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The effect of prediction error on episodic memory encoding is
modulated by the outcome of the predictions
Francesco Pupillo 1,2✉, Javier Ortiz-Tudela 1, Rasmus Bruckner 3,4 and Yee Lee Shing1

Expectations can lead to prediction errors of varying degrees depending on the extent to which the information encountered in the
environment conforms with prior knowledge. While there is strong evidence on the computationally specific effects of such
prediction errors on learning, relatively less evidence is available regarding their effects on episodic memory. Here, we had
participants work on a task in which they learned context/object-category associations of different strengths based on the
outcomes of their predictions. We then used a reinforcement learning model to derive subject-specific trial-to-trial estimates of
prediction error at encoding and link it to subsequent recognition memory. Results showed that model-derived prediction errors at
encoding influenced subsequent memory as a function of the outcome of participants’ predictions (correct vs. incorrect). When
participants correctly predicted the object category, stronger prediction errors (as a consequence of weak expectations) led to
enhanced memory. In contrast, when participants incorrectly predicted the object category, stronger prediction errors (as a
consequence of strong expectations) led to impaired memory. These results highlight the important moderating role of choice
outcome that may be related to interactions between the hippocampal and striatal dopaminergic systems.
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INTRODUCTION
In our daily interaction with the environment, we are confronted
with a massive amount of information that cannot all be
processed in detail, given the limited resources of our cognitive
systems. In order to simplify the complexity of incoming
information, our brain tries to extract its regularities to be able
to react to environmental demands in efficient ways. One way of
extracting regularities from experiences is to rely on repetitions
and associations of events, which lead to the creation of
increasingly complex knowledge1,2. The accumulation of knowl-
edge across similar experiences that can subsequently form
expectations and orient our actions is one of the aspects that
characterize reinforcement learning3. In reinforcement learning,
individuals incrementally learn, over experiences, to form expecta-
tions in order to successfully predict future events. This learning
typically depends on the history of rewards associated with a
particular action4. However, in real life learning does not always
involve such explicit rewards. As an example, we may learn after
several experiences that bookstores tend to specialize in different
genres, such as crime or romance. Learning this association will
allow us to anticipate the type of books in a given bookstore and
thus guide us on which one to visit if we are looking for a
particular book.
Events can, however, sometimes deviate from our expectations.

We may go to a bookstore we have learnt being specialized in the
crime genre and discover that the crime novel we are looking for
is not there. We might then decide to go to another bookstore,
which we know has broad coverage of different genres. Despite a
low expectation, we may surprisingly find the crime novel we are
looking for in that generalist bookstore. In such situations, the
difference between expectations and the experienced event
generates a prediction error (PE) signal. The PE is crucial in
promoting learning by driving the updating of prior knowledge

and changing future expectations and decisions5,6. The amount of
PE is determined by the strength of the expectations and by the
outcome of the predictions. Correctly predicting an event
generally results in an increase in the strength of the expectations
that led to the prediction, whereas incorrectly predicting leads to a
weakening of the related expectations4. For example, correctly
predicting that the book we are looking for is in a specific
bookstore will increase our belief that we need to go to that store
to find similar books. Conversely, when we do not find the book in
the store our belief will not be as strong as before.
The study of the relationship between prior expectations and

learning has benefited from the use of computational models.
Reinforcement learning models, in particular, have been used, due
to their ability to confer a precise mechanistic role to PE in
learning and map it to its neural substrates. It has been shown that
firing patterns of mesencephalic dopamine neurons and also
Blood-Oxygen-Level Dependent (BOLD) signal change in the
striatum resemble the PE signal used in reinforcement learning
models7–9. This dopamine-dependent PE is thought to inform
future predictions by indicating deviations between observed and
predicted outcomes4,10–12, thus encouraging the repetition of
actions that are better than expected (positive PE) and discoura-
ging the repetition of actions that are worse than expected
(negative PE)13,14.
In addition to incrementally learning from multiple episodes,

individuals are also capable of forming episodic memory of
distinct, temporally specific events. For example, remembering the
precise occasion on which the desired book was found in a store.
While there is a great amount of evidence on the effects of PE on
incremental learning, its effects on the formation of new episodic
memories are still not fully understood. An emerging line of
research examines the relationship between prediction errors and
episodic memory formation as one form of interaction between
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memory and learning. These studies are motivated by both
anatomical considerations that the hippocampus, the brain
structure responsible for the creation of new memories, receives
dopaminergic input15, and by functional findings showing
interactions between the hippocampus and striatum16–18. More-
over, recent evidence suggests that hippocampus activation is
modulated by the strength of the predictions and their
violations19,20.
Several studies have manipulated the amount of the reward

participants expected and received, linking the obtained reward
PE experienced at the time of item presentation or immediately
after presentation to the subsequent episodic recognition of those
items21–25. Some studies have found improved memory for
surprising outcomes, namely better memory for items associated
with both better- and worse-than-expected outcomes, that is,
unsigned PE21,22. By contrast, other studies found that better-than-
expected outcomes (positive PE), compared to worse-than-
expected ones (negative PE), led to improved later recogni-
tion23–25. Therefore, mixed evidence has been gathered concern-
ing the effects of reward PE on episodic memory, depending on
the sign of PE.
The aforementioned studies using computational models

manipulated expectations by using rewards. Since in everyday
life, learning does not occur always in the presence of explicit
rewards, it is crucial to consider the mechanistic effects of PE
per se, in contexts in which no external reward is involved. A
different way of looking at the relationship between expectations
and memory may involve generating them through associations
between a context (e.g., going to a bookstore to look for a book)
triggering some expectations (e.g., more or less strong belief
about the presence of the book), and a matched or unmatched
outcome (e.g., finding or not finding the book). In addition, the
studies cited above have looked at the effects of PE in conditions
in which participants were actively learning novel associations.
However, in everyday life, familiar situations in which the
environmental structure has been somewhat internalized and
expectations that are already established are more common.
Therefore, the present study pre-trained participants to form

expectations of varying strengths, which were subsequently
matched or mismatched to render PE of different strengths and
related these to episodic memory performance. Specifically, we
designed a task in which participants learned probabilistic
associations between contexts and object categories. After a
learning phase in which the expectations were established,
participants were presented with the contexts and had to predict
the category of trial-unique objects that would appear at the end
of each trial. In order to generate different levels of PE strength,
we quantified expectations by using gradually different con-
tingencies. The probability of a certain category following a
context was systematically manipulated so that for some contexts
expectations were stronger than for others. Because no explicit
rewards were employed, we do not refer to signed/unsigned PEs.
Findings reported in a separate publication using the same data

