018), GeoCARB (Moore et al., 2018), and CO2M (Kuhlmann et al., 2020), would greatly benefit such purpose. 
The satellite-based land surface metrics, for example, SIF, SM, VOD, and other environmental variables, are pretty 
helpful for accurately charactering environmental stresses, serving for the evaluation of carbon cycle models toward 
precisely monitoring carbon dynamics especially under climate extremes as well as directly improving carbon flux 
simulations using data assimilation techniques (e.g., as the ways of Jena NEE-T and NEE-T-W, and CCDAS).

A limitation of our analysis is that the true NEP anomalies are unknown, and we are limited to using observations of 
environmental variability, measurements of vegetation function, and model estimates of NEP anomalies to investi-
gate the performance of the AIMs. Therefore, the timing and magnitude of anomalies in these quantities likely have 
differences from the true NEP anomalies, such that differences between the AIMs and these quantities are likely 
due to a combination of errors in the AIMs and differences between these quantities and the true NEP anomalies. 
Still, recent studies have shown that we should expect to see a substantial correlation between these quantities 
and the AIMs during extreme events (Byrne et al., 2019; Yin et al., 2020), particularly in more moisture-limited 
ecosystems (Ahlström et al., 2015; Byrne, Liu, Bloom, et al., 2020). Therefore, the increased agreement of the 
EUROCOM regional models and space-based inverse models with the observations of environmental variability, 
measurements of vegetation function, and model estimates of NEP anomalies relative to the global in situ inver-
sions provide strong evidence that these systems better capture drought-induced reductions in NEP. In addition, we 
encourage the further study if methods for evaluating the ability of AIMs to the impact of extreme events on NEP, 
in particular, methods that could better account for lagged impacts on ecosystems are encouraged.
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5. Conclusions
We assessed the capacities of state-of-the-art AIMs in capturing drought impacts on the European land carbon 
uptake during the period 2001–2015. The assessment is made with both in situ based global or regional inversions 
and satellite-based inversions. The main findings are as follows:

1.  Global atmospheric inversions with only limited surface CO2 observations give divergent estimates of drought 
impacts on the European ecosystem carbon uptake;

2.  A set of regional inversions assimilating a denser set of CO2 observations over Europe, for the EUROCOM 
project, demonstrate some improved consistency among all inversions in capturing a reduction in carbon 
uptake during the 2012 European drought. However, the EUROCOM models show divergent estimates in 
interannual variability of carbon cycle uptake for most years;

3.  A set of global inversion systems that assimilate satellite XCO2 or land surface variables (e.g., SM and VOD 
for CCDAS) in addition to surface CO2 observations better capture annual and seasonal anomalies of the 
European carbon uptake induced by regional droughts in both 2012 and 2015. In addition, the recent Orbiting 
Carbon Observatory—2 XCO2 inversions captured the impacts of the 2015 and 2018 droughts, with better 
performances for characterizing the seasonal anomalies of the much larger-scale drought in 2018.

These results suggest that surface CO2 observations may still be too sparse to fully capture the impact of drought 
on the carbon cycle at subcontinental scales over Europe, which calls for further expansion and optimization 
of surface CO2 observation networks. Complemented to enhancing surface CO2 observations, it is also of great 
importance to make full use of satellite XCO2 or environmental variables in atmospheric inverse modeling. 
Further studies that assimilate satellite XCO2 and ancillary environment data sets in addition to surface CO2 
measurements are warranted and offer a promising direction for refining estimates of regional carbon cycle 
anomalies.

Data Availability Statement
CTE2018 fluxes were obtained from the CarbonTracker Europe website (https://www.carbontracker.eu; Van der 
Laan-Luijkx et al., 2017). CT2019 fluxes were obtained from the CarbonTracker website (https://gml.noaa.gov/aftp/
products/). CAMS_v18r2 fluxes were obtained from https://apps.ecmwf.int/datasets/data/cams-ghg-inversions/ 
(Chevallier et al., 2010) Jena CarboScope fluxes were obtained from http://www.bgc-jena.mpg.de/CarboScope/ 
(Rödenbeck et al., 2003). GCAS v2 carbon fluxes inferred from GOSAT and OCO-2 XCO2 data are publicly 
available at https://doi.org/10.5281/zenodo.4500439 (Jiang, 2021) and https://doi.org/10.5281/zenodo.7040223 
(He, Jiang, & Ju, 2022), respectively. OCO-2 v10 MIP fluxes are publicly available from https://www.gml.noaa.
gov/ccgg/OCO2_v10mip/ (Byrne et  al.,  2023). NEE fluxes from Byrne, Liu, Lee, et  al.  (2020) are publicly 
available at https://data.nas.nasa.gov/carboncycle/co2flux/data.php. EUROCOM outputs were obtained from 
https://meta.icos-cp.eu/collections/6rMkbXz3W376i4lehBohpUox (Monteil et  al., 2019). FLUXCOM (v2020) 
fluxes were obtained from http://www.fluxcom.org (Jung et al., 2020). Drought-2018 ecosystem eddy covari-
ance flux product was obtained from the ICOS data portal (https://www.icos-cp.eu/data-products/YVR0-4898) 
(Drought, 2018 Team & ICOS Ecosystem Thematic Centre, 2020). FluxSat GPP (v1) product was obtained from 
https://daac.ornl.gov/ (Joiner et al., 2018). GOSIF GPP fluxes were obtained from https://globalecology.unh.edu/
data/GOSIF-GPP.html (Li & Xiao, 2019b). CRUNCEP v9 meteorology reanalysis data (Wei et al., 2014) and 
TRENDY v6 fluxes (Sitch et al., 2015) can be obtained from https://doi.org/10.5281/zenodo.7704810. SPEIbase 
v2.5 was obtained from https://doi.org/10.20350/digitalCSIC/8508 (Beguería & Vicente-Serrano,  2017). 
GLEAM v3.3a root-zone soil moisture data were obtained from https://www.gleam.eu/ (Martens et al., 2017). 
GRACE-REC total terrestrial water storage data were obtained from https://doi.org/10.6084/m9.figshare.7670849 
(Humphrey et  al.,  2017). MOD13C2 v6 data were downloaded from https://ladsweb.modaps.eosdis.nasa.gov/
archive/allData/6/MOD13C2/ (Huete et  al.,  2002). CSIFv2 data were obtained from https://osf.io/8xqy6 (Y. 
Zhang,  2022). All Python scripts used for the analyses can be obtained from https://github.com/joywei2022/
European_Droughts_JAMES (He, 2023).
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Heiskanen, J., Brümmer, C., Buchmann, N., Calfapietra, C., Chen, H., Gielen, B., et al. (2021). The integrated carbon observation system in 

