English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Lithium metal atoms fill vacancies in the germanium network of a type-I clathrate: synthesis and structural characterization of Ba8Li5Ge41

MPS-Authors
/persons/resource/persons126529

Baitinger,  Michael
Michael Baitinger, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons265604

Krnel,  Mitja
Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126556

Burkhardt,  Ulrich
Ulrich Burkhardt, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126626

Grin,  Yuri
Juri Grin, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Ghosh, K., Ovchinnikov, A., Baitinger, M., Krnel, M., Burkhardt, U., Grin, Y., et al. (2023). Lithium metal atoms fill vacancies in the germanium network of a type-I clathrate: synthesis and structural characterization of Ba8Li5Ge41. Dalton Transactions, 52(30), 10310-10322. doi:10.1039/d3dt01168b.


Cite as: https://hdl.handle.net/21.11116/0000-000D-401F-9
Abstract
Clathrate phases with crystal structures exhibiting complex disorder have been the subject of many prior studies. Here we report syntheses, crystal and electronic structure, and chemical bonding analysis of a Li-substituted Ge-based clathrate phase with the refined chemical formula Ba8Li5.0(1)Ge41.0, which is a rare example of ternary clathrate-I where alkali metal atoms substitute framework Ge atoms. Two different synthesis methods to grow single crystals of the new clathrate phase are presented, in addition to the classical approach towards polycrystalline materials by combining pure elements in desired stoichiometric ratios. Structure elucidations for samples from different batches were carried out by single-crystal and powder X-ray diffraction methods. The ternary Ba8Li5.0(1)Ge41.0 phase crystallizes in the cubic type-I clathrate structure (space group Pm3̄n no. 223, a ≈ 10.80 Å), with the unit cell being substantially larger compared to the binary phase Ba8Ge43 (Ba8□3Ge43, a ≈ 10.63 Å). The expansion of the unit cell is the result of the Li atoms filling vacancies and substituting atoms in the Ge framework, with Li and Ge co-occupying one crystallographic (6c) site. As such, the Li atoms are situated in four-fold coordination environment surrounded by equidistant Ge atoms. Analysis of chemical bonding applying the electron density/electron localizability approach reveals ionic interaction of barium with the Li-Ge framework, while the lithium-germanium bonds are strongly polar covalent. © 2023 The Royal Society of Chemistry.