as the current study26 showed that such context manipulation
affected recognition memory. Specifically, memory was found to
be better for contexts characterized by weaker expectations,
compared to contexts in which expectations were stronger. In the
present study, we fitted computational models to the data from
the learning and encoding phases to perform PE-based memory
analyses. More specifically, we used a reinforcement learning
model to derive learning rates and trial-level PE experienced
during the presentation of unique object images (i.e., encoding
phase) and related them to the likelihood of subsequently
recognizing the items in a following surprise recognition memory
test. The computationally derived PE reflected in a quantitative
and gradual manner how unexpected the presentation of an
object category in a given context was to the participants. The
procedure thus allowed us to test whether PE and prediction

outcome at the moment of the presentation of the items were
linked to episodic memory encoding.
We reasoned that if unpredicted events per se improve memory

encoding, we would observe a positive relationship between PE
and memory encoding, so that memory performance would be
better for the more unpredicted events. Contrarily, if the effect of
PE on memory is modulated based on whether or not the
prediction was correct, we would observe an interaction between
PE and the choice outcome so that PE improves memory for
better-than-expected outcomes, while it impairs memory for
worse-than-expected outcomes. To test these hypotheses, we had
participants learn associations between context and object
categories. The learned associations were then used to predict
the occurrence of new objects. Our results showed that the
likelihood of correctly recognizing an item scaled with PE and was
modulated by prediction outcome at encoding. Specifically, when
participants correctly predicted the object category, stronger PE
during encoding led to improved recognition in a subsequent
memory test, whereas for incorrect predictions stronger PE led to
impaired encoding. Together, these results suggest that the
strength of memory encoding critically depends on whether or
not prior expectations about encoded episodes are correct, in line
with the idea that encoding is more successful after more
positive PE.

RESULTS
Learning performance
In both experiments, participants first performed a task in which
they were asked to predict the category of trial-unique objects
that would follow a specific context. Instructions were given to
indicate that each context was predictive of one object category,
but there was no indication about which category and with which
contingency (see Fig. 1a–c). Participants learned the associations
between contexts and object categories during a learning phase
(phase 1), in which they received feedback on every trial. In a
subsequent encoding phase (phase 2), a new set of never-seen-
before objects (but belonging to the same object categories as the
ones in phase 1) was introduced and participants were asked to
continue doing the same task as in the previous phase. Finally,
they completed a recognition memory test, where they were
asked to recognize the objects presented in phase 2, among
distractors that were never seen before and should be rejected.
In both experiments, participants were presented with six

contexts. Each of the contexts was predictive of the object
categories following specific contingencies (Fig. 1a, b). In
Experiment 1, in half of the contexts one of the three object
categories was presented 80% of the time, and the remaining two
object categories 10% of the time. In the other half of the
contexts, all three object categories were equally likely. In
Experiment 2, we included a contingency condition in which the
most likely object category was slightly less dominant (0.70–0.30),
a manipulation that allowed us to sample more points along the
PE continuum. In addition, two instead of three object categories
were used, in order to decrease the number of objects for each
category and the number of scene contexts per contingency
condition needed to enable proper counterbalancing. As a result,
the object-context contingencies were 0.90–0.10, 0.50–0.50, and
0.70–0.30, respectively.
In both Experiments 1 and 2, learning performance during the

contingency learning and encoding phases showed that partici-
pants understood the task correctly and were able to learn to
predict the object category that was more likely to be presented
for each context. Participants’ cumulative accuracy showed that
participants clearly favoured the most likely option for each
context and experiment (other than the context with equal
contingencies), as shown in Fig. 2a, b.
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Computational models
To get a better mechanistic understanding of the pattern
observed, we fitted a computational model to participants’
learning data to derive trial-by-trial PE at encoding and link it to

subsequent recognition memory (see Fig. 1d, e). In order to derive
learning rate and trial-level PE for the contingency learning and
encoding phases, variants of a reinforcement learning model27

were fitted to data from both the learning and encoding phases
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pooled together. The use of reinforcement learning models
allowed us to capture the process of establishing prior expecta-
tions while learning the object-category contingencies of the
different contexts. In reinforcement learning models, an agent is
assumed to learn values of context–category associations by
adding the current expected value to the PE multiplied by a
learning rate α. The learning rate α takes on a value between 0 and
1 and determines the influence of the current PE on the expected
values. It represents the extent to which evidence from the current
trial is used to update the expectations: Higher learning rates
weight the PE more strongly to make the expected values look
more like the currently observed one, while lower learning rates
weight past estimates more strongly.
We fitted four different reinforcement learning models that

made different assumptions on how participants learned the
context/object-category associations (see the “Methods” section).
These models can be distinguished depending on how the
learning rate is estimated and on the type of feedback they use to
update the values. For the learning rate, we considered both
models assuming the same learning rate for all participants, and
models in which the learning rate was free to vary. For the
feedback used to update the values, we considered “instructive”
models which updated the expected values depending on the
object category presented on each trial, regardless of participants’
choices. After having established that the model with a free,
constant learning rate fitted the data the best, we also considered
an “evaluative” model, which updated the expected values
depending on the accuracy of participants’ actions.
Overall, the fitted models were: (a) an instructive model with a

learning rate α (fixed across participants) that decreases across
trials (dLRI), and updates the expected values by increasing the
value of the object category presented on a given trial and
decreasing the values of the categories not presented, regardless
of the choices made by the participants; (b) an instructive model
with a decreasing learning rate α that was free to vary between
individuals (dfLRI); (c) an instructive model with a free constant
learning rate α (fLRI); and (d) and an evaluative model with a free

constant learning rate (fLRE), where the expected values were
updated depending on the accuracy of participants’ actions,
increasing for correct predictions and decreasing for incorrect
ones.
The dLRI considers how the expected values should be updated

optimally since it is derived from a Bayesian formulation of the
task (see the “Methods” section and Supplemental Material). In
this optimal Bayesian formulation of learning, PE is assumed to
have its maximal influence on learning in the early trials and
decreases as a function of the number of trials. In this model, the
only parameter that was estimated was the inverse temperature β,
which regulates the stochasticity/determinism trade-off in select-
ing the action depending on the expected values: Higher values of
β represent a more probable preference for the higher context/
object-category associations, while lower values also consider low-
strength associations, producing more noisy choices.
In addition to the β parameter, the instructive model with the

free decreasing learning rate estimates a learning rate α that was
free to vary across individuals and decreased across the number of
observed trials. The instructive fLRI and evaluative fLRE models
also estimated a learning rate α that was free to vary across
individuals, in order to capture participants’ distinct learning rates.
However, in contrast to the dLRI and the dfLRI models, in the fLRI
and fLRE models, the learning rate α was constant throughout the
learning and encoding phases. These models make different
assumptions on how participants used the PE to update the
expected values. In fact, while the evaluative free-learning rate
model (fLRE) assumes that participants use the feedback received
(correct vs. incorrect) to update only the category chosen, the
instructive free-learning rate model (fLRI) implies that on each trial
participants update all the associations by strengthening the one
between the context and the category presented while lowering
the associations with that context and the categories that were
not presented at that trial.
Prior to fitting the models to participants’ data, we ensured that

the models could distinguish among different parameter values
and also generate qualitatively different data (see the 'Parameter