Europe. Bulletin of the American Meteorological Society, 103(3), 1–54. https://doi.org/10.1175/bams-d-19-0364.1
Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of 

the MODIS vegetation indices. Remote Sensing of Environment, 83(1), 195–213. https://doi.org/10.1016/s0034-4257(02)00096-2
Humphrey, V., Gudmundsson, L., & Seneviratne, S. I. (2017). A global reconstruction of ICOS-Drought2018 (2020), Drought-2018 ecosystem 

eddy covariance flux product for 52 stations in FLUXNET-Archive format [Dataset]. Drought 2018 Team and ICOS Ecosystem Thematic 
Centre. https://doi.org/10.18160/YVR0-4898

Ishizawa, M., Mabuchi, K., Shirai, T., Inoue, M., Morino, I., Uchino, O., et al. (2016). Inter-annual variability of summertime CO2 exchange in North-
ern Eurasia inferred from GOSAT XCO2. Environmental Research Letters, 11(10), 105001. https://doi.org/10.1088/1748-9326/11/10/105001

Jacobson, A. R., Schuldt, K. N., Miller, J. B., Oda, T., Tans, P., Andrews, A., et al. (2020). Carbontracker CT2019, model published 2020. NOAA 
Earth System Research Laboratory, Global Monitoring Division. https://doi.org/10.25925/39m3-6069

Jain, A. K., Meiyappan, P., Song, Y., & House, J. I. (2013). CO2 emissions from land-use change affected more by nitrogen cycle, than by the 
choice of land-cover data. Global Change Biology, 19(9), 2893–2906. https://doi.org/10.1111/gcb.12207

Jiang, F. (2021). Regional CO2 fluxes from 2010 to 2015 inferred from GOSAT XCO2 retrievals using a new version of the Global Carbon Assim-
ilation System [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.5829774

Jiang, F., He, W., Ju, W., Wang, H., Wu, M., Wang, J., et al. (2022). The status of carbon neutrality of the world's top 5 CO2 emitters as seen by 
carbon satellites. Fundamental Research, 2(3), 357–366. https://doi.org/10.1016/j.fmre.2022.02.001

Jiang, F., Ju, W., He, W., Wu, M., Wang, H., Wang, J., et al. (2022). A ten-year global monthly averaged terrestrial NEE inferred from the ACOS 
GOSAT v9 XCO2 retrievals (GCAS2021). Earth System Science Data Discussions, 2022, 1–38. https://doi.org/10.5194/essd-2022-15

Jiang, F., Wang, H., Chen, J. M., Ju, W., Tian, X., Feng, S., et al. (2021). Regional CO2 fluxes from 2010 to 2015 inferred from GOSAT XCO2 
retrievals using a new version of the Global Carbon Assimilation System. Atmospheric Chemistry and Physics, 21(3), 1963–1985. https://doi.
org/10.5194/acp-21-1963-2021

Joiner, J., Yoshida, Y., Zhang, Y., Duveiller, G., Jung, M., Lyapustin, A., et al. (2018). Estimation of terrestrial global gross primary production 
(GPP) with satellite data-driven models and eddy covariance flux data. Remote Sensing, 10(9), 1346. https://doi.org/10.3390/rs10091346

Jung, M., Koirala, S., Weber, U., Ichii, K., Gans, F., Camps-Valls, G., et al. (2019). The FLUXCOM ensemble of global land-atmosphere energy 
fluxes. Scientific Data, 6(1), 74. https://doi.org/10.1038/s41597-019-0076-8

Jung, M., Schwalm, C., Migliavacca, M., Walther, S., Camps-Valls, G., Koirala, S., et al. (2020). Scaling carbon fluxes from eddy covariance sites 
to globe: Synthesis and evaluation of the FLUXCOM approach. Biogeosciences, 17(5), 1343–1365. https://doi.org/10.5194/bg-17-1343-2020

