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Abstract:

Artificial Neural Networks (ANNs) inspired by biology are beginning to be widely used to model

behavioral and neural data, an approach we call neuroconnectionism. ANNs have been lauded as the

current best models of information processing in the brain, but also criticized for failing to account

for basic cognitive functions. We propose that arguing about the successes and failures of a

restricted set of current ANNs is the wrong approach to assess the promise of neuroconnectionism.

Instead, we take inspiration from the philosophy of science, and in particular from Lakatos, who

showed that the core of scientific research programmes is often not directly falsifiable, but should be

assessed by its capacity to generate novel insights. Following this view, we present

neuroconnectionism as a cohesive large-scale research programme centered around ANNs as a

computational language for expressing falsifiable theories about brain computation. We describe the

core of the programme, the underlying computational framework and its tools for testing specific

neuroscientific hypotheses. Taking a longitudinal view, we review past and present

neuroconnectionist projects and their responses to challenges, and argue that the research

programme is highly progressive, generating new and otherwise unreachable insights into the

workings of the brain.

Introduction:

While the study of cognition is a millennia-old endeavor (e.g., already present in Aristotle’s De

Anima), recent years have seen remarkable advances in both experimental and computational

analysis techniques, yielding more powerful ways in which we can study and model computations in
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the brain1. Yet, the level at which cognition should best be understood remains a hotly debated topic.

Modeling biology at the molecular level may not guarantee a deeper understanding of the core

principles of cognition, any more than one brain can serve as an explanation of another. Instead, the

task of cognitive computational neuroscience is to find the right level of abstraction, close enough to

biology to preserve the essential mechanisms, but abstract enough to discard details not required for

cognitive function, while reproducing the trajectory from actively sensed input, through internal

representations realized in neural processes, to complex goal-directed behaviors2.

Traditional experimental approaches, for example adopted in visual neuroscience, often operate at

the rather coarse-grained explanatory level of contrasting experimental conditions. For instance, by

running experiments with highly controlled stimuli, neural firing rates have been interpreted in terms

of category selectivity: neurons are deemed selective for “faces”, “houses”, or “tools”3–6. This

approach has merit. Its controlled settings allow for maximal interpretability and suggest a clear

taxonomy of neural selectivity7. Yet, human-interpretable labels for neural activity are limited by the

researchers’ imagination, or simply by labels that language makes available to us. Nature does not

owe us easy answers: neural selectivity may often rely on more complex features that only

imperfectly map onto human-interpretable categories8. In addition, showing selectivity for a

higher-level concept does not provide an answer as to how the brain may have arrived at this high

representational level from noisy, lower-level sensory input data.

Together, these observations highlight the need for neuro-computational models that can bridge

explanatory and computational levels and predict neural data and behavior while being grounded in

sensory data. This enables answering central questions of cognitive neuroscience: How can we link

sensory input to neural data across brain regions, not only at the level of individual cells but also at

the population level? How can neural processes be linked to behavior? How do neural

representations change, not only through space, but also through time (from milliseconds to

developmental trajectories)? How can past experience be encoded in the system and which types of

feature selectivity allow for task-general robust performance?

In short, for a complete picture of how the mind works, neuroscience is in need of computational

models that go beyond the limits of human-interpretable labels and tie together multiple levels of

explanation. A good model of how some cognitive function is implemented in the brain should

therefore (non-exhaustive list):

a. Specify which computations are carried out by the brain (computational level).

b. Show how these computations lead to complex behavioral patterns that can be tested in

experiments (behavioral level).

c. Show how these computations lead to complex neural dynamics that can be tested in

experiments (single unit and collective dynamics levels).

d. Show how these computations can be carried out in complex settings, beyond simplified

experiments (rich domain knowledge).

e. Show how these computations can be grounded in natural sensory information, rather than

high level features provided by humans (sensory grounding).

f. Show how these computations arise from adaptive processes that unfold at multiple

timescales (inference, learning, development and natural selection).
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To address these desiderata in a consistent explanatory framework, researchers have turned to

computational modeling using Deep Neural Networks9,10 (DNNs; the latest incarnation of Artificial

Neural Networks11 (ANNs)). ANNs seem well-suited to tackle the challenges described above12. First,

ANNs are made of simple units that collectively implement complex computations that drive the

network’s behavior. That is, they offer a framework spanning the single unit, collective dynamics,

behavioral and computational levels (desiderata a-c). Second, ANNs use millions (sometimes billions)

of synaptic parameters to encode rich domain knowledge, while optimizing connectivity over time to

learn (desideratum d). Third, ANNs are grounded in sensory input, meaning that they can be trained

on raw “sensory” data to fulfill “behavioral” needs, without the need for human-engineered input

features, offering a link between sensation, cognition and action (desideratum e). Finally, by allowing

us to iteratively compare different biologically plausible learning rules and objectives, ANNs can help

uncover how learning and cognitive development are made possible, and how they interact with

architectural network features (desideratum f). Importantly, the architectural flexibility of ANNs and

the different ways in which they can be trained allow for explorations, in a top-down fashion, of

which biological details are needed to satisfy desiderata (a)-(f) for a given cognitive phenomenon.

That is, they allow for complex hypothesis testing, much like traditional experimentation.

These characteristics allow researchers to rigorously test ANNs against large-scale behavioral and

neural experimental datasets collected from a large array of brain regions13, and adjust the level of

biological detail where needed - an approach markedly different from classic machine learning (ML)

engineering, which is usually geared towards high performance on a small number of benchmarks.

The approach furthermore goes beyond classic connectionist models of the 20th century14, which

used smaller networks to explain higher-level cognitive tasks rather than the more recent focus on

multi-level understanding of brain function. Due to the close integration into neuroscience, both in

terms of network design and mapping of internal representations to brain function and neural data,

we term this approach neuroconnectionism.

Neuroconnectionism has already been fruitful in a wide variety of neuroscientific settings, including

vision15–21, audition22,23, semantics24–26, language27,28, reading29, decision making30–33, memory34, game

playing35, motor control36–39, and the formation and coding principles of brain areas40–45. See section

The neuroconnectionist belt for more details, and 46–52 for reviews1.

At the same time, neuroconnectionism does not remain unchallenged. It has been raised that ANNs

differ strongly from biology, that they often behave in non-human ways53–56, and that the complexity

of the models prohibits true understanding54,55. These challenges are sometimes interpreted as

suggesting that ANNs are not useful models for learning about the brain. For example, an argument

might proceed like this: ANNs are sensitive to adversarial attacks, unlike humans; therefore, these

models have been falsified and thus should not be used as models of the visual system. However, this

logic only follows from a Popperian view of science (Box I).