Fig. 1 Illustration of the methods. Illustration of the context/object-category contingencies for a Experiment 1 and b Experiment 2. Note that
each object is representative of its object category and that different, unique items from each category were used on every trial. c Illustration
of the three phases of the study. d The model computed different expected values Q at each trial. Participants’ category choices could be
correct or incorrect. The PE depended on the expected value of the category presented at the end of each trial. This model-derived PE at
encoding was then related to the probability of subsequently recognizing those objects among distractors (p(hit)) in a logistic regression
model. e Two hypothetical relationships between PE and recognition memory. On the left, positive relationship between PE and recognition
memory, regardless of prediction outcome. On the right, the prediction outcome modulates the PE-memory interplay.

Fig. 2 Learning performance. Participants’ performance at the learning and encoding phase for a Experiment 1 and b Experiment 2. Trial
number by contingency condition is represented in the x-axis, while cumulative accuracy is shown on the y axis. The different colours
represent the contingency conditions. The shadows represent the standard error of the mean while the black horizontal dashed lines indicate
the chance level. Note that the number of trials differs across conditions, as filler objects were used for stronger contingency conditions,
compared to weaker ones to reach the desired contingency.
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recovery’ and 'Model recovery’ subsections in the “Methods”
section and Supplemental Material). Then, the four models were
fitted to participants’ data so that the parameters of best fit were
estimated as the parameters that maximized the likelihood of
participants’ choices. In addition to calculating the models’ log-
likelihoods, we calculated the Bayesian information criterion (BIC)
for each model and for each subject, by multiplying the maximum
likelihood (i.e., the likelihood for the parameters of best fit) by the
number of free parameters in the model. This approach penalizes
models with more parameters. We then marked the number of
participants for which each model was the best fitting, as well as
the evidence for it, computed as the BIC difference between the
best and the second-best model. Results are shown in Fig. 3a, b.
Table 1 shows BIC values and the number of participants for which
a model was the best fit, as well as the number of participants for
which there was strong evidence, for both Experiments 1 and 2.
Model comparison established that the instructive model with

the free, constant learning rate (fLRI) explained participants’
behaviour better than the other models. The overall BIC of fLRI
was the smallest (indicating better fit), and the number of
participants for which it was the best model was 20 over a total of
32 participants for Experiment 1 and 23 over a total of 40
participants for Experiment 2. In addition, there was very strong
evidence for it being the best model for 6 participants in
Experiment 1 and 9 participants in Experiment 2. These results
indicated that participants’ learning processes overall deviate from
the behaviour of an optimal Bayesian observer and that they can
be better described by using individual learning rates that are

constant across trials. In addition, the model comparison showed
that most participants used the category information of the object
presented at the end of each trial to update all the context/object-
category associations, and not only the associations related to the
chosen object category.
We then validated the winning model by looking at the ability

of the best-fitting model to generate performance that was
qualitatively similar to participants’ actual behaviour. Figure 3c, d
shows that the model is able to capture participants’ behaviour.
Data simulated from the dLRI, dfLRI, and the fLRE models can be

Fig. 3 Model comparison and model validation. Results of model comparison for a Experiment 1 and b Experiment 2. Evidence strength for
the best model for each participant is shown. Simulated data of the best fitting model (fLRI) and actual participants’ data overlaid, for
c Experiment 1 and d Experiment 2.

Table 1. Model comparison.

Model/Experiment BIC (se) Best (N) Very strong (N)

Experiment 1

dLRI 289.3 (2.5) 2 1

dfLRI 277.0 (2.0) 2 0

fLRI 266.4 (1.7) 20 6

fLRE 271.4 (2.7) 8 3

Experiment 2

dLRI 801.2 (4.3) 5 2

dfLRI 793.1 (2.9) 7 3

fLRI 783.1 (3.7) 23 9

fLRE 774.3 (2.9) 5 2
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found in the Supplemental Material (Fig. S5). We validated the
winning model further by looking at the ability of the model to
capture differences in learning rates. Simulations showed that the
model generated performance that was qualitatively similar to
participants’ actual behaviour. The results of this comparison can
be found in the Supplemental Material (Fig. S6).

Model-derived PE and memory
We ran the fLRI model with the best-fitting parameters over the
participant data to obtain an estimate of their trial-level PE during
the encoding phase. Figure 1d shows how model-derived PE was
computed. Participants’ expected values for each object category
were computed on each trial and used to derive trial-level PE. The
best-fitting model estimated PE by subtracting the expected value
of the presented category from 1. The PE estimated was thus
unsigned and contingent on the presented category. Conse-
quently, higher PE levels were generated when a category
presented was not expected, as reflected by its corresponding
expected value being smaller. By contrast, lower PE was generated
on trials in which the category presented was characterized by a
high expected value. The PE derived at encoding was then linked
to the likelihood of successfully recognizing the unique objects as
“old” in the subsequent recognition memory test by using a
logistic regression model.
As the two experiments were conceptually identical, the

analyses were run on data collapsed across them (with the
Experiment modelled as a factor). The distribution of PE by
contingency collapsed across experiments is shown in Fig. 4a.
We then tested whether model-derived PE was related to

recognition memory. We hypothesized either a positive relation-
ship between PE and memory encoding, regardless of the
outcome of participants’ predictions, or an interaction between
PE and prediction outcome (see Fig. 1e). Plots of the observed
values (see Fig. 4b) revealed a relationship between PE and
memory modulated by prediction outcome. In order to statistically
test for the significance of this relationship, we used a generalized
linear-mixed model where participants were treated as random
effects (see the “Methods” section). In the model, PE, learning rate,

and prediction outcome, as well as their interactions, were added
as fixed effects. In addition, random slopes for PE and prediction
outcome, and their interaction, were also added to the model.
Finally, the experiment was added as a fixed term (along with
interactions) to model any differences between the two experi-
ments. The results of the analysis are presented in Table 2.
Results showed that there was a significant interaction between