Kato, E., Kinoshita, T., Ito, A., Kawamiya, M., & Yamagata, Y. (2013). Evaluation of spatially explicit emission scenario of land-use change and 
biomass burning using a process-based biogeochemical model. Journal of Land Use Science, 8(1), 104–122. https://doi.org/10.1080/17474
23x.2011.628705

Kiel, M., Eldering, A., Roten, D. D., Lin, J. C., Feng, S., Lei, R., et  al. (2021). Urban-focused satellite CO2 observations from the orbiting 
carbon Observatory-3: A first look at the Los Angeles megacity. Remote Sensing of Environment, 258, 112314. https://doi.org/10.1016/j.
rse.2021.112314

Knorr, W. (2000). Annual and interannual CO2 exchanges of the terrestrial biosphere: Process-based simulations and uncertainties. Global Ecol-
ogy and Biogeography, 9(3), 225–252. https://doi.org/10.1046/j.1365-2699.2000.00159.x

Kountouris, P., Gerbig, C., Rödenbeck, C., Karstens, U., Koch, T. F., & Heimann, M. (2018). Atmospheric CO2 inversions on the mesoscale using 
data-driven prior uncertainties: Quantification of the European terrestrial CO2 fluxes. Atmospheric Chemistry and Physics, 18(4), 3047–3064. 
https://doi.org/10.5194/acp-18-3047-2018

Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher, J., Friedlingstein, P., et al. (2005). A dynamic global vegetation model for 
studies of the coupled atmosphere-biosphere system. Global Biogeochemical Cycles, 19(1), GB1015. https://doi.org/10.1029/2003GB002199

Kuhlmann, G., Brunner, D., Broquet, G., & Meijer, Y. (2020). Quantifying CO2 emissions of a city with the Copernicus Anthropogenic CO2 
Monitoring satellite mission. Atmospheric Measurement Techniques, 13(12), 6733–6754. https://doi.org/10.5194/amt-13-6733-2020

Kwon, M. J., Ballantyne, A., Ciais, P., Bastos, A., Chevallier, F., Liu, Z., et al. (2021). Siberian 2020 heatwave increased spring CO2 uptake but 
not annual CO2 uptake. Environmental Research Letters, 16(12), 124030. https://doi.org/10.1088/1748-9326/ac358b

Laaha, G., Gauster, T., Tallaksen, L. M., Vidal, J. P., Stahl, K., Prudhomme, C., et al. (2017). The European 2015 drought from a hydrological 
perspective. Hydrology and Earth System Sciences, 21(6), 3001–3024. https://doi.org/10.5194/hess-21-3001-2017

Lasslop, G., Reichstein, M., Papale, D., Richardson, A. D., Arneth, A., Barr, A., et al. (2010). Separation of net ecosystem exchange into assim-
ilation and respiration using a light response curve approach: Critical issues and global evaluation. Global Change Biology, 16(1), 187–208. 
https://doi.org/10.1111/j.1365-2486.2009.02041.x

Lee, E., Zeng, F.-W., Koster, R. D., Ott, L. E., Mahanama, S., Weir, B., et al. (2020). Impact of a regional U.S. Drought on land and atmospheric 
carbon. Journal of Geophysical Research: Biogeosciences, 125(8), e2019JG005599. https://doi.org/10.1029/2019JG005599

Lee, J.-E., Frankenberg, C., van der Tol, C., Berry, J. A., Guanter, L., Boyce, C. K., et al. (2013). Forest productivity and water stress in Amazo-
nia: Observations from GOSAT chlorophyll fluorescence. Proceedings of the Royal Society of London B Biological Sciences, 280(1761), 
20130171. https://doi.org/10.1098/rspb.2013.0171

Lenssen, N. J. L., Schmidt, G. A., Hansen, J. E., Menne, M. J., Persin, A., Ruedy, R., & Zyss, D. (2019). Improvements in the GISTEMP uncer-
tainty model. Journal of Geophysical Research: Atmospheres, 124(12), 6307–6326. https://doi.org/10.1029/2018JD029522

Li, X., & Xiao, J. (2019a). A global, 0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2, MODIS, and reanalysis 
data. Remote Sensing, 11(5), 517. https://doi.org/10.3390/rs11050517

Li, X., & Xiao, J. (2019b). Mapping photosynthesis solely from solar-induced chlorophyll fluorescence: A global, fine-resolution dataset of gross 
primary production derived from OCO-2. Remote Sensing, 11(21), 2563. https://doi.org/10.3390/rs11212563

Li, X., Xiao, J., He, B., Altaf Arain, M., Beringer, J., Desai, A. R., et al. (2018). Solar-induced chlorophyll fluorescence is strongly correlated 
with terrestrial photosynthesis for a wide variety of biomes: First global analysis based on OCO-2 and flux tower observations. Global Change 
Biology, 24(9), 3990–4008. https://doi.org/10.1111/gcb.14297

