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Abstract

Screening classifiers are increasingly used to identify qualified candidates in a variety of selection
processes. In this context, it has been recently shown that, if a classifier is calibrated, one can identify the
smallest set of candidates which contains, in expectation, a desired number of qualified candidates using a
threshold decision rule. This lends support to focusing on calibration as the only requirement for screening
classifiers. In this paper, we argue that screening policies that use calibrated classifiers may suffer from
an understudied type of within-group discrimination—they may discriminate against qualified members
within demographic groups of interest. Further, we argue that this type of discrimination can be avoided
if classifiers satisfy within-group monotonicity, a natural monotonicity property within each of the groups.
Then, we introduce an efficient post-processing algorithm based on dynamic programming to minimally
modify a given calibrated classifier so that its probability estimates satisfy within-group monotonicity.
We validate our algorithm using US Census survey data and show that within-group monotonicity can be
often achieved at a small cost in terms of prediction granularity and shortlist size.

1 Introduction
As many selection processes receive hundreds or even thousands of applications, it has become increasingly
common to rely on automated screening tools to shortlist a tractable set of promising candidates. These
shortlisted candidates then move forward in the selection process and are evaluated in detail, possibly multiple
times, until one or more qualified candidates are selected. The benefits and harms posed by automated
screening have been investigated in many high-stakes domains, including medicine [1, 2], recruiting [3, 4] and
content moderation [5].

In the machine learning literature, algorithmic screening has been studied together with other high-
stakes decision making problems as a supervised learning problem [6, 7, 8]. Under this view, algorithmic
screening consists of designing both a screening classifier, which estimates the probability that a candidate
is qualified, and a screening policy, which shortlists candidates using the candidates’ probability values
estimated by the screening classifier. Only very recently, a line of work has focused specifically on algorithmic
screening [9, 10, 11]. Therein, Wang et al. [9] argue that, to increase the efficiency of the selection process
without decreasing the quality of the shortlisted candidates, the focus should be on screening policies that
find the smallest shortlist of candidates containing a desired average number of qualified candidates with
high probability, without making any distributional assumptions on the candidates. Further, this work has
shown that, if the screening classifier is calibrated [12], such distribution-free guarantees can be achieved
using threshold decision rules as screening policies and, the more granular the predictions of the classifier, the
smaller the shortlists provided by such policies.

In this work, our starting point is the realization that any threshold decision rule that uses calibrated
screening classifiers may discriminate against qualified candidates within demographic groups of interest.
More specifically, it may shortlist one or more candidates from a group who are less likely to be qualified than
one or more rejected candidates from the same group. Unfortunately, this type of within-group discrimination
may perpetuate historical biases against minority groups since it may preclude the best candidates from the
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groups—the candidates who are more likely to be qualified—to move forward in the selection process and
have a chance to be selected [13].
Our contributions. We first show that, to avoid such within-group discrimination, screening classifiers
need to satisfy a natural monotonicity property within each of the groups of interest, which we refer to as
within-group monotonicity. Then, we develop a set partitioning post-processing framework to minimally
modify any calibrated classifier such that it satisfies within-group monotonicity. Along the way, we make the
following contributions:

I. We show that the problem is NP-hard using a reduction from a variation of the partition problem [14],
which we refer to as the equal average partition problem and prove it is NP-complete. However, we
identify a natural class of partitions—contiguous partitions—under which the problem is tractable.

II. While the structure of our problem for contiguous partitions resembles isotonic regression [15], we show
that the classical Pool Adjacent Violators (PAV) algorithm may fail even to find a locally optimal
solution.

III. We derive a dynamic programming algorithm for contiguous partitions that is guaranteed to find an
optimal solution to our problem in polynomial time.

IV. We show that within-group calibration [16] implies within-group monotonicity. However, we show that
it is often impossible to modify a classifier to satisfy the former and, whenever possible, the predictions
of the resulting classifier are coarse.

Finally, we create multiple instances of a simulated screening process using US Census survey data to
validate and complement our methodological contributions and theoretical results. The results show that
the probability that an individual from a minority group suffers from within-group discrimination may be
significant and within-group monotonicity can be achieved at a small cost in terms of prediction granularity
and shortlist size.
Related work. There is an extensive and rapidly growing line of work addressing bias and discrimination
in the machine learning literature [17, 18, 19, 20, 16, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. This
line of work has applications in a variety of important domains, including health care [32, 33], criminal
justice [34, 35, 36, 37, 38] and recommender systems [39, 40, 41, 42]. However, it has predominantly focused
on preventing discrimination across demographic groups of interest, e.g., designing machine learning models
whose predictive performance (e.g., accuracy, false positive rate) is invariant across groups. In contrast, we
focus on preventing discrimination within groups.

Within the above machine learning literature, there are a few notable exceptions [43, 13, 44, 45], which
studied similar notions to within-group monotonicity in the context of ranking. Among them, the notion of
in-group monotonicity by Zehlike et al. [43, 45] is perhaps the most similar to within-group monotonicity.
However, it comprises only the top-k ranked candidates in a specific pool of candidates (i.e., in our work, the
shortlisted candidates), rather than every candidate in a population of interest, and unconditional quality
scores, rather than group conditional quality scores. Moreover, their formulation is fundamentally different
and their technical contributions are orthogonal to ours. In this context, it is also worth highlighting the
notion of within-group calibration [16, 25], which implies within-group monotonicity, as discussed previously.
Within-group calibration asks for equally well-calibrated probability estimates across groups so that a decision
maker cannot use group membership to interpret these estimates. However, in the context of screening, our
results show that within-group calibration may be an unnecessarily strong requirement.

Our work also relates to a line of work devoted to the study of calibration in supervised learning [46,
47, 48, 49, 50, 51]. Here, the main focus has been the design of classifiers with low calibration error using
calibration-aware training or post-hoc re-calibration. However, there have been also very recent efforts to
ensure calibration errors are bias-free [52, 53, 54]. Here, we do not aim to minimize calibration error but
ensure a calibrated classifier satisfies within-group monotonicity.
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2 Screening, Calibration and Within-Group Discrimination
Given a candidate with a feature vector x ∈ X , we assume the candidate belongs to one demographic group
of interest z ∈ Z and can be qualified (y = 1) or unqualified (y = 0) for the selection objective1,2. Next, let
f : X → Range(f) ⊆ [0, 1] be a screening classifier that maps a candidate’s feature vector x ∈ X to a quality
score f(x), where the higher the quality score f(x), the more the classifier believes the candidate is qualified.
Then, given a pool of m candidates, a screening policy π : [0, 1]m → P({0, 1}m) maps the candidates’ quality
scores to a probability distribution over shortlisting decisions {si}i∈[m]. Here, each decision si specifies
whether the corresponding candidate is shortlisted (si = 1) or is not shortlisted (si = 0).

In high-stakes applications, screening classifiers are usually demanded to provide calibrated quality
scores [58, 59, 60]3. In this context, Wang et al. [9] have recently shown that, if the classifier f is calibrated,
the optimal screening policy π∗f that is guaranteed to shortlist, in expectation, the smallest set of candidates
with a desired number of qualified candidates with high probability is given by a simple threshold decision
rule that take shortlisting decisions as

si =


1 if f(xi) > tf ,

Bernoulli(θf ) if f(xi) = tf

0 otherwise,
(1)

where tf and θf depend on the classifier and data distribution. These results lend support to focusing
on calibration as the only requirement for screening classifiers. In this work, we argue that screening
policies given by threshold decision rules using calibrated classifiers may suffer from an understudied type of
discrimination—they may discriminate against qualified members within demographic groups. More formally,
the following proposition shows that any threshold decision rule may discriminate against qualified members
within demographic groups4:

Proposition 2.1 Let π be a screening policy given by a threshold decision rule using a calibrated classifier f
with threshold t. Assume there exist a, b ∈ Range(f), with a < t < b, and z ∈ Z such that P (Y = 1 | f(X) =
a, Z = z) > P (Y = 1 | f(X) = b, Z = z). Then, it holds that

EY∼PY |X,Z , S∼π [Y (1− S) | f(X) = a, Z = z] > EY∼PY |X,Z , S∼π [Y S | f(X) = b, Z = z] .

The above result implies that there exist pools of applicants for which an optimal policy using a calibrated
classifier may shortlist a candidate from a group who is less likely to be qualified than a rejected candidate
from the same group. Importantly, the assumption under which the above within-group discrimination
appears is not just a theoretical construct—it has been observed empirically in multiple real-world domains
whenever the group membership Z is a spurious confounding factor that causes both X and Y [61, 62]. The
case in which the assumption holds for every group z ∈ Z and any threshold decision rule is known as
Simpson’s paradox [63].