PE and prediction outcome, χ2ð1Þ = 26.14, p < 0.001, while the main
effects of prediction outcome, learning rate, and the interaction
between prediction outcome and learning rate, were not
significant, ps > 0.316. There was also a significant main effect of
the experiment, χ2ð1Þ = 9.91, with participants performing worse
overall at the recognition test in Experiment 2, compared to
Experiment 1, β=−0.63, p= 0.002, OR= 0.53. Importantly, all the
interactions including the experiment were non-significant, ps >
0.204, showing that the effects of interest did not differ across the
two experiments. All the interactions including learning rate were
also not significant, ps > 0.171, suggesting that the estimated
learning rates did not affect overall memory accuracy and that
also it did not modulate the effects of PE, prediction outcome, and
memory. These results show that the effect of PE on memory
encoding is different depending on the prediction outcome,
supporting the hypothesis that choice outcome interacts with PE.
In order to break down the interaction between model-derived

PE and prediction outcome, we analysed the effect of PE on
recognition memory separately for correct and incorrect predic-
tions. The analysis revealed a significant positive relationship
between PE and recognition memory for correct prediction
outcome, β= 0.80, p < 0.001, OR= 2.22, and a significant negative
relationship between PE and prediction outcome for incorrect
prediction outcome, β=−0.78, p < 0.001, OR= 0.46. These results
show that PE improved recognition memory for correct predic-
tions while impairing it for incorrect predictions.
We ran additional analyses with the hit rate binned by

aggregating it between the quartiles for PE for each participant.
Results from these analyses did not change the overall pattern
presented in the previous analyses (see Supplemental Material
and Fig. S8).

Fig. 4 Computationally derived PE and memory. a Density plot and histogram of model-derived PE for merged data from Experiments 1 and
2. b Spaghetti plot of the observed relationship between PE and recognition memory as a function of prediction outcome. Each coloured line
represents one participant, while the logistic regression line across participants is depicted in black.
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In the previous analyses, we considered the PE that was
contingent on the category presented on each trial, independently
of participants’ choice. However, PE can also be computed by
incorporating participants’ prediction outcomes. Such PE is similar to
the signed PE considered by previous studies23,24. The analysis of the
effects of this kind of PE on recognition memory (included in
Supplemental Material, see Fig. S9) showed a significant positive
relationship between PE and recognition memory, with stronger
positive PE related to better memory and stronger negative PE
related to worse memory, which is in line with the results shown
previously revealing an interaction between signed PE and
prediction outcome.

DISCUSSION
Our brain extracts regularities from previous experiences and
forms expectations accordingly in order to simplify the complexity
of incoming information and better react to environmental
demands. Events that mismatch expectations generate a PE that
leads to the updating of expectations and is postulated to also
affect the formation of episodic memories. Previous literature has
provided mixed evidence on the effects of PE on memory
formation, with studies on reward PE using reinforcement learning
models producing contrasting results21–24. We explored the
effects of PE on memory in a paradigm that did not include an
explicit manipulation of the reward and conditions in which
participants had already established prior expectations. In the task
used, associations between context and object categories were
first learned by participants and then used to predict the category
of trial-unique upcoming objects. We used a reinforcement
learning model to derive trial-by-trial PE generated by expecta-
tions of different strengths and analysed its effect on subsequent
memory performance. We showed that the outcome of

participants’ predictions was a modulator of the effects of PE on
memory. Precisely, when a prediction turned out to be correct,
higher PE was related to better memory; conversely, when a
prediction turned out to be incorrect, lower PE was related to
better memory. These results reveal a computationally specific
effect of PE, highlighting the crucial modulating role of prediction
outcome.
Even though our task did not involve any explicit reward, our

findings are in line with studies on reward PE showing that
positive prediction errors improve subsequent memory whereas
negative prediction errors impair subsequent memory23–25, a
pattern suggested to be related to dopaminergic activity
promoting hippocampal plasticity and memory formation28,29.
Thus, these results are in line with views suggesting that an
intrinsic reward such as choice outcome might activate similar
brain areas and neurotransmitters to the ones that are activated
by a secondary reward (i.e., monetary reward30,31). It is well known
in computational neuroscience that the neurotransmitter dopa-
mine is responsible for a PE signal that drives plasticity in the
striatum, facilitating repetitions of actions with better-than-
expected outcomes4,10. Dopamine is also known to enhance
long-term potentiation in the hippocampus32, and this modula-
tory effect might be responsible for the prioritization of relevant
information in memory, such as rewarded stimuli33,34. The
enhanced memory of rewarded information is thought to rely
on the activity of hippocampal-enthorinal cortex microcircuitry,
which has been shown to increase the representation of
information as a function of the expected probability of a
reward35.
It has also been shown that the effect of dopamine on the

hippocampus can be bidirectional: Higher levels of dopamine
cause phasic firing in the hippocampus which results in increased
activation, while lower levels of dopamine produce tonic firing

Table 2. Results of the main analysis.

Fixed effects β (se) 95% CI z p OR

Intercept 0.66 (0.10) 0.46 0.85 26.54 <0.001 1.91

PE −0.12 (0.19) −0.45 0.22 −0.12 0.521 0.88

Prediction outcomea 0.10 (0.10) −0.08 0.29 1.00 0.316 1.11

Learning rate 0.68 (2.30) −3.74 5.19 0.30 0.767 1.98

Experimentb −0.63 (0.20) −1.00 −0.22 −3.15 0.002 0.53

PE × prediction outcome 1.87 (0.36) 1.18 2.53 5.11 <0.001 6.47

PE × learning rate 1.96 (3.67) −3.26 6.83 0.53 0.593 7.11

Prediction outcome × learning rate 2.91 (2.13) −0.50 6.34 1.37 0.171 18.40

PE × experiment −0.09 (0.38) −0.85 0.63 −0.25 0.801 0.91

Prediction outcome × experiment 0.19 (0.20) −0.20 0.60 0.94 0.348 1.21

Learning rate × experiment 4.0 (4.58) −4.83 13.15 0.87 0.381 55.03

PE × prediction outcome × learning rate 0.90 (5.84) −5.75 6.80 0.15 0.877 2.47

PE × prediction outcome × experiment −0.93 (0.74) −2.28 0.47 −1.27 0.204 0.393

PE × learning rate × experiment −1.95 (7.32) −10.62 7.03 −0.27 0.790 0.141

Prediction outcome × learning rate × experiment 3.53 (4.23) −3.00 10.39 0.83 0.404 34.23

PE × prediction outcome × learning rate × experiment 5.17 (10.96) −2.09 12.93 0.47 0.637 175.88

Random effects Variance Std. dev.