 19422466, 2023, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022M

S003150 by M
PI 322 C

hem
ical E

cology, W
iley O

nline L
ibrary on [06/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1029/2018jg004520
https://doi.org/10.1029/2018jg004520
https://doi.org/10.5194/gmd-11-3515-2018
https://doi.org/10.5194/gmd-11-3515-2018
https://doi.org/10.1175/bams-d-19-0364.1
https://doi.org/10.1016/s0034-4257(02)00096-2
https://doi.org/10.18160/YVR0-4898
https://doi.org/10.1088/1748-9326/11/10/105001
https://doi.org/10.25925/39m3-6069
https://doi.org/10.1111/gcb.12207
https://doi.org/10.5281/zenodo.5829774
https://doi.org/10.1016/j.fmre.2022.02.001
https://doi.org/10.5194/essd-2022-15
https://doi.org/10.5194/acp-21-1963-2021
https://doi.org/10.5194/acp-21-1963-2021
https://doi.org/10.3390/rs10091346
https://doi.org/10.1038/s41597-019-0076-8
https://doi.org/10.5194/bg-17-1343-2020
https://doi.org/10.1080/1747423x.2011.628705
https://doi.org/10.1080/1747423x.2011.628705
https://doi.org/10.1016/j.rse.2021.112314
https://doi.org/10.1016/j.rse.2021.112314
https://doi.org/10.1046/j.1365-2699.2000.00159.x
https://doi.org/10.5194/acp-18-3047-2018
https://doi.org/10.1029/2003GB002199
https://doi.org/10.5194/amt-13-6733-2020
https://doi.org/10.1088/1748-9326/ac358b
https://doi.org/10.5194/hess-21-3001-2017
https://doi.org/10.1111/j.1365-2486.2009.02041.x
https://doi.org/10.1029/2019JG005599
https://doi.org/10.1098/rspb.2013.0171
https://doi.org/10.1029/2018JD029522
https://doi.org/10.3390/rs11050517
https://doi.org/10.3390/rs11212563
https://doi.org/10.1111/gcb.14297


Journal of Advances in Modeling Earth Systems

HE ET AL.

10.1029/2022MS003150

23 of 24

Liu, J., Baskaran, L., Bowman, K., Schimel, D., Bloom, A. A., Parazoo, N. C., et  al. (2020). Carbon monitoring system flux net biosphere 
exchange 2020 (CMS-Flux NBE 2020). Earth System Science Data, 13(2), 299–330. https://doi.org/10.5194/essd-13-299-2021

Liu, J., Bowman, K., Parazoo, N. C., Bloom, A. A., Wunch, D., Jiang, Z., et al. (2018). Detecting drought impact on terrestrial biosphere carbon 
fluxes over contiguous US with satellite observations. Environmental Research Letters, 13(9), 095003. https://doi.org/10.1088/1748-9326/
aad5ef

Liu, J., Bowman, K. W., Schimel, D. S., Parazoo, N. C., Jiang, Z., Lee, M., et al. (2017). Contrasting carbon cycle responses of the tropical conti-
nents to the 2015–2016 El Niño. Science, 358(6360), eaam5690. https://doi.org/10.1126/science.aam5690

Liu, Y., Wang, J., Yao, L., Chen, X., Cai, Z., Yang, D., et al. (2018). The TanSat mission: Preliminary global observations. Science Bulletin, 
63(18), 1200–1207. https://doi.org/10.1016/j.scib.2018.08.004

Martens, B., Gonzalez Miralles, D., Lievens, H., van der Schalie, R., de Jeu, R. A., Fernández-Prieto, D., et al. (2017). GLEAM v3: Satellite-based 
land evaporation and root-zone soil moisture. Geoscientific Model Development, 10(5), 1903–1925. https://doi.org/10.5194/gmd-10-1903-2017

Meesters, A. G. C. A., Tolk, L. F., Peters, W., Hutjes, R. W. A., Vellinga, O. S., Elbers, J. A., et al. (2012). Inverse carbon dioxide flux estimates 
for The Netherlands. Journal of Geophysical Research, 117(D20), D20306. https://doi.org/10.1029/2012JD017797

Miralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H., Meesters, A. G. C. A., & Dolman, A. J. (2011). Global land-surface evaporation 
estimated from satellite-based observations. Hydrology and Earth System Sciences, 15(2), 453–469. https://doi.org/10.5194/hess-15-453-2011

Molina, L., Broquet, G., Imbach, P., Chevallier, F., Poulter, B., Bonal, D., et al. (2015). On the ability of a global atmospheric inversion to constrain 
variations of CO2 fluxes over Amazonia. Atmospheric Chemistry and Physics, 15(14), 8423–8438. https://doi.org/10.5194/acp-15-8423-2015

Monteil, G., Broquet, G., Scholze, M., Lang, M., Gerbig, C., Koch, F.-T., et al. (2019). EUROCOM ensemble of inversion results for 2006–2015 
[Dataset]. ICOS Carbon Portal. https://doi.org/10.18160/E72F-D093

Monteil, G., Broquet, G., Scholze, M., Lang, M., Karstens, U., Gerbig, C., et al. (2020). The regional European atmospheric transport inversion 
comparison, EUROCOM: First results on European-wide terrestrial carbon fluxes for the period 2006–2015. Atmospheric Chemistry and 
Physics, 20(20), 12063–12091. https://doi.org/10.5194/acp-20-12063-2020

Monteil, G., & Scholze, M. (2021). Regional CO2 inversions with LUMIA, the Lund University modular inversion algorithm, v1.0. Geoscientific 
Model Development, 14(6), 3383–3406. https://doi.org/10.5194/gmd-2019-227

Monteith, J. L., & Unsworth, M. H. (2008). Principles of environmental physics (3rd ed., p. 418). Academic Press.
Moore, B., Crowell, S., Rayner, P., Kumer, J., O'Dell, C., O'Brien, D., et al. (2018). The potential of the geostationary carbon cycle observatory 