To avoid the above within-group discrimination, we introduce and study within-group monotonicity:

Definition 2.2 Given a set of groups Z, a classifier f is within-group monotone if, for any z ∈ Z and
a, b ∈ Range(f) such that a < b, Pr(Z = z | f(X) = a) > 0 and Pr(Z = z | f(X) = b) > 0, it holds that

Pr (Y = 1 | f(X) = a, Z = z) ≤ Pr (Y = 1 | f(X) = b, Z = z) .

In what follows, we will design a post-processing framework that, given a calibrated classifier, modifies it
minimally so that it is within-group monotone, as shown in Figure 1. As a result, any screening policy given
by a threshold decision rule using the modified classifier will not suffer from within-group discrimination.
Whenever it is clear from the context, we do not specify the set of groups Z with respect to which a classifier
is within-group calibrated or monotone.

1We do not require a candidate’s group membership z to be included in or be inferable from their feature vector x.
2In practice, one measures qualification using proxy variables, which need to be chosen carefully not to perpetuate historical

biases [55, 56, 57].
3A classifier f is calibrated iff, for every a ∈ Range(f), it holds that Pr(Y = 1 | f(X) = a) = a.
4All proofs can be found in the Appendix A.
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Figure 1: Quality score values a = P (Y = 1 | f(X) = a) and group conditional quality score values
az = P (Y = 1 | f(X) = a, Z = z) of a (approximately) calibrated screening classifier f with finite range
trained on US Census survey data and its within-group monotone counterpart fB∗ found by our post-processing
framework. The demographic groups of interest Z are defined using US citizen status and the hatched bars
indicate within-group monotonicity violations. Note that there exist no such violations in fB∗ (second row).

3 A Set Partitioning Post-Processing Framework
Let f be a calibrated classifier with Range(f) = {a1, . . . , an} and Pr (f(X) = ai) = ρi. Here, note that
we focus on calibrated classifiers with finite range, i.e., |Range(f)| = n <∞, since it is impossible to find
non-atomic calibrated classifiers from data5, even asymptotically [64, 65]. Here, assume that ai < aj
for any i < j without loss of generality. Further, for every demographic group of interest z ∈ Z, let
Pr (Y = 1 | f(X) = ai, Z = z) = ai,z and Pr (Z = z | f(X) = ai) = ρz | i, and note that, by definition, we have
that ai =

∑
z∈Z ρz | iai,z. Then, our goal is to modify f minimally so that it is within-group monotone.

To this end, we first note that the classifier f induces a partition of X into n disjoint regions or bins
{X1, . . . ,Xn}, where each bin Xi is characterized by ai and ρi. Building upon this observation, we look at
the problem from the perspective of set partitioning and seek to merge a small number of these induced
bins to achieve within-group monotonicity. More formally, let P be the set of all partitions of the bin
indices {1, . . . , n}. Every B ∈P is a partition of the bin indices into a collection of nonempty and disjoint
equivalence classes {A1, . . . ,A|B|}, which we call cells. For each x ∈ X , denote the index of the bin it belongs
to as i(x) = {i | f(x) = ai} and represent a cell in B containing index i(x) by [i(x)]B, where we drop the
subscript B whenever it is clear from the context. Further, we know that the equivalence relation ∼B implies
that, for all i(x′) ∈ [i(x)], we have that i(x) ∼B i(x′). Then, we can use the partition6 B to define the
modified classifier fB : X → Range(fB) = {aA}A∈B, where

aA =

∑
j∈A ajρj∑
j∈A ρj

and fB(x) = a[i(x)].

Without loss of generality, we keep the cells induced by the partition B in increasing order with respect to
5Given a (non-atomic) classifier f , there exists a variety of methods to discretize and calibrate its predictions [46, 47, 60]. However,

this is out of the scope of our work. Moreover, for ease of exposition, we assume that f is perfectly calibrated and we have access to
true value of the relevant probabilities ρi, ai, ρz | i and ai,z . However, our methodology can be adapted to work with approximately
calibrated f and noisy probability estimates as long as the estimation errors can be bounded (with high probability).

6We use partition instead of partition on the bin indices whenever it is clear from the context.
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aA, i.e., aAi ≤ aAj for any i < j. Next, note that, by definition, fB is calibrated, i.e.,

Pr (Y = 1 | fB(X) = aA) =

∑
j∈A ajρj∑
j∈A ρj

= aA,

and we have that

Pr (Y = 1 | fB(X) = aA, Z = z) =

∑
j∈A ρjρz | jaj,z∑
j∈A ρjρz | j

:= aA,z.

Moreover, the larger the size of the partition B, the more fine-grained the predictions of the classifier fB [59, 9].
Therefore, we can naturally think of reducing the problem to finding a partition B of maximum size such
that fB is within-group monotone7, i.e.,

maximize
B∈P

|B| subject to aAi,z ≤ aAj ,z∀Ai,Aj ∈ B such that aAi
< aAj

,∀z ∈ Z.

However, such a problem formulation presents difficulties both in terms of tractability and soundness. First,
we cannot expect to find such a partition in polynomial time:

Theorem 3.1 Given a calibrated classifier f , the problem of finding the partition B of maximum size such
that fB is within-group monotone is NP-hard.

To prove the above result in Appendix A.2, we first show that, by finding the partition B of maximum size
such that fB is within-group monotone, we can decide whether there exists a partition B′ of size |B′| = 2
such that fB′ is within-group monotone. Then, we show that the latter decision problem is NP-complete by a
reduction from a variation of the partition problem [14], which we refer to as the equal average partition
problem and prove it is NP-complete.

Second, even if the size of the partition B is large, the shortlists provided by threshold decision rules
using fB may differ greatly from those using f . The reason is that, in general, we may end up merging very
different bins to ensure monotonicity within groups and, as a consequence, fB may rank (pairs of) candidates
strictly differently. More specifically, fB may not satisfy the following monotonicity property with respect to
f :

Definition 3.2 A classifier f ′ is monotone with respect to f if, for all f(x1), f(x2) ∈ Range(f) such that
f(x1) < f(x2), it holds that f ′(x1) ≤ f ′(x2).
To guarantee that fB is monotone with respect to f , we need to restrict our attention to the set of contiguous
partitions B ⊆P of {1, . . . , n}, i.e., for any B ∈ B, if i(x1) < i(x2) < i(x3) and i(x1) ∼B i(x3), then it also
holds that i(x1) ∼B i(x2) and i(x2) ∼B i(x3). More formally, we have the following result:

Proposition 3.3 Given a classifier f with Range(f) = {a1, . . . , an}, fB is monotone with respect to f iff B
is a contiguous partition on {1, . . . , n}.
Surprisingly, while |B| = 2n−1, we will show in the next section that it is possible to find the optimal
contiguous partition B∗ = argmaxB∈B |B| such that fB∗ is within-group monotone in polynomial time using
dynamic programming.

4 Optimal Set Partitioning via Dynamic Programming
Since the structure of our problem resembles isotonic regression, one may think of using a simple variation of
the many times re-discovered Pool Adjacent Violators (PAV) algorithm [67, 68, 69, 70] to find the optimal
(contiguous) partition. However, in what follows, we first show that the PAV algorithm may not find the
optimal partition—it is not even guaranteed to find a partition satisfying an intuitive type of local optimality.
Then, building on the reasons why the PAV algorithm may not find the optimal partition, we derive an
efficient algorithm based on dynamic programming that is guaranteed to find the optimal partition.

7Maximizing the size of the partition |B| is equivalent to minimizing the distance d(f, fB) = n − |B|. Thus, fB∗ can be viewed as
the closest within-group monotone classifier fB under a prediction-only access model [66].
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Algorithm 1 It returns a partition Bpav such that fBpav is within-group monotone.
1: Input: {a1,z, . . . , an,z}z∈Z
2: Initialize: Bpav = {{1} , . . . , {n}}
3: while ∃Ai−1,Ai ∈ Bpav and z ∈ Z such that aAi,z < aAi−1,z do
4: Bpav = Bpav \ {Ai−1,Ai}
5: Bpav = Bpav ∪ {Ai−1 ∪ Ai}
6: end while
7: return Bpav

4.1 Pool Adjacent Violators (PAV) Algorithm
In comparison with the original PAV algorithm, the only difference is that, in our setting, one needs to check
for monotonicity violations across multiple sets of conditional predictors, one per group z ∈ Z, rather than
only one set of predictors. However, the main idea underpinning the PAV algorithm remains the same, i.e., as
long as there are monotonicity violations between two adjacent cells, the algorithm merges the corresponding
cells into one. Algorithm 1 summarizes the overall procedure, which has complexity O(n2 × |Z|) and is
guaranteed to return a partition Bpav such that fBpav is within-group monotone, as formalized by the following
Proposition:

Proposition 4.1 Algorithm 1 returns a partition Bpav ∈ B such that the classifier fBpav is within-group
monotone.