Subjects (Intercept) 0.30 0.55

Prediction outcome 0.1 0.03

PE 0.03 0.17

Prediction outcome × PE 0.03 0.18

aPrediction outcome contrasts have been set to 0.5 and −0.5 for correct and incorrect prediction, respectively.
bExperiment contrasts were set to 0.5 and −0.5 for Experiments 1 and 2, respectively.
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and inhibit hippocampal activation29. In the present study, such
dopaminergic effects may have driven the difference between the
expectations and the outcome of the prediction. More specifically,
in conditions in which the expectation of a certain outcome was
low, a correct prediction might nevertheless provide a PE signal
which increases the release of dopamine in the striatum,
promoting hippocampal activation, and resulting in better
encoding. This idea is supported by evidence showing that
increased striatum-hippocampus connectivity may lead to
enhanced memory encoding36. Conversely, in conditions in which
a certain outcome is strongly expected, an incorrect prediction
might correspond to a negative PE, which suppresses the release
of dopamine in the striatum and activation in the hippocampus,
resulting in impaired encoding. Future studies investigating the
connectivity between the hippocampus and striatum at these
different conditions are needed to provide support for these
hypotheses.
It should be noted that performance on the recognition task

that we used may not be supported by the activation of the
hippocampus. Recognition memory is thought to engage two
separate processes: Recollection, known to rely on the hippo-
campus, and familiarity, known to be supported by extra-
hippocampal structures37. The recognition memory task we used
and the analysis we carried out does not allow us to conclude
whether recognition performance is driven by recollection
processes or by familiarity processes. Therefore, more studies are
needed to investigate whether the pattern observed in the current
study is supported by hippocampal or extra-hippocampal
structures.
In the present study, PE was experienced at the time of the

presentation of the to-be-remembered items. The objects
presented provided feedback to participants on whether or not
their predictions were correct. Previous studies from De Loof
et al.24 and Jang et al.23 found effects of reward PE experienced
during item presentation on memory encoding that are consistent
with our results. Importantly, Jang and colleagues showed that
memory effects of reward PE are elicited at item presentation, but
not at the time of the presentation of the feedback when the
objects were no longer shown. Therefore, our results provide
additional support to the view that PE has to be elicited during
object presentation in order to have solid effects on memory
encoding.
Our results are partially in line with previous evidence showing

a trade-off between predictions and episodic encoding. Sherman
et al.38 showed that the act of predicting upcoming events based
on learned regularities interfered with the encoding of new
information. This activity was mediated by prediction-related
activation of the hippocampus, suggesting that encoding is
favoured in situations for which there are no strong predictive
models. In the present findings, the improved memory for higher
PE was observed in conditions in which the expectation for an
outcome was low, and thus participants had not formed a clear
predictive model yet. In addition, when participants incorrectly
predicted the upcoming items, stronger expectations were also
related to worse memory. It is also important to note that in the
paradigm used in the current study predictions are generated at
the categorical level, while memory is measured at the item level.
The trade-off observed between predictions and episodic encod-
ing may thus reflect the outcome of two competing
mechanisms38.
Results from the current study are in contrast with previous

findings showing a positive relationship between unsigned
reward PE and memory21,22. In the present study, PE represented
how unexpected the presentation of a category was and thus was
equivalent to unsigned PE. In contrast to the findings from
Rouhani and colleagues, our results showed that the overall effect
of PE, independent of the outcome of the prediction, was not
significant. One possible explanation for this discrepancy is the

task that these studies used for encoding. Rouhani et al.21,22

presented participants with scenes that could be predictive of
future rewards. After participants made their predictions, the
images were presented together with the reward received, which
could be either better or worse than expected, thus generating a
reward PE. In their first study21, they showed a positive effect of
unsigned prediction error on memory encoding, which thus
improved memory encoding for both better- and worse-than-
expected outcomes. However, it was not clear whether the effect
was due to PE occurring before or after the feedback presentation,
as the images were presented even before the presentation of the
feedback. In a second study22, the authors manipulated reward PE
before and during feedback delivery separately, finding an effect
of signed reward PE for images presented before feedback
delivery and an effect of unsigned reward PE for items presented
during feedback presentation. The discrepancy between these
findings and our findings could be due to the different
methodologies used to elicit PE. The reward PE experienced
during feedback delivery in the study by Rohuani and colleagues22

was driven by a specific condition in which participants could win
or lose money. As a consequence, the effects observed might have
been triggered by arousal-related prediction error, which has been
shown to have emotional processes linked to the activity of the
amygdala39, which are in turn known to enhance memory40.
Evidence showing that arousal-related unsigned prediction error is
linked to enhanced memory encoding is in line with this
explanation41.
It is important to note that mismatched information might have

been discarded as not helpful for the future because the task used
in both experiments included contingencies that were established
before the encoding of the events and never changed during the
course of the tasks. Participants underwent extensive learning
phases in which they established their expectations for the
different contexts prior to the encoding task. This setting has not
frequently been used in previous computational modelling
studies, although it is more common in real, daily life that people
find themselves in situations they are familiar with. In conditions
in which expectations are established and known to be stable,
deviant information may be taken as a rare event of chance. On
the contrary, it is possible that mismatched information would be
more valued during the learning phases or in conditions where
changes are expected to occur. Evidence showing different
behavioural and neurophysiological correlates of expected and
unexpected uncertainty is in line with this view42. For example, in
tasks in which the contingencies are stable, encountering low-
probability trials is expected, and the value of those stimuli in
predicting future events is suppressed via cholinergic neurotrans-
mission43. In contrast, in tasks in which the probabilistic structure
of the environment changes unexpectedly, encountering low-
probability stimuli boosts learning through the release of
norepinephrine42, an effect that might also result in increased
episodic memory encoding.
To characterize the contingency-learning process we fitted four

different reinforcement learning models to participants’ data: An
optimal model with a decreasing learning rate that was the same
for each participant, a model with a decreasing learning rate that
was free to vary across participants, a free-learning rate model
considering the outcome of participants’ choice (evaluative
model), and a free-learning rate outcome-free model considering
the information given on each trial (instructive model). Model
comparison showed that participants’ learning processes did not
conform to the normative behaviour of a Bayesian model, which
prescribes that the optimal way of learning in this task entails
decreasing the learning rate over trials. In fact, participants’ data
were best explained by models estimating individual, constant
learning rates. In addition, in the best-fitting model the context-
category associations were learned by increasing the strength of
the associations of the category presented on a given trial and
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decreasing the strength of the associations of the categories not
presented, regardless of participants’ choice and its outcome. This
result suggests that prediction outcome might not be important
for PE-driven incremental learning of associations, while it is
crucial for modulating the influence of PE on the encoding of item
identity.
Our results also showed that the estimated learning rate did not

