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Abstract

Understanding the relationship between the structural and functional architecture of the

human brain remains a key question in neuroscience. In this regard variation in cortical myelin

may provide key insights into the functional organization. Previous findings have demonstrated

that regions sharing myeloarchitectonic features are also likely to be structurally and functionally

connected. However, this association is not uniform for all regions. For example, the strength of

the association, or ‘coupling’, between microstructure and function is regionally heterogeneous,

with strong coupling in primary cortices but weaker coupling in higher order transmodal cortices.

However, the bases of these observations have been typically made at the group level, leaving

much to be understood regarding the individual-level behavioural relevance of

microstructural-functional coupling variability. To examine this critical question, we apply a

multivariate framework to a combination of high-resolution structural, diffusion, and functional

magnetic resonance imaging (MRI) data in a sample of healthy young adults. We identify four

distinct patterns of coupling variation that vary across individuals. Remarkably, we find that

while microstructural-functional coupling is consistently strong in primary cortices, significant

variation in transmodal cortices exists. Importantly, we identified coupling variability maps and

their association with behaviour that demonstrate the existence of latent dimensions of variability

related to inter-individual performance on cognitive tasks. These findings suggest that the

existence of behaviourally relevant coupling variation is a key principle for brain organization.
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1. Introduction

The relationship between brain structure and function is a central question in

neuroscience research. In this regard, cyto- and myelo-architectonic principles have been used to

describe local architecture properties that can then be used to parcellate the brain (Amunts &

Zilles, 2015; Lerch et al., 2017; Nieuwenhuys & Broere, 2020). Importantly, the similarity

between brain parcels have been used to define brain connectivity at the single subject and

population level (Barbas, 2015; Eickhoff et al., 2007; García-Cabezas et al., 2019; Hilgetag et al.,

2019; Pandya et al., 2015; Valk et al., 2020; Yeo et al., 2011; Zikopoulos et al., 2018). Multiple

lines of research suggest that the cyto- and myelo-architectonic similarity of two brain regions

may relate to axonal connectivity, even if regions are separated by large distances (Barbas, 2015;

García-Cabezas et al., 2019). These findings are confirmed in studies of model organisms where

cellular and molecular examinations are more attainable. For example, in the macaque (Barbas &

Rempel-Clower, 1997; Beul et al., 2017) and mouse (Goulas et al., 2017), post-mortem histology

and tract tracing techniques have been used to demonstrate that cytoarchitectonic similarity is

indicative of inter-areal anatomical connections. However, studying the relationship between

various domains of brain architecture and their relationship to behaviour remains an active and

important area of investigation.

To this end, recent and continuing advances in high quality magnetic resonance imaging

(MRI) datasets have enabled study of these principles in vivo in the human brain. Using a

number of MRI derived metrics it is now possible to probe brain microstructure sensitive to to

neuronal density, fiber organization, and myelin concentration (Edwards et al., 2018; Lerch et al.,

2017; Olafson et al., 2021; Paus, 2018; Tardif et al., 2016). The integration of function, as
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defined using resting state functional MRI (rsfMRI) (Biswal et al. 1995; Smith et al. 2009; Smith

et al. 2013; Fox and Greicius 2010; Greicius et al. 2003) and microstructure provides the

potential to examine the extent to which local microstructural architecture relates to functional

brain organization in vivo. In this context, previous work demonstrated that intracortical myelin

(assessed via quantitative T1) is positively associated with functional connectivity (as measured

using rsfMRI) (Huntenburg et al., 2017).

Coupling between microstructure and function demonstrates marked topographic

dependencies. When assessed in the context of a functional gradient (Margulies et al., 2016)

microstructure-function coupling strength is increased in unimodal regions such as motor and

visual areas, but this correspondence weakens moving towards transmodal association areas

(Huntenburg et al., 2017; Paquola et al., 2019; Sydnor et al., 2021). Therefore, study of the

spatial variations of microstructure-function coupling may have overarching implications for

brain organization.

An open question in the context of structure-function coupling and decoupling,

particularly in transmodal cortices, is whether it is related to inter-individual differences (Suárez

et al., 2020). The impact of this variation cannot easily be elucidated from previous studies as the

methodologies used typically describe the group-level relationship of structure-function

coupling, thereby obscuring potentially relevant inter-individual variation in behavior (Mueller et

al., 2013). In this work, we aim to investigate the existence and behavioural relevance of

inter-individual variability in microstructure-function coupling across the human cortex using

high-resolution structural and functional MRI data from the Human Connectome Young Adult
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Dataset (Van Essen et al., 2013). We measure microstructure via the recently developed

microstructural profile covariance (MPC) approach which samples multiple cortical depths at

each point along the cortical surface in myelin sensitive MRI data (Paquola et al., 2019). We

examine the relationship of these microstructural profiles to functional connectivity by

generating modes of variation using non-negative matrix factorization (NMF) (D. D. Lee &

Seung, 1999; D. Lee & Seung, 2001). NMF has been used previously by our group (Patel et al.,

2022; Patel, Steele, Chen, Patel, Devenyi, Germann, Tardif, & Mallar Chakravarty, 2020; Robert

et al., 2021) and others (Nassar et al., 2018; Sotiras et al., 2015) to localize inter-individual

differences. Our findings identify novel models of microstructural-functional coupling that may

underlie basic brain organization and behaviour.

2. Methods

2.1 Overview

We used structural and functional MRI data from a sample of 384 unrelated individuals

from the Human Connectome Project (HCP) Young Adult Dataset (Van Essen et al., 2013) (2.2

Data) to avoid potential influences of family structure and genetic bias. Microstructural profile

covariance (MPC) was computed between each pair of 400 brain regions, for each subject (2.2

Microstructural Profile Covariance Computation). Similarly, resting state functional connectivity

was computed between each pair of 400 brain regions, for each subject (2.3 Resting State

Functional Connectivity). We compute a coupling coefficient for each of the 400 brain regions

representing the correlation of a region’s functional connectivity to all other regions with its

microstructural similarity to all other regions (2.4 Computing structure-function coupling,

Figure 1A). We decompose the coupling data for all subjects into linear components using NMF

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 30, 2023. ; https://doi.org/10.1101/2023.05.29.542730doi: bioRxiv preprint 

https://paperpile.com/c/DG12I2/Vwj2Z
https://paperpile.com/c/DG12I2/pJbc
https://paperpile.com/c/DG12I2/YHS0V+GZlew
https://paperpile.com/c/DG12I2/YHS0V+GZlew
https://paperpile.com/c/DG12I2/4HGA7+Ufq0o+OtNrm
https://paperpile.com/c/DG12I2/4HGA7+Ufq0o+OtNrm
https://paperpile.com/c/DG12I2/4HGA7+Ufq0o+OtNrm
https://paperpile.com/c/DG12I2/CoiK6+7linM
https://paperpile.com/c/DG12I2/Vwj2Z
https://doi.org/10.1101/2023.05.29.542730
http://creativecommons.org/licenses/by/4.0/


(2.6 Identifying coupling components with NMF, Figure 1B), and assess behavioural relevance

of coupling variation using partial least squares (PLS) (2.7 Identifying the cognitive determinants

of Structure-Function Coupling, Figure 1C). Code for this work is available at

https://github.com/raihaan/hcp-micro-func.
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Figure 1. Overview of the methodological approach employed. (A) Node level
microstructural-functional coupling coefficients are computed by correlating each row of MPC
matrix with the corresponding row of the RSFC matrix on an individual subject basis. Coupling
coefficients are stacked in columnar fashion to form the NMF input matrix. (B) NMF
decomposes the input coupling data into a set of additive spatial components and subject
weightings. (C) PLS analysis identifies latent variables which maximize covariance between
NMF weightings and cognitive performance, thus identifying the multivariate relationship
between coupling variability and variability in cognitive performance.

2.2 Microstructural Profile Covariance Computation

MPC was computed via comparison of cortical depth profiles of T1w/T2w ratio data, as

in (Paquola et al., 2019; Valk et al., 2022) (see Supplementary Materials, Section 1.2 for details).

The ratio of T1w/T2w has been shown to recapitulate known patterns of cortical myelin and

microstructure (Ganzetti et al., 2014; Glasser & Van Essen, 2011; Paquola et al., 2019), as well

as to track gradients of laminar differentiation (García-Cabezas et al., 2020). The MPC was

estimated using Freesurfer version 5.3-HCP generated pial and grey-white matter cortical

surfaces. The MPC is estimated from the intensity profile generated per vertex across 12 surfaces

generated across the cortex using the equivolume approach (Waehnert et al., 2014). For a given

vertex on the cortical surface, this presents the opportunity to sample at multiple cortical depths

as opposed to collapsing the full columnar variation onto a single point. We sampled T1w/T2w at

each of the 12 surface-specific vertices to obtain a microstructural profile of each vertex. We

applied the Schaefer 400 parcellation

(https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefe

r2018_LocalGlobal) (Schaefer et al., 2018) in order to obtain the average microstructural profile

in each of 400 cortical regions. The MPC between each pair of regions i and j is then computed

as defined previously (Paquola et al., 2019):
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where ric is the correlation of the microstructural profile of region i with the average

microstructural profile across the whole brain, rjc is the correlation of the microstructural profile

of region j with the average microstructural profile across the whole brain, s is a given

participant and n is the number of subjects. Here we compute MPC on a per subject basis, such

that n=1 and the above is calculated for each individual subject separately. The result of this

process is a matrix MPC with dimensions 400 × 400 being computed for each individual subject.

2.3 Resting State Functional Connectivity

We computed resting state functional connectivity (RSFC) matrices for each subject,

derived from the HCP’s minimally preprocessed fMRI data. This includes corrections for

gradient non-linearities and motion, with reverse phase encode acquisitions used to compute and

correct for geometric distortions (Glasser et al., 2013). Corrected data was then warped to MNI

space where bias field correction, brain extraction, and a high pass filter was applied to correct

for scanner drift (Glasser et al., 2013). ICA-FIX, an automated classifier to detect and remove

non-neuronal noise sources, was then applied (Salimi-Khorshidi et al., 2014). Finally, rsfMRI

data is sampled onto the cortical mid-surface of MSMALL aligned cortical surfaces of each

subject (Robinson et al., 2014). We did not perform global signal regression, based on recent

evidence suggesting that the global signal may contain biologically relevant information (Hyder

& Rothman, 2010; Li et al., 2019; Schölvinck et al., 2010; Wong et al., 2013) as well as a current

lack of consensus (Bijsterbosch et al., 2020; Liu et al., 2017; Murphy & Fox, 2017; Saad et al.,

2012). Each of two 15 minute resting state sessions were variance normalized and then

concatenated to form a single 30 minute time series for each individual. We next applied the
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Schaeffer parcellation to obtain the average time series in each of the 400 cortical regions.

Functional connectivity matrices are then obtained via computation of the correlation coefficient

of time series for each pair of regions, followed by a Fisher r to z transformation. The result of

this process is a 400 × 400 RSFC matrix for each individual.

2.4 Computing microstructure-function coupling coefficients

Microstructure-function coupling coefficients are computed on a per-subject, per-region

basis via comparison of a given region’s MPC and RSFC features. Specifically, we compute the

Pearson correlation between each row of a subject’s MPC matrix with the corresponding row of

the same subject’s RSFC matrix. This results in a 400 × 1 vector of coupling coefficients for each

subject. A high coupling coefficient indicates that a region is functionally connected to regions

with similar microstructure and vice versa.

2.5 Identifying coupling components with NMF

To identify regional patterns of structure-function coupling and associated

inter-individual variability, we employ non-negative matrix factorization (NMF). NMF is a

matrix decomposition technique which seeks to decompose an input matrix into a set of additive

components (D. D. Lee & Seung, 1999; D. Lee & Seung, 2001) (see Supplementary Materials,

Section 1.3 for details). In our implementation, the input data matrix is a m x s matrix, with each

m row being a brain region, and each s column representing a given subjects coupling regional

coupling coefficients (m = 400, s = 384). To construct the input matrix, each subject's 400 × 1

array of coupling coefficients (Section 2.5) is stacked side by side to form a 400 × 384 matrix.

This matrix is then shifted by its minimum value to satisfy the non-negativity requirements of

NMF while maintaining its distribution. The resulting shifted matrix is input to NMF. We
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implemented NMF using the sklearn package (version 0.20.3) and used a non-negative double

singular value decomposition initiation procedure, which promotes sparsity in the NMF outputs

(Boutsidis & Gallopoulos, 2008) to aid in the final interpretation of the resulting

neuroanatomical patterns (Patel, Steele, Chen, Patel, Devenyi, Germann, Tardif, & Chakravarty,

2020; Sotiras et al., 2015). While we do promote sparsity via this initialization procedure,

notably we employ NMF without any orthogonality constraint unlike some recent applications

(Nassar et al., 2018; Patel, Steele, Chen, Patel, Devenyi, Germann, Tardif, & Chakravarty, 2020;

Sotiras et al., 2015, 2017). This is done in order to allow overlapping patterns of coupling

variability as opposed to enforcing each brain region to occupy only one of the output

components/patterns, as we have done in other recent work (Patel et al., 2022). We select the

optimal number of components to analyze, k, based on a previously developed stability analysis

(Patel, Steele, Chen, Patel, Devenyi, Germann, Tardif, & Chakravarty, 2020) which balances the

accuracy of the decomposition, assessed via gradient of the reconstruction error, with the spatial

consistency of the identified components, assessed via a stability coefficient, across varying

subsets of participants.