Instead, we argue that these challenges are better seen as signposts. This changes the interpretation

of the above example: ANNs are sensitive to adversarial attacks, unlike humans; therefore, they must

1 Please note that the authors of this piece predominantly work in the sensory domain, in particular in vision.
The provided examples are hence biased towards this research field. The larger neuroconnectionism
community is however not limited to sensory processing, but involves, among many other areas, language
processing, memory, (meta) learning, as well as movement and embodiment/robotics.
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lack the relevant mechanisms that yield a more robust, human-like visual representational format,

which will be important to improve future models. This conclusion follows a more Lakatosian

philosophy (Box I). To elaborate on this view, we introduce neuroconnectionism as a Lakatosian

research programme, which, with its explicitly longitudinal perspective on the developments in the

field, offers fruitful grounds for discussion. This provides a new view on the challenges mentioned

above, which act as signposts towards further developments.

Neuroconnectionism as a Lakatosian research programme

In philosophy of science, Lakatos57 proposed a general framework to evaluate scientific approaches.

According to his view, science is typically carried out within research programmes. Such programmes

share a hard core of background assumptions that are not typically challenged from within the

programme, and contain a belt of auxiliary hypotheses that are experimentally tested. While the core

cannot be altered without abandoning the research programme, elements of the belt are and should

be subject to change.

Given these two elements, core and belt, the value of a research programme is determined not just

by its current experimental success relative to other research programmes, but also based on

whether it is progressive rather than degenerating - an explicitly longitudinal perspective.

Progressive research programmes generate new theoretical insights and novel predictions where

some of these predictions are corroborated by empirical findings. Degenerating research

programmes do not have these two characteristics: they often lack new theoretical developments

and devolve into repeated corroboration of very similar ideas.

In the following, we will characterize and evaluate neuroconnectionism as a Lakatosian research

programme composed of a set of auxiliary hypotheses in a belt centered around a unifying core,

rather than a single falsifiable hypothesis. That is, we consider productive ways to use ANNs to gain

insight into understanding the mind and brain (rather than considering any specific current model as

the model of the brain that is true or false). We will describe the tools that are currently used for

hypothesis testing in the field, review past challenges and successes, and revisit current controversies

to evaluate whether neuroconnectionism is progressive.

Importantly, our arguments hold even if one does not accept the Lakatosian view on progress in

science. While the Lakatosian distinction between core and belt is particularly well-suited to

contribute to the ongoing debate about the merits and weaknesses of neuroconnectionism, what

matters is that scientific theories always have core guiding principles that are relatively isolated from

direct empirical testing - an uncontroversial view in the philosophy of science (see Box I). These core

principles define directions of inquiry, including which experiments are conducted, and what is taken

to corroborate or weaken theories. Theories are hence judged through a holistic assessment of their

successes and fertility in guiding experimental pursuits. The Lakatosian perspective that we adopt is

merely one helpful way of expressing these general ideas.
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BOX I: THEORY SELECTION & PHILOSOPHY OF SCIENCE

Through much of the twentieth century, the Popperian view that theories are rejected when they

are falsified in tests was dominant. A scientific theory generates predictions and tests are run to

see if the predictions are correct. If they are not, the theory is falsified and can be rejected (it may

take more than one test to show that the failure wasn’t experimental error, but once the result is

accepted, the theory must be rejected).

The Popperian view assumes that the logic of disconfirmation follows the following schema, where

T is a theory, and O is an observation.

If T, then O

Not O

Hence, not T

It was noticed first by Pierre Duhem (the French theoretical physicist and historian of science) in

1906, and later reinforced by Quine (one of the most influential analytic philosophers in the

twentieth century), that science does not work like that in practice and could not work like that in

principle. One typically (and perhaps always) needs to combine the hypothesis to test with

auxiliary beliefs to extract empirical predictions. When it is made fully explicit, the logic looks as

follows:

If T, and A1, and A2, and A3,…, and An, then O

Not O

Hence, not T, or not A1, or not A2, or not A3,…, or not An

Where (A1, and A2, and A3,…, and An)  are auxiliary hypotheses needed to generate predictions.

For this reason, it is never a single hypothesis, but a whole collection that generates predictions,

any one of which might be at fault if the prediction is not vindicated.

This fact about the logic of confirmation has been one of the centerpieces of twentieth century

philosophy of science. Quine popularized the idea that a theory forms a web of beliefs related by

inferential connections. The web has a topology with beliefs that can be most directly subjected to

empirical tests at the periphery, and others that are insulated from direct testing by long chains of

intermediary hypotheses. Beliefs at the periphery describe localized observable facts; beliefs at

the center describe the kinds of general beliefs that guide the explanation of a whole body of

phenomena. These are highly connected in the web and separated from empirical predictions by

mediating propositions. One could hold onto the general beliefs in the face of mounting evidence

if one was willing to make adjustments in other parts of the web.

Lakatos’ distinction between core and belt acknowledges this holistic nature of confirmation, while

offering a pragmatics of testing that is well-suited to capture how science actually works. In the

Popperian view, testing is a matter of checking whether a theory accords with fact. On a

Lakatosian view, it goes hand in hand with the development of theory. One adopts a set of core
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principles as a kind of working hypothesis, proceeding on the assumption that they are correct and

using them to try to understand the phenomena. Testing is a process that involves striving to bring

theory and fact into closer agreement by exploring ways in which the core principles can be

preserved while accommodating the evidence. If the core principles are held fixed and leeway is

granted to explore alternative auxiliary hypotheses, testing can be directed at the belt, giving the

theory every chance of preserving the core while accommodating the evidence. This is a way of

targeting disconfirmatory evidence against one part of the web. A theory is rejected not as the

result of a direct conflict with the evidence, but because the attempt to preserve the core

principles becomes so cumbersome that they cease to form a productive working hypothesis.

For example, in astronomy, there were deviations in planetary trajectories from the smooth

ellipses predicted by Newtonian mechanics. Instead of rejecting Newtonian laws, people

interpreted this as a reason to look for ways to explain the distortion, assuming the correctness of

the laws (e.g., an unseen planet). Hence, a belt claim was falsified but the core was not

abandoned. Instead, the core is changed only when it becomes unproductive to hold onto it. For

example, in the twentieth century, evidence accumulated against Newtonian celestial mechanics

that could not be solved assuming the correctness of the laws, which led to its rejection and the

development of general relativity.

The neuroconnectionist core

As discussed in the introduction, ANNs hold promise to fulfill desiderata (a)-(f) by tying together

multiple levels of explanation, incorporating rich domain knowledge, and going beyond the limits of

human-interpretable labels. In a sense, neuroconnectionism can be seen as an attempt to address

these desiderata by using ANNs, which motivates why ANNs are at the core of the research

programme. In this section, we elaborate on this further and describe the core tenets of

neuroconnectionism and how they relate to specific properties of ANNs.