(GeoCarb) to provide multi-scale constraints on the carbon cycle in the Americas. Frontiers in Environmental Science, 6, 109. https://doi.
org/10.3389/fenvs.2018.00109

New, M., Hulme, M., & Jones, P. (2000). Representing twentieth-century space–time climate variability. Part II: Development of 1901–96 
monthly grids of terrestrial surface climate. Journal of Climate, 13(13), 2217–2238. https://doi.org/10.1175/1520-0442(2000)013<2217
:rtcstc>2.0.co;2

Palmer, P.  I. (2018). The role of satellite observations in understanding the impact of El Niño on the carbon cycle: Current capabilities and 
future opportunities. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1760), 20170407. https://doi.org/10.1098/
rstb.2017.0407

Peters, W., Bastos, A., Ciais, P., & Vermeulen, A. (2020). A historical, geographical and ecological perspective on the 2018 European summer 
drought. Philosophical Transactions of the Royal Society B: Biological Sciences, 375(1810), 20190505. https://doi.org/10.1098/rstb.2019.0505

Peters, W., Jacobson, A. R., Sweeney, C., Andrews, A. E., Conway, T. J., Masarie, K., et al. (2007). An atmospheric perspective on North Amer-
ican carbon dioxide exchange: CarbonTracker. Proceedings of the National Academy of Sciences of the United States of America, 104(48), 
18925–18930. https://doi.org/10.1073/pnas.0708986104

Peters, W., Krol, M., Van Der Werf, G., Houweling, S., Jones, C., Hughes, J., et  al. (2010). Seven years of recent European net terres-
trial carbon dioxide exchange constrained by atmospheric observations. Global Change Biology, 16(4), 1317–1337. https://doi.
org/10.1111/j.1365-2486.2009.02078.x

Peters, W., Miller, J. B., Whitaker, J., Denning, A. S., Hirsch, A., Krol, M. C., et  al. (2005). An ensemble data assimilation system to esti-
mate CO2 surface fluxes from atmospheric trace gas observations. Journal of Geophysical Research, 110(D24), D24304. https://doi.
org/10.1029/2005JD006157

Peters, W., van der Velde, I. R., van Schaik, E., Miller, J. B., Ciais, P., Duarte, H. F., et al. (2018). Increased water-use efficiency and reduced 
CO2 uptake by plants during droughts at a continental scale. Nature Geoscience, 11(10), 744–748. https://doi.org/10.1038/s41561-018-0212-7

Peylin, P., Law, R., Gurney, K., Chevallier, F., Jacobson, A., Maki, T., et al. (2013). Global atmospheric carbon budget: Results from an ensemble 
of atmospheric CO2 inversions. Biogeosciences, 10, 6699–6720. https://doi.org/10.5194/bg-10-6699-2013

Piao, S., Wang, X., Wang, K., Li, X., Bastos, A., Canadell, J. G., et al. (2020). Interannual variation of terrestrial carbon cycle: Issues and perspec-
tives. Global Change Biology, 26(1), 300–318. https://doi.org/10.1111/gcb.14884

Rayner, P., Scholze, M., Knorr, W., Kaminski, T., Giering, R., & Widmann, H. (2005). Two decades of terrestrial carbon fluxes from a carbon 
cycle data assimilation system (CCDAS). Global Biogeochemical Cycles, 19(2), GB2026. https://doi.org/10.1029/2004GB002254

Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., et  al. (2005). On the separation of net ecosystem exchange 
into assimilation and ecosystem respiration: Review and improved algorithm. Global Change Biology, 11(9), 1424–1439. https://doi.
org/10.1111/j.1365-2486.2005.001002.x

Rödenbeck, C., Houweling, S., Gloor, M., & Heimann, M. (2003). CO2 flux history 1982–2001 inferred from atmospheric data using a global 
inversion of atmospheric transport. Atmospheric Chemistry and Physics, 3(6), 1919–1964. https://doi.org/10.5194/acp-3-1919-2003

Rödenbeck, C., Zaehle, S., Keeling, R., & Heimann, M. (2018a). History of El Niño impacts on the global carbon cycle 1957–2017: A quantifi-
cation from atmospheric CO2 data. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1760), 20170303. https://doi.
org/10.1098/rstb.2017.0303

Rödenbeck, C., Zaehle, S., Keeling, R., & Heimann, M. (2018b). How does the terrestrial carbon exchange respond to inter-annual climatic 
variations? A quantification based on atmospheric CO2 data. Biogeosciences, 15(8), 2481–2498. https://doi.org/10.5194/bg-15-2481-2018

Rödenbeck, C., Zaehle, S., Keeling, R., & Heimann, M. (2020). The European carbon cycle response to heat and drought as seen from atmos-
pheric CO2 data for 1999–2018. Philosophical Transactions of the Royal Society B: Biological Sciences, 375(1810), 20190506. https://doi.
org/10.1098/rstb.2019.0506

Schewe, J., Gosling, S. N., Reyer, C., Zhao, F., Ciais, P., Elliott, J., et al. (2019). State-of-the-art global models underestimate impacts from 
climate extremes. Nature Communications, 10(1), 1005. https://doi.org/10.1038/s41467-019-08745-6