2.5.1 Interpreting NMF output

An NMF decomposition contains two outputs - the W component matrix and H weight

matrix. W contains the component scores of each brain region, which can be mapped back to the

cortical surface in order to visualize the spatial location of a given component. To aid in the

interpretation of the output patterns in terms of cytoarchitectonic types, we apply a cortical type

atlas (Mesulam, 2000; Paquola et al., 2019; Valk et al., 2022) in order to identify the

cytoarchitectonic distribution of component scores. If a subject has a high weighting (H value)

for a given component, this is indicative of a high coupling coefficient in the brain regions
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occupied by said component. In this way, the combination of W and H describes the additive

parts of the original coupling data, and can be used to identify spatial and inter-individual

patterns of coupling covariation.

2.6 Identifying the cognitive determinants of Structure-Function Coupling

Using the NMF derived inter-individual coupling variability, we next sought to assess

how variability in structure-function maps onto cognition. To do so we capitalized on the in

depth cognitive phenotyping conducted by the HCP and included a number of tests across a

range of cognitive functions including: episodic memory, cognitive flexibility, inhibition, fluid

intelligence, language decoding, vocabulary comprehension, processing speed, impulsivity,

spatial orientation, sustained attention, verbal episodic memory, and working memory. Specific

instruments used to assess these tasks can be found in Table S1 as well as in (Barch et al., 2013).

Note that, where possible, we used age adjusted measurements for each of the tests mentioned

above.

2.6.1 Deriving latent variables related to microstructure-function coupling and cognition:

Partial Least Squares Analysis

To investigate the relationship between NMF derived variability in structure-function

coupling and behaviour, we employ PLS correlation analysis (Krishnan et al., 2011; McIntosh &

Lobaugh, 2004; McIntosh & Mišić, 2013). PLS is a multivariate technique which seeks to

optimize the covariance between two datasets. In doing so, PLS computes latent variables (LV),

each of which contain a set of weighting variables that describe covarying relationships between

the two input datasets. Here, the two input datasets are NMF subject weights from the H weight

matrix (brain data), and performance across the cognitive tests described above (behaviour data).
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Thus, we use PLS to identify LVs which describe linear combinations of the NMF weights and

cognitive performance that maximally covary, describing multivariate mappings between

inter-individual variability in structure-function coupling and cognitive performance.

Permutation testing was used to assess the significance of each latent variable and bootstrapping

was used to assess the reliability of the contributions of each of the variables (see Supplementary

Materials, Section 1.4 for further details).

2.7 Transcriptomic analyses

To further characterize our NMF-derived components, we performed a cell-type enrichment

analysis to identify unique and overlapping cell-type expression patterns of the output

components (Seidlitz et al., 2020). Data from six post-mortem adult brains (Allen Human Brain

Atlas, AHBA) were preprocessed using the abagen toolbox (Markello et al., 2021) to obtain a

6932 (samples) x 15633 (genes) expression matrix describing gene expression patterns at

different locations. We then applied spatial component maps to the expression data in order to

obtain a samples x genes matrix describing gene expression values of samples located within a

given component.

To identify gene expression patterns unique to NMF components, we used mean centered PLS

(mcPLS). mcPLS searches for orthogonal latent variables which express covarying patterns of

two input data matrices X and Y (see Supplementary Material, Section 1.5). Statistical

significance of LVs and stability of gene weights are obtained via permutation testing and

bootstrap resampling, respectively, similar to behavioural PLS. For each significant LV, we

obtained a positive (PLS+) and negative (PLS-) gene set, each containing those genes with a
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BSR higher/lower than 2.58/-2.58. These gene sets are determined to describe expression

patterns separating components and are thus further analyzed.

2.7.1 Cell-type enrichment

We performed a cell-type enrichment analysis to identify cell classes preferentially represented

by the genes in the PLS+ and PLS- sets computed by mcPLS (Hansen et al., 2021; Seidlitz et al.,

2020). Clustering of the spatial patterns of 58 cell types in the Allen Human Brain Atlas has

identified seven cell classes: astrocytes, endothelial cells, microglia, excitatory neurons,

inhibitory neurons, oligodendrocytes and oligodendrocyte precursor cells (Seidlitz et al., 2020).

We computed the ratio of genes in each of the PLS+ and PLS- gene sets that are preferentially

expressed across each cell type, as in previous work (Hansen et al., 2021; Seidlitz et al., 2020).

Significance was assessed via permutation testing, whereby enrichment ratio distributions were

computed via 10,000 repetitions each drawn using a random set of genes.

3.0 Results

3.1 Data

384 unrelated participants from the HCP Young Adult Dataset were selected (mean age =

28.6 +- 3.77 , F/M = 202/182, Handedness = 67.2 +- 40.58).
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3.2 Structure-Function coupling follows cytoarchitectonic type patterns

At the group level, we found that the link between microstructural similarity, assessed via

MPC, and connectivity, assessed via RSFC, displayed a regionally heterogeneous pattern with

strong coupling in primary cortices and weaker coupling in transmodal cortices, in line with

previous findings (Huntenburg et al., 2017, 2018; Paquola et al., 2019; Valk et al., 2022). For

each individual, we performed a row-wise correlation of their MPC and RSFC matrices to obtain

a coupling coefficient for each of 400 brain regions. These values are then averaged across

subjects to obtain the mean regional coupling coefficients displayed in Figure 2A. While

visually apparent that mean coupling is highest in primary motor and visual cortices and lowest

in temporal, frontal and parietal cortices, we apply a cytoarchitectonic classification atlas

(Mesulam, 2000) to this mapping to quantify the differences in mean coupling across cortical

types (Figure 2A). This confirms that structure-function coupling is strongest in idiotypic

cortices including primary motor and visual areas (mean coupling coefficient = 0.32 +/-0.11).

Unimodal (mean = 0.11 +/- 0.12) and heteromodal (mean = 0.05 +/- 0.08) cortices display

comparable coupling but markedly lower than idiotypic regions. Limbic cortices (mean = 0.02

+/- 0.07) show the lowest mean coupling, though the decrease in coupling from heteromodal to

limbic is much less than from idiotypic to heteromodal/unimodal. We also plotted the node wise

variability in coupling measurements in Figure 2B by, for each region, computing the standard

deviation of coupling coefficients across all subjects. Similar to mean coupling, we display a

grouping of coupling variability by cytoarchitectonic class. Here, cortical types are much less

differentiated than the mean coupling values, suggesting that individual variability in regional

coupling is not specific to cortical type.
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Figure 2. Microstructure-function coupling varies across the cortex. The relationship
between microstructural similarity and resting state functional connectivity varies markedly
across the cortex. Panel A plots the mean coupling coefficient, panel B the standard deviation of
each region across subjects. The cortical type atlas is colour coded according to cytoarchitectonic
type. (A) In idiotypic cortices including primary motor and visual regions, coupling is strongest.
Conversely, the link between structure in function drops off notably in heteromodal, unimodal,
and limbic regions. (B) No specific cortical type shows markedly different variability compared
to others, when looking at the regional standard deviation of coupling across all subjects.
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3.3 NMF Identifies Four Coupling Components

Using a previously established stability analysis (Patel, Steele, Chen, Patel, Devenyi,

Germann, Tardif, & Chakravarty, 2020), we identified four components as a suitable balance

between accuracy and consistency across subjects. Briefly, subjects are split into two groups and

NMF is run separately for each group. The spatial similarity of the output components is

measured between the two groups (stability coefficient) and the accuracy of the decomposition

(reconstruction error) is also assessed. This process is repeated for 10 splits of subjects at each

granularity, k, from 2 to 40. Figure S1 plots the stability coefficient and change in reconstruction

error across this range. Stability is highest at k=2, decreases until k=6 and then levels off.

Meanwhile, the large changes in reconstruction error at k=3 and k=4 convey that at k<=4, major

patterns of the input data are yet to be captured. Based on this, we select k=4 for further analysis.

3.4 Coupling Components Match Cortical Type Transitions

The 4 component solution is displayed in Figure 3. Each column of the W matrix is

mapped back to the cortical surface to display the spatial location of each component (Figure

3A). Each component captures a pattern of coupling covariation. Here we discuss the anatomical

patterns identified by each component. In order to better describe, and compare the anatomical

features of each component, we apply a cytoarchitectonic atlas (Mesulam, 2000) to each

component score map to derive raincloud plots which show the distribution of component scores

within each cortical type (Figure 3A). To aid in the comparison of component spatial patterns,

we rank regions based on their component scores and subtract the resulting rankings for each

pair of components (Figure 3B-G). Specifically, for each component, we rank regions from 0

(lowest component score) to 400 (highest component score), then subtract these rankings from

each other. A value of 400 indicates that a given region ranked the highest in one component and
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the lowest in another, and thus one component is much more prominent in said region than the

other. Conversely, a value of 0 indicates the region is of equal importance to each component.

Component 1 occupies idiotypic cortices. Specifically, the highest scores (dark red) can

be found throughout the motor cortices, with high values visible in visual areas as well.

However, component 1 is not solely confined to these regions, as moderate values (light red) can

be found throughout lateral and medial frontal regions, as well as some portions of the parietal

cortex. This is reflected in the cytoarchitectonic distribution plots which shows prominently

higher scores in idiotypic cortex (red), but moderate and comparable values in unimodal (blue),

heteromodal (green) and limbic (pink) cortices. Interestingly, we find that the spatial pattern of

component 1 resembles the group average coupling coefficient map in Figure 2, with high

values in primary motor and visual regions, low to moderate coupling in widespread frontal,

temporal, and parietal areas, and low/decoupling in regions such as the insula, tempo-parietal

junction, and select medial frontal regions.

Component 2 displays a markedly different pattern compared to component 1 (Figure

3B). This component is most prominent in limbic cortices, with high component scores (dark

red) occupying the bilateral medial temporal lobe, temporal pole, and medial orbitofrontal

cortex. This component also occupies heteromodal regions strongly, with high scores in the

middle temporal gyrus, and moderate (light red) scores found in many other regions, including

the medial parietal and frontal regions, and select regions of the inferior parietal lobe. Lower

values are then found in the unimodal cortices, with the lowest in the idiotypic cortex. Unlike

component 1, more separation can be seen between limbic, unimodal, and heteromodal regions
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such that the cytoarchitectonic distribution plots show a gradual transition in component 2 scores

from limbic (highest) to heteromodal, unimodal, then idiotypic (lowest).

At first glance, component 3 looks highly similar to component 1 in terms of its spatial

pattern. Indeed, component 3 is clearly prominent (dark red) in idiotypic cortex such as primary

motor and visual cortex (Figure 3A). Unlike component 1 however, limbic cortices display very

low component scores, much lower than that of heteromodal and unimodal cortices. Another

unique feature of this component is the distribution of component scores in unimodal regions. In

the cytoarchitectonic distribution plot, unimodal cortices (blue) display a near uniform

distribution across the entire range, in contrast to the more normally shaped distributions shown

by unimodal cortex in other components. Thus, component 3 is marked by strong separation of

idiotypic and limbic cortices, with other regions displaying a much more variable pattern.

Component 4 is most prominent in bilateral visual cortex, and also displays moderate

scores in motor regions. Indeed, this is evident in the higher values in idiotypic regions displayed

in the cytoarchitectonic distribution plot. Component 4 also includes moderate scores in regions

classified as unimodal cortex such as the inferior temporal lobe. Heteromodal and limbic cortices

display similarly low scores in component 4. While similar to components 1 and 3 in terms of the

idiotypic preference, component 4 displays a stronger localization to visual cortices as opposed

to motor, or motor and visual regions (Figure 3B). Indeed, motor cortex in component 4 is

spanned by moderate light red values as opposed to the dark red evident in the visual cortex.
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(caption on next page)
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Figure 3: Coupling components capture both regional and inter-individual variability. (A)
Mappings of each of the 4 components. Left and right hemispheres are shown, colour coded by
their component score. The range of each component varies, so each is colour coded according to
their own range of 25% to 95%, such that dark red represents the 9th percentile of each
component. Raincloud plots for each component show the distribution of component scores
within each of 4 cytoarchitectonic classes. The Cortical Type atlas at the top of the figure
displays these classes for reference. (B-G) Ranked comparisons of spatial components. For each
component, we rank each of 400 cortical regions based on component score (0=lowest,
400=highest). Then, for each pair of components we subtract rankings, and map results back to
the cortical surface. For each map, the order of subtraction is written below. For example, for the
C1-C2 map, a value of 400 (red) indicates a region that has the highest C1 score but the lowest
C2 score. (H) Weight matrix of the 4 component decomposition is displayed on the left, where
each row is a component and each column a subject. A cross correlation matrix displays the
relationship between component weights, allowing inference of how the components separate
individuals. On the right, a hierarchical clustering is presented for visualization purposes

3.5 NMFWeightings Demonstrate Inter-individual Coupling Variability

In Figure 3H we plot the H weighting matrix from the 4 component solution. This matrix

has 1 row for each component, and one column for each subject. Thus, H(:,j) is a vector

describing how subject j loads onto each component. Recalling that NMF computes W and H

such that , a high weighting for component 1 suggests that, through additive𝑋 ≈ 𝑊𝐻

reconstruction of the input data, a given subject has high structure-function coupling in the

regions occupied by component 1. Thus, we use H to assess the structure-function coupling of

each individual within each of the spatial patterns described in Section 3.4.