ANNs consist of interconnected sets of rather simple units, which perform local computations and

which by themselves have no perceptual or cognitive abilities. Instead, perceptual or cognitive

computations emerge as a collective property of the network, distributed across many units.

Information flow through the network determines its function, and is itself determined by the

connection strength between the many units. How to set up and weigh these connections to encode

domain knowledge and perform according to a set objective is a difficult problem: for a fully

connected recurrent ANN with N units, there are possible structural connectivity patterns,2𝑁 𝑥 𝑁

under the simplifying assumption of connections being either 0 or 12.

Because of this complexity, researchers constrain the connectivity motifs in the form of network

architectures that determine which connections are possible - providing strong inductive biases.

Most current network architectures organize their units in layers and within-layer-connectivity is

determined as part of the architecture. In feedforward networks, units of a given layer only receive

inputs from the layer below and only send outputs to the layers further above. Recurrent networks

2 For a system of 8 units, that is 18 quintillion 446 quadrillion 744 trillion 73 billion 709 million 551
thousand 616 connectivity patterns.
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allow for additional top-down and lateral message passing. Another noteworthy architectural aspect

to constrain the number of learnable parameters in a network is to make it convolutional16,58,59. This

convolutional architecture was directly inspired by seminal findings in visual neuroscience60.

Convolutional layers are subdivided into feature maps. Each unit in a feature map has its own

receptive field, but all units share the same selectivity. Applied in the visual domain, this means that

when the network learns to detect a feature at one location, it automatically generalizes to other

locations. This is a useful inductive bias for vision: since the same object can occur anywhere in an

image, it is sensible to look for the same features everywhere, without having to re-learn them at

each location. Other domains, such as olfaction, do not share this property and thus favor other

inductive biases. Many different architecture types exist in the literature, but the above examples

illustrate the main point: by constraining connectivity, each architecture not only reduces the

number of parameters in the network, but also implements inductive biases that determines which

functions can be efficiently learnt.

While architectural design defines the general space of possible solutions, the individual network

parameters still need to be optimized. For example, ResNet-50, a popular convolutional architecture,

has over 23 million parameters61. To learn these parameters, networks are typically presented with

input datasets (e.g. natural images, auditory signals, or text corpora) and their target behavior is

defined based on one or several mathematical objectives (also called loss functions). Ultimately,

several low-level objectives may be subsumed in higher level objectives, such as “fitness”. Deviations

from the target, or errors, are then minimized by updating the weights between network units,

which is determined by a learning rule. To do so, the weights of each individual unit must be changed

in accordance with the contribution of the unit to the whole network’s error. Given that ANNs can

have millions of units (operating over extended time in the case of recurrent networks), finding good

learning rules is far from trivial. How to attribute the contribution of each unit to the overall error is

called the credit assignment problem. The most widely used learning rule to solve credit assignment

in ANNs is backpropagation62, but there are many others too, e.g. 63,64. It is worth noting that each

learning rule comes with its own hyperparameters, such as a learning rate and how the learning rate

changes over training. Overall, many datasets, objectives and learning rules are used in

neuroconnectionism, and they strongly impact the behavior and internal states of ANNs (see section

The neuroconnectionist belt for details).

The approaches described above for designing and training ANNs offer ways of testing hypotheses of

how certain functions may be implemented in the brain while enabling researchers to perform

large-scale in-silico experiments46,49–51. Indeed, an ANN’s architecture, dataset statistics, objectives,

and learning rules can be mapped onto central questions of cognitive neuroscience, allowing

computational traction to untangle the interacting contributions of pre-specified structure (for ANNs:

determined by the architecture) and experienced input (for ANNs: training dataset), why neural

selectivity in a given brain region is the way it is (for ANNs: which objectives are being optimized),

and how the brain may adjust its internal representations (for ANNs: credit assignment / learning

rules). All of these questions can be studied across levels of explanation and temporal scales,

incorporating rich domain knowledge grounded in sensory data, in line with desiderata (a)-(f).

Importantly, there is likely no shortcut to the iterative learning and processing occurring in neural

networks. Many complex iterative processes – such as cellular automata like Conway’s Game of Life

or Rule 110 – can be specified on half a post-it note, yet their eventual behavior after many steps is

7



fundamentally unpredictable65,66. Similarly, the learning and processing dynamics of neural networks

are unpredictable despite having simple mechanics. This unpredictability has been proven for

recurrent neural networks67. Put differently, ANNs need to be processed iteratively to study the

effects of training, architecture, task, and dataset. No analytical mathematical model exists to date

that could use shortcuts to directly get the final result without going through the iterative process.

The same is likely true of the brain, a complex, deep, massively parallel and recurrent neural

network. Therefore, it likely can only be modeled using another complex iterative process, such as

ANNs, while performing careful hypothesis testing at a level of abstraction that offers the best

insights to the process at hand (the optimal level of abstraction may depend on the phenomenon

under investigation). This lack of simpler models justifies the use of complex ANN models in

neuroconnectionism.

With this information in place, we can state a Lakatosian core of the neuroconnectionism research

programme (see also Figure 1):

The core of neuroconnectionism is that brain computations, representations, learning
mechanisms, and inductive biases are best understood via modeling in ANNs that are defined by
their architectures, input statistics, objective functions and learning rules. Multilevel and
sensory-grounded iterative models like ANNs are needed to model multilevel and
sensory-grounded iterative brain computations, and thereby achieve desiderata (a)-(f).

Figure 1 | Illustration of the neuroconnectionist research programme. The core of neuroconnectionism

(depicted as the gray center) is to use ANNs, defined by their architectures, objective functions, input data

statistics and learning rules, to test neuroscientific hypotheses. Following the Lakatosian view, experimental

investigations are not directed at the core of the research programme, but at a surrounding belt of auxiliary

hypotheses (depicted as coloured arcs, e.g., the green arc could stand for the hypothesis of CNNs as models of

the human vision). Falsifying individual belt hypotheses does not invalidate the research programme as a

whole, but instead calls for improving the belt. Hence research programmes are not judged by attempting to

falsify the core directly, but rather by assessing if they are progressive or degenerating. Good research

programmes are progressive: they successfully integrate hypotheses into a coherent belt, produce new

hypotheses, and make testable predictions that are corroborated.

The above definition aims to capture the core ideas shared by the many projects that contribute to

neuroconnectionism. However, like all research approaches, there can be no rigid definition. Still, just
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like how members of a family do not share all traits, but still possess a family resemblance68, so too

do members of the neuroconnectionism research programme constitute a diverse but cohesive

family of approaches. Distinctive features of neuroconnectionist models include:

Explaining cognition as primary explanatory goal: Neuroconnectionist models are primarily aimed at

explaining cognitive functions, not at describing biology with the highest possible detail. Biological

detail is added to models in a top-down, hypothesis driven fashion, when these details are necessary

for explaining behavioral or neural data. This makes neuroconnectionism different from approaches

aiming to perfectly replicate a human brain in silico and from biophysical models aiming to model

every aspect of a neuron.