Unfortunately, while the original PAV algorithm does enjoy global optimality guarantees for the isotonic
regression problem8 under multiple choices of loss functions [71, 72], this is not true for our problem. There
exist many instances for which Algorithm 1 fails to find the optimal partition B∗, e.g., refer to Figure 5 in
Appendix B.1. In fact, Algorithm 1 does not even enjoy a type of intuitive local optimality guarantee based
on the notion of dominance [9]:

Definition 4.2 Let f and f ′ be calibrated classifiers. Classifier f dominates f ′ if, for any x1, x2 ∈ X such
that f(x1) = f(x2), it holds that f ′(x1) = f ′(x2).

More specifically, if fB dominates fB′ , it can be shown that the expected size of the shortlists provided by the
optimal screening policies using fB are not larger than those using fB′ [9, Corollary 4.3]) and it clearly holds
that |B| ≥ |B′|. For example, let Range(f) = {a1, a2, a3}, Z = {z1, z2} and ρiρz | i = 1

6 for all i ∈ {1, 2, 3}
and z ∈ Z. Further, let a1,z2 = a2,z1 = a3,z2 = α, a1,z1 = 2α, a2,z2 = 3α and a3,z1 = 4α, where α ∈ [0, 0.25].
Then, Algorithm 1 returns Bpav = {{1, 2, 3}}, however, fBpav is dominated by fB, with B = {{1} , {2, 3}},
which is also within-group monotone. Refer to Appendix A.5 for details.

The reason why Algorithm 1 may fail to find the optimal partition is that, whenever it tries to fix a
monotonicity violation between two adjacent cells Ai−1 and Ai, it does so by merging them. However, in our
problem, the optimal fix may require merging cells Ai and Ai+1. Building on this insight, we will design an
efficient algorithm based on dynamic programming that provably finds the optimal partition.

4.2 An Optimal Dynamic Programming Algorithm
Our starting point is the following observation, which allows us to break down the problem of finding
the optimal partition B∗ into several subproblems. Let Br be the set of contiguous partitions of the
bin indices {1, . . . , r}, with r ≤ n, and Bl,r ⊆ Br be the subset of those partitions such that, for any
B = {A1, . . . ,A|B|} ∈ Bl,r, it holds that A|B| = {l, . . . , r} and fB∪B′ is within-group monotone on the region

8In the isotonic regression problem [15], given a set of response variables {yi}i∈[n], the goal is to find a set of predictor values
{xi}i∈[n], with xi ≤ xi+1 for all i ∈ [n], such that

∑
i `(xi, yi) is minimized, where `(xi, yi) is a loss measuring how well xi approximates

yi.
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Algorithm 2 It returns the optimal partition B∗ such that fB∗ is within-group monotone.
1: Input: {a1,z, . . . , an,z}z∈Z
2: Initialize: Bl,r = {} ∀l, r ∈ {2, . . . , n}, B1,r = {1, . . . , r} ∀r ∈ {1, . . . , n}
3: for l ∈ {2, . . . , n} do
4: for r ∈ {l, . . . , n} do
5: Sl,r =

{
k|k < l, a{k,...,l−1},z ≤ a{l,...,r},z ∀z ∈ Z

}
{Refer to Lemma. 4.3}

6: if Sl,r = ∅ then
7: Continue {In this case Bl,r = ∅}
8: end if
9: k∗ = argmaxk∈Sl,r |Bk,l−1|

10: Bl,r = Bk∗,l−1 ∪ {{l, . . . , r}}
11: end for
12: end for
13: l∗ = argmaxi∈{1,...,n} |Bi,n|
14: return Bl∗,n

of the feature space defined by ∪i≤rXi, where B′ is any partition of the bin indices {r + 1, . . . , n}9. Then, it
clearly holds that the optimal partition B∗ ∈ ∪nl=1Bl,n and thus we can break the problem of finding B∗ into
n subproblems, i.e., finding the optimal partition B∗l,n = argmaxB∈Bl,n

|B| within in each subset Bl,n. From
now on, with a slight abuse of notation, we will write fB instead of fB∪B′ whenever B′ refers to any partition
of the bin indices not in B and it is clear from the context.

Next, we realize that we can efficiently find the optimal partition B∗l,n in each subset Bl,n recursively
using dynamic programming. The key idea of the recursion is that any partition B ∈ Bl,r needs to satisfy
the following necessary and sufficient conditions:

Lemma 4.3 Given any B ∈ Br, it holds that B ∈ Bl,r if and only if ∃k < l such that B\{{l, . . . , r}} ∈ Bk,l−1
and a{k,...,l−1},z ≤ a{l,...,r},z ∀z ∈ Z.

Consequently, we can efficiently find all the partitions in the subsets Bl,r iterating through l using the partitions
in the subsets Bk,l−1 with k < l. Finally, by construction, it clearly holds that, if B∗l,r = B′ ∪ {{l, . . . , r}},
with B′ ∈ Bk,l−1, is the optimal partition in Bl,r then B′ = B∗k,l−1 is the optimal partition in Bk,l−1. As a
result, at each step of the recursion, we only need to store the optimal partition B∗l,r, not all partitions in
Bl,r.

Algorithm 2 summarizes the overall procedure, which has complexity O(n3 × |Z|) and is guaranteed to
find the optimal partition B∗, as formalized by the following theorem:

Theorem 4.4 Algorithm 2 returns B∗ = argmaxB∈B |B| such that fB∗ is within-group monotone.

5 Within-Group Monotonicity vs Within-Group Calibration
Within-group calibration, or calibration within groups10, requires that the probability that a candidate is

qualified is independent of their group membership conditioned on their quality score. More specifically, it is
defined as follows [16, 25]:

Definition 5.1 Given a set of groups Z, a classifier f is within-group calibrated iff, for every z ∈ Z and
a ∈ Range(f) such that Pr(Z = z | f(X) = a) > 0, it holds that Pr(Y = 1 | f(X) = a, Z = z) = a.

9Note that it may be impossible to satisfy both conditions simultaneously if, for example, the Simpon’s paradox [73] holds, i.e., for
every group z ∈ Z and every pair of indices i < j, we have that ai,z > aj,z . In those cases, we may have that Bl,r = ∅ for all 1 < l ≤ r.

10There also exists a generalized, stronger notion of within-group calibration called multicalibration [26, 30], which requires predictions
to be calibrated within every group that can be identified within a specified class of computations.
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Algorithm 3 It returns the optimal partition B∗cal such that fB∗cal within-group calibrated.

1: Input: {a1,z, . . . , an,z}z∈Z
2: Initialize: Bcal,i = {} ∀i ∈ {1, . . . , n}
3: if a1,z = a1 ∀z ∈ Z then
4: Bcal,1 = {{a1}}
5: end if
6: for r ∈ {2, . . . , n} do
7: Sr =

{
i ∈ {2, . . . , r} | a{i,...,r},z = a{i,...,r} ∀z ∈ Z

}
8: k∗ = argmaxk∈Sr |Bcal,k−1|
9: if Bcal,k∗−1 6= ∅ then

10: Bcal,r = Bcal,k∗−1 ∪ {{k∗, . . . , r}}
11: else if a{1,...,r} = a{1,...,r},z ∀z ∈ Z then
12: Bcal,r = {{1, . . . , r}}
13: end if
14: end for
15: return Bcal,n

As discussed previously, within-group calibration implies within-group monotonicity. Then, to minimally
modify a calibrated classifier f so that it becomes within-group monotone, one may think of finding the
optimal partition B∗cal = argmaxB∈B |B| such that fB is within-group calibrated. In what follows, we will
first show that, perhaps surprisingly, finding B∗cal is computationally easier11 than finding B∗. However, we
will further show that, in many cases, B∗cal may not exist and, when it does exist, the size of B∗cal may be
much smaller than the size of B∗, leading to less fine-grained predictions.