To further probe patterns of inter-individual variability we create a cross correlation

matrix of H, that is we correlate the weightings in each pair of components (Figure 3H). Here

we see that there are some relations between component weightings. Specifically, component 1 is

inversely correlated with components 3 and 4. Thus, an individual with high weighting in
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component 1 will, through additive reconstruction, express coupling in component 1 regions but

less so in components 3 and 4. We find this inverse relationship interesting in light of the

previously discussed spatial patterns. As indicated by the grey colouring in Figure 3C, both

components 1 and 3 are prominent in the idiotypic cortices, thus regardless of an individual's

weighting pattern the expected strong structure-function coupling in idiotypic cortex is realized.

Where they differ is in the separation of idiotypic and limbic regions. As indicated by the light

red regions in limbic cortices in Figure 3C, individuals who obtain their idiotypic coupling via

high component 1 weight will have increased coupling in limbic regions compared to those who

obtain it via a high component 3 weighting. Similarly, component 1 weightings are inversely

correlated with component 4 weightings and component 4 displays a similar, though not as

marked, separation of limbic and idiotypic regions in its cytoarchitectonic distribution plot

(Figure 3D). These comparisons suggest that while structure-function coupling in idiotypic

regions is consistently high, there exists variability in limbic cortices such that a subset of the

individuals at study display increased coupling. Conversely, other individuals show decreased

coupling in limbic cortices and are characterized by a much stronger separation in degree of

coupling across cortical types.

This is furthered via consideration of component 2, which is most prominent in limbic

regions, and displays a gradual decrease to heteromodal, unimodal, and idiotypic cortices. The

cross correlation matrix tells us that, like component 1, individuals who load high onto limbic

heavy component 2 are expected to show inversely low weightings onto component 3 and 4. This

furthers the idea of a subset of individuals who display increased coupling in limbic regions. To

supplement these results, we present a hierarchical clustering of the H matrix in Figure 3H as
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well. While not presented as a formal analysis, grouping subjects according to their weighting

patterns allows a clear visualization of certain groups of individuals showing inverse and defined

weighting patterns (Figure 3H). When considering our results in the context of previously

established group level structure-function coupling patterns (Huntenburg et al., 2017), these

results suggest that non-idiotypic cortices which, on average, display low coupling do indeed

exhibit some degree of inter-individual variability.

3.6 Behavioural relevance of coupling variability

To assess the behavioural relevance of the identified structure-function coupling

variability, we next ran a PLS brain-behaviour analysis with the brain data being a subjects x

components matrix, where each column denotes an individual's H weight, and the behaviour data

being a subjects x behaviours matrix where each column denotes performance on one of 19

cognitive tests assessed by the HCP. PLS analysis output one significant LV (p=0.008) which

explained 72.7% of covariance between brain and behaviour. Figure 4A shows a scree plot

displaying the pvalues and covariance explained for each of the identified LVs. As described in

Section 2.6.1, to ascertain the variables involved in an LV we apply a bootstrap ratio (BSR)

threshold of 2.58 for brain variables, and discuss only behaviour variables for which a 95%

confidence interval (CI) does not overlap 0. Using these criteria, the brain variables involved in

LV1 are increased weights in components 1 and 2, and decreased weightings in component 3

(Figure 4B). LV1 associates this pattern with a behavioural pattern of increased performance on

tasks of episodic memory (r = 0.11, CI = [0.05,0.11]), cognitive flexibility (r = 0.07, CI =

[0.017,0.073]), inhibition (r = 0.14, CI = [0.019,0.18]), vocabulary comprehension (r = 0.12, CI

= [0.02,0.14]), processing speed (r = 0.14, CI = [0.02,0.19]), delay discounting (impulsivity) task

via both the 200 (r = 0.11, CI = [0.08,0.15]) and 40K (r = 0.13, CI = [0.03,0.2]) AUC measures,
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increased correct trials (r = 0.07, CI = [0.04,0.17]) but longer reaction times (r = 0.16, CI =

[0.13,0.22]) in the spatial orientation task, and increased performance in the sustained attention

task specificity (r = 0.07, CI = [0.03,0.13]) (Figure 4C). Thus, this LV describes an overall

pattern in which individuals weighing heavily onto components 1 and 2, but less so on

component 3, display a general pattern of increased cognitive performance across a range of

cognitive tasks and domains.

In Section 3.4 we presented NMF results suggesting that, while all individuals display

high coupling in idiotypic regions, the way in which our coupling input data is reconstructed via

the 4 components varies. Specifically, a subset of individuals were found to show a degree of

increased structure-function coupling in limbic cortices, in addition to the expected coupling of

idiotypic regions. In this context, the covariation of increased component 1 and 2 weightings,

and decreased component 3 weightings with a general pattern of increased cognitive

performance provides a potential cognitive determinant of this NMF derived coupling variability.
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Figure 4: PLS analysis identifies one coupling-behaviour latent variable. (A) Scree plot
shows, for each LV, the covariance explained (blue) and non parametric p value (red) obtained
via permutation testing. A dotted line is drawn at p=0.05. Only LV1 is significant at this level.
(B) Bar plot showing the BSR of each component. Solid blue indicates components for which
their BSR was above a threshold of 2.58. (C) Bar plot showing the loading of each behaviour
variable within LV1. The bar is drawn to the height of a given variable’s loading, while the error
bars indicate the range of the 95% confidence interval computed via bootstrapping. Variables for
which the 95% CI crosses zero appear transparent, compared to the solid blue bars indicating a
95% CI that does not cross zero.
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3.7 Cell-type enrichment of components

To further characterize the obtained components, we used mcPLS to identify gene sets (PLS+

and PLS-) describing component-specific expression patterns, and then identified canonical cell

classes represented by the PLS+ and PLS- gene sets. Our mcPLS analysis identified three

significant latent variables, with discussion here focussed on the first LV (variance explained =

70%, p<0.01). LV1 shows that component 1 and 4 had common gene expression patterns, a

pattern which was in contrast to the expression pattern associated with component 2 (Figure 6A).

Thus, similar to the cortical type analysis described in Section 3.4, LV1 contrasts idiotypic

(components 1 and 4) and limbic (component 2) cortices, here in terms of gene expression.

Cell-type analysis showed that PLS+ genes (with increased expression in idiotypic components 1

and 4) are enriched for endothelial cells, as well as excitatory and inhibitory neurons.

Meanwhile, PLS- genes (with increased expression in limbic component 2) were enriched for

astrocytes, microglia and oligodendrocyte precursor cells.

Figure 6: Cell type enrichment analysis further separates idiotypic and limbic cortices. (A)
Contrast plot showing the extent to which each NMF component is associated with either the
positive (PLS+) or negative (PLS-) weighted genes of LV1. Error bars denote the 95%
confidence interval in LV1 scores for each component. LV1 captures differences between
components 1 and 4 vs. component 2. (B) Ratios of genes in PLS+/PLS- gene sets preferentially
expressed in 7 cell types. Coloured dots (red, blue) represent the enrichment ratio, while box
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plots show the null distribution of enrichment ratios derived from a sample of 10,000 random
gene lists.

4.0 Discussion

In this work we study inter-individual variability of microstructural-functional coupling

in the human cortex. We use NMF to identify four coupling components which decompose

group-level data into regional patterns of variability, and quantify individual differences in

microstural-functional coupling. Using a multivariate approach, we then show that specific

patterns of coupling map onto a latent factor of increased performance across a range of

cognitive domains. We also show that the identified coupling components map to variations in

cell type.

4.1 Structure-Function coupling maps to cortical and cell type transitions

We begin our analysis by replicating and extending previous group level findings on the

spatial heterogeneity of structure-function coupling patterns. We show that microstructural

similarity, assessed via MPC, and connectivity, assessed via RSFC, displayed a regionally

heterogeneous pattern with strong coupling in primary cortices and weaker coupling in

transmodal cortices. Specifically, we used NMF to identify four coupling components and

applied a cytoarchitectonic atlas (Mesulam, 2000) to confirm that structure-function coupling is

strongest in idiotypic cortices, followed by unimodal, heteromodal, and finally limbic regions.

This is in line with previous works that have identified a similar cortical heterogeneity using a

variety of data types (Huntenburg et al., 2017, 2018; Paquola et al., 2019; Suárez et al., 2020;

Vázquez-Rodríguez et al., 2019). We further the characterization of these cortical differences by

performing a cell-type analysis. Here, we show that sets of genes preferentially expressed within
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the idiotypic cortices are more enriched for neurons (inhibitory neurons, excitatory neurons,

endothelial cells), while gene sets preferentially expressed in limbic cortices are instead more

enriched for neuron support (astrocytes and microglia). Thus, we extend previous findings to

show that at the group level, heterogeneity in structure-function maps not only to differences in

cortical types but also cell type.

4.2 Coupling Components show Variability in Transmodal Regions

As the majority of previous studies have focussed on structure-function coupling at the

group level (Suárez et al., 2020; Sydnor et al., 2021), a key goal of the present work is to study

the existence of inter-individual variability in microstructural-functional coupling in transmodal

cortices. An unexplored question in this context, and in the broader field of structure-function

analysis, is the influence of individual variability on group level findings of decreased coupling

in limbic regions (Suárez et al., 2020).

Three of the four NMF components identified regional coupling patterns in line with

established work. Components one, three, and four show a high degree of spatial overlap (Figure

3C, 4D, 4G), and are all most prominent in idiotypic cortex such as primary motor and visual

areas. The cross-correlation of component weightings demonstrate that individuals loading

heavily onto component one show an inverse pattern for components three and four, which has

two significant implications. First, this confirms that the majority of individuals do show strong

coupling in these regions, as those who do not load heavily onto component one will instead load

onto components three and four. Via additive reconstruction of component one, or components

three and four, NMF decomposition shows most individuals with high coupling values in these

regions. This is in line with a number of relevant previous studies, including those studying

microstructure-function relationships (Huntenburg et al., 2017; Paquola et al., 2019; Valk et al.,
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2022), but also those studying structure-function relationships via diffusion MRI estimates of

structural connectivity (Gu et al., 2021; Mišić et al., 2016; Preti & Van De Ville, 2019; Suárez et

al., 2020; Vázquez-Rodríguez et al., 2019), those using partial correlation based estimates of

resting state connectivity (Gu et al., 2021; Liégeois et al., 2020), and even those employing

task-based fMRI estimates of functional connectivity (Wu et al., 2020). Thus, our findings

support a growing body of work, across a range of methods and metrics, that support

delineations between primary and transmodal cortical regions based on the underlying

cytoarchitectonic, myeloarchitectonic, and functional properties.

Second, the inverse correlation of these seemingly overlapping components begs the

question of why an individual may weigh onto one but not the other component, and what their

differences are. Indeed, while spatial patterns are similar, some important differences are noted.

To aid in this interpretation, we applied a cytoarchitectonic atlas (Mesulam, 2000; Paquola et al.,

2019; Valk et al., 2022) onto each spatial component to identify the distribution of component

scores, and thus prominence of each component, within each of four cortical types. These

cytoarchitectonic distribution plots show that, while each component is prominent in idiotypic

cortex, components three and four separate idiotypic and limbic cortices much more strongly

than component one, which instead is more evenly distributed across limbic, heteromodal, and

unimodal cortex (Figure 3A, 4C, 4D). Thus, while all individuals demonstrate strong coupling

in idiotypic cortex, the accompanying coupling patterns in transmodal regions vary depending on

an individual's expression of the identified components. This differential loading is indicative of

coupling variability in limbic, unimodal, and heteromodal regions, but not in idiotypic cortex

where coupling is consistently strong.
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Visual inspection of component 2 makes clear that the spatial pattern is unique relative to

other components. Indeed, the cytoarchitectonic distribution plot of component 2 shows that it is,

in sharp contrast to components 1, 3, and 4, most prominent in limbic cortices, with transitional

decreases to heteromodal, unimodal, and finally idiotypic cortex respectively. Therefore, when

comparing individuals with low vs. high weighting, component two does not capture differences

in idiotypic coupling, but instead separates individuals with variable microstructural-functional

coupling in limbic and heteromodal regions. This finding suggests that low group-level coupling

measures in non-idiotypic cortex are not solely driven by consistently low coupling

measurements but instead a degree of variable microstructure-function relationships across

individuals. The unique spatial pattern of component 2, in comparison to other components and

group average coupling, is also of interest in the context of previous studies of cortical

microstructure and functional variation. Cortical gradients of microstructure have been identified

showing transitions from primary cortices to limbic regions (Huntenburg et al., 2017, 2018;

Paquola et al., 2019). Meanwhile, a number of studies have investigated variations in resting

state based fMRI patterns to identify functional hierarchies with primary regions at one end, and

heteromodal regions including the default mode network at another (Margulies et al., 2016;

Paquola et al., 2019). While components 1, 3 and 4 show overlap with expected coupling

patterns, component two is instead most prominent in these areas of divergence including limbic

and heteromodal regions. Thus, while previous studies establish that microstructural and

functional variation show divergence in transmodal regions, our findings suggest that the degree

of divergence varies at the individual level. Interestingly, cross correlation of component

weightings shows that, like component one, individuals with high component two weights have

lower weights for each of components three and four. This furthers the idea that the identified
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components and weightings can be used to describe coupling variability in transmodal regions.