Scholze, M., Kaminski, T., Knorr, W., Voßbeck, M., Wu, M., Ferrazzoli, P., et al. (2019). Mean European carbon sink over 2010–2015 esti-
mated by simultaneous assimilation of atmospheric CO2, soil moisture, and vegetation optical depth. Geophysical Research Letters, 46(23), 
13796–13803. https://doi.org/10.1029/2019GL085725

 19422466, 2023, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022M

S003150 by M
PI 322 C

hem
ical E

cology, W
iley O

nline L
ibrary on [06/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.5194/essd-13-299-2021
https://doi.org/10.1088/1748-9326/aad5ef
https://doi.org/10.1088/1748-9326/aad5ef
https://doi.org/10.1126/science.aam5690
https://doi.org/10.1016/j.scib.2018.08.004
https://doi.org/10.5194/gmd-10-1903-2017
https://doi.org/10.1029/2012JD017797
https://doi.org/10.5194/hess-15-453-2011
https://doi.org/10.5194/acp-15-8423-2015
https://doi.org/10.18160/E72F-D093
https://doi.org/10.5194/acp-20-12063-2020
https://doi.org/10.5194/gmd-2019-227
https://doi.org/10.3389/fenvs.2018.00109
https://doi.org/10.3389/fenvs.2018.00109
https://doi.org/10.1175/1520-0442(2000)013%3C2217:rtcstc%3E2.0.co;2
https://doi.org/10.1175/1520-0442(2000)013%3C2217:rtcstc%3E2.0.co;2
https://doi.org/10.1098/rstb.2017.0407
https://doi.org/10.1098/rstb.2017.0407
https://doi.org/10.1098/rstb.2019.0505
https://doi.org/10.1073/pnas.0708986104
https://doi.org/10.1111/j.1365-2486.2009.02078.x
https://doi.org/10.1111/j.1365-2486.2009.02078.x
https://doi.org/10.1029/2005JD006157
https://doi.org/10.1029/2005JD006157
https://doi.org/10.1038/s41561-018-0212-7
https://doi.org/10.5194/bg-10-6699-2013
https://doi.org/10.1111/gcb.14884
https://doi.org/10.1029/2004GB002254
https://doi.org/10.1111/j.1365-2486.2005.001002.x
https://doi.org/10.1111/j.1365-2486.2005.001002.x
https://doi.org/10.5194/acp-3-1919-2003
https://doi.org/10.1098/rstb.2017.0303
https://doi.org/10.1098/rstb.2017.0303
https://doi.org/10.5194/bg-15-2481-2018
https://doi.org/10.1098/rstb.2019.0506
https://doi.org/10.1098/rstb.2019.0506
https://doi.org/10.1038/s41467-019-08745-6
https://doi.org/10.1029/2019GL085725


Journal of Advances in Modeling Earth Systems

HE ET AL.

10.1029/2022MS003150

24 of 24

Shiga, Y. P., Tadić, J. M., Qiu, X., Yadav, V., Andrews, A. E., Berry, J. A., & Michalak, A. M. (2018). Atmospheric CO2 observations reveal strong 
correlation between regional net biospheric carbon uptake and solar-induced chlorophyll fluorescence. Geophysical Research Letters, 45(2), 
1122–1132. https://doi.org/10.1002/2017GL076630

Sitch, S., Friedlingstein, P., Gruber, N., Jones, S., Murray-Tortarolo, G., Ahlström, A., et al. (2015). Recent trends and drivers of regional sources 
and sinks of carbon dioxide. Biogeosciences, 12(3), 653–679. https://doi.org/10.5194/bg-12-653-2015

Smith, N. E., Kooijmans, L. M. J., Koren, G., Schaik, E. V., Woude, A. V. M. D., Wanders, N., et al. (2020). Spring enhancement and summer 
reduction in carbon uptake during the 2018 drought in northwestern Europe. Philosophical Transactions of the Royal Society B: Biological 
Sciences, 375(1810), 20190509. https://doi.org/10.1098/rstb.2019.0509

Song, L., Guanter, L., Guan, K., You, L., Huete, A., Ju, W., & Zhang, Y. (2018). Satellite sun-induced chlorophyll fluorescence detects early 
response of winter wheat to heat stress in the Indian Indo-Gangetic Plains. Global Change Biology, 24(9), 4023–4037. https://doi.org/10.1111/
gcb.14302

Souza, A. G. S. S., Neto, A. R., Rossato, L., Alvalá, R. C. S., & Souza, L. L. (2018). Use of SMOS L3 soil moisture data: Validation and drought 
assessment for Pernambuco State, Northeast Brazil. Remote Sensing, 10(8), 1314. https://doi.org/10.3390/rs10081314

Sun, Y., Fu, R., Dickinson, R., Joiner, J., Frankenberg, C., Gu, L., et al. (2015). Drought onset mechanisms revealed by satellite solar-induced 
chlorophyll fluorescence: Insights from two contrasting extreme events. Journal of Geophysical Research: Biogeosciences, 120(11), 2427–
2440. https://doi.org/10.1002/2015jg003150

Suto, H., Kataoka, F., Kikuchi, N., Knuteson, R. O., Butz, A., Haun, M., et al. (2021). Thermal and near-infrared sensor for carbon observation 
Fourier transform spectrometer-2 (TANSO-FTS-2) on the Greenhouse gases Observing SATellite-2 (GOSAT-2) during its first year in orbit. 
Atmospheric Measurement Techniques, 14(3), 2013–2039. https://doi.org/10.5194/amt-14-2013-2021