To find the optimal B∗cal, we proceed recursively. Let Br be the set of contiguous partitions of the bin indices
{1, . . . , r}, with r ≤ n. Then, iterating through r, we find the optimal partitions B∗cal,r = argmaxB∈Br

|B|
such that fB∗cal,r is within-group calibrated in ∪i≤rXi. In this case, the key idea of the recursion is that any
partition B ∈ Br such that fB is within-calibrated on ∪i≤rXi needs to satisfy the following necessary and
sufficient condition:

Lemma 5.2 Given any B ∈ Br, it holds that fB is within-calibrated on ∪i≤rXi if and only if ∃l < r such
that B\ {{l, . . . , r}} ∈ Bl−1 and fB\{{l,...,r}} is within-group calibrated on ∪i≤l−1Xi and a{l,...,r},z = a{l,...,r}
∀z ∈ Z.
As a consequence, we can efficiently find all partitions B in the subsets Br such that fB is within-group
calibrated iterating through r using the partitions B′ in the subsets Bl with l < r such that fB′ is within-group
calibrated. Finally, by construction, it clearly holds that if the optimal partition B∗cal,r = B′ ∪ {{l, . . . , r}},
with B′ ∈ Bl−1, is the optimal partition in Br then B′ = B∗cal,l−1 is the optimal partition in Bl−1. As a
result, at each step of the recursion, we only need to store the optimal partition B∗r , not all partitions B ∈ Br

such that fB is within-group calibrated, and reuse it to find all B∗r′ with r′ > r.
Algorithm 3 summarizes the overall procedure, which has complexity O(n2 × |Z|) and is guaranteed to

find the optimal partition B∗cal, if such a partition exists, as formalized by the following theorem:

Theorem 5.3 Algorithm 3 returns B∗cal = argmaxB∈B |B| such that fB∗cal is within-group calibrated if such
partition exists or ∅ otherwise.
Unfortunately, there are many cases in which B∗cal does not exist, e.g., this will happen if f systematically
undervalues the probability that individuals from a group are qualified, in comparison with individuals from
another group:

Proposition 5.4 Let Z = {z, z′}, ρz | i = ρz′ | i and ai,z < ai,z′ for all i ∈ {1, . . . , n}. Then, there exists no
B ∈ B such that fB is within-group calibrated.

11Using a similar proof technique as in Theorem 3.1, it can be proven that the problem of finding the partition B ∈P of maximum
size such that fB is within-group calibrated is NP-hard. Therefore, in general, the computational complexity is not lower.
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Figure 2: Probability that an individual suffers from within-group discrimination. Panel (a) shows the
probability pd | z that an individual from group z may suffer from within-group discrimination against
Pr(Z = z) for n = 15. Panel (b) shows the probability pd that an individual may suffer from within-group
discrimination and the probability pd | Dpool that an individual suffers from within-group discrimination in a
test pool Dpool of size m, averaged across all test pools, against n = |Range(f)|.

In the above situation, f may actually be within-group monotone and thus |B∗| = n. Even if B∗cal exists,
there are examples where |B∗| − |B∗cal| = n− 1.

6 Experiments Using Survey Data
In this section, we create multiple instances of a simulated screening process using US Census survey data to
first investigate how frequently within-group discrimination occurs and then compare the partitions, as well
as induced screening classifiers, provided by Algorithms 1, 2 and 312.
Experimental setup. We use a dataset consisting of ∼3.2 million individuals from the US Census [74].
Each individual is represented by sixteen features and one label y ∈ {0, 1} indicating whether the individual
is employed (y = 1) or not (y = 0). For our experiments, we think of employment as a (imperfect) proxy
of qualification. The features contain demographic information such as age, marital status or gender [74,
Appendix B4]. We run four sets of experiments where, in each of them, we use a different feature (US citizen
status, race, gender, or disability record) to define the demographic groups of interest Z13.

For the experiments, we randomly split the dataset into two equally-sized and disjoint subsets. We use
the first subset for training and calibration and the second subset for testing. More specifically, for each
experiment, we create the training and calibration sets Dtr and Dcal by picking 100,000 and 50,000 individuals
at random (without replacement) from the first subset. We use Dtr to train a logistic regression model fLR14

and use Dcal to both (approximately) calibrate fLR using uniform mass binning (UMB) [9, 46], i.e., discretize
its outputs to n calibrated quality scores, and estimate the relevant probabilities ρi, ai, ρz | i and ai,z needed
by Algorithms 1, 2 and 3. The resulting (approximately) calibrated classifier serves as our screening classifier
f . For testing, we create a set {Dipool}100i=1 of 100 pools, each with m = 100 individuals picked at random from
the second subset, and create (the smallest) shortlists with at least k qualified individuals using the screening
classifiers fBpav , fB∗ and fB∗cal induced by the partitions found by Algorithms 1, 2 and 3, respectively. Here,
since we find that, in most experiments, no within-group calibrated classifier exists, we allow fB∗cal to be
within-group ε-calibrated15 within Algorithm 3 and use binary search to find the smallest ε ∈ (0, 1) such that
fB∗cal exists

16. Throughout the experiments, we estimate the average and the standard error of the reported
quantities by repeating each experiment 100 times.

12We ran all experiments on a machine equipped with 48 Intel(R) Xeon(R) 2.50GHz CPU cores and 256GB memory.
13For space reasons, in this section, we focus mainly on groups z ∈ Z based on US citizenship status and race. However, Appendix B.3

shows similar results for groups defined based on gender and disability record.
14The classifier fLR achieves a test accuracy of ∼74% at predicting whether an individual is qualified.
15Given a set of groups Z, a classifier f is within-group ε-calibrated iff, for every z ∈ Z and a ∈ Range(f) such that Pr(Z =

z | f(X) = a) > 0, it holds that |Pr(Y = 1 | f(X) = a, Z = z)− a| ≤ ε.
16Refer to Appendix B.2 for additional experiments on within-group ε-calibration.
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Figure 3: Size of the partitions Bpav, B∗ and B∗cal returned by Algorithms 1, 2 and 3, respectively (higher is
better).

Within-group discrimination occurs frequently between individuals from minority groups, es-
pecially with fine-grained classifiers. We start by estimating the probability pd | z that an indi-
vidual from a demographic group of interest z ∈ Z may suffer from within-group discrimination, i.e.,
pd | z =

1
Pr(Z=z)

∑
i∈{1,...,n} ρiρz | ivi, where vi = I [∃aj ∈ Range(f) | ai < aj ∧ ai,z > aj,z]. Figure 2a summa-

rizes the results for a screening classifier f with n = 15 bins. We find that individuals who belong to minority
groups are much more likely to suffer from within-group discrimination than those who belong to a majority
group. For example, the probability that an individual who is not a US citizen may suffer from within-group
discrimination is pd | z > 0.3 while it is almost impossible that an individual born in the US is within-group
discriminated. Further, we investigate to what extent the probability pd =

∑
z∈Z P (Z = z)pd | z that an

individual may suffer from within-group discrimination depends on the number of bins n of f . Figure 2b
shows that the more fine-grained a classifier is, the higher the probability that an individual may suffer from
within-group discrimination, e.g., for n ≤ 10, pd < 0.05 while, for n = 40, pd > 0.12 across all sets of groups
Z. Since the accuracy of a calibrated classifier is related to how fine-grained its predictions are [9], the above
finding suggests that high accuracy may have a cost in terms of within-group discrimination.