affect overall recognition memory. This can potentially be
explained by the fact that the estimated learning rate was fixed
throughout the experiment. In our study, a learning rate was
estimated for each individual, akin to an individual difference
measure. It is possible that the potential effect of learning rate on
memory is rather a within-person process, observable only in
paradigms in which learning rate changes (for example, when
environmental contingencies change42). It is also important to
note that our interest focused on conditions where the
contingencies were already learned, while its effects during
the learning of the contingencies were not addressed. However,
the effects of the learning rate might vary considerably in
conditions in which participants learn the contingencies. There-
fore, future studies are needed to examine the dynamic relation-
ships between learning rate and memory over time.
In conclusion, the current study provides evidence of the effects

of PE on memory encoding. In conditions where no explicit reward
is delivered, we show that the effects of computationally derived
PE on memory are modulated by whether or not a prediction is
correct, hence informing future studies exploring the interactions
between learning and memory.

METHODS
Participants
As Experiments 1 and 2 were conceptual replications with a similar
design, both experiments are described together in the following.
Differences between the experiments are pointed out.
In Experiment 1, 32 young adults (20 female; mean age= 22.59

years, s.d.= 3.18) were recruited through advertisements placed
at the Goethe University campi in Frankfurt am Main. In exchange
for participation, participants received either course credits or a
monetary reimbursement of 8€/h. In Experiment 2, 40 participants
(19 female; mean age= 24.87, s.d.= 4.64) were recruited through
the Prolific platform (https://www.prolific.co/). All participants had
normal or corrected-to-normal vision and no history of psycho-
logical or neurological disorders. All participants gave written
informed consent prior to participation. In exchange for participa-
tion, volunteers received either course credits or reimbursement
of 8€/h. The study was approved by the ethics committee of the
Goethe University Frankfurt am Main.

Materials
For a more detailed description of the materials and methods used,
please refer to the original publication26. For Experiment 1, six
coloured scene categories depicting real-world outdoor locations
were taken from the ECOS database (https://sites.google.com/
view/ecosdatabase/) were used as contexts (see Fig. 1). The
selected scene categories were beach, mountain, road, desert,
savannah, and seabed. As objects, 192 coloured images depicting
real-world objects were collected from an online search and were
used as target objects. The images selected included the same
number of objects for three different object categories: musical
instruments, fruits/vegetables, and household objects. All images
were subjected to creative commons licensing and are available at
https://github.com/ortiztud/premup. For Experiment 2, the number
and types of scene categories were the same as in Experiment 1.
However, the object categories were reduced and only two were
used: musical instruments and household objects.

Design and procedure
In Experiment 1, participants completed the learning, encoding,
and retrieval phases in one session, while in Experiment 2
participants completed the learning phase in the first session and
the encoding and retrieval phase ~24 h later. In addition, in the
second session of Experiment 2 participants worked on an extra
reminder block of contingency learning before the encoding phase.
In Experiment 1, stimulus presentation and recording of the
responses were done using Matlab’s Psychtoolbox44 and a 60 Hz
monitor (resolution: 1680 × 1050, full HD). Experiment 2 was moved
online due to the COVID-19 pandemic, and some necessary
changes were implemented. Stimulus presentation and response
collection were programmed in PsychoPy (v2021.1.4) and hosted
online on Pavlovia (https://pavlovia.org). At the beginning of each
session, the experimenter met the participant in a virtual room
using an online video-conferencing tool, during which the
appropriateness of the testing setup was assessed with a brief set
of questions about the participant’s overall well-being, about the
physical room in which the task would be performed and about the
computer that would be used. Experimenters ensured that all
participants were sitting in a quiet room, used a laptop or a desktop
computer, and were encouraged to minimize distractions as much
as possible during the session. At the end of the session, the
experimenter met the participant again and asked them about any
unforeseen event or situation that might have come up during the
completion of the task. Finally, to maximize engagement, self-
administered breaks were included after every 40 trials during the
contingency learning and encoding phases.

Contingency learning phase. Participants were presented with the
scene contexts and were instructed to learn which object category
was more likely to belong to each of the scene contexts; they were
told that some contexts were easier to learn than others, but the
exact contingencies were not explicitly given. A fixation cross at
the centre of the screen marked the beginning of each trial and
lasted for 500ms. After that, a scene image including a rectangular
white patch with a question mark was presented. They were then
asked to make a prediction about the object category that they
thought they would encounter in that context. Three response
alternatives were given for Experiment 1 (i.e., musical instruments,
fruits/vegetables, and household objects) and two for Experiment
2 (i.e., musical instruments and household objects). Category
reminders were placed at the bottom of the screen and
participants could choose among them by pressing one of three
arrow keys in Experiment 1 (left arrow, down arrow, right arrow)
and two arrow keys in Experiment 2 (left arrow, right arrow). The
selected category was highlighted with a yellow frame. After 2 s
from the scene onset, the question mark within the white patch
was replaced by an object and the coloured frame changed colour
to indicate a correct or incorrect response. Specifically, the red
frame indicated incorrect responses, green frame indicated correct
responses. Objects and feedback were shown on the screen for
1 s. Participants were told to use the feedback for learning the
contingencies over trials.
The frequency to which an object category was encountered in

the given scene contexts was manipulated to create different
expectations. In Experiment 1, three object categories were used
for each scene context. In half of the scene contexts, one of the
three object categories was frequently presented 80% of the trials,
while the other two were equally presented in 10% of the trials
each (0.80–0.20 contingencies). Conversely, in the other half of the
contexts, the object categories were all three equally probable,
being presented each 33% of trials (0.33–0.33–0.33 contingencies).
In Experiment 2, in two context scenes, one of the two object
categories was presented in 90% of the trials, while the other
object category was presented in 10% of the trials (0.90–0.10
contingencies). In two more scene contexts, the more frequently
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presented object category was shown in 70% of the trials, while
the other object category appeared in 30% of the trials (0.70–0.30
contingencies). Finally, in two scene contexts, both object
categories were equally likely to be presented, appearing each
one in 50% of the trials (0.50–0.50 contingencies). To achieve the
desired contingencies without proportionally increasing the
number of individual objects used, different objects were
repeated a different number of times depending on their category
and the contexts in which they were shown. The association of
each object category to each scene category was counterbalanced
across participants so that across the entire sample, every object
category was paired with every scene category.