Distributed representations and computations: The modeled property emerges from the collective

behavior and dynamics of simple units which, taken independently, do not show the modeled

property. This distributed nature is central to neuroconnectionism, since it naturally bridges between

explanatory levels, from single units, through collective dynamics and onto behavior. This

distinguishes neuroconnectionism from traditional models where each parameter has a

straightforward interpretation, such as drift-diffusion models, and requires special interpretation

frameworks to cope with the distributed nature of computations (see the neuroconnectionist toolbox

section).

Iterative training & inference: The high-dimensionality of distributed models makes it virtually

impossible to tune all parameters by hand, so iterative training is required. At inference too, the

behavior and dynamics cannot be simplified into a simple interpretable equation: to know what the

model predicts, one needs to run the model. This iterative nature distinguishes neuroconnectionism

from approaches that can be formulated in a small number of non-iterative equations, such as

(hierarchical) Bayesian models.

There are of course many edge cases. For example, while grounding in sensory input is a desideratum

of the neuroconnectist approach, we note that not all neuroconnectionist models are grounded in

sensory input. In language or memory models, for instance, the input to the model often consists of

high-level concepts, such as words. Still, we consider them neuroconnectionist, since the sensory

nature of the inputs may not be relevant in these particular cases, and could be added to later

models if needed. As another example, certain neuroconnectionist models may not explicitly employ

a “behavioral” objective function, but rather attempt to minimize energy efficiency (e.g. 69).

End-to-end learning where models are directly fitted to neural data instead of trained on a

behavioral task are also neuroconnectionist since they are a way to test hypotheses about which

architectures are capable of reproducing neural dynamics19. In addition, models do not need to

model cognition in general, but can focus on specific components. Understanding which aspects of

cognition can only be modeled jointly is part of the hypothesis testing process. For example,

sensory-motor interactions in embodied models may or may not be required to explain certain

aspects of visual processing. Lastly, models that are architecturally different from the brain, such as

GANs or Transformers, can also be used to test neuroscientific hypotheses and thereby contribute to

neuroconnectionism70–72. In short, most ANN models that can be used for neuroscientific hypothesis

testing can be considered neuroconnectionist given a researcher’s motivation of how the model

could be rooted in biology, and how it tests theories about neural computations.
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Importantly, neuroconnectionist approaches are about delineating mechanisms and theoretical

understanding through hypothesis-driven research, which differs from the goals of engineering.

Around the time of the first large-scale vision networks58,73, neuroconnectionist models were

borrowed directly from engineering applications. For example, it was found that the engineering

models that performed the best on engineering benchmarks (as of 2014) were also better at

predicting brain activity21. This may have led to a form of “computational opportunism” in which

researchers could directly test ML models against neuroscientific data without having well-formed

hypotheses. However, this trend has come to a halt with more recent network architectures where

better task performance does not align with improved predictions of neural firing rates13. Indeed,

when taking the hierarchical nature of the visual system into account, recent years have seen a

constant decrease in agreement between ANNs and neuroscience74. These trends highlight that

focusing on engineering goals based on performance alone is not sufficient for a neuroscientific

understanding. Neuroconnectionism needs to develop its own models and metrics.

Following Lakatos’ definition of research programmes, the different neuroconnectionist projects all

use ANN models as core to their approach. Experiments are not directly applied to the core, but

rather to the surrounding belt hypotheses, which are realized via ANN instantiations and tested using

various techniques. The promise of the overall research programme is then to be judged based on its

ability to generate new insights, corroborate belt hypotheses, derive new testable predictions, and,

perhaps most importantly, productively address criticisms to make progress.

The neuroconnectionist toolbox

To implement and evaluate the neuroconnectionism research programme, tools are needed to

instantiate and test models in its belt. These include tools to test to which extent neural network

model instances align with neural data and behavior (Figure 2). Empirical findings revealing areas

where ANNs fall short are an essential part of the framework and approach, as they provide crucial

data points indicating where our understanding and models need to be improved.

Network design and training

A central aspect of the research programme is the creation and training of ANNs. For this aspect,

engineering has been instrumental, as it provided researchers with key hardware and software

technologies that enable training of task-performing models.

To design ANNs, researchers can choose from a large zoo of network architectures and unit types.

The different unit types are abstracted away from the brain to various extents. For example, common

computational units go from very simple rectified linear summation (ReLU), to complex units

modeling basic memory (e.g. LSTMs). Importantly, researchers have started integrating various

aspects of biology into network design while testing them against neural and behavioral data13,75. This

includes recurrent connectivity19,76–82, and different base-units, such as richer rate-based neurons83–85,

spiking neurons86–89, and neurons with multiple compartments80,90,91.
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To train ANNs, researchers need to choose datasets, objectives and learning rules. Many large-scale

datasets are openly available. Typically, external datasets are used (i.e., the dataset is the input to the

network and the network’s output is trained to match the labels). For example, inputs could be

images and outputs could be captions giving a semantic description of the image. In addition,

networks can also be directly trained to mirror brain activity19,77,92–99, leveraging recent efforts to

record large neural datasets100–105. The dataset determines the input statistics that the network learns

from, so an important avenue of research is to develop more naturalistic datasets (e.g. 106).

A large variety of objectives is used, including supervised (e.g. classification, scene captioning),

unsupervised (e.g. contrastive learning107,108, predictive coding109,110, image generation44,111,112,

temporal stability113–117, and energy efficiency69) and behavioral reward30,35,118. The objective

determines what the networks try to learn based on the input statistics. Different objectives may for

example lead to modeling different brain areas119. As another example, one may test whether the

ventral visual stream is better modeled using an object categorization or a semantic objective24, or

test the impact of noise in the dataset120.

The most common learning rule is, by far, backpropagation62. In its standard form, backpropagation is

not biologically plausible, and a lot of work seeks more plausible versions91,121–124. Other learning

rules exist too63,64,125. Each algorithm has its own characteristics. For example, gradient descent tends

to learn the input features with most variance first126 and produces efficient neural codes127. Hebbian

learning, on the other hand, is a simpler local rule that has been directly observed during learning in

biological systems128.

In summary, by using frameworks optimized for big data and high throughput, computational

neuroscientists can create ANNs and test which biological aspects are necessary to reproduce brain

function and behavior. ANNs thereby offer a top-down approach to understanding which aspects of

the brain are central to its function.

Model testing

Although critics sometimes claim that we cannot understand ANNs54,129, ANNs are not black boxes.