Our results so far show that the probability that individuals may suffer from within-group discrim-
ination is significant. Next, we estimate the probability pd | Dpool that, in a test pool Dpool of size m,
an individual does suffer from within-group discrimination, i.e., pd | Dpool = 1

m

∑
x∈Dpool

vx, where vx =

I
[
∃x′ ∈ Dpool | ai(x) < ai(x′) ∧ ai(x),z > ai(x′),z

]
. Figure 2c shows that, on average across all test pools, the

probability pd | Dpool follows the same trend as pd, however, it is slightly lower in value because each of the
test pools is not representative of the entire population. However, note that, as m → ∞, one can readily
conclude that pd | Dpool → pd.
Algorithm 2 consistently provides larger partitions, which result in more fine-grained classifiers
and smaller shortlists, than Algorithms 1 and 3. We experiment with several screening classifiers f
with a varying number of bins n and compare the size of the partitions B provided by each of the algorithms,
i.e., the number of bins of the modified classifiers fB. Figure 3 shows that the optimal partition B∗ is always
greater in size than the partitions B∗cal and Bpav. Moreover, it also shows that, as n increases, the growth
in the size of the partitions B∗ and Bpav diminishes because the occurrence of within-group discrimination
increases, as shown in Figure 2. Further, we use both the original classifier f and the modified classifiers
fB∗ , fBpav and fB∗cal to shortlist the minimum number of individuals among those in each of the simulated
test pools {Bipool} such that, in expectation, there are at least k qualified shortlisted individuals per pool.
To this end, for each test pool and classifier, we sort the candidates in decreasing order with respect to the
corresponding quality score and, starting from the first, we keep shortlisting individuals in order until the
sum of the quality scores reaches k [9, Appendix, A.3]). Figure 4 shows that the shortlists created using fB∗
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Figure 4: Size of the shortlists created using the original classifier f and the modified classifiers fBpav , fB∗
and fB∗cal induced by the partitions found by Algorithms 1, 2 and 3, respectively, for k = 5 (lower is better).

are consistently smaller than those created using fBpav and fB∗cal for k = 5. Moreover, it also shows that the
price to pay for achieving within-group monotonicity, i.e., the difference in size between the shortlists created
using f and fB∗ , is small. We found qualitatively similar results for other k values. Appendix B.1 takes a
closer look at the (group conditional) score values of f , fB∗ , fBpav and fB∗cal .

7 Conclusions
In this work, we have first shown that optimal screening policies using calibrated classifiers may suffer from
an understudied type of within-group discrimination. Then, we have developed a polynomial time algorithm
based on dynamic programming to minimally modify any given calibrated classifier so that it satisfies
within-group monotonicity, a natural monotonicity property that prevents the occurrence of within-group
discrimination. Finally, we have shown that within-group monotonicity can be achieved at a small cost in
terms of prediction granularity and shortlist size.

Our work opens up many interesting avenues for future work. For example, it would be interesting to
design classifiers that are within-group monotone with respect to every group that can be identified within
a specified class of computations [26]. Moreover, in some scenarios, it might be sufficient to control the
probability that an individual suffers from within-group discrimination. Further, it would be important
to investigate how within-group monotonicity interacts with group fairness [17, 20]. Finally, it would be
interesting to design post-processing algorithms using a sample access model [66], rather than a prediction-only
access model, and optimize other quality measures different from the partition size.
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A Proofs

A.1 Proof of Proposition 2.1
By definition, the threshold decision rule π outputs S = 0 if f(X) = a and S = 1 if f(X) = b. As a result, it
immediately follows that:

EY∼PY |X,Z , S∼π [Y (1− S) | f(X) = a, Z = z] = EY∼PY |X,Z
[Y | f(X) = a, Z = z]

> EY∼PY |X,Z
[Y | f(X) = b, Z = z] = EY∼PY |X,Z , S∼π [Y S | f(X) = b, Z = z] .

A.2 Proof of Theorem 3.1
We call a partition B ∈ P valid if fB is within-group monotone. We first show that, by finding a valid
partition B of maximum size, we can decide whether there exists a valid partition B′ of size |B′| = 2. Assume
the valid partition B of maximum size has size |B| = m. Then, if m ≥ 2, we can conclude that such a partition
exists using Lemma A.1 and, if m < 2, no such partition exists because B is the valid partition of maximum
size. Now, since we prove in Lemma A.2 that this decision problem is NP-complete, we can directly conclude
that the problem of finding the valid partition of maximum size is NP-hard.

Lemma A.1 Assume the valid partition B of maximum size has size |B| = k. Then for every k′ ∈
{1, . . . , k − 1}, there exist a valid partition B′ such that |B′| = k′.

Proof By Proposition 3.3, we have that any contiguous partition B′ on {1, . . . , |B|} is monotone with
respect to fB. Furthermore, due to the same proposition, B′ is also monotone with respect to the set
{aAi,z}i∈{1,...,|B|} for all z ∈ Z. Since B is valid, we have that {aAi,z}i∈{1,...,|B|} is increasing for all z ∈ Z.
As a result, B′ is a valid partition. Thus, for any k′ ∈ {1, . . . , k − 1}, we have that the contiguous partition
B′ =

{
A1,A2, . . . ,A|B|−k′−1,∪j∈{0,...,k′}A|B|−j

}
is valid and |B′| = k′. This concludes the proof.

Lemma A.2 The problem of deciding whether there exists a valid partition B such that |B| = 2 is NP-
complete.

Proof First it is easy to see that, given a partition B, we can check whether the partition is valid and has
size |B| = 2 in polynomial time. Therefore, the problem belongs to NP.

Now, to show the problem is NP-complete, we perform a reduction from a variation of the classical
partition problem [14], which we refer to as the equal average partition problem. The equal average partition
problem seeks to decide whether a set of n positive integers S = {s1, . . . , sn} can be partitioned into two
subsets of equal average. In Theorem A.3, we prove that the equal average partition problem is NP-complete,
a result which may be of independent interest17.

Without loss of generality, we assume si ∈ [0, 1] for all si ∈ S18 and, si ≤ sj if i < j. For every si ∈ S, we
set ai,z1 = si, ai,z2 = 1− si, ρi = 1

n , ρz1 | i = α, ρz2 | i = 1− α for α ∈ (0.5, 0.75]. Note that we will have that
ai = αsi + (1− α)(1− si) = (2α− 1)si + (1− α) ∈ [0, 1]. Note first that for any A ∈ B

aA,z1 =

∑
j∈A ρjρz1 | jaj,z1∑
j∈A ρjρz1 | j

=

∑
j∈A

α
naj,z1∑

j∈A
α
n

=

∑
j∈A aj,z1

|A| = 1−
∑
j∈A(1− aj,z1)
|A| = 1− aA,z2 . (2)

, and

aA =

∑
j∈A((2α− 1)aj,z1 + 1− α)

|A| = (2α− 1)

∑
j∈A aj,z1

|A| + 1− α = (2α− 1)aA,z1 + 1− α (3)

17Given the similarity of the equal average partition problem to the classical partition problem, we would have expected to
find a proof of NP-completeness elsewhere. However, we failed to find such a proof in previous work.

18We can always divide every element in S by the largest member of S to ensure elements fall in [0, 1].
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Note that, whenever we have that aA,z1 ≤ aA′,z1 , it will also hold that aA < aA′ as 2α− 1 > 0.
Now, assume a valid partition B with |B| = 2 exists and B = {A1,A2}. Without loss of generality, assume

aA1,z1 ≤ aA2,z1 . Since B is a valid partition, we should have also that aA1,z2 ≤ aA2,z2 , furthermore,

aA1,z1 ≤ aA2,z1 ⇒ 1− aA1,z1 ≥ 1− aA2,z1 ⇒ aA1,z2 ≥ aA2,z2 (4)

Since it simultaneously holds that aA1,z2 ≥ aA2,z2 and aA1,z2 ≤ aA2,z2 , a valid partition B with |B| = 2
exists if and only if aA1,z2 = aA2,z2 and hence aA1,z1 = aA2,z1 . As aA1,z1 is the average of sj for j ∈ A1 and
aA2,z1 is the average of sj for j ∈ A2 the partition B can partition S into two subsets of equal average.

We now prove that if no valid partition B with |B| = 2 exists, there is no way of partitioning S into two
subsets of equal average. For the sake of contradiction, assume S can be partitioned into S1 and S2 with equal
averages κ. Define A1 = {i | si ∈ S1} and A2 = {j | sj ∈ S2}. Now if we build an instance of our problem
based on S as described before and set B = {A1,A2} (clearly we have that B is a partition of {1, . . . , n}) we
have that aA1,z1 = aA2,z1 = κ, aA1,z2 = aA2,z2 = 1− κ (refer to Eq. 2) and aA1 = aA2 = (2α− 1)κ+ (1− α)
(refer to Eq. 3). As a result, we have that B is a valid partition of size 2 which is a contradiction. This
concludes the proof.

Theorem A.3 Given a set of n positive integers, the problem of deciding whether it can be partitioned into
two non-empty subsets of equal average is NP-complete.

Proof First it is easy to see that, given two subsets, we can evaluate in polynomial time their averages and
check whether they are equal or not. Therefore, the problem belongs to NP.