Interestingly, studies investigating structure-function using diffusion weighted imaging derived

measures of structural connectivity display a similar finding (Mišić et al., 2016; Preti & Van De

Ville, 2019; Suárez et al., 2020; Vázquez-Rodríguez et al., 2019). Thus, this regional variation in

structure-function coupling which separates primary regions from transmodal areas is a

consistent finding across methodologies and metrics. Apart from the definition of primary and

transmodal areas via microstructure-function coupling, there is further correspondence with gene

expression profiles and functional processing hierarchies (Huntenburg et al., 2018). The basis of

decoupling in transmodal cortices remains unclear. These regions have expanded evolutionarily

(Hill et al., 2010; Reardon et al., 2018; Smaers et al., 2017; Toro et al., 2008), in comparison to

non human primates and other species which formed the basis of the theory of microstructural

similarity as a connectivity principle. Thus, it has been suggested that these evolutionary changes

are accompanied by fewer constraints of structure on function which enable a more variable

connectivity pattern (Buckner & Krienen, 2013).

4.2 Cognitive associations of coupling variability

Using our PLS analysis, the NMF components, and a broad range of cognitive domains

we intentionally used a hypothesis free approach to understand this relationship The LV

identified related a cognitive mapping of the previously discussed separation of regional

coupling patterns, such that individuals with increased microstructural-functional coupling in

idiotypic but also limbic and, to a lesser degree, heteromodal and unimodal cortices perform

better on nearly all cognitive domains assessed. Strong coupling in primary motor and visual

regions is consistent across individuals, but also across species (Valk et al., 2022), suggesting a

behavioural and/or cognitive benefit to this conserved feature. Conversely, decoupling in
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transmodal regions has been suggested as a possible evolutionary development whereby relaxed

constraints enable increased plasticity (Buckner & Krienen, 2013; Valk et al., 2022). Our PLS

results however show that component 2 weightings, and therefore coupling in limbic and

heteromodal regions, is associated with increased cognitive performance. Thus, these results

suggest that some degree of increased coupling may be beneficial in the context of cognition.

Comparison to previous findings is challenging as, to our knowledge, this is the first

work specifically testing microstructural-functional variability in relation to cognitive

performance. This has been tested previously in studies which employed diffusion MRI to

measure structural connectivity as opposed to microstructural similarity. For example, Medaglia

and colleagues found that the degree of alignment between functional and anatomical networks

supported variation in cognitive flexibility (Medaglia et al., 2018). Structure-function

relationships have also been shown to be heavily influenced by development, such that

developmental changes in structure-function impact executive function abilities (Baum et al.,

2020). These findings suggest that individual level variations in structure-function, assessed via

diffusion MRI, may impact cognition. Direct relevance to our study, which employs different

measurements, is cautioned but may suggest that a cognitive determinant of

microstructural-function coupling variability is also plausible.

4.3 Studying microstructure-function relationships in vivo

The study of cortical microstructure has classically been conducted via post-mortem

analysis of cyto- and myelo-architectonics, identifying spatial variations in the laminar structure

of the cortical sheet (Brodmann, 1909; Palomero-Gallagher & Zilles, 2019; Vogt & Vogt, 1919).

In this study, we use the ratio of T1w/T2w as a microstructural marker. This marker was
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originally proposed as an index of cortical myelin, due to correspondence between cortical

T1w/T2w patterns and known variations in cortical myelin (Glasser et al., 2014, 2016; Glasser &

Van Essen, 2011). However, based on the non quantitative nature of both T1w and T2w (Tardif et

al., 2016; Zatorre et al., 2012), specificity of T1w/T2w to myelin has been questioned. Indeed,

the degree of correlation between T1w/T2w and quantitative markers of myelin has been shown

to vary (Arshad et al., 2017; Prasloski et al., 2012; Righart et al., 2017; Uddin et al., 2018, 2019).

Thus, if specificity to cortical myelin was desired, quantitative metrics such as myelin water

fraction (Prasloski et al., 2012) or quantitative T1 (Huntenburg et al., 2017; Waehnert et al.,

2016) may be more desirable. However, that T1w/T2w captures unique components of

microstructure has also been demonstrated (Arshad et al., 2017; Prasloski et al., 2012; Righart et

al., 2017) which supports the use of T1w/T2w as a microstructural index. Importantly, a recent

study showed that cortical T1w/T2w measurements closely matched systemic variations in

cortical lamination patterns (John et al., 2021), which has direct relevance to its use in our study.

Here, we measure microstructural similarity via the recently developed MPC (Paquola et al.,

2019). In this approach the T1w/T2w signal is sampled along multiple cortical depths to create a

microstructural profile at each point along the cortical surface, and pairwise comparisons of

microstructural profiles indicate how similar two cortical points are according to their depth

dependent measurement of T1w/T2w signal (Paquola et al., 2019). Crucially, this approach

follows the spirit of classical post-mortem analysis by querying depth-varying information and

has indeed been shown to recapitulate known variations in the laminar structure of the cortex

(Paquola et al., 2019).
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According to the structural model (Barbas, 2015; Barbas & Rempel-Clower, 1997; Beul

et al., 2017; García-Cabezas et al., 2019) microstructural similarity is indeed indicative of the

connectivity of two regions, a finding generated based largely on animal models (Pandya et al.,

2015), but also supported by findings in humans (van den Heuvel et al., 2016). This, as well as

the overlap in regional coupling of microstructure and structural connectivity studies, suggests

that both MRI derived approaches are querying the same phenomenon of brain organization

albeit in slightly different ways. However, they do of course each present unique aspects of

measurement. Microstructure, assessed via T1w/T2w signal, may offer a shorter acquisition time

and thus be preferable for study in certain populations, and is less susceptible to interhemispheric

measurement issues. On the other hand, structural connectivity measurements aim to directly

assess the strength of existing axonal connections, which microstructural similarity does not do.

In this work, we chose to study microstructural similarity in order to test the hypothesis of

inter-individual variability in the relationship between function and cyto- and myeloarchitectonic

features. Regardless, further efforts to use specific terminology in order to distinguish between

these complementary measures should be promoted.

4.4 NMF Technical Considerations

NMF is a matrix decomposition technique which has been used in a number of

neuroimaging applications to investigate inter-individual differences (Nassar et al., 2018; Patel,

Steele, Chen, Patel, Devenyi, Germann, Tardif, & Chakravarty, 2020; Sotiras et al., 2015).

Applied here to microstructure-function coupling data, we use NMF to decompose group level

coupling measurements into separate additive components, each of which represent a set of brain

regions with shared microstructure-coupling variation and are associated with a set of subject

specific weightings used to assess inter-individual differences within a given set of brain regions.
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A key design decision is that, in contrast to previous neuroimaging applications (Nassar et al.,

2018; Patel, Steele, Chen, Patel, Devenyi, Germann, Tardif, & Chakravarty, 2020; Sotiras et al.,

2015, 2017; Varikuti et al., 2018), we chose not to enforce orthogonality in the output spatial

components. Orthogonality constraints on W ensure that there is negligible spatial overlap across

components, which can benefit clustering applications (Patel, Steele, Chen, Patel, Devenyi,

Germann, Tardif, & Chakravarty, 2020), and aid in interpretation as each brain region

participates in only one output component/pattern. Conversely, in this work we apply no such

constraint under the assumption that the microstructural and functional variation of interest is

more smoothly varying than that conveyed by a hard cluster boundary. Both histological and in

vivo findings support this notion across multiple data types (García-Cabezas et al., 2019, 2020;

Huntenburg et al., 2018). Further, we also aim to uncover multiple patterns of inter-individual

variability occurring in the same regions, which is difficult to do if components must be

orthogonal. The implication of this is evident when considering the first and third components

identified by our analysis. These occupy similar brain regions (Figure 3), but analysis of subject

weightings show that different subsets of individuals can be identified based on coupling patterns

in the same regions. A potential downside of this approach is added complexity, as it is more

difficult to definitively describe the features of a given region in comparison to an orthogonal or

clustering approach. Thus, while each specific study should consider its own needs and goals,

here the loosening of spatial orthogonality constraints was better suited to the specific goal of

identifying inter-individual variability in microstructure-function coupling.

4.5 Limitations

The primary limitations of this study are related to the correlative nature of the

measurements and methods involved. The MRI signals used in this study are sensitive to a wide
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range of biological phenomena (Tardif et al., 2016; Zatorre et al., 2012). This sensitivity

increases the range of phenomena one may query, but the lack of specificity makes it difficult to

draw any conclusive statement of cellular level phenomena driving our results. The discussion in

above on T1w/T2w as a microstructure measure, as opposed to myelin, is an example of this.

Furthermore, despite the high resolution data and equivolume surface methods used,

measurements of T1w/T2w sampled at multiple cortical depths may be susceptible to partial

volume effects. To study functional connectivity we use a Pearson’s correlation. This is a

standard and effective approach to measure the temporal relationship between two regions

(Power et al., 2014), though more rigorous metrics such as partial correlation are less susceptible

to indirect connections than the method employed here. Our analysis does not incorporate the

impact of distance between regions on MPC, or RSFC measurements. While the distance

between two regions is heavily related to both measures, previous works have shown that the

major dissociations between transmodal and primary cortices hold even when accounting for

these measures (Huntenburg et al., 2017). Nonetheless, distance may still be impacting the

relationship between MPC and RSFC. We summarized microstructural-functional relations at the

node level, as opposed to analyzing each pair of regions. This decision makes the current

analysis significantly less complex in terms of both computation and interpretation, and is in line

with the approach throughout the field (Huntenburg et al., 2017; Suárez et al., 2020; Valk et al.,

2022). However, the downside is we are unable to identify specific sets of connections, or

specific pairs of regions, which drive variability. To study the relationship between coupling

variability and cognitive performance, we employ PLS. While PLS is able to identify

multivariate patterns, it lacks directionality in its analysis. Thus, we are unable to make any
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inferences on which of microstructure-function coupling variability or cognitive performance is

the driving factor in the identified analysis.

4.7 Conclusion

We studied inter-individual variability in microstructural-functional coupling in a sample

of healthy young adults. Our analysis identified four components, each of which identified

inter-individual variability in a select set of cortical regions. We applied a cytoarchitectonic atlas

to show that the components distinguished between known cortical types. Further, analysis of

subject-specific loading coefficients enabled identification of subsets of individuals with varying

coupling patterns, and a latent factor relating coupling strength in idiotypic, limbic, and

heteromodal regions to cognitive performance across a number of domains. Our results lend

support to histological and in vivo findings of regionally varying microstructure-function

patterns, and also suggest inter-individual variability in this key brain organization principle is

worthy of future study in relation to cognition and disease.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 30, 2023. ; https://doi.org/10.1101/2023.05.29.542730doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.29.542730
http://creativecommons.org/licenses/by/4.0/


Acknowledgements

This work was supported by funding from the Fonds de Recherche du Québec Santé, CIHR,
NSERC and McGill University (Shuk-Tak Liang Fellowship). RP receives salary support from
the Fonds de Recherche du Québec Santé. Dr. Chakravarty receives salary support from the
Fonds de Recherche du Québec Santé. Data were provided by the Human Connectome Project,
WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil;
1U54MH091657). Data processing was performed in part using the General Purpose Cluster
resources of the SciNet HPC Consortium (Loken et al., 2010).

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 30, 2023. ; https://doi.org/10.1101/2023.05.29.542730doi: bioRxiv preprint 

https://paperpile.com/c/DG12I2/Zk89
https://doi.org/10.1101/2023.05.29.542730
http://creativecommons.org/licenses/by/4.0/


References

Amunts, K., & Zilles, K. (2015). Architectonic Mapping of the Human Brain beyond Brodmann. Neuron,

88(6), 1086–1107. https://doi.org/10.1016/j.neuron.2015.12.001

Arshad, M., Stanley, J. A., & Raz, N. (2017). Test-retest reliability and concurrent validity of in vivo

myelin content indices: Myelin water fraction and calibrated T1 w/T2 w image ratio. Human Brain

Mapping, 38(4), 1780–1790. https://doi.org/10.1002/hbm.23481

Barbas, H. (2015). General cortical and special prefrontal connections: principles from structure to

function. Annual Review of Neuroscience, 38, 269–289.

https://doi.org/10.1146/annurev-neuro-071714-033936

Barbas, H., & Rempel-Clower, N. (1997). Cortical structure predicts the pattern of corticocortical

connections. Cerebral Cortex , 7(7), 635–646. https://doi.org/10.1093/cercor/7.7.635

Barch, D. M., Burgess, G. C., Harms, M. P., Petersen, S. E., Schlaggar, B. L., Corbetta, M., Glasser, M. F.,

Curtiss, S., Dixit, S., Feldt, C., Nolan, D., Bryant, E., Hartley, T., Footer, O., Bjork, J. M., Poldrack,

R., Smith, S., Johansen-Berg, H., Snyder, A. Z., … WU-Minn HCP Consortium. (2013). Function in

the human connectome: task-fMRI and individual differences in behavior. NeuroImage, 80, 169–189.

https://doi.org/10.1016/j.neuroimage.2013.05.033

Baum, G. L., Cui, Z., Roalf, D. R., Ciric, R., Betzel, R. F., Larsen, B., Cieslak, M., Cook, P. A., Xia, C.