Rather, they are transparent boxes with easy access to each unit’s activities and connections.

Researchers can perform in-silico experiments at speeds that are orders of magnitude faster than on

any biological brain, and, for now, free of ethical concerns that come with classical experimentation.

Several tools have been developed to improve the interpretability of ANNs and test them against

biological data.

Hypothesis testing in neuroconnectionism relies on testing trained ANNs against brain data on

various levels, from neural data up to behavioral patterns. Because of multiple realisability, systems

that are structurally very different from the brain can nevertheless enable successful predictions of

human behavior, or of the activity in certain brain areas (e.g. 130,131). Hence, to ensure that an ANN

implements a given cognitive function in a human-like way, it needs to map onto human brain

processing across levels, ranging from behavioral to neural data, ideally while taking into account the

physical constraints that the brain faces, such as, for example, metabolic costs69,132–134 and

considerations of wiring length45. Importantly, no single method is perfect, and various
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complementary approaches are needed. Hence, developing good metrics to compare humans and

ANNs across levels is an essential part of neuroconnectionism.

Behavioral agreement: At the behavioral level, the outputs of ANNs can be compared to human

responses in several settings. Coarse measures such as overall task performance are useful but only

of limited precision, since ANNs are becoming increasingly good at tasks for which humans were until

recently deemed the gold standard. These include object recognition58,61,135, board games136 or video

games137,138. To overcome these limitations, several more fine-grained methods exist. These include

the use of diagnostic readouts to characterize the information represented in a population of units

and to translate it into behaviorally relevant measures such as reaction times139, detailed analysis of

error patterns140, testing on out of distribution examples141–143, and reproducing psychophysical

results that target specific aspects of processing76,144–150. See 151–154 for further discussion about how

to compare human and ANN behavior. A unified model addressing years of psychophysical

experimentation is an important target, yet to be achieved.

Agreement with neural data: At the neural level, the activity patterns of ANNs can be compared to

biology in several ways. One common way of doing so is using Representational Similarity

Analysis155,156 (RSA). RSA characterizes the internal representations of a system by quantifying the

dissimilarities between the population responses to various stimuli. Internal representations of ANNs

and the brain are deemed similar if the corresponding response geometries agree. This approach has

the benefit of side-stepping the need to directly map from individual ANN units to individual neurons

or voxels. It is therefore well suited for comparing ANN activations with neural data, e.g. obtained via

neuroimaging or electrophysiology. RSA can be applied using all units of a whole network, or all units

of a network layer, units in a feature map, or individual ANN units. The representational geometries

measured by RSA can be compared directly between different brain regions and/or ANN layers106, or

they can be combined using linear reweighting to optimally map onto each other18,157,158.

Interestingly, network units can be multiplied with a constant factor while not affecting network

output if the synaptic connections to downstream units are downscaled accordingly. This implies that

networks with identical behavior populate a whole subspace of solutions, which still differ in their

alignment with brain data if no reweighting is applied. An important challenge for current RSA

methods is that they sometimes fail to discriminate between different network architectures, which

all perform similarly on this metric158. Recent work has started addressing this issue by improving

current RSA methods159 and clarifying which aspects of brain computation should be targeted by

RSA160.

In addition to RSA, which is predominantly aimed at characterizing responses at the population level,

encoding models can be used to predict the activity of single neurons or voxels across a range of

conditions21,161,162. Here, the activity of each biological unit (neuron or voxel) is predicted as a linear

combination of ANN unit activations. To prevent overfitting, the underlying GLMs are typically

regularized. More recent encoding methods separate spatial from channel dimension activity96,98. In

their original form, encoding models are not constrained as to which units can explain which

biological counterpart. In principle this implies that, for example, higher-level brain regions can be

explained by lower-level network features, or that thousands of cells in the brain can be explained by

the response of a single network unit with broadly similar selectivity. New developments are

underway to include an ordered hierarchical mapping from ANNs to the brain74,163, providing a more

rigorous test of the alignment between brain representations and ANN models.
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A third approach, which builds on encoding models, is to use ANNs to design stimuli that strongly

activate a single target biological neuron or area164–166, allowing for a causal interaction between

ANNs and biological brains. This approach therefore goes beyond the otherwise correlational RSA

and encoding model approaches.

In-silico electrophysiology: In addition to estimating the level of agreement between ANNs and

biological brains in terms of behavior and neural recordings, ANNs themselves can be experimented

on to better understand their inner workings. Since we have immediate access to all units, their

activities and connectivity, almost any experiment is possible. This includes reliance on network

initialisation167, representational similarities across network architectures159, and tests for the

emergence of brain-like computations69, selectivity profiles41,45 and cell types168. To this end, standard

neuroscientific methods can be applied, such as searchlight decoding, measures from signal

detection theory, tuning curve analysis, and many more. In addition, ANNs can be selectively

lesioned to test the impact of different parts of the network on its ability to map onto brain function.

For example, the effect of recurrent connections can directly be assessed by ablating them19,82,147.

In-silico lesion studies are of course not limited to analyses of networks on their own, but can also be

used to evaluate the changes in agreement between network and neural or behavioral data. Lastly,

the ability to replicate topographic elements of brain organization can be tested in ANNs to better

understand the origins and functional implications of such representational arrangements. First

forays in this direction are well underway41–43,45,169,169,170.

Developmental agreement: All of the above methods can be applied at different points during

network training, from untrained to fully trained models, and these learning trajectories can be

compared with different stages in biological development171. Although it is currently unclear which

aspects of learning in ANNs are better seen as corresponding to learning during evolution and which

are better seen as modeling learning during an organism’s lifetime172, both can be addressed

experimentally. For example, the order in which children learn different words can be predicted by

the performance of ANNs trained on visual classification and captioning tasks, over and above the

expected effects of word frequency173.

In summary, neuroconnectionism has at its disposition a large array of techniques to train and

evaluate neural networks as models of brain computation. Evaluating and contrasting different

models for their ability to explain brain data are vital aspects of the research programme as they

enable rigorous hypothesis testing, which brings developments in the belt of hypotheses, as

discussed next. The fact that each model can be extensively tested from single neurons to behavior is

a strong asset of neuroconnectionism that arguably no other approach can claim.
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Figure 2 | The current neuroconnectionist toolkit for model testing. Similar to the belt of a research

programme, its toolkit is under constant development. Next to improvements of existing techniques (which

historically have focused heavily on sensory processing), this involves new approaches to widen the scope of

phenomena that can be investigated. These methods can be applied to compare ANNs with any species

(human, primate, mouse, …). A Behavioral agreement. Outputs of ANNs are compared to human responses in
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diverse settings, such as classification errors and accuracy, reaction times, action patterns, and others. B

Agreement with neural data. Presenting identical stimuli (input) to the brain and computational model, the

recorded brain activity patterns are directly compared to ANN layer activity patterns. The most common

methods are RSA (comparing representational geometries) and encoding models (pointwise linear regression).