In the remainder of the proof, we will perform a reduction from the equal cardinality partition problem,
which is known to be NP-complete, to the equal average partition problem. In the original problem, we are
given a set of n positive integers S, where n is an even number. The objective is to decide whether there exist
two subsets S1,S2 ⊆ S such that S1 ∪ S2 = S and S1 ∩ S2 = ∅, with |S1| = |S2| and

∑
i∈S1 i =

∑
j∈S2 j.

Now, we will transform an arbitrary instance of that problem into an instance of the equal average
partition problem. Let the set of integers be S ′ = S ∪ {nσ, nσ}, where σ =

∑
k∈S k. It is easy to see that the

average of S ′ is equal to (2n+1)σ
n+2 .

We will start by showing that, if we can decide positively about that instance of the equal average partition
problem, we can also decide positively about the original instance of the equal cardinality partition problem.
Assume there exists a partition of S ′ into two sets S ′1, S ′2, with equal averages. As an intermediate result,
we will show that the two copies of the number nσ cannot belong to the same set S ′1 or S ′2. For the sake of
contradiction, and without loss of generality, assume that both copies belong to S ′1.

In the case where S ′1 = {nσ, nσ}, it holds that
∑

i∈S′1
i

|S′1|
= nσ and

∑
i∈S′2

j

|S′2|
= σ

n , which is a contradiction,
since the two quantities cannot be equal because of n ≥ 2. In cases where S ′1 contains at least one more

element, since S ′2 6= ∅, we get that
∑

i∈S′1
i

|S′1|
= 2nσ+κ

2+l , with 0 < κ < σ and 1 ≤ l ≤ n− 1, and
∑

j∈S′2
j

|S′2|
= σ−κ

n−l .
It follows that

1

n− l ≤ 1⇒ σ − κ
n− l ≤ σ − κ⇒

∑
j∈S′2

j

|S ′2|
< σ

(∗)⇒
∑
j∈S′2

j

|S ′2|
<

(2n+ 1)σ

n+ 2
⇒
∑
j∈S′2

j

|S ′2|
<

∑
k∈S′ k

|S ′| ,

where (∗) holds because n > 1. According to Lemma A.4, the last inequality leads to a contradiction. With
that, we can conclude that one copy of nσ belongs to S ′1 and the other one belongs to S ′2.

Let S1, S2 be such that S ′1 = {nσ}∪S1 and S ′2 = {nσ}∪S2. We will now show that S1 and S2 are a solution
to the original instance of the equal cardinality partition problem, i.e., |S1| = |S2| and

∑
i∈S1 i =

∑
j∈S2 j. It

is trivial to see that S1,S2 have to be non-empty, otherwise the averages of S ′1 and S ′2 would differ. Since S ′1,
S ′2 are a partition of S ′ with equal averages and because of Lemma A.4, we know that

nσ +
∑
i∈S1 i

1 + |S1|
=
nσ +

∑
j∈S2 j

1 + |S2|
=

(2n+ 1)σ

n+ 2
. (5)
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For the sake of contradiction, assume that either |S1| 6= |S2| or
∑
i∈S1 i 6=

∑
j∈S2 j. For brevity, we will focus

only on the two following cases, as any other case leads easily to a contradiction:

• |S1| < |S2| and
∑
i∈S1 i <

∑
j∈S2 j: Since S1, S2 are such that S1 ∪ S2 = S, it holds that

∑
j∈S2

j −
∑
i∈S1

i < σ
(∗)⇒ (2n+ 1)σ

n+ 2
(1 + |S2|)− nσ −

(2n+ 1)σ

n+ 2
(1 + |S1|) + nσ < σ ⇒

(2n+ 1)σ

n+ 2
(|S2| − |S1|) < σ ⇒ (2n+ 1)(|S2| − |S1|) < (n+ 2)

(∗∗)⇒ 2n+ 1 < n+ 2⇒ n < 1,

where (∗) follows from Equation 5, and (∗∗) holds because |S2| − |S1| ≥ 1. The last inequality is clearly
a contradiction.

• |S1| > |S2| and
∑
i∈S1 i >

∑
j∈S2 j: The proof is the symmetric version of the proof in the previous

case.

Therefore, we can conclude that S1 and S2 are a solution to the original problem, i.e., they are a partition of
S with equal cardinality and equal sums.

Lastly, we will show that, if there is no partition of S ′ with equal averages, there can be no equal cardinality
partition of S with equal sums. For the sake of contradiction, assume there exist S1, S2 with |S1| = |S2| and∑
i∈S1 i =

∑
j∈S2 j. Then, let S ′1 = {nσ} ∪ S1 and S ′2 = {nσ} ∪ S2. It is easy to see that∑

i∈S′1
i

|S ′1|
=
nσ +

∑
i∈S1 i

1 + |S1|
=
nσ +

∑
j∈S2 j

1 + |S2|
=

∑
i∈S′2

i

|S ′2|
, (6)

which is a contradiction, since it means that S ′1 and S ′2 are a partition of S ′ with equal averages.
Following the above procedure, we can decide whether the original instance of the equal-cardinality

problem has a solution or not. As a consequence, the problem of deciding whether a set of positive integers
can be partitioned into two subsets of equal average is NP-complete.

Lemma A.4 A set of integers S can be partitioned into two non-empty sets S1, S2 with equal averages∑
i∈S1

i

|S1| =
∑

j∈S2
j

|S2| , iff
∑

i∈S1
i

|S1| =
∑

k∈S k

|S| , with |S1| ⊂ |S|.

Proof First, assume there is such a partition of S into S1, S2, with equal averages. It holds that∑
i∈S1 i

|S1|
=

∑
k∈S k −

∑
i∈S1 i

|S| − |S1|
⇒ (|S| − |S1|)

∑
i∈S1

i = |S1|
(∑
k∈S

k −
∑
i∈S1

i

)
⇒ |S|

∑
i∈S1

i = |S1|
∑
k∈S

k

⇒
∑
i∈S1 i

|S1|
=

∑
k∈S k

|S| ,

where S1 ⊂ S because S2 6= ∅.
Now, assume there exists a set S1 ⊂ S, such that

∑
i∈S1

i

|S1| =
∑

k∈S k

|S| and let S2 = S \ S1. It is easy to see
that ∑

j∈S2 j

|S2|
=

∑
k∈S k −

∑
i∈S1 i

|S| − |S1|
=

∑
k∈S k −

|S1|
|S|
∑
k∈S k

|S|
(
1− |S1||S|

) =

∑
k∈S k

|S| ,

and therefore, the sets S1, S2 consist a partition of S with equal averages.
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A.3 Proof of Proposition 3.3
We first prove the sufficient condition, i.e., we prove that, if fB is monotone with respect to f , then B is a
contiguous partition on {1, . . . n}. The proof is by contradiction. Assume B is not a contiguous partition,
i.e., there exists x1, x2, x3 ∈ X such that i(x1) < i(x2) < i(x3) and i(x1) ∼B i(x3) while i(x1) 6∼B i(x2). If
a[i(x1)] > a[i(x2)], then fB(x1) > fB(x2), however, since f(x1) < f(x2), this leads to a contradiction with the
monotonicity assumption. On the other hand, if a[i(x1)] < a[i(x2)], then fB(x3) < fB(x2) since i(x1) ∼B i(x3)
and thus a[i(x3)] < a[i(x2)], however, this leads again to a contradiction with the monotonicity assumption.
This proves that B must be a contiguous partition.

Next, we prove the necessary condition, i.e., we prove that, if B is a contiguous partition on {1, . . . n},
then fB is monotone with respect to f . For any x1, x2 ∈ X such that f(x1) < f(x2), we have that:

fB(x1) = a[i(x1)] =

∑
l∈[i(x1)]

alρl∑
l∈[i(x1)]

ρl
≤
∑
l∈[i(x2)]

alρl∑
l∈[i(x2)]

ρl
= a[i(x2)] = fB(x2).

where the inequality is due to Lemma A.5 below and the fact that the weighted average of a set of numbers
is lower and upper bounded by the smallest and largest element of the set respectively.

Lemma A.5 Let f be a classifier with Range(f) = {a1, . . . , an}, B be a contiguous partition on {1, . . . , n}
and x1, x2 ∈ X . If i(x1) < i(x2) and i(x1) 6∼B i(x2), then, for every k ∈ [i(x1)] and k′ ∈ [i(x2)], it holds that
k < k′.