Encoding phase. The encoding Phase in Experiments 1 and 2 was
similar to the learning phase, with only minor changes introduced.
The explicit feedback represented by the coloured squared
surrounding the object was removed in this phase. We included
this additional explicit feedback in the learning phase to help
participants familiarize themselves with the task and to speed up
the contingency learning process. However, as the critical phase
for testing the PE-related effects on memory was the encoding
phase, we removed this colour information to avoid potential
contamination of arousal and valence on memory (see, e.g.,
ref. 45). In addition, a new set of objects was used, and each of
these objects was presented only once. In Experiment 1, we had
24 objects for each of the three 0.33–0.33–0.33 contexts, and 24
objects for each of the three 0.80–0.20 scene contexts, for a total
of 144 objects. In the 0.80–0.20 contexts, 24 filler objects were
added for the object categories presented 80% of the time. Each
of these 24 objects was repeated seven times to reach the desired
contingency. Therefore, the total number of trials in the encoding
phase of Experiment 1 was 312: 240 for the 0.80–0.20 condition,
and 72 for the 0.33 condition. In Experiment 2, 20 objects for each
of the two 0.90–0.10 and 0.70–0.30 contexts were presented only
once. Then, to achieve the desired contingencies for each scene
category, we used five filler objects for the 0.90 and five filler
objects for the 0.70 contingency category. These filler objects
were repeated 16 times for the 0.90 contingency category and
three times for the 0.70 contingency category. For each of the two
0.50–0.50 contexts, we used 10 objects, which were presented
only once, and 10 fillers, each repeated twice. In total, the number
of trials in the encoding phase of Experiment 2 was 330: 200 in the
0.90–010 condition, 70 in the 0.70–0.30 condition, and 60 in the
0.50 condition. Filler trials from both experiments were not
considered in the analysis of recognition memory (see Table S1 in
the Supplemental Material for a breakdown of the number of
objects for each context and phase).
Similarly to the contingency learning phase, the participant’s

task was to predict which object category followed a scene
context that was presented on every trial. The contingencies
between object categories and scenes were the same as in the
previous learning phase.

Retrieval phase. In the object recognition test, all the objects from
the encoding phase together with new objects were used. In
Experiment 1, the hit rate was calculated based on a sample of half
of the 144 objects (72 trials), as half of the trials were selected for the
immediate recognition session which is the focus of the analysis of
the current study. The rest of the trials were selected for a delayed
recognition test, which was added to explore the potential
modulating factor of consolidation on the interplay between PE
and memory and it is not considered in the current study. In addition
to the 144 old trials, 144 new items were presented in the
recognition memory task. In Experiment 2, all the 100 old objects
were tested in the immediate recognition session and thus included
in the hit rate calculation, together with 80 new items. The new
items belonged to the same categories as the items presented
during the encoding phase, so that in Experiment 1 one-third of the

new items were musical instruments, one-third were fruits/
vegetables, and one-third of household objects; in Experiment 2
half of the items were musical instruments and half household
objects (see Table S1 in the Supplemental Material for the exact
number of objects for each category and phase). Trials started with a
fixation cross for 500ms, and objects were presented in isolation at
the centre of the screen. Participants were required to make old/new
judgements. All the responses in the retrieval phase were self-paced
and not time-constrained, and the display stayed unaltered until
participants made a response. After that, a new trial was presented.
To evaluate overall memory performance for each participant, a d’

score was calculated from the hits (responding “old” to old items)
and false alarms (responding “old” to new items), an index that
indicates participants’ ability to discriminate between old and new
items. In order to exclude participants who did not perform the task
above the chance level, we created a null distribution by generating
5000 random permutations of the trial labels. We then excluded
participants whose performance was below the 95% percentile of
the null distribution. Five participants from Experiment 1 and five
from Experiment 2 with an overall d’ score below the obtained
threshold were excluded from further analyses. After the exclusion,
the final d’ was d’= 0.93, t(26)= 13.7, p < 0.001 for Experiment 1, and
d’= 0.90, t(34)= 16.8, p < 0.001 for Experiment 2, indicating that
participants were overall able to discriminate previously presented
old items from new distractors.

Computational models
We fitted participants’ contingency learning and encoding data
with computational models. The models considered are all
different versions of a standard Rescorla-Wagner model (or Q-
learning)3,7. For each scene category, the model estimates a trial-
level variable Q for each object category included in the
experiments (three in Experiment 1 and two in Experiment 2).
These Q values reflect the strength of participants’ belief that a
certain object category (for example, “Musical instruments”) will
be presented in a specific context (for example, “Beach”). Since we
have N object categories for each n context, the estimates Q of the
probabilities can be represented by the following j-by-c matrix:

Q1;1; Q1;2; ¼
Q2;1; Q2;2; ¼
¼ ; ¼ ; Qj;c

264
375 (1)

where Q1,1 represent the expected value Q for category j= 1 in
context c= 1. For all the models considered in this study, the
estimated values are stored in a category j by context c matrix as
this one and initialized as Qj,c= 0.33 in Experiment 1, and Qj,c= 0.5
in Experiment 2.

Decreasing learning rate instructive model (dLRI). First, to provide
a normative Bayesian solution, we used a Dirichlet-multinomial
model that we re-formulated to a delta-rule model (see
Supplemental Material). This model learned according to predic-
tion errors scaled by a learning rate to produce an update of the
estimated category probabilities. The learning rate dynamically
decreased across trials so that the model learned more rapidly at
the beginning of the task, and more slowly on later trials. Formally,
the model sequentially updated the category probabilities for
each context according to

Qj;c
tþ1 ¼ Qj;c

t þ 1
t
δj;ct ; (2)

where Qj;c
tþ1 denotes the estimate of the probability of category j in

context c at the next trial t+ 1. This estimate is based on the
current estimate of the category probabilities Qj;c

t and the
prediction error δj;ct , calculated as

δt
j;c ¼ rjt � Qj;c

t ; (3)
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where the feedback rjt represents an array of N-by-j elements, in
which each element refers to a category j, and it is defined as
follows:

rjt ¼
1 if j ¼ jt
0 otherwise

:

�
(4)

The values of the array are 1 if category j is present on trial t,
and 0 if it is not. Therefore the model is assuming that a value
estimate for an object category that appears on a trial
incrementally increases as a result of a prediction error until Qj;c

t
reaches its asymptote of 1. Conversely, the value estimates of
categories that are not presented on trial t decrease as a result of a
negative prediction error, unless Qj;c

t for those categories has
already a value of 0. Therefore, this model only uses instructive
feedback, which indicates what is the correct choice, indepen-
dently of participants’ actions. The learning rate 1=t ¼: α indicates
to which degree the prediction error influences the updated
estimate of the category probabilities. Given that the learning rate
in our case directly depends on the number of completed trials t
for a context c, it continuously decays as a function of trials. This
principle ensures that the influence of prediction errors is stronger
at the beginning of the task.