C In-silico electrophysiology. ANNs are studied as in-silico models of cognitive functions with standard

neuroscientific methods, such as manipulations and lesions, information decoding, unit-based tuning functions

and others. Effects of design choices such as recurrent connections, or manipulations such as detailed lesioning

patterns can be studied extensively in this setup, something not possible in-vivo. D Developmental agreement.

Comparing the above at different stages of training to stages of learning in biological brains permits insights

into cognitive development. Examples include behavioral patterns, map formation, or changes in neural

selectivity with visual experience.

The neuroconnectionist belt

We have now defined the core of the research programme, as well as tools that are used to design,

train, and evaluate ANN models across various levels of explanation. This brings us to the belt of the

research programme, a set of hypotheses which are to be tested and which evolve as new evidence

is integrated. Individual elements of the belt are important, but a more central aim, when taking a

Lakatosian perspective, is an evaluation of longitudinal developments (theoretical and empirical),

which determine the state of a research programme as either progressive or degenerative. By

definition, the belt of a research programme is subject to change. New hypotheses can be derived,

and existing hypotheses can be corroborated, altered, and rejected. An individual belt hypothesis

that is rejected does not refute the core assumptions upon which a programme is built, but rather

provides an important datapoint for future developments. According to this view, the overarching

question becomes: How does the neuroconnectionism research programme fare in terms of

productivity? Does it generate new insights, and does it address existing challenges? Are there

challenges that cannot be overcome by the research programme (roadblocks: rendering it

degenerating), or are challenges rather signposts towards open questions that can be addressed by

improving the research programme (progressive)?
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Figure 3 | Summarized historical progression of the neuroconnectionism belt in the area of visual

computational neuroscience. The figure shows how empirical and analytical findings are integrated into (or

strengthen) the belt, and how objections are processed within a constructive, productive research programme.

I. The neocognitron is suggested as a mechanism behind the seminal findings about simple and complex visual

system cells by Hubel & Wiesel. It can learn and recognize increasingly abstract visual patterns through

mechanisms that are similar to convolutions. II. HMAX, a more powerful model similar to the neocognitron, is

investigated closely for its similarity to neural activity. It matches IT tuning functions but does not match its

broad activity patterns. It can not recognize objects in naturalistic photos. The neuroconnectionist belt
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dwindles. III. Convolutional neural networks are successfully trained on large collections of naturalistic photos.

A series of studies shows that their layer activity matches neural activity patterns along the primate ventral

stream. This is the first time an image-computable and functional object recognition network matches activity

patterns across the ventral visual system. These findings strengthen the neuroconnectionist belt and spawn a

massive series of new studies and postulates. IV. With their susceptibility to adversarial attacks and the

amounts of labeled training data they require, convolutional neural networks are shown to exhibit several

behaviors that are not biologically plausible. V. Convolutional neural networks show similar layer activity to

the dorsal stream, adding further experimental evidence strengthening the belt. VI. Adding to the growing list

of biologically implausible mechanisms attacking the belt, it is shown that the error behavior during image

degradation clearly diverges between humans and convolutional neural networks. Furthermore, feed-foward

convolutional neural networks embody too simple mechanisms to cover neural dynamic observations beyond

coarse rate coding. VII. The neural dynamics objection is resolved by the demonstration that dynamic

transformations during visual processing can be captured if recurrence is added to DNNs. As recurrence is a

biological property of the brain, this strengthens the neuroconnectionist belt. VIII. It is shown that activity

across the dorsal stream during game playing matches activity in deep reinforcement learning networks, which

implement a sensori-motor loop for the same game playing tasks. IX. Large numbers of labeled data are not

required by unsupervised learning. Newer developments in this field are shown to match brain activity similarly

well to supervised learning. As unsupervised learning is considered biologically plausible the resolution of this

objection further strengthens the belt. Future directions. Attention mechanisms, semantic objectives and

end-to-end learning in which networks are trained directly to match neural activity are all recent developments

in ANNs. Experiments will tell which brain processes are better modeled by incorporating these elements.

The evolution of the neuroconnectionism belt: a progressive generator of new insights.

The belt of neuroconnectionism has considerably evolved in the past decade. By rapidly testing and

expanding belt hypotheses, the community now commonly explores different architectures,

datasets, objectives, and learning techniques across various experimental settings to test the

resulting models for their alignment with brain and behavioral data.

One of the clearest examples of this progressive evolution in the field has been the change in how

vision is modeled with ANNs in recent years (see Fig. 3 for an illustration of the historical progress of

neuroconnectionism in vision). In the early 2010’s, researchers focused a great deal of effort on

comparing neural and behavioral data to what were, at that time, the state-of-the art in ANNs for

vision, namely, deep convolutional neural networks trained on image classification tasks15–18,20,21. Over

time, as researchers explored the successes and the failures of these models, the field has seen

almost every component of these initial models updated, leading to new models that do a much

better job of accounting for neurophysiological and psychological data. The earliest such update was

a result of the recognition that the feed-forward nature of standard convolutional networks was both

obviously incongruent with real neural anatomy, and functionally limiting. It was shown that

recurrent networks were better at matching both behavioral data and neural activity patterns that

occur with longer delays19,33,76–80,82,150,174–177. Additionally, researchers explored ways to improve the

training datasets beyond computer vision benchmarks, including a more ecologically relevant

selection of object categories106, video data178, embodiment179,180 and goal-directed

eye-movements181. Similarly, the use of supervised category training, which was always problematic

from a neuroscience perspective - since humans do not need millions of labeled examples to learn -

was shown to be unnecessary: recent work has shown that self-supervised techniques for training
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ANNs lead to as good or better matches to neural representation and animal behavior108,182,183.

Moreover, self-supervised training on video data can account for the distinction between the dorsal

and ventral pathways in the brain184 and self-supervised training on lower resolution inputs provides

a better fit to the mouse visual cortex185. Other losses have also been explored, and researchers have

found that dorsal stream vision can be explained both by control-based optimisation35 and by

self-motion related losses186. A similar evolution has occurred in models of the hippocampal

formation and related networks, where initial architectures and losses have been replaced as the belt

of the research program evolved. Early connectionist models largely focussed on attractor

networks187,188, which captured many interesting aspects of these circuits. But, with time, these

models have evolved to incorporate additional architectural features and loss functions related to

prediction and spatial integration, leading to better and better matches with a host of experimental

results189–191.