Teuling, A. J., Seneviratne, S. I., Stöckli, R., Reichstein, M., Moors, E., Ciais, P., et al. (2010). Contrasting response of European forest and 
grassland energy exchange to heatwaves. Nature Geoscience, 3(10), 722–727. https://doi.org/10.1038/ngeo950

Thompson, R. L., Broquet, G., Gerbig, C., Koch, T., Lang, M., Monteil, G., et al. (2020). Changes in net ecosystem exchange over Europe during 
the 2018 drought based on atmospheric observations. Philosophical Transactions of the Royal Society B: Biological Sciences, 375(1810), 
20190512. https://doi.org/10.1098/rstb.2019.0512

Thompson, R. L., & Stohl, A. (2014). FLEXINVERT: An atmospheric Bayesian inversion framework for determining surface fluxes of trace 
species using an optimized grid. Geoscientific Model Development, 7(5), 2223–2242. https://doi.org/10.5194/gmd-7-2223-2014

Tian, H., Chen, G., Lu, C., Xu, X., Hayes, D. J., Ren, W., et  al. (2015). North American terrestrial CO2 uptake largely offset by CH4 and 
N2O emissions: Toward a full accounting of the greenhouse gas budget. Climatic Change, 129(3–4), 413–426. https://doi.org/10.1007/
s10584-014-1072-9

Tramontana, G., Jung, M., Schwalm, C. R., Ichii, K., Camps-Valls, G., Ráduly, B., et al. (2016). Predicting carbon dioxide and energy fluxes 
across global FLUXNET sites with regression algorithms. Biogeosciences, 13(14), 4291–4313. https://doi.org/10.5194/bg-13-4291-2016

van der Laan-Luijkx, I. T., van der Velde, I. R., Krol, M. C., Gatti, L. V., Domingues, L. G., Correia, C. S. C., et al. (2015). Response of the 
Amazon carbon balance to the 2010 drought derived with CarbonTracker South America. Global Biogeochemical Cycles, 29(7), 1092–1108. 
https://doi.org/10.1002/2014gb005082

van der Laan-Luijkx, I. T., van der Velde, I. R., van der Veen, E., Tsuruta, A., Stanislawska, K., Babenhauserheide, A., et al. (2017). The Carbon-
Tracker data assimilation shell (CTDAS) v1.0: Implementation and global carbon balance 2001–2015. Geoscientific Model Development, 
10(7), 2785–2800. https://doi.org/10.5194/gmd-10-2785-2017

Wang, S., Zhang, Y., Ju, W., Porcar-Castell, A., Ye, S., Zhang, Z., et  al. (2020). Warmer spring alleviated the impacts of 2018 European 
summer heatwave and drought on vegetation photosynthesis. Agricultural and Forest Meteorology, 295, 108195. https://doi.org/10.1016/j.
agrformet.2020.108195

Wang, Y., Law, R., & Pak, B. (2010). A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences, 
7(7), 2261–2282. https://doi.org/10.5194/bg-7-2261-2010

Wei, Y., Liu, S., Huntzinger, D. N., Michalak, A. M., Viovy, N., Post, W. M., et al. (2014). The North American carbon Program multi-scale 
synthesis and terrestrial model intercomparison project - Part 2: Environmental driver data. Geoscientific Model Development, 6(4), 5375–
5422. https://doi.org/10.5194/gmd-7-2875-2014

Wieder, W. R., Butterfield, Z., Lindsay, K., Lombardozzi, D. L., & Keppel-Aleks, G. (2021). Interannual and seasonal drivers of carbon cycle 
variability represented by the Community Earth System Model (CESM2). Global Biogeochemical Cycles, 35(9), e2021GB007034. https://
doi.org/10.1029/2021GB007034

Wigneron, J.-P., Li, X., Frappart, F., Fan, L., Al-Yaari, A., De Lannoy, G., et al. (2021). SMOS-IC data record of soil moisture and L-VOD: Histor-
ical development, applications and perspectives. Remote Sensing of Environment, 254, 112238. https://doi.org/10.1016/j.rse.2020.112238

Wolf, S., Keenan, T. F., Fisher, J. B., Baldocchi, D. D., Desai, A. R., Richardson, A. D., et al. (2016). Warm spring reduced carbon cycle impact 
of the 2012 US summer drought. Proceedings of the National Academy of Sciences of the United States of America, 113(21), 5880–5885. 
https://doi.org/10.1073/pnas.1519620113

Wu, M., Scholze, M., Kaminski, T., Voßbeck, M., & Tagesson, T. (2020). Using SMOS soil moisture data combining CO2 flask samples to 
constrain carbon fluxes during 2010–2015 within a Carbon Cycle Data Assimilation System (CCDAS). Remote Sensing of Environment, 240, 
111719. https://doi.org/10.1016/j.rse.2020.111719

Xiao, J., Liu, S., & Stoy, P. C. (2016). Preface: Impacts of extreme climate events and disturbances on carbon dynamics. Biogeosciences, 13(12), 
3665–3675. https://doi.org/10.5194/bg-13-3665-2016

Yin, Y., Byrne, B., Liu, J., Wennberg, P., Davis, K. J., Magney, T., et al. (2020). Cropland carbon uptake delayed and reduced by 2019 Midwest 
floods. AGU Advances, 1(1), e2019AV000140. https://doi.org/10.1029/2019AV000140