H., Moore, T. M., Ruparel, K., Oathes, D. J., Alexander-Bloch, A. F., Shinohara, R. T., Raznahan, A.,

Gur, R. E., Gur, R. C., Bassett, D. S., & Satterthwaite, T. D. (2020). Development of

structure-function coupling in human brain networks during youth. Proceedings of the National

Academy of Sciences of the United States of America, 117(1), 771–778.

https://doi.org/10.1073/pnas.1912034117

Beul, S. F., Barbas, H., & Hilgetag, C. C. (2017). A Predictive Structural Model of the Primate

Connectome. Scientific Reports, 7, 43176. https://doi.org/10.1038/srep43176

Bijsterbosch, J., Harrison, S. J., Jbabdi, S., Woolrich, M., Beckmann, C., Smith, S., & Duff, E. P. (2020).

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 30, 2023. ; https://doi.org/10.1101/2023.05.29.542730doi: bioRxiv preprint 

http://paperpile.com/b/DG12I2/59ICG
http://paperpile.com/b/DG12I2/59ICG
http://dx.doi.org/10.1016/j.neuron.2015.12.001
http://paperpile.com/b/DG12I2/4kqUQ
http://paperpile.com/b/DG12I2/4kqUQ
http://paperpile.com/b/DG12I2/4kqUQ
http://dx.doi.org/10.1002/hbm.23481
http://paperpile.com/b/DG12I2/tekNx
http://paperpile.com/b/DG12I2/tekNx
http://paperpile.com/b/DG12I2/tekNx
http://dx.doi.org/10.1146/annurev-neuro-071714-033936
http://paperpile.com/b/DG12I2/ZzYLW
http://paperpile.com/b/DG12I2/ZzYLW
http://dx.doi.org/10.1093/cercor/7.7.635
http://paperpile.com/b/DG12I2/EXcQi
http://paperpile.com/b/DG12I2/EXcQi
http://paperpile.com/b/DG12I2/EXcQi
http://paperpile.com/b/DG12I2/EXcQi
http://paperpile.com/b/DG12I2/EXcQi
http://dx.doi.org/10.1016/j.neuroimage.2013.05.033
http://paperpile.com/b/DG12I2/OB4Nn
http://paperpile.com/b/DG12I2/OB4Nn
http://paperpile.com/b/DG12I2/OB4Nn
http://paperpile.com/b/DG12I2/OB4Nn
http://paperpile.com/b/DG12I2/OB4Nn
http://paperpile.com/b/DG12I2/OB4Nn
http://dx.doi.org/10.1073/pnas.1912034117
http://paperpile.com/b/DG12I2/kqQwh
http://paperpile.com/b/DG12I2/kqQwh
http://dx.doi.org/10.1038/srep43176
http://paperpile.com/b/DG12I2/w53mU
https://doi.org/10.1101/2023.05.29.542730
http://creativecommons.org/licenses/by/4.0/


Challenges and future directions for representations of functional brain organization. Nature

Neuroscience, 23(12), 1484–1495. https://doi.org/10.1038/s41593-020-00726-z

Boutsidis, C., & Gallopoulos, E. (2008). SVD based initialization: A head start for nonnegative matrix

factorization. Pattern Recognition, 41(4), 1350–1362. https://doi.org/10.1016/j.patcog.2007.09.010

Brodmann, K. (1909). Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien

dargestellt auf Grund des Zellenbaues. Barth.

Buckner, R. L., & Krienen, F. M. (2013). The evolution of distributed association networks in the human

brain. Trends in Cognitive Sciences, 17(12), 648–665. https://doi.org/10.1016/j.tics.2013.09.017

Edwards, L. J., Kirilina, E., Mohammadi, S., & Weiskopf, N. (2018). Microstructural imaging of human

neocortex in vivo. NeuroImage, 182, 184–206. https://doi.org/10.1016/j.neuroimage.2018.02.055

Eickhoff, S. B., Paus, T., Caspers, S., Grosbras, M.-H., Evans, A. C., Zilles, K., & Amunts, K. (2007).

Assignment of functional activations to probabilistic cytoarchitectonic areas revisited. NeuroImage,

36(3), 511–521. https://doi.org/10.1016/j.neuroimage.2007.03.060

Ganzetti, M., Wenderoth, N., & Mantini, D. (2014). Whole brain myelin mapping using T1- and

T2-weighted MR imaging data. Frontiers in Human Neuroscience, 8, 671.

https://doi.org/10.3389/fnhum.2014.00671

García-Cabezas, M. Á., Hacker, J. L., & Zikopoulos, B. (2020). A Protocol for Cortical Type Analysis of

the Human Neocortex Applied on Histological Samples, the Atlas of Von Economo and Koskinas,

and Magnetic Resonance Imaging. Frontiers in Neuroanatomy, 14, 576015.

https://doi.org/10.3389/fnana.2020.576015

García-Cabezas, M. Á., Zikopoulos, B., & Barbas, H. (2019). The Structural Model: a theory linking

connections, plasticity, pathology, development and evolution of the cerebral cortex. Brain Structure

& Function, 224(3), 985–1008. https://doi.org/10.1007/s00429-019-01841-9

Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J., Yacoub, E., Ugurbil, K.,

Andersson, J., Beckmann, C. F., Jenkinson, M., Smith, S. M., & Van Essen, D. C. (2016). A

multi-modal parcellation of human cerebral cortex. Nature, 536(7615), 171–178.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 30, 2023. ; https://doi.org/10.1101/2023.05.29.542730doi: bioRxiv preprint 

http://paperpile.com/b/DG12I2/w53mU
http://paperpile.com/b/DG12I2/w53mU
http://dx.doi.org/10.1038/s41593-020-00726-z
http://paperpile.com/b/DG12I2/UKTCY
http://paperpile.com/b/DG12I2/UKTCY
http://dx.doi.org/10.1016/j.patcog.2007.09.010
http://paperpile.com/b/DG12I2/22zUO
http://paperpile.com/b/DG12I2/22zUO
http://paperpile.com/b/DG12I2/zQw6S
http://paperpile.com/b/DG12I2/zQw6S
http://dx.doi.org/10.1016/j.tics.2013.09.017
http://paperpile.com/b/DG12I2/DwRhG
http://paperpile.com/b/DG12I2/DwRhG
http://dx.doi.org/10.1016/j.neuroimage.2018.02.055
http://paperpile.com/b/DG12I2/6AVb9
http://paperpile.com/b/DG12I2/6AVb9
http://paperpile.com/b/DG12I2/6AVb9
http://dx.doi.org/10.1016/j.neuroimage.2007.03.060
http://paperpile.com/b/DG12I2/3qOAW
http://paperpile.com/b/DG12I2/3qOAW
http://paperpile.com/b/DG12I2/3qOAW
http://dx.doi.org/10.3389/fnhum.2014.00671
http://paperpile.com/b/DG12I2/jgYjd
http://paperpile.com/b/DG12I2/jgYjd
http://paperpile.com/b/DG12I2/jgYjd
http://paperpile.com/b/DG12I2/jgYjd
http://dx.doi.org/10.3389/fnana.2020.576015
http://paperpile.com/b/DG12I2/iORam
http://paperpile.com/b/DG12I2/iORam
http://paperpile.com/b/DG12I2/iORam
http://dx.doi.org/10.1007/s00429-019-01841-9
http://paperpile.com/b/DG12I2/qtNBF
http://paperpile.com/b/DG12I2/qtNBF
http://paperpile.com/b/DG12I2/qtNBF
https://doi.org/10.1101/2023.05.29.542730
http://creativecommons.org/licenses/by/4.0/


https://doi.org/10.1038/nature18933

Glasser, M. F., Goyal, M. S., Preuss, T. M., Raichle, M. E., & Van Essen, D. C. (2014). Trends and

properties of human cerebral cortex: Correlations with cortical myelin content. NeuroImage, 93,

165–175. https://doi.org/10.1016/j.neuroimage.2013.03.060

Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B., Andersson, J. L., Xu, J.,

Jbabdi, S., Webster, M., Polimeni, J. R., Van Essen, D. C., Jenkinson, M., & WU-Minn HCP

Consortium. (2013). The minimal preprocessing pipelines for the Human Connectome Project.

NeuroImage, 80, 105–124. https://doi.org/10.1016/j.neuroimage.2013.04.127

Glasser, M. F., & Van Essen, D. C. (2011). Mapping human cortical areas in vivo based on myelin content

as revealed by T1- and T2-weighted MRI. The Journal of Neuroscience: The Official Journal of the

Society for Neuroscience, 31(32), 11597–11616. https://doi.org/10.1523/JNEUROSCI.2180-11.2011

Goulas, A., Uylings, H. B. M., & Hilgetag, C. C. (2017). Principles of ipsilateral and contralateral

cortico-cortical connectivity in the mouse. Brain Structure & Function, 222(3), 1281–1295.

https://doi.org/10.1007/s00429-016-1277-y

Gu, Z., Jamison, K. W., Sabuncu, M. R., & Kuceyeski, A. (2021). Heritability and interindividual

variability of regional structure-function coupling. Nature Communications, 12(1), 4894.

https://doi.org/10.1038/s41467-021-25184-4

Hansen, J. Y., Markello, R. D., Vogel, J. W., Seidlitz, J., Bzdok, D., & Misic, B. (2021). Mapping gene

transcription and neurocognition across human neocortex. Nature Human Behaviour, 5(9),

1240–1250. https://doi.org/10.1038/s41562-021-01082-z

Hilgetag, C. C., Beul, S. F., van Albada, S. J., & Goulas, A. (2019). An architectonic type principle

integrates macroscopic cortico-cortical connections with intrinsic cortical circuits of the primate

brain. Network Neuroscience (Cambridge, Mass.), 3(4), 905–923.

https://doi.org/10.1162/netn_a_00100

Hill, J., Inder, T., Neil, J., Dierker, D., Harwell, J., & Van Essen, D. (2010). Similar patterns of cortical

expansion during human development and evolution. Proceedings of the National Academy of

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 30, 2023. ; https://doi.org/10.1101/2023.05.29.542730doi: bioRxiv preprint 

http://paperpile.com/b/DG12I2/qtNBF
http://dx.doi.org/10.1038/nature18933
http://paperpile.com/b/DG12I2/43LgU
http://paperpile.com/b/DG12I2/43LgU
http://paperpile.com/b/DG12I2/43LgU
http://dx.doi.org/10.1016/j.neuroimage.2013.03.060
http://paperpile.com/b/DG12I2/fphAF
http://paperpile.com/b/DG12I2/fphAF
http://paperpile.com/b/DG12I2/fphAF
http://paperpile.com/b/DG12I2/fphAF
http://dx.doi.org/10.1016/j.neuroimage.2013.04.127
http://paperpile.com/b/DG12I2/H4j6T
http://paperpile.com/b/DG12I2/H4j6T
http://paperpile.com/b/DG12I2/H4j6T
http://dx.doi.org/10.1523/JNEUROSCI.2180-11.2011
http://paperpile.com/b/DG12I2/J3Gz4
http://paperpile.com/b/DG12I2/J3Gz4
http://paperpile.com/b/DG12I2/J3Gz4
http://dx.doi.org/10.1007/s00429-016-1277-y
http://paperpile.com/b/DG12I2/ggche
http://paperpile.com/b/DG12I2/ggche
http://paperpile.com/b/DG12I2/ggche
http://dx.doi.org/10.1038/s41467-021-25184-4
http://paperpile.com/b/DG12I2/JyVTZ
http://paperpile.com/b/DG12I2/JyVTZ
http://paperpile.com/b/DG12I2/JyVTZ
http://dx.doi.org/10.1038/s41562-021-01082-z
http://paperpile.com/b/DG12I2/EgLd1
http://paperpile.com/b/DG12I2/EgLd1
http://paperpile.com/b/DG12I2/EgLd1
http://paperpile.com/b/DG12I2/EgLd1
http://dx.doi.org/10.1162/netn_a_00100
http://paperpile.com/b/DG12I2/hoXIA
http://paperpile.com/b/DG12I2/hoXIA
https://doi.org/10.1101/2023.05.29.542730
http://creativecommons.org/licenses/by/4.0/


Sciences of the United States of America, 107(29), 13135–13140.

https://doi.org/10.1073/pnas.1001229107

Huntenburg, J. M., Bazin, P.-L., Goulas, A., Tardif, C. L., Villringer, A., & Margulies, D. S. (2017). A

Systematic Relationship Between Functional Connectivity and Intracortical Myelin in the Human

Cerebral Cortex. Cerebral Cortex , 27(2), 981–997. https://doi.org/10.1093/cercor/bhx030

Huntenburg, J. M., Bazin, P.-L., & Margulies, D. S. (2018). Large-Scale Gradients in Human Cortical

Organization. Trends in Cognitive Sciences, 22(1), 21–31. https://doi.org/10.1016/j.tics.2017.11.002

Hyder, F., & Rothman, D. L. (2010). Neuronal correlate of BOLD signal fluctuations at rest: err on the

side of the baseline [Review of Neuronal correlate of BOLD signal fluctuations at rest: err on the

side of the baseline]. Proceedings of the National Academy of Sciences of the United States of

America, 107(24), 10773–10774. National Acad Sciences. https://doi.org/10.1073/pnas.1005135107

John, Y. J., Zikopoulos, B., García-Cabezas, M. Á., & Barbas, H. (2021). The Cortical Spectrum: a robust

structural continuum in primate cerebral cortex revealed by histological staining and magnetic

resonance imaging. In bioRxiv (p. 2021.09.09.459678). https://doi.org/10.1101/2021.09.09.459678

Krishnan, A., Williams, L. J., McIntosh, A. R., & Abdi, H. (2011). Partial Least Squares (PLS) methods

for neuroimaging: a tutorial and review. NeuroImage, 56(2), 455–475.

https://doi.org/10.1016/j.neuroimage.2010.07.034

Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects by non-negative matrix factorization.