At the same time, as new ANN architectures have come out with more sophisticated attention

mechanisms, such as transformers, more and more research has demonstrated that transformers

trained in a self-supervised manner can effectively capture the representations observed in language

areas of the brain27,28, and other circuits, such as the mnemonic circuits of the medial temporal lobes.

This leaves open the possibility for numerous other updates and explorations to existing models of

vision and other senses, including the use of self-attention, and the use of multi-modal networks that

combine linguistic inputs with vision or other sensory modalities192,193.

In the above examples, neuroconnectionist models have provided state of the art models of

behavioral and neural data, discovering new perspectives on the roles of known processes such as

recurrence, attention and the dorsal stream. Importantly, fundamentally new theoretical insights and

predictions about brain processing have also been derived, and some have been directly

corroborated by in vivo experiments (see Box II).

BOX II: PREDICTIONS & INSIGHTS GENERATED BY ANNs

An important aspect of neuroconnectionism, as with all of computational modeling, is that it is not

limited to providing accounts of existing data but can propose, test, and discover fundamentally

new principles. In the following we describe some of such findings.

ANNs have been used to derive novel predictions about neural selectivity. Using optimization

techniques that work at the level of the network input, it was shown that ANNs can be used to

design novel stimuli that drive biological neurons in a highly specific manner, exceeding the firing

rates observed using natural stimuli164–166,194,195. This causal manipulation provides an important

extension to otherwise correlational tests of the alignment between models and the brain.

Another example of neuroconnectionism as a key for novel, and testable predictions about neural

selectivity was provided by Bao et al.40 who used ANNs to derive a theory of object selectivity in

macaque IT. While certain parts of macaque IT had well-known selectivity profiles (e.g. face

patches6), other parts remained uncharacterised “no-man’s land”, without any clear selectivity

pattern. By using dimensionality reduction techniques on the late layers of an ANN trained on

object classification, Bao et al. obtained a low-dimensional “object space” and found that

responses of IT cells to a large set of objects aligned well with the axes of this space, including the
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previously uncharacterised no-man’s land units. With this, the authors were able to provide a

unified picture of IT organization as following a low-dimensional object space, as extracted from a

deep network. See 31,44 for further such discoveries.

Neuroconnectionism has also yielded various new insights into the computational basis of neural

information processing. For example, based on the learning dynamics of ANNs, Saxe et al.26

derived a mathematically tractable theory of semantic learning that recapitulates many empirical

phenomena in human semantic development. Averbeck196 proposed to explain adolescent

changes in working memory by pruning in ANNs, and Rust & Jannuzi197 used ANNs to derive insight

into the memorability of images in humans. Nayebi et al.185 studied the impact of combining

embodiment and unsupervised learning on learning to explain the mouse visual cortex. What

these examples have in common is that they use neuroconnectionist models to derive

computational insights that may have been intractable without ANN simulations, due to the

complexity of distributed neural codes.

These developments in the belt have raised new challenges in how we compare models and interpret

results, requiring improvements in methodology. This has led to developments in quantifying the

alignment of ANN and brain data157,158,163,198,199, training networks end-to-end directly to match neural

data19,77,92–99, highlighting the importance individual variability across network instances167, explicitly

pitting networks against each other using “controversial stimuli”200, integrating hierarchical74 and

temporal19,150 aspects of information processing into model comparisons, performing detailed

psychophysical experiments140,144,150,201, using metamers to compare humans and models202, and

developing interpretable low-rank recurrent networks203.

Altogether, these rapid developments of neuroconnectionism demonstrate that the underlying

research programme is highly progressive. Researchers have repeatedly updated their models,

altering the architectures, training objectives, and datasets to arrive at a progressively better account

of neural information processing, including ANN-driven new insights and hypotheses. Although we

are still far from final answers, and there are still important methodological issues158,204–206, this

illustrates how neuroconnectionist experiments, theory and methodology form a virtuous circle in

which new empirical and theoretical results require improved methodology, which in turn allows for

new results, allowing the field to keep progressing.

Shortcomings as Signposts, not Roadblocks.

At the same time, ANNs as models of brain function continue to be met with skepticism as

differences with brain data and behavior remain. In the following, we consider prominent examples,

asking whether the underlying controversies are roadblocks that preclude progress (and thereby may

turn neuroconnectionism into a degenerating research programme), or whether they are better

perceived as important signposts, which are pointing towards promising directions of improvement.

In visiting these controversies, we highlight recent developments in the field that aim to solve them,

suggesting that neuroconnectionism is a progressive research programme.
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One of the main controversies surrounding ANNs in both cognitive science and artificial intelligence,

concerns differences in the behavior of ANNs vs. biological brains in a variety of settings53,56,207.

Although capable of impressive behavior, current ANNs do not model all aspects of behavior equally

well: they generalize poorly142, can be easily fooled208–210 and behave differently from humans in

many psychophysical settings141,144,211. These observations are important for the neuroconnectionist

programme, as they point out instances where the current set of models exhibit shortcomings.

Researchers are exploring a variety of avenues to address these shortcomings and improve the

biological match of ANNs. As detailed above, attention mechanisms212–214, recurrent

mechanisms19,76,80,82,139,174, foveation215, and biology-inspired receptive fields in early layers216–219 have

been shown to improve different aspects of behavioral alignment with biology. Hence, the current

shortcomings of ANNs in reproducing human behavior are not hindering the progress of

neuroconnectionism. Rather, they are serving as inspiration for a multitude of new developments.

They are real challenges that need to be taken seriously, but they are signposts, not roadblocks.

Another controversy focuses on computations on the level of symbolic manipulations in ANN vs

biology. It has been argued that current ANNs, unlike humans, do not compute with symbols because

they do not have appropriately structured representations, systematicity, dynamic variable binding

and role-filler independence, which may ultimately cause tractability/scalability issues129,220. The field

of neurosymbolic computations is a response to such criticisms221–224. Moreover, even the most

ardent defenders of symbolism agree that ANNs should in principle be able to implement the

symbolic systems we all desire129,220,225. Indeed, such a capacity is an immediate result of the universal

approximation theorems that hold for neural networks67,226. Again, symbolic computations are not a

roadblock for neuroconnectionism, they are signposts pointing to important directions of research

that can be addressed from within the research program. The same goes for causal modeling227 and

related arguments.

Discussions surrounding ANNs as modeling framework are also based on their level of complexity. On

the one hand, it is reasoned that (current) ANNs are too abstract, and that omitting many biological

details renders them unable to adequately model neural processes. Indeed, current ANNs are vastly

simpler than the breathtaking complexity of biological neural networks, which involves, to name a

few examples, intricate dendritic computations228,229, neurotransmitter dynamics, and

communication via temporally fine-grained spikes86,87,230. At the same time, others deem ANNs too

complex to provide a deeper understanding of cognition54,231. Indeed, the millions of parameters of

ANNs constitute an important departure from classic models with only few interpretable parameters

or experimental conditions. Critics ask, what is gained by modeling one complex system with

another?