Proof To prove the lemma, we just need to prove that the largest index in [i(x1)] is smaller than the smallest
index in [i(x2)]. The proof is by contradiction. Let l = max{k | k ∈ [i(x1)]} and s = min{k | k ∈ [i(x2)]}
and assume that l > s. Then, it cannot simultaneously hold that i(x1) = l and i(x2) = s since we have
that i(x1) < i(x2). Assume first that i(x1) 6= l, and take x3, x4 ∈ X such that i(x3) = s and i(x4) = l. If
i(x3) < i(x1), then it holds that i(x3) < i(x1) < i(x2), however, since i(x2) ∼B i(x3) and i(x1) 6∼B i(x2),
this leads to a contradiction with the assumption that B is contiguous. If i(x3) > i(x1), then it holds that
i(x1) < i(x3) < i(x4), however, since i(x1) ∼B i(x4) while i(x3) 6∼B i(x4), this also leads to a contradiction
with the assumption that B is contiguous. If one assumes instead that i(x1) = l, a similar reasoning using
i(x2) and i(x4) leads to a contradiction too. This completes the proof.

A.4 Proof of Proposition 4.1
We prove by contradiction. Assume there exist violations of within-group monotonicity. We first define the
nearest violating triplet, (l, r, z), as:

(l, r, z) = argmin
{(i,j,z) | i,j∈Range(fB),i<j,z∈Z}

|j − i| such that aAi,z > aAj ,z

If r = l + 1 then it contradicts with the assumption that no monotonicity violations occur between adjacent
cells. If r 6= l + 1, there exists i ∈ Range(fB) such that l ≤ i ≤ r and it does not happen simultaneously that
i = l and i = r. Then it should hold that aAl,z ≤ aAi,z ≤ aAr,z since otherwise either of (l, i, z) or (i, r, z)
is the nearest violating triplet. In this case however, aAl,z ≤ aAr,z which is a contradiction with it being a
violating triplet. As a result, no such triplet can exist and fB is within-group monotone.

A.5 Proof of Lack of Local Optimality of the Pool Adjacent Violators (PAV)
Algorithm

Let Range(f) = {a1, a2, a3}, Z = {z1, z2} and ρiρz | i = 1
6 for all i ∈ {1, 2, 3} and z ∈ Z. Further, let

a1,z2 = a2,z1 = a3,z2 = α, a1,z1 = 2α, a2,z2 = 3α and a3,z1 = 4α, where α ∈ [0, 0.25]. First, we note that, by
construction, it holds that a1 = 3

2α < a2 = 2α < a3 = 5
2α. Now, since a1,z1 > a2,z1 , Algorithm 1 first merges
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these two bins, then, since a{1,2},z2 > a{3},z2 , it merges all the three bins together and finally it terminates,
returning B = {{1, 2, 3}}. However, since it holds that a1,z1 < a{2,3},z1 and a1,z2 < a{2,3},z2 , it clearly holds
that the partition B′ = {{1} , {2, 3}} induces a classifier fB′ that is within-group monotone and it readily
follows that fB′ dominates fB.

A.6 Proof of Lemma 4.3
We first prove the sufficient condition, i.e., we prove, for any B ∈ Bl,r, ∃k < l such that B\{{l, . . . , r}} ∈ Bk,l−1
and a{k,...,l−1},z ≤ a{l,...,r},z ∀z ∈ Z. Let B′ = B \ {{l, . . . , r}}. To this end, we start by proving by
contradiction that ∃k < l such that B′ ∈ Bk,l−1. Since the partition B covers {1, . . . , r}, we have that the
last cell of B′ contains bin l − 1. Assume B′ 6∈ ∪l−1k=1Bk,l−1. Then, there must exist A,A′ ∈ B′ and z ∈ Z
such that aA < aA′ and aA,z > aA,z′ . However, since B′ ⊂ B, it also holds that A,A′ ∈ B and fB cannot be
within-group monotone on ∪i≤rXi, leading to a contradiction. Therefore, it must hold that B′ ∈ ∪l−1k=1Bk,l−1.
Now, to prove that, if B′ ∈ ∪l−1k=1Bk,l−1 and B ∈ Bl,r, then it must hold that a{k,...,l−1},z ≤ a{l,...,r},z ∀z ∈ Z,
we resort to Lemma A.6.

We next prove the necessary condition, i.e., we prove that, given any B ∈ Br, if ∃k < l such that
B \ {{l, . . . , r}} ∈ Bk,l−1 and a{k,...,l−1},z ≤ a{l,...,r},z ∀z ∈ Z then B ∈ Bl,r. Let B′ = B \ {{l, . . . , r}}. Since
B′ ∈ Bk,l−1, we know that no violations of within-group monotonicity occurs on ∪i≤l−1Xi. Now, we prove that
there are no violations of within-group monotonicity between {l, . . . , r} and any A ∈ B′. By assumption, we
know that there are not violations of within-group monotonicity between {l, . . . , r} and {k, . . . , l − 1}. Then,
we prove by contradiction that there are not violations between {l, . . . , r} and any A ∈ B′ \ {{k, . . . , l − 1}}.
For any A ∈ B′ \ {{k, . . . , l − 1}}, it follows from Proposition 3.3 that aA < a{k,...,l−1} and aA < a{l,...,r}.
Now, assume there exists A ∈ B′ \ {{k, . . . , l − 1}}, z ∈ Z such that aA,z > a{l,...,r},z. Since, by assumption,
we have that a{k,...,l−1},z ≤ a{l,...,r},z, it should hold that a{k,...,l−1},z < aA,z, which contradicts with the
assumption that B′ ∈ Bk,l−1, leading to a contradiction. This proves that B ∈ Bl,r.

Lemma A.6 Let B = B′ ∪ {{l, . . . , r}} ∈ Bl,r and B′ ∈ Bk,l−1 with k < l. Then, it must hold that
a{k,...,l−1},z ≤ a{l,...,r},z ∀z ∈ Z.

Proof Since B′ ∈ Bk,l−1, we know that {k, . . . , l − 1} ∈ B′. Moreover, it follows from Proposition 3.3 that
fB is monotone with respect to f and hence, since k < l and k 6∼B l, we have that a{k,...,l−1} < a{l,...,r}.
Further, since B ∈ Bl,r, we have that, for every A,A′ ∈ B such that aA < aA′ , it holds that aA,z ≤ aA′,z for
all z ∈ Z. Thus, it also holds that a{k,...,l−1},z ≤ a{l,...,r},z for all z ∈ Z.

A.7 Proof of Theorem 4.4
To prove that Algorithm 2 returns the optimal partition B∗, we just need to prove that, for each l, r ∈ {1, . . . , n},
the partition Bl,r the algorithm finds is optimal, i.e., Bl,r = B∗l,r. In what follows, we prove this by induction.

For the base cases, we have that B1,r = {{1, . . . , r}} are clearly optimal since B1,r only contains
{{1, . . . , r}} for all r ∈ {1, . . . , n}. As the induction hypothesis, assume that, for any l′ < l and r′ < r, the
partition Bl′,r′ the algorithm finds is optimal. Moreover, let Sl,r =

{
k | k < l, a{k,...,l−1},z ≤ a{l,...,r},z ∀z ∈ Z

}
.

Then, for (l, r), we need to show that Bl,r = Bk∗,l−1∪{{l, . . . , r}}, with k∗ = argmaxk∈Sl,r |Bk,l−1|, is optimal.
To this end, we first show that fBl,r

is within-group monotone on ∪i≤rXi, i.e., Bl,r ∈ Bl,r. We have
that, by the induction hypothesis, Bk∗,l−1 ∈ Bk∗,l−1 and, by definition, k∗ ∈ Sl,r. Then, it follows directly
from Lemma 4.3 that fB ∈ Bl,r. Next, we show that Bl,r = argmaxB∈Bl,r

|B|. Using again Lemma 4.3,
we have that, for any B ∈ Bl,r, it holds that B = B′ ∪ {{l, . . . , r}}, with B′ ∈ Bk,l−1, for some k ∈ Sl,r.
As a result, since |B′ ∪ {{l, . . . , r}}| = |B′| + 1, it suffices to find B′ = argmaxB′′∈∪k∈Sl,rBk,l−1

|B′′|. Now,
by the induction hypothesis, we know that, for each Bk,l−1, Bk,l−1 is the optimal partition. Then, since
k∗ = argmaxk∈Sl,r |Bk,l−1|, we can conclude that Bl,r is optimal.
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A.8 Proof of Lemma 5.2
We first prove the sufficient condition, i.e., we prove that, given any B ∈ Br, if it holds that fB is within-group
calibrated on ∪i≤rXi then ∃l < r such that B\ {{l, . . . , r}} ∈ Bl−1 and fB\{{l,...,r}} is within-group calibrated
on ∪i≤l−1Xi and a{l,...,r},z = a{l,...,r} for all z ∈ Z. Let B′ = B \ {{l, . . . , r}}. Since B covers {1, . . . , r}, then
it holds that B′ covers {1, . . . , l − 1} and hence B′ ∈ Bl−1. Since B′ ⊂ B and fB is within-group calibrated
on ∪i≤rXi, then it holds that fB′ is within-group calibrated on ∪i≤l−1Xi. Finally, since {l, . . . , r} ∈ B, it also
holds that a{l,...,r},z = a{l,...,r}.