Decreasing free learning rate instructive model (dfLRI). The dLRI
shows how an optimal agent should update the expected values.
However, participants’ behaviour may be far from optimal. For this
reason, the dfLRI allows each participant to have its own learning
rate α, which decreases as a function of the trial number, similarly
as in the dLRI model:

Qj;c
tþ1 ¼ Qj;c

t þ α
1
t
δj;ct ; (5)

where Qj;c
tþ1 and δj;ct are estimated as in the previous model (dLRI).

Free learning rate instructive model (fLRI). This model estimates
the learning rate by the participant, as in the previous dfLRI model.
However, the present model considers the learning rate α to
remain constant throughout the learning and encoding phases.
The expected values are thus updated according to the following
rule:

Qj;c
tþ1 ¼ Qj;c

t þ αδj;ct ; (6)

while δj;ct is the same as in Eq. (3). Also, note that this model uses
the same instructive feedback as in Eq. (4).

Free learning rate evaluative model (fLRE). This model still allows
participants to have a fixed learning rate α. However, this model
assumes that the feedback depends on the actions that
participants take. The expected values are thus updated as
follows:

Qj;c
tþ1 ¼

Qj;c
t þ αδj;ct if at ¼ jt

Qt otherwise
:

(
(7)

where at is the object category selected by participants on a given
trial, δj;ct is calculated as in Eq. (3), and rt is 1 if the choice is the
correct one, and 0 otherwise.

Action selection. The expected Q-values computed through the
models listed above were translated into choice probabilities by
implementing a softmax rule as follows:

Pj;ct ¼ expðβQj;c
t ÞPj

n¼1 expðβQc
t Þ
; (8)

where Pj;ct represents the probability of choosing a specific object-
category j for a defined scene category c. The inverse temperature
parameter β is another free parameter that modulates the

stochasticity of the choice, with higher values meaning more
deterministic actions and lower values more stochastic choices.

Parameter recovery. Before fitting the models to participants’ data,
a parameter recovery procedure was run for both Experiments 1 and
2, in order to check whether the fitting procedure for each model
gave meaningful parameters and to find potential parameter
boundaries. Surrogate data with randomly sampled known para-
meters were simulated, and then the models were fit to the
simulated data (see ref. 46). The priors from which the simulation
parameters were sampled are shown in Table 3. In order to fit the
data, we used maximum likelihood estimation (see subsection
“Parameter estimation and model comparison”). Because the models
are designed to reflect participants’ learning, only the 0.80–0.20
(Experiment 1) and 0.90–0.10 and 0.70–0.30 (Experiment 2)
conditions were simulated. A high correlation between simulated
and fitted data indicates that the model successfully recovered the
parameters that were used to generate the data. First attempts to
recover the parameters allowed to set the boundaries for the inverse
temperature parameters. Plots of the parameter recovery are shown
in Figs. S2 and S3.

Model recovery. Besides parameter recovery, another procedure
to evaluate the reliability of a model is model recovery46. The aim
of model recovery is to determine that a model, among the
models of the model space, can successfully be identified as the
generative model. To achieve this, data from the four different
models were simulated (with randomly sampled parameters) and
then fit each of the models. The models were then compared to
determine which one fitted the data best. The method used to
assess the fit of the models was the Bayesian information criterion
(BIC) which incorporates a penalty for the number of parameters:

BIC ¼ �2log bLLþ kmlogðTÞ; (9)

where bLL is the log-likelihood value when the model is fitted with
the best fitting parameter, and Km is the number of parameters in
the model m. Lower values of BIC mean better fit. The comparison
between the models for each set of generated data was repeated
100 times to generate the confusion matrices shown in Fig. S4.

Parameter estimation and model comparison
The models were finally fit to participants’ data to estimate the
parameters. The parameters of best fit for each model were
estimated through maximum likelihood estimation. This proce-
dure allowed us to find the parameters θ that maximize the
likelihood of the data given the parameters pðd1:tjθ;mÞ. The
probability of the whole dataset d is calculated as the product of
the choice probabilities pðctjd1:t�1; θ;mÞ. As the product of the
choice probabilities is often a very small number, it is common
practice to use the log-likelihood instead, which is the sum of the
log of the choice probabilities7,46:

LL ¼
Xn
t¼1

log pðctjd1:t�1; θ;mÞ (10)

The search over the full set of free parameters was optimized
through the package optim in R, which was fed with the negative
log-likelihood and a set of starting points randomly selected from
the priors shown in Table 3. The α parameter was constrained
between 0 and 1, while the β parameter between 0 and 10, as

Table 3. Priors for the parameters.

Parameter Priors

α ~U(0,1)

β ~exp(1)
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parameter recovery showed that for values that exceeded 10, the
model could not distinguish between different beta parameters.
Because the optimizer may find a local rather than a global
minimum, we ran the search for the best parameters five times,
starting from different points, and then used the best-fitting
parameters among the five iterations, i.e., the parameters that
minimized the log-likelihood. After estimating the parameters, a
BIC value (see Eq. (9)) was computed for each model and for each
participant using the parameters of best fit.
To compare the fit of the models, we calculated the average BIC

across all subjects for each model, then counted the number of
participants for which each model was the best fit. In addition, we
used the model evidence of the best model within each
participant: Following47 and48, model evidence was defined as
“weak”, “positive”, “strong”, or “very strong” depending on the BIC
difference between the best and the second best model for each
participant. Precisely, evidence was “weak” when the BIC
difference between the best and the second best model was
below 2, “positive” when it was between 2 and 6, “strong” when it
was between 6 and 10, and “very strong” when it was above 10.

Statistical analysis
In order to test the statistical significance of the effects of interest,
we used linear mixed-effect models and generalized linear mixed-
effect models, implemented in R49 through the package lme450.
Because our main outcome variable (memory) is binary, we used
the logit link function in the binomial family to fit the models to
accuracy data. Participants were modelled as random intercepts,
while the explanatory variables and their interactions were
modelled as both fixed and random effects. The generalized
linear mixed-effect model for the analysis of the effects of the
computationally derived PE on memory can be