Nature, 401(6755), 788–791. https://doi.org/10.1038/44565

Lee, D., & Seung, H. S. (2001). Algorithms for Non-negative Matrix Factorization. In T. Leen, T.

Dietterich, & V. Tresp (Eds.), Advances in Neural Information Processing Systems (Vol. 13). MIT

Press.

https://proceedings.neurips.cc/paper/2000/file/f9d1152547c0bde01830b7e8bd60024c-Paper.pdf

Lerch, J. P., van der Kouwe, A. J. W., Raznahan, A., Paus, T., Johansen-Berg, H., Miller, K. L., Smith, S.

M., Fischl, B., & Sotiropoulos, S. N. (2017). Studying neuroanatomy using MRI. Nature

Neuroscience, 20(3), 314–326. https://doi.org/10.1038/nn.4501

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 30, 2023. ; https://doi.org/10.1101/2023.05.29.542730doi: bioRxiv preprint 

http://paperpile.com/b/DG12I2/hoXIA
http://paperpile.com/b/DG12I2/hoXIA
http://dx.doi.org/10.1073/pnas.1001229107
http://paperpile.com/b/DG12I2/nsPW
http://paperpile.com/b/DG12I2/nsPW
http://paperpile.com/b/DG12I2/nsPW
http://dx.doi.org/10.1093/cercor/bhx030
http://paperpile.com/b/DG12I2/AA3o
http://paperpile.com/b/DG12I2/AA3o
http://dx.doi.org/10.1016/j.tics.2017.11.002
http://paperpile.com/b/DG12I2/efltJ
http://paperpile.com/b/DG12I2/efltJ
http://paperpile.com/b/DG12I2/efltJ
http://paperpile.com/b/DG12I2/efltJ
http://dx.doi.org/10.1073/pnas.1005135107
http://paperpile.com/b/DG12I2/Xps15
http://paperpile.com/b/DG12I2/Xps15
http://paperpile.com/b/DG12I2/Xps15
http://dx.doi.org/10.1101/2021.09.09.459678
http://paperpile.com/b/DG12I2/IEbA0
http://paperpile.com/b/DG12I2/IEbA0
http://paperpile.com/b/DG12I2/IEbA0
http://dx.doi.org/10.1016/j.neuroimage.2010.07.034
http://paperpile.com/b/DG12I2/YHS0V
http://paperpile.com/b/DG12I2/YHS0V
http://dx.doi.org/10.1038/44565
http://paperpile.com/b/DG12I2/GZlew
http://paperpile.com/b/DG12I2/GZlew
http://paperpile.com/b/DG12I2/GZlew
https://proceedings.neurips.cc/paper/2000/file/f9d1152547c0bde01830b7e8bd60024c-Paper.pdf
http://paperpile.com/b/DG12I2/wzkc1
http://paperpile.com/b/DG12I2/wzkc1
http://paperpile.com/b/DG12I2/wzkc1
http://dx.doi.org/10.1038/nn.4501
https://doi.org/10.1101/2023.05.29.542730
http://creativecommons.org/licenses/by/4.0/


Liégeois, R., Santos, A., Matta, V., Van De Ville, D., & Sayed, A. H. (2020). Revisiting correlation-based

functional connectivity and its relationship with structural connectivity. Network Neuroscience

(Cambridge, Mass.), 4(4), 1235–1251. https://doi.org/10.1162/netn_a_00166

Li, J., Bolt, T., Bzdok, D., Nomi, J. S., Yeo, B. T. T., Spreng, R. N., & Uddin, L. Q. (2019). Topography

and behavioral relevance of the global signal in the human brain. Scientific Reports, 9(1), 14286.

https://doi.org/10.1038/s41598-019-50750-8

Liu, T. T., Nalci, A., & Falahpour, M. (2017). The global signal in fMRI: Nuisance or Information?

NeuroImage, 150, 213–229. https://doi.org/10.1016/j.neuroimage.2017.02.036

Loken, C., Gruner, D., Groer, L., Peltier, R., Bunn, N., Craig, M., Henriques, T., Dempsey, J., Yu, C.-H.,

Chen, J., Jonathan Dursi, L., Chong, J., Northrup, S., Pinto, J., Knecht, N., & Van Zon, R. (2010).

SciNet: Lessons Learned from Building a Power-efficient Top-20 System and Data Centre. Journal

of Physics. Conference Series, 256(1), 012026. https://doi.org/10.1088/1742-6596/256/1/012026

Margulies, D. S., Ghosh, S. S., Goulas, A., Falkiewicz, M., Huntenburg, J. M., Langs, G., Bezgin, G.,

Eickhoff, S. B., Castellanos, F. X., Petrides, M., Jefferies, E., & Smallwood, J. (2016). Situating the

default-mode network along a principal gradient of macroscale cortical organization. Proceedings of

the National Academy of Sciences of the United States of America, 113(44), 12574–12579.

https://doi.org/10.1073/pnas.1608282113

Markello, R. D., Arnatkeviciute, A., Poline, J.-B., Fulcher, B. D., Fornito, A., & Misic, B. (2021).

Standardizing workflows in imaging transcriptomics with the abagen toolbox. eLife, 10.

https://doi.org/10.7554/eLife.72129

McIntosh, A. R., & Lobaugh, N. J. (2004). Partial least squares analysis of neuroimaging data:

applications and advances. NeuroImage, 23 Suppl 1, S250–S263.

https://doi.org/10.1016/j.neuroimage.2004.07.020

McIntosh, A. R., & Mišić, B. (2013). Multivariate statistical analyses for neuroimaging data. Annual

Review of Psychology, 64, 499–525. https://doi.org/10.1146/annurev-psych-113011-143804

Medaglia, J. D., Huang, W., Karuza, E. A., Kelkar, A., Thompson-Schill, S. L., Ribeiro, A., & Bassett, D.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 30, 2023. ; https://doi.org/10.1101/2023.05.29.542730doi: bioRxiv preprint 

http://paperpile.com/b/DG12I2/HWk7l
http://paperpile.com/b/DG12I2/HWk7l
http://paperpile.com/b/DG12I2/HWk7l
http://dx.doi.org/10.1162/netn_a_00166
http://paperpile.com/b/DG12I2/Y1jBB
http://paperpile.com/b/DG12I2/Y1jBB
http://paperpile.com/b/DG12I2/Y1jBB
http://dx.doi.org/10.1038/s41598-019-50750-8
http://paperpile.com/b/DG12I2/SFdIs
http://paperpile.com/b/DG12I2/SFdIs
http://dx.doi.org/10.1016/j.neuroimage.2017.02.036
http://paperpile.com/b/DG12I2/Zk89
http://paperpile.com/b/DG12I2/Zk89
http://paperpile.com/b/DG12I2/Zk89
http://paperpile.com/b/DG12I2/Zk89
http://dx.doi.org/10.1088/1742-6596/256/1/012026
http://paperpile.com/b/DG12I2/8GIZu
http://paperpile.com/b/DG12I2/8GIZu
http://paperpile.com/b/DG12I2/8GIZu
http://paperpile.com/b/DG12I2/8GIZu
http://paperpile.com/b/DG12I2/8GIZu
http://dx.doi.org/10.1073/pnas.1608282113
http://paperpile.com/b/DG12I2/2thDk
http://paperpile.com/b/DG12I2/2thDk
http://paperpile.com/b/DG12I2/2thDk
http://dx.doi.org/10.7554/eLife.72129
http://paperpile.com/b/DG12I2/7mpgP
http://paperpile.com/b/DG12I2/7mpgP
http://paperpile.com/b/DG12I2/7mpgP
http://dx.doi.org/10.1016/j.neuroimage.2004.07.020
http://paperpile.com/b/DG12I2/6BFUQ
http://paperpile.com/b/DG12I2/6BFUQ
http://dx.doi.org/10.1146/annurev-psych-113011-143804
http://paperpile.com/b/DG12I2/7AkTG
https://doi.org/10.1101/2023.05.29.542730
http://creativecommons.org/licenses/by/4.0/


S. (2018). Functional Alignment with Anatomical Networks is Associated with Cognitive Flexibility.

Nature Human Behaviour, 2(2), 156–164. https://doi.org/10.1038/s41562-017-0260-9

Mesulam, M.-M. (2000). Principles of Behavioral and Cognitive Neurology. Oxford University Press.

https://play.google.com/store/books/details?id=kezqJb69OlAC

Mišić, B., Betzel, R. F., de Reus, M. A., van den Heuvel, M. P., Berman, M. G., McIntosh, A. R., &

Sporns, O. (2016). Network-Level Structure-Function Relationships in Human Neocortex. Cerebral

Cortex , 26(7), 3285–3296. https://doi.org/10.1093/cercor/bhw089

Mueller, S., Wang, D., Fox, M. D., Yeo, B. T. T., Sepulcre, J., Sabuncu, M. R., Shafee, R., Lu, J., & Liu,

H. (2013). Individual variability in functional connectivity architecture of the human brain. Neuron,

77(3), 586–595. https://doi.org/10.1016/j.neuron.2012.12.028

Murphy, K., & Fox, M. D. (2017). Towards a consensus regarding global signal regression for resting

state functional connectivity MRI. NeuroImage, 154, 169–173.

https://doi.org/10.1016/j.neuroimage.2016.11.052

Nassar, R., Kaczkurkin, A. N., Xia, C. H., Sotiras, A., Pehlivanova, M., Moore, T. M., Garcia de La

Garza, A., Roalf, D. R., Rosen, A. F. G., Lorch, S. A., Ruparel, K., Shinohara, R. T., Davatzikos, C.,

Gur, R. C., Gur, R. E., & Satterthwaite, T. D. (2018). Gestational Age is Dimensionally Associated

with Structural Brain Network Abnormalities Across Development. Cerebral Cortex .

https://doi.org/10.1093/cercor/bhy091

Nieuwenhuys, R., & Broere, C. A. J. (2020). A detailed comparison of the cytoarchitectonic and

myeloarchitectonic maps of the human neocortex produced by the Vogt-Vogt school. Brain Structure

& Function, 225(9), 2717–2733. https://doi.org/10.1007/s00429-020-02150-2

Olafson, E., Bedford, S. A., Devenyi, G. A., Patel, R., Tullo, S., Park, M. T. M., Parent, O., Anagnostou,

E., Baron-Cohen, S., Bullmore, E. T., & Others. (2021). Examining the Boundary Sharpness

Coefficient as an Index of Cortical Microstructure in Autism Spectrum Disorder. Cerebral Cortex ,

31(7), 3338–3352. https://academic.oup.com/cercor/article-abstract/31/7/3338/6162915

Palomero-Gallagher, N., & Zilles, K. (2019). Cortical layers: Cyto-, myelo-, receptor- and synaptic

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 30, 2023. ; https://doi.org/10.1101/2023.05.29.542730doi: bioRxiv preprint 

http://paperpile.com/b/DG12I2/7AkTG
http://paperpile.com/b/DG12I2/7AkTG
http://dx.doi.org/10.1038/s41562-017-0260-9
http://paperpile.com/b/DG12I2/D8fk6
https://play.google.com/store/books/details?id=kezqJb69OlAC
http://paperpile.com/b/DG12I2/apxX4
http://paperpile.com/b/DG12I2/apxX4
http://paperpile.com/b/DG12I2/apxX4
http://dx.doi.org/10.1093/cercor/bhw089
http://paperpile.com/b/DG12I2/iMTdZ
http://paperpile.com/b/DG12I2/iMTdZ
http://paperpile.com/b/DG12I2/iMTdZ
http://dx.doi.org/10.1016/j.neuron.2012.12.028
http://paperpile.com/b/DG12I2/FzQfq
http://paperpile.com/b/DG12I2/FzQfq
http://paperpile.com/b/DG12I2/FzQfq
http://dx.doi.org/10.1016/j.neuroimage.2016.11.052
http://paperpile.com/b/DG12I2/7linM
http://paperpile.com/b/DG12I2/7linM
http://paperpile.com/b/DG12I2/7linM
http://paperpile.com/b/DG12I2/7linM
http://paperpile.com/b/DG12I2/7linM
http://dx.doi.org/10.1093/cercor/bhy091
http://paperpile.com/b/DG12I2/PhKE9
http://paperpile.com/b/DG12I2/PhKE9
http://paperpile.com/b/DG12I2/PhKE9
http://dx.doi.org/10.1007/s00429-020-02150-2
http://paperpile.com/b/DG12I2/ZsSoJ
http://paperpile.com/b/DG12I2/ZsSoJ
http://paperpile.com/b/DG12I2/ZsSoJ
http://paperpile.com/b/DG12I2/ZsSoJ
https://academic.oup.com/cercor/article-abstract/31/7/3338/6162915
http://paperpile.com/b/DG12I2/7VWOy
https://doi.org/10.1101/2023.05.29.542730
http://creativecommons.org/licenses/by/4.0/


architecture in human cortical areas. NeuroImage, 197, 716–741.