So are ANNs too simple or too complex? As mentioned in the introduction, although current ANNs

are likely too simple, it is an empirical question at what level of detail cognitive systems are best

understood. Instead of committing to a single level, the neuroconnectionist research programme is

capable of modeling different levels of abstraction, which allows researchers to implement biological

detail in a top-down fashion through the testing of hypotheses about which biological features are

important for modeling cognitive phenomena46,232. We currently do not know which biological

features are central for brain computations, and which are merely byproducts of evolution that could

be equivalently implemented in other ways. Slowly testing the impact of more biological features in a

hypothesis-driven fashion provides a way to simultaneously improve current ANNs and find out
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which biological features are important. At the same time, the comparably large number of ANN

parameters is likely necessary to encode important domain knowledge, and to perform computations

end-to-end from raw sensory input to behavioral output. Relatedly, the complexity of a model needs

to be evaluated in relation to the complexity of the system being modeled. For example, the number

of units in Alexnet (659k), a commonly used model in visual computational neuroscience, is

equivalent to the number of neurons in a cube of cortex with an edge length of 2.3mm. Furthermore,

the number of parameters is a poor proxy of model complexity in ANNs, and the degrees of freedom

manipulated by the experimenter (i.e. architectural and learning hyperparameters) are orders of

magnitude smaller.

In summary, current ANNs are both simple (e.g. in terms of architectural complexity), and complex

(e.g. in terms of the number of adjustable parameters). But, to proponents of neuroconnectionism,

this very balance is a feature and not a bug, since it allows for top-down testing of which biological

details matter. As reviewed above, ANNs are actively moving towards increased realism in terms of

architectures used, input datasets, as well as training objectives. The integration of biological detail,

however, is driven as part of a hypothesis testing approach. This is importantly different from

mirroring biology for its own sake, because biological details come at the cost of computational

complexity and explanatory merit, giving good reason to try and discard the less relevant biological

aspects.

Crucially, determining what level of complexity our models require in order to understand

higher-level cognitive phenomena is itself an empirical project. Neuroconnectionism offers an ideal

framework for studying which biological details are necessary and which are not, while at the same

time being expressive enough to perform complex tasks. Put simply, neuroconnectionist models live

in a Goldilocks Zone between computational abstraction and biological detail. They are sufficiently

abstract to make them tractable and trainable (given the currently available methods and compute),

but retain sufficient biological detail in their algorithmic structure to map them onto neural and

behavioral data.

Figure 4: The Goldilocks zone of biological abstraction.

Neuroconnectionism offers a coherent and computationally

tractable framework to model cognition in which models vary in

how much they abstract away from biology. This enables

researchers to determine which biological details are needed to

model essential aspects of brain computations. Hence,

neuroconnectionism provides a goldilocks zone of biological

abstraction, abstract enough to build large models capable of

performing cognitive tasks, yet biologically detailed enough to

test specific neuroscientific hypotheses.
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Conclusions

In less than a decade, ANN modeling has gone from being fringe to a more central research tool in

many parts of cognitive neuroscience, including vision, audition, and on to language and higher-level

cognitive tasks. The underlying neuroconnectionism research programme has met both striking

successes but also challenges. How should these contrasting results be interpreted? We have argued

that the framework of progressive vs. degenerating Lakatosian research programmes is well suited to

address this question. Of central importance is the view that neuroconnectionism is not a single

theory or hypothesis. Instead, it is a research programme composed of many different auxiliary

hypotheses and research directions in the belt, each sharing the same core approach to model

cognitive phenomena through distributed neural communications in ANNs. Based on this view, we

showed that current challenges represent important signposts that aid further progress, rather than

roadblocks. Indeed, many such challenges have sparked vibrant new research directions. Together

with the growing body of studies demonstrating good agreement between connectionist systems

and brain data, these observations illustrate that the neuroconnectionism research programme is

highly progressive. Importantly, traditional approaches based on simple human-interpretable

concepts face significant challenges that can be overcome by the addition of neuroconnectionist

models to the researcher’s toolbox. These include explanations of neural data collected under more

natural and varied stimulus paradigms, explanations of lower-level sensory processes and their

transition to higher-level conceptual information, explanations of behavioral effects based on raw

sensory input, and learning. Another argument supporting the use of ANNs in neuroscience is that

theoretical computer science has taught us that complex systems often cannot be simplified to

predict their behavior: the only way to know the outcome of processing is to actually run the system

(or a good enough ANN model of it).

One reason for the success of ANNs may be that they provide a useful level of granularity for

cognitive neuroscience. They provide a sufficiently abstract view on neural processes while being

able to incrementally test which biological detail is needed in a top-down, hypothesis-driven manner.

The hyperparameters of the training procedure thereby form the effective degrees of freedom of the

experimenter, not the number of parameters in the respective network. On the other hand, ANNs

are high-dimensional enough to encode domain knowledge, enabling them to be grounded in

sensory input while performing comparatively well on a set of behavioral tasks.

While we have here focused on the progressive nature of the research programme, we do not mean

to imply that the field is anywhere near to successfully explaining cognition. Neuroconnectionism is

still in its infancy, and hence knowing where it fails is equally important as knowing where it works. In

addition to addressing current challenges, future work will need to incorporate many currently

missing aspects of lower and higher cognition. Focusing purely on the case of visual processing for

the sake of argument, these include (i) multi-task networks that can explain our ability to perform

multiple, sometimes highly abstract tasks based on sensory evidence233, (ii) a focus on embodiment

rather than treating networks as artificial brains in vats179,185,186,234, (iii) data efficient and continuous

learning using biologically realistic learning rules and inductive biases, (iv) an answer to how symbolic

reasoning is implemented in neuroconnectionist models, (v) better methods for unsupervised,

multimodal learning, (vi) better modeling of cognitive development, (vii) the integration of multiple

memory systems, and (viii) learning in social context (learning from each other). The fact that all

these aspects are currently missing but can in principle be implemented in ANNs perfectly illustrates
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both the current limitations and strong potential of the neuroconnectionist approach. Rather than

feeling threatened by the possibility of a new connectionist winter, the neuroconnectionist

community should therefore continue to welcome criticism and limitations as they point the way

towards new insights. Critics of neuroconnectionism on the other hand should not regard every

shortcoming of the current set of networks as a failure of the entire research programme. Time will

tell whether neuroconnectionism can deliver on its promises to explain the emergence of cognitive

phenomena, behavior and neural data from bio-inspired, yet simple distributed coding principles. For

now, it remains a highly progressive and therefore exciting research programme that welcomes

critical signposts to guide the way.
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