Next, we prove the necessary condition, i.e., given any B ∈ Br, if ∃l < r such that B\ {{l, . . . , r}} ∈ Bl−1
and fB\{{l,...,r}} is within-group calibrated on ∪i≤l−1Xi and a{l,...,r},z = a{l,...,r} ∀z ∈ Z then fB is within-
group calibrated on ∪i≤rXi. We need to show that, for every A ∈ B, it holds that aA,z = aA. Let
B′ = B\{{l, . . . , r}}. For every z ∈ Z, it holds by assumption that aA,z = aA ∀A ∈ B′ and a{l,...,r},z = a{l,...,r}.
As a result, fB is within-group calibrated on ∪i≤rXi.

A.9 Proof of Theorem 5.3
To prove that Algorithm 3 returns the optimal B∗cal, if a solution exists, we just need to prove that, for every
r ∈ {1, . . . , n}, the partition Bcal,r the algorithm finds is optimal, i.e., Bcal,r = B∗cal,r. In what follows, we
prove this by induction.

For the base case (r = 1), we have that Bcal,1 = {{a1}} iff, for all z ∈ Z with ρz | 1 > 0, it
holds that a1,z = a1. This is clearly optimal since B1 only contains {{a1}}. Otherwise, it holds that
Bcal,1 = ∅. As the induction hypothesis, assume that, for any r′ < r, the partition Bcal,r′ the algo-
rithm finds is either the optimal partition or, if there is no solution, an empty partition. Moreover, let
Sr =

{
i ∈ {2, . . . , r} | a{i,...,r},z = a{i,...,r} ∀z ∈ Z

}
. Then, for r, we distinguish between two cases. If Bcal,r′

is empty for all r′ < r, we again distinguish between two cases. If a{1,...,r} 6= a{1,...,r},z ∀z ∈ Z, it means
that Bcal,r = {{1, . . . , r}} is the only partition in Br that is within-group calibrated and thus it is opti-
mal. Otherwise, we can conclude that no partition B ∈ Br is within-group calibrated and thus Bcal,r = ∅.
Now, if Bcal,r′ is not empty for some r′ < r, we need to show that Bcal,r = Bcal,k∗−1 ∪ {{k∗, . . . , r}}, with
k∗ = argmaxk∈Sr |Bcal,k−1|, is optimal.

To this end, we first show that fBcal,r is within-group calibrated on ∪i≤rXi. Using the induction hypothesis
and the fact that k∗ ≤ r, we have that Bcal,k∗−1 is the optimal partition in Bk∗−1. As a result, it follows from
Lemma 5.2 that fBcal,r is within-group calibrated on ∪i≤rXi. Next, we show that Bcal,r = argmaxB∈Br

|B|
among those partitions B such that fB is within-group calibrated. Using again Lemma 5.2, we have that,
for any B such that fB is within-group calibrated, it holds that B = B′ ∪ {{k, . . . , r}}, with B′ ∈ Bk−1, for
some k ∈ Sr. As a result, since |B| = |B′|+ 1, it suffices to find B′ = argmaxB′′∈∪k∈SrBk−1

|B′′| such that fB′′
is within-group calibrated. Now, by the induction hypothesis, we know that, for each Bk−1, Bk−1 is the
optimal partition. Then, since k∗ = argmaxk∈Sr |Bcal,k−1|, we can conclude that Bcal,r is optimal.

A.10 Proof of Proposition 5.4
We prove by contradiction. Assume there exists a B ∈ B such that fB is within-group calibrated. Then, for
every A ∈ B, it must hold that aA,z = aA,z′ = aA. Consider an arbitrary cell A ∈ B. We have that

aA,z =

∑
j∈A ρjρz | jaj,z∑
j∈A ρjρz | j

(i)
=

∑
j∈A ρjρz′ | jaj,z∑
j∈A ρjρz′ | j

(ii)
<

∑
j∈A ρjρz′ | jaj,z′∑
j∈A ρjρz′ | j

= aA,z′

where (i) follows from the fact that ρz | i = ρz′ | i for all i ∈ Range(f) and (ii) follows from the fact that, by
assumption, ai,z < ai,z′ for all i ∈ {1, . . . , n}. As an immediate consequence, we have that aA,z < aA < aA,z′ ,
contradicting the within-group calibration property.
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B Additional Experiments

B.1 Screening Classifiers Induced by the Partitions Found by Algorithms 1, 2
and 3

In this section, we take a closer look at all the quality score values a = Pr(Y = 1 | f(X) = a) and group
conditional score values az = Pr(Y = 1 | f(X) = a, Z = z) of both the original classifier f and the modified
classifiers fB induced by the partitions B found by Algorithms 1, 2 and 3. Figure 5 summarizes the results
for one experiment with a classifier f with n = 15, which reveal several interesting findings.
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Figure 5: Quality score values a = P (Y = 1 | f(X) = a) and group conditional quality score values
az = P (Y = 1 | f(X) = a, Z = z) of the screening classifier f and the modified classifiers fBpav , fB∗ , and fB∗cal
induced by the partitions found by Algorithms 1, 2 and 3, respectively. In the first and last rows, the hatched
bars indicate within-group monotonicity violations and, in the last row, we report the smallest ε value such
that a within-group ε-calibrated classifier fB∗cal exists.

As expected, fB∗ and fBpav are within-group monotone and fB∗ is more fine-grained than fBpav , i.e.,
|B∗| ≥ |Bpav|. However, the minimum value of ε such that fB∗cal exists is not always low enough for fB∗cal to be
within-group monotone. Moreover, we find that, for f , fB∗ and fBpav , the difference among group conditional
score values az for a given quality score values a is often significant. As a result, one should be cautious about
comparing candidates from different groups z and instead utilize group-dependent decision thresholds [9] to
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implement more equitable hiring practices such as the Rooney rule [75], which requires that, when hiring for
a given position, at least one (or more) candidate(s) from each minority group should be interviewed. In this
context, it is also worth noting that, while using fB∗cal would mitigate such differences, our results show that
this would reduce dramatically the granularity of the predictions. We found qualitatively similar results for
different n values.

B.2 Additional Experiments On Within-Group ε-Calibration
In this section, we investigate how the smallest ε such that a within-group ε-calibrated classifier fB∗cal exists
varies against the number of bins n of the screening classifier f . Figure 6 shows that, for each set of groups Z,
ε remains relatively constant with respect to n, however, the greater the difference across group conditional
quality scores az = P (Y = 1 | f(X) = a, Z = z), the greater the value of ε that is needed to obtain a
within-group ε-calibrated classifier, as one may have perhaps expected.
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Figure 6: Minimum value of ε such that a within-group ε-calibrated fB∗cal exists against the number of bins n
of the screening classifier f .

B.3 Experimental Results for Other Groups Z
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Figure 7: Probability pd | z that an individual from group z may suffer from within-group discrimination
against Pr(Z = z) for n = 15.
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Figure 8: Quality of the partitions Bpav, B∗, and B∗cal returned by Algorithms 1, 2 and 3, respectively, for
screening classifiers f with an increasing number of bins n. Panel (a) shows the size |B| of the partitions
provided by each algorithm (higher is better). Panel (b) shows the size of the shortlists created using the
classifiers fB induced by each partition B (lower is better).
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Figure 9: Quality score values a = P (Y = 1 | f(X) = a) and group conditional quality score values
az = P (Y = 1 | f(X) = a, Z = z) of the screening classifier f and the modified classifiers fBpav , fB∗ , and fB∗cal
induced by the partitions found by Algorithms 1, 2 and 3, respectively. In the first row, the hatched bars
indicate within-group monotonicity violations and, in the last row, we report the smallest ε value such that a
within-group ε-calibrated classifier fB∗cal exists.
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