https://doi.org/10.1016/j.neuroimage.2017.08.035

Pandya, D., Petrides, M., & Cipolloni, P. B. (2015). Cerebral Cortex: Architecture, Connections, and the

Dual Origin Concept. Oxford University Press.

https://play.google.com/store/books/details?id=sIraCQAAQBAJ

Paquola, C., Vos De Wael, R., Wagstyl, K., Bethlehem, R. A. I., Hong, S.-J., Seidlitz, J., Bullmore, E. T.,

Evans, A. C., Misic, B., Margulies, D. S., Smallwood, J., & Bernhardt, B. C. (2019). Microstructural

and functional gradients are increasingly dissociated in transmodal cortices. PLoS Biology, 17(5),

e3000284. https://doi.org/10.1371/journal.pbio.3000284

Patel, R., Mackay, C. E., Jansen, M. G., Devenyi, G. A., O’Donoghue, M. C., Kivimäki, M.,

Singh-Manoux, A., Zsoldos, E., Ebmeier, K. P., Chakravarty, M. M., & Suri, S. (2022). Inter- and

intra-individual variation in brain structural-cognition relationships in aging. NeuroImage, 257,

119254. https://doi.org/10.1016/j.neuroimage.2022.119254

Patel, R., Steele, C. J., Chen, A. G. X., Patel, S., Devenyi, G. A., Germann, J., Tardif, C. L., &

Chakravarty, M. M. (2020). Investigating microstructural variation in the human hippocampus using

non-negative matrix factorization. NeuroImage, 207, 116348.

Patel, R., Steele, C. J., Chen, A. G. X., Patel, S., Devenyi, G. A., Germann, J., Tardif, C. L., & Mallar

Chakravarty, M. (2020). Investigating microstructural variation in the human hippocampus using

non-negative matrix factorization. In NeuroImage (Vol. 207, p. 116348).

https://doi.org/10.1016/j.neuroimage.2019.116348

Paus, T. (2018). Imaging microstructure in the living human brain: A viewpoint. NeuroImage, 182, 3–7.

https://doi.org/10.1016/j.neuroimage.2017.10.013

Power, J. D., Schlaggar, B. L., & Petersen, S. E. (2014). Studying brain organization via spontaneous

fMRI signal. Neuron, 84(4), 681–696. https://doi.org/10.1016/j.neuron.2014.09.007

Prasloski, T., Rauscher, A., MacKay, A. L., Hodgson, M., Vavasour, I. M., Laule, C., & Mädler, B.

(2012). Rapid whole cerebrum myelin water imaging using a 3D GRASE sequence. NeuroImage,

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 30, 2023. ; https://doi.org/10.1101/2023.05.29.542730doi: bioRxiv preprint 

http://paperpile.com/b/DG12I2/7VWOy
http://paperpile.com/b/DG12I2/7VWOy
http://dx.doi.org/10.1016/j.neuroimage.2017.08.035
http://paperpile.com/b/DG12I2/yY3nl
http://paperpile.com/b/DG12I2/yY3nl
https://play.google.com/store/books/details?id=sIraCQAAQBAJ
http://paperpile.com/b/DG12I2/pJbc
http://paperpile.com/b/DG12I2/pJbc
http://paperpile.com/b/DG12I2/pJbc
http://paperpile.com/b/DG12I2/pJbc
http://dx.doi.org/10.1371/journal.pbio.3000284
http://paperpile.com/b/DG12I2/4HGA7
http://paperpile.com/b/DG12I2/4HGA7
http://paperpile.com/b/DG12I2/4HGA7
http://paperpile.com/b/DG12I2/4HGA7
http://dx.doi.org/10.1016/j.neuroimage.2022.119254
http://paperpile.com/b/DG12I2/0gMLz
http://paperpile.com/b/DG12I2/0gMLz
http://paperpile.com/b/DG12I2/0gMLz
http://paperpile.com/b/DG12I2/Ufq0o
http://paperpile.com/b/DG12I2/Ufq0o
http://paperpile.com/b/DG12I2/Ufq0o
http://paperpile.com/b/DG12I2/Ufq0o
http://dx.doi.org/10.1016/j.neuroimage.2019.116348
http://paperpile.com/b/DG12I2/taopl
http://paperpile.com/b/DG12I2/taopl
http://dx.doi.org/10.1016/j.neuroimage.2017.10.013
http://paperpile.com/b/DG12I2/36XRe
http://paperpile.com/b/DG12I2/36XRe
http://dx.doi.org/10.1016/j.neuron.2014.09.007
http://paperpile.com/b/DG12I2/W0wsh
http://paperpile.com/b/DG12I2/W0wsh
https://doi.org/10.1101/2023.05.29.542730
http://creativecommons.org/licenses/by/4.0/


63(1), 533–539. https://doi.org/10.1016/j.neuroimage.2012.06.064

Preti, M. G., & Van De Ville, D. (2019). Decoupling of brain function from structure reveals regional

behavioral specialization in humans. Nature Communications, 10(1), 4747.

https://doi.org/10.1038/s41467-019-12765-7

Reardon, P. K., Seidlitz, J., Vandekar, S., Liu, S., Patel, R., Park, M. T. M., Alexander-Bloch, A., Clasen,

L. S., Blumenthal, J. D., Lalonde, F. M., & Others. (2018). Normative brain size variation and brain

shape diversity in humans. Science, 360(6394), 1222–1227.

Righart, R., Biberacher, V., Jonkman, L. E., Klaver, R., Schmidt, P., Buck, D., Berthele, A., Kirschke, J.

S., Zimmer, C., Hemmer, B., Geurts, J. J. G., & Mühlau, M. (2017). Cortical pathology in multiple

sclerosis detected by the T1/T2-weighted ratio from routine magnetic resonance imaging. Annals of

Neurology, 82(4), 519–529. https://doi.org/10.1002/ana.25020

Robert, C., Patel, R., Blostein, N., Steele, C. C., & Mallar Chakravarty, M. (2021). Analyses of

microstructural variation in the human striatum using non-negative matrix factorization.

NeuroImage, 118744. https://doi.org/10.1016/j.neuroimage.2021.118744

Robinson, E. C., Jbabdi, S., Glasser, M. F., Andersson, J., Burgess, G. C., Harms, M. P., Smith, S. M., Van

Essen, D. C., & Jenkinson, M. (2014). MSM: a new flexible framework for Multimodal Surface

Matching. NeuroImage, 100, 414–426. https://doi.org/10.1016/j.neuroimage.2014.05.069

Saad, Z. S., Gotts, S. J., Murphy, K., Chen, G., Jo, H. J., Martin, A., & Cox, R. W. (2012). Trouble at rest:

how correlation patterns and group differences become distorted after global signal regression. Brain

Connectivity, 2(1), 25–32. https://doi.org/10.1089/brain.2012.0080

Salimi-Khorshidi, G., Douaud, G., Beckmann, C. F., Glasser, M. F., Griffanti, L., & Smith, S. M. (2014).

Automatic denoising of functional MRI data: combining independent component analysis and

hierarchical fusion of classifiers. NeuroImage, 90, 449–468.

https://doi.org/10.1016/j.neuroimage.2013.11.046

Schaefer, A., Kong, R., Gordon, E. M., Laumann, T. O., Zuo, X.-N., Holmes, A. J., Eickhoff, S. B., &

Yeo, B. T. T. (2018). Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 30, 2023. ; https://doi.org/10.1101/2023.05.29.542730doi: bioRxiv preprint 

http://paperpile.com/b/DG12I2/W0wsh
http://dx.doi.org/10.1016/j.neuroimage.2012.06.064
http://paperpile.com/b/DG12I2/EySaF
http://paperpile.com/b/DG12I2/EySaF
http://paperpile.com/b/DG12I2/EySaF
http://dx.doi.org/10.1038/s41467-019-12765-7
http://paperpile.com/b/DG12I2/mf3OU
http://paperpile.com/b/DG12I2/mf3OU
http://paperpile.com/b/DG12I2/mf3OU
http://paperpile.com/b/DG12I2/66vMy
http://paperpile.com/b/DG12I2/66vMy
http://paperpile.com/b/DG12I2/66vMy
http://paperpile.com/b/DG12I2/66vMy
http://dx.doi.org/10.1002/ana.25020
http://paperpile.com/b/DG12I2/OtNrm
http://paperpile.com/b/DG12I2/OtNrm
http://paperpile.com/b/DG12I2/OtNrm
http://dx.doi.org/10.1016/j.neuroimage.2021.118744
http://paperpile.com/b/DG12I2/uULc1
http://paperpile.com/b/DG12I2/uULc1
http://paperpile.com/b/DG12I2/uULc1
http://dx.doi.org/10.1016/j.neuroimage.2014.05.069
http://paperpile.com/b/DG12I2/Gx4N5
http://paperpile.com/b/DG12I2/Gx4N5
http://paperpile.com/b/DG12I2/Gx4N5
http://dx.doi.org/10.1089/brain.2012.0080
http://paperpile.com/b/DG12I2/A8C9B
http://paperpile.com/b/DG12I2/A8C9B
http://paperpile.com/b/DG12I2/A8C9B
http://paperpile.com/b/DG12I2/A8C9B
http://dx.doi.org/10.1016/j.neuroimage.2013.11.046
http://paperpile.com/b/DG12I2/ntrmC
http://paperpile.com/b/DG12I2/ntrmC
https://doi.org/10.1101/2023.05.29.542730
http://creativecommons.org/licenses/by/4.0/


Functional Connectivity MRI. Cerebral Cortex , 28(9), 3095–3114.

https://doi.org/10.1093/cercor/bhx179

Schölvinck, M. L., Maier, A., Ye, F. Q., Duyn, J. H., & Leopold, D. A. (2010). Neural basis of global

resting-state fMRI activity. Proceedings of the National Academy of Sciences of the United States of

America, 107(22), 10238–10243. https://doi.org/10.1073/pnas.0913110107

Seidlitz, J., Nadig, A., Liu, S., Bethlehem, R. A. I., Vértes, P. E., Morgan, S. E., Váša, F., Romero-Garcia,

R., Lalonde, F. M., Clasen, L. S., Blumenthal, J. D., Paquola, C., Bernhardt, B., Wagstyl, K.,

Polioudakis, D., de la Torre-Ubieta, L., Geschwind, D. H., Han, J. C., Lee, N. R., … Raznahan, A.

(2020). Transcriptomic and cellular decoding of regional brain vulnerability to neurogenetic

disorders. Nature Communications, 11(1), 3358. https://doi.org/10.1038/s41467-020-17051-5

Smaers, J. B., Gómez-Robles, A., Parks, A. N., & Sherwood, C. C. (2017). Exceptional Evolutionary

Expansion of Prefrontal Cortex in Great Apes and Humans. Current Biology: CB, 27(5), 714–720.

https://doi.org/10.1016/j.cub.2017.01.020

Sotiras, A., Resnick, S. M., & Davatzikos, C. (2015). Finding imaging patterns of structural covariance

via Non-Negative Matrix Factorization. NeuroImage, 108, 1–16.

https://doi.org/10.1016/j.neuroimage.2014.11.045

Sotiras, A., Toledo, J. B., Gur, R. E., Gur, R. C., Satterthwaite, T. D., & Davatzikos, C. (2017). Patterns of

coordinated cortical remodeling during adolescence and their associations with functional

specialization and evolutionary expansion. Proceedings of the National Academy of Sciences of the

United States of America, 114(13), 3527–3532. https://doi.org/10.1073/pnas.1620928114

Suárez, L. E., Markello, R. D., Betzel, R. F., & Misic, B. (2020). Linking Structure and Function in

Macroscale Brain Networks. Trends in Cognitive Sciences, 24(4), 302–315.

https://doi.org/10.1016/j.tics.2020.01.008

Sydnor, V. J., Larsen, B., Bassett, D. S., Alexander-Bloch, A., Fair, D. A., Liston, C., Mackey, A. P.,

Milham, M. P., Pines, A., Roalf, D. R., Seidlitz, J., Xu, T., Raznahan, A., & Satterthwaite, T. D.