Zahradníček, P., Trnka, M., Brázdil, R., Možný, M., Štěpánek, P., Hlavinka, P., et al. (2015). The extreme drought episode of August 2011–May 
2012 in the Czech Republic. International Journal of Climatology, 35(11), 3335–3352. https://doi.org/10.1002/joc.4211

Zeng, N., Mariotti, A., & Wetzel, P. (2005). Terrestrial mechanisms of interannual CO2 variability. Global Biogeochemical Cycles, 19(1), 
GB1016. https://doi.org/10.1029/2004GB002273

Zeng, Y., Badgley, G., Dechant, B., Ryu, Y., Chen, M., & Berry, J. A. (2019). A practical approach for estimating the escape ratio of near-infrared 
solar-induced chlorophyll fluorescence. Remote Sensing of Environment, 232, 111209. https://doi.org/10.1016/j.rse.2019.05.028

Zhang, L., Ren, X., Wang, J., He, H., Wang, S., Wang, M., et al. (2019). Interannual variability of terrestrial net ecosystem productivity over 
China: Regional contributions and climate attribution. Environmental Research Letters, 14(1), 014003. https://doi.org/10.1088/1748-9326/
aaec95

Zhang, Y. (2022). Contiguous solar induced chlorophyll fluorescence (CSIF) [Dataset]. OSF. https://doi.org/10.17605/OSF.IO/8XQY6
Zhang, Y., Joiner, J., Alemohammad, S. H., Zhou, S., & Gentine, P. (2018). A global spatially contiguous solar-induced fluorescence (CSIF) 

dataset using neural networks. Biogeosciences, 15(19), 5779–5800. https://doi.org/10.5194/bg-15-5779-2018

 19422466, 2023, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022M

S003150 by M
PI 322 C

hem
ical E

cology, W
iley O

nline L
ibrary on [06/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1002/2017GL076630
https://doi.org/10.5194/bg-12-653-2015
https://doi.org/10.1098/rstb.2019.0509
https://doi.org/10.1111/gcb.14302
https://doi.org/10.1111/gcb.14302
https://doi.org/10.3390/rs10081314
https://doi.org/10.1002/2015jg003150
https://doi.org/10.5194/amt-14-2013-2021
https://doi.org/10.1038/ngeo950
https://doi.org/10.1098/rstb.2019.0512
https://doi.org/10.5194/gmd-7-2223-2014
https://doi.org/10.1007/s10584-014-1072-9
https://doi.org/10.1007/s10584-014-1072-9
https://doi.org/10.5194/bg-13-4291-2016
https://doi.org/10.1002/2014gb005082
https://doi.org/10.5194/gmd-10-2785-2017
https://doi.org/10.1016/j.agrformet.2020.108195
https://doi.org/10.1016/j.agrformet.2020.108195
https://doi.org/10.5194/bg-7-2261-2010
https://doi.org/10.5194/gmd-7-2875-2014
https://doi.org/10.1029/2021GB007034
https://doi.org/10.1029/2021GB007034
https://doi.org/10.1016/j.rse.2020.112238
https://doi.org/10.1073/pnas.1519620113
https://doi.org/10.1016/j.rse.2020.111719
https://doi.org/10.5194/bg-13-3665-2016
https://doi.org/10.1029/2019AV000140
https://doi.org/10.1002/joc.4211
https://doi.org/10.1029/2004GB002273
https://doi.org/10.1016/j.rse.2019.05.028
https://doi.org/10.1088/1748-9326/aaec95
https://doi.org/10.1088/1748-9326/aaec95
https://doi.org/10.17605/OSF.IO/8XQY6
https://doi.org/10.5194/bg-15-5779-2018

	Do State-Of-The-Art Atmospheric CO2 Inverse Models Capture Drought Impacts on the European Land Carbon Uptake?
	Abstract
	Plain Language Summary
	1. Introduction
	2. Data and Methods
	2.1. Study Area
	2.2. Carbon Fluxes Constrained by Atmospheric CO2 Observations
	2.3. Carbon Fluxes Simulated by Terrestrial Biosphere Models (TRENDY DGVMs)
	2.4. Machine Learning-Based Upscaling of Eddy-Covariance Measurements (FLUXCOM)
	2.5. 
          Satellite-Based GPP Models
	2.6. Satellite Land Surface Data
	2.7. Meteorological Data
	2.8. In Situ Flux Measurements
	2.9. Data Processing and Analysis Framework

	3. Results
	3.1. Spatiotemporal Anomalies of Environmental Variables and Vegetation Function During 2001–2015
	3.2. 
          Inter-Annual Variations of Terrestrial Carbon Uptake Estimated by AIMs
	3.2.1. Continental Scale
	3.2.2. Subcontinental Scale

	3.3. Regional Analysis of Drought Impacts on Terrestrial Carbon Uptake Revealed by AIMs
	3.4. Detected Recent Droughts by OCO-2 XCO2 Inversions

	4. Discussion
	4.1. Benefits of Increasing In Situ CO2 Observations to Capturing Regional Drought Impacts
	4.2. Importance of Satellite XCO2 for Capturing Regional Drought Impacts
	4.3. Importance of Ancillary Environmental Variables for Capturing Regional Drought Impacts
	4.4. Other Issues and Limitations

	5. Conclusions
	Data Availability Statement
	References