(2021). Neurodevelopment of the association cortices: Patterns, mechanisms, and implications for

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 30, 2023. ; https://doi.org/10.1101/2023.05.29.542730doi: bioRxiv preprint 

http://paperpile.com/b/DG12I2/ntrmC
http://paperpile.com/b/DG12I2/ntrmC
http://dx.doi.org/10.1093/cercor/bhx179
http://paperpile.com/b/DG12I2/3KmvH
http://paperpile.com/b/DG12I2/3KmvH
http://paperpile.com/b/DG12I2/3KmvH
http://dx.doi.org/10.1073/pnas.0913110107
http://paperpile.com/b/DG12I2/RSrO
http://paperpile.com/b/DG12I2/RSrO
http://paperpile.com/b/DG12I2/RSrO
http://paperpile.com/b/DG12I2/RSrO
http://paperpile.com/b/DG12I2/RSrO
http://dx.doi.org/10.1038/s41467-020-17051-5
http://paperpile.com/b/DG12I2/1PD6Q
http://paperpile.com/b/DG12I2/1PD6Q
http://paperpile.com/b/DG12I2/1PD6Q
http://dx.doi.org/10.1016/j.cub.2017.01.020
http://paperpile.com/b/DG12I2/CoiK6
http://paperpile.com/b/DG12I2/CoiK6
http://paperpile.com/b/DG12I2/CoiK6
http://dx.doi.org/10.1016/j.neuroimage.2014.11.045
http://paperpile.com/b/DG12I2/cIWdH
http://paperpile.com/b/DG12I2/cIWdH
http://paperpile.com/b/DG12I2/cIWdH
http://paperpile.com/b/DG12I2/cIWdH
http://dx.doi.org/10.1073/pnas.1620928114
http://paperpile.com/b/DG12I2/YcpTf
http://paperpile.com/b/DG12I2/YcpTf
http://paperpile.com/b/DG12I2/YcpTf
http://dx.doi.org/10.1016/j.tics.2020.01.008
http://paperpile.com/b/DG12I2/EBEoD
http://paperpile.com/b/DG12I2/EBEoD
http://paperpile.com/b/DG12I2/EBEoD
https://doi.org/10.1101/2023.05.29.542730
http://creativecommons.org/licenses/by/4.0/


psychopathology. Neuron, 109(18), 2820–2846. https://doi.org/10.1016/j.neuron.2021.06.016

Tardif, C. L., Gauthier, C. J., Steele, C. J., Bazin, P.-L., Schäfer, A., Schaefer, A., Turner, R., & Villringer,

A. (2016). Advanced MRI techniques to improve our understanding of experience-induced

neuroplasticity. NeuroImage, 131, 55–72. https://doi.org/10.1016/j.neuroimage.2015.08.047

Toro, R., Perron, M., Pike, B., Richer, L., Veillette, S., Pausova, Z., & Paus, T. (2008). Brain size and

folding of the human cerebral cortex. Cerebral Cortex , 18(10), 2352–2357.

https://doi.org/10.1093/cercor/bhm261

Uddin, M. N., Figley, T. D., Marrie, R. A., Figley, C. R., & CCOMS Study Group. (2018). Can T1 w/T2

w ratio be used as a myelin-specific measure in subcortical structures? Comparisons between

FSE-based T1 w/T2 w ratios, GRASE-based T1 w/T2 w ratios and multi-echo GRASE-based myelin

water fractions. NMR in Biomedicine, 31(3). https://doi.org/10.1002/nbm.3868

Uddin, M. N., Figley, T. D., Solar, K. G., Shatil, A. S., & Figley, C. R. (2019). Comparisons between

multi-component myelin water fraction, T1w/T2w ratio, and diffusion tensor imaging measures in

healthy human brain structures. Scientific Reports, 9(1), 2500.

https://doi.org/10.1038/s41598-019-39199-x

Valk, S. L., Xu, T., Margulies, D. S., Masouleh, S. K., Paquola, C., Goulas, A., Kochunov, P., Smallwood,

J., Yeo, B. T. T., Bernhardt, B. C., & Eickhoff, S. B. (2020). Shaping brain structure: Genetic and

phylogenetic axes of macroscale organization of cortical thickness. Science Advances, 6(39).

https://doi.org/10.1126/sciadv.abb3417

Valk, S. L., Xu, T., Paquola, C., Park, B.-Y., Bethlehem, R. A. I., Vos de Wael, R., Royer, J., Masouleh, S.

K., Bayrak, Ş., Kochunov, P., Yeo, B. T. T., Margulies, D., Smallwood, J., Eickhoff, S. B., &

Bernhardt, B. C. (2022). Genetic and phylogenetic uncoupling of structure and function in human

transmodal cortex. Nature Communications, 13(1), 2341.

https://doi.org/10.1038/s41467-022-29886-1

van den Heuvel, M. P., Scholtens, L. H., de Reus, M. A., & Kahn, R. S. (2016). Associated Microscale

Spine Density and Macroscale Connectivity Disruptions in Schizophrenia. Biological Psychiatry,

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 30, 2023. ; https://doi.org/10.1101/2023.05.29.542730doi: bioRxiv preprint 

http://paperpile.com/b/DG12I2/EBEoD
http://dx.doi.org/10.1016/j.neuron.2021.06.016
http://paperpile.com/b/DG12I2/0Lkxk
http://paperpile.com/b/DG12I2/0Lkxk
http://paperpile.com/b/DG12I2/0Lkxk
http://dx.doi.org/10.1016/j.neuroimage.2015.08.047
http://paperpile.com/b/DG12I2/jqwhC
http://paperpile.com/b/DG12I2/jqwhC
http://paperpile.com/b/DG12I2/jqwhC
http://dx.doi.org/10.1093/cercor/bhm261
http://paperpile.com/b/DG12I2/qUVDC
http://paperpile.com/b/DG12I2/qUVDC
http://paperpile.com/b/DG12I2/qUVDC
http://paperpile.com/b/DG12I2/qUVDC
http://dx.doi.org/10.1002/nbm.3868
http://paperpile.com/b/DG12I2/jpTNv
http://paperpile.com/b/DG12I2/jpTNv
http://paperpile.com/b/DG12I2/jpTNv
http://paperpile.com/b/DG12I2/jpTNv
http://dx.doi.org/10.1038/s41598-019-39199-x
http://paperpile.com/b/DG12I2/q5jpy
http://paperpile.com/b/DG12I2/q5jpy
http://paperpile.com/b/DG12I2/q5jpy
http://paperpile.com/b/DG12I2/q5jpy
http://dx.doi.org/10.1126/sciadv.abb3417
http://paperpile.com/b/DG12I2/a5M5
http://paperpile.com/b/DG12I2/a5M5
http://paperpile.com/b/DG12I2/a5M5
http://paperpile.com/b/DG12I2/a5M5
http://paperpile.com/b/DG12I2/a5M5
http://dx.doi.org/10.1038/s41467-022-29886-1
http://paperpile.com/b/DG12I2/wHyg7
http://paperpile.com/b/DG12I2/wHyg7
https://doi.org/10.1101/2023.05.29.542730
http://creativecommons.org/licenses/by/4.0/


80(4), 293–301. https://doi.org/10.1016/j.biopsych.2015.10.005

Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E. J., Yacoub, E., Ugurbil, K., & WU-Minn

HCP Consortium. (2013). The WU-Minn Human Connectome Project: an overview. NeuroImage,

80, 62–79. https://doi.org/10.1016/j.neuroimage.2013.05.041

Varikuti, D. P., Genon, S., Sotiras, A., Schwender, H., Hoffstaedter, F., Patil, K. R., Jockwitz, C., Caspers,

S., Moebus, S., Amunts, K., Davatzikos, C., & Eickhoff, S. B. (2018). Evaluation of non-negative

matrix factorization of grey matter in age prediction. NeuroImage, 173, 394–410.

https://doi.org/10.1016/j.neuroimage.2018.03.007

Vázquez-Rodríguez, B., Suárez, L. E., Markello, R. D., Shafiei, G., Paquola, C., Hagmann, P., van den

Heuvel, M. P., Bernhardt, B. C., Nathan Spreng, R., & Misic, B. (2019). Gradients of

structure–function tethering across neocortex. Proceedings of the National Academy of Sciences of

the United States of America, 116(42), 21219–21227. https://doi.org/10.1073/pnas.1903403116

Vogt, C., & Vogt, O. (1919). Allgemeine ergebnisse unserer hirnforschung (Vol. 21). JA Barth.

Waehnert, M. D., Dinse, J., Schäfer, A., Geyer, S., Bazin, P.-L., Turner, R., & Tardif, C. L. (2016). A

subject-specific framework for in vivo myeloarchitectonic analysis using high resolution quantitative

MRI. NeuroImage, 125, 94–107. https://doi.org/10.1016/j.neuroimage.2015.10.001

Waehnert, M. D., Dinse, J., Weiss, M., Streicher, M. N., Waehnert, P., Geyer, S., Turner, R., & Bazin,

P.-L. (2014). Anatomically motivated modeling of cortical laminae. NeuroImage, 93 Pt 2, 210–220.

https://doi.org/10.1016/j.neuroimage.2013.03.078

Wong, C. W., Olafsson, V., Tal, O., & Liu, T. T. (2013). The amplitude of the resting-state fMRI global

signal is related to EEG vigilance measures. NeuroImage, 83, 983–990.

https://doi.org/10.1016/j.neuroimage.2013.07.057

Wu, D., Fan, L., Song, M., Wang, H., Chu, C., Yu, S., & Jiang, T. (2020). Hierarchy of

Connectivity-Function Relationship of the Human Cortex Revealed through Predicting Activity

across Functional Domains. Cerebral Cortex , 30(8), 4607–4616.

https://doi.org/10.1093/cercor/bhaa063

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 30, 2023. ; https://doi.org/10.1101/2023.05.29.542730doi: bioRxiv preprint 

http://paperpile.com/b/DG12I2/wHyg7
http://dx.doi.org/10.1016/j.biopsych.2015.10.005
http://paperpile.com/b/DG12I2/Vwj2Z
http://paperpile.com/b/DG12I2/Vwj2Z
http://paperpile.com/b/DG12I2/Vwj2Z
http://dx.doi.org/10.1016/j.neuroimage.2013.05.041
http://paperpile.com/b/DG12I2/pIPTB
http://paperpile.com/b/DG12I2/pIPTB
http://paperpile.com/b/DG12I2/pIPTB
http://paperpile.com/b/DG12I2/pIPTB
http://dx.doi.org/10.1016/j.neuroimage.2018.03.007
http://paperpile.com/b/DG12I2/wrsmx
http://paperpile.com/b/DG12I2/wrsmx
http://paperpile.com/b/DG12I2/wrsmx
http://paperpile.com/b/DG12I2/wrsmx
http://dx.doi.org/10.1073/pnas.1903403116
http://paperpile.com/b/DG12I2/a6Z7d
http://paperpile.com/b/DG12I2/8XIOx
http://paperpile.com/b/DG12I2/8XIOx
http://paperpile.com/b/DG12I2/8XIOx
http://dx.doi.org/10.1016/j.neuroimage.2015.10.001
http://paperpile.com/b/DG12I2/CRNvx
http://paperpile.com/b/DG12I2/CRNvx
http://paperpile.com/b/DG12I2/CRNvx
http://dx.doi.org/10.1016/j.neuroimage.2013.03.078
http://paperpile.com/b/DG12I2/G4cR1
http://paperpile.com/b/DG12I2/G4cR1
http://paperpile.com/b/DG12I2/G4cR1
http://dx.doi.org/10.1016/j.neuroimage.2013.07.057
http://paperpile.com/b/DG12I2/weESF
http://paperpile.com/b/DG12I2/weESF
http://paperpile.com/b/DG12I2/weESF
http://paperpile.com/b/DG12I2/weESF
http://dx.doi.org/10.1093/cercor/bhaa063
https://doi.org/10.1101/2023.05.29.542730
http://creativecommons.org/licenses/by/4.0/


Yeo, B. T. T., Thomas Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead,

M., Roffman, J. L., Smoller, J. W., Zöllei, L., Polimeni, J. R., Fischl, B., Liu, H., & Buckner, R. L.

(2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity.

In Journal of Neurophysiology (Vol. 106, Issue 3, pp. 1125–1165).

https://doi.org/10.1152/jn.00338.2011

Zatorre, R. J., Fields, R. D., & Johansen-Berg, H. (2012). Plasticity in gray and white: neuroimaging

changes in brain structure during learning. Nature Neuroscience, 15(4), 528–536.

https://doi.org/10.1038/nn.3045

Zikopoulos, B., García-Cabezas, M. Á., & Barbas, H. (2018). Parallel trends in cortical gray and white

matter architecture and connections in primates allow fine study of pathways in humans and reveal

network disruptions in autism. PLoS Biology, 16(2), e2004559.

https://doi.org/10.1371/journal.pbio.2004559

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 30, 2023. ; https://doi.org/10.1101/2023.05.29.542730doi: bioRxiv preprint 

http://paperpile.com/b/DG12I2/V4ItH
http://paperpile.com/b/DG12I2/V4ItH
http://paperpile.com/b/DG12I2/V4ItH
http://paperpile.com/b/DG12I2/V4ItH
http://paperpile.com/b/DG12I2/V4ItH
http://dx.doi.org/10.1152/jn.00338.2011
http://paperpile.com/b/DG12I2/vS2uB
http://paperpile.com/b/DG12I2/vS2uB
http://paperpile.com/b/DG12I2/vS2uB
http://dx.doi.org/10.1038/nn.3045
http://paperpile.com/b/DG12I2/LT4kW
http://paperpile.com/b/DG12I2/LT4kW
http://paperpile.com/b/DG12I2/LT4kW
http://paperpile.com/b/DG12I2/LT4kW
http://dx.doi.org/10.1371/journal.pbio.2004559
https://doi.org/10.1101/2023.05.29.542730
http://creativecommons.org/licenses/by/4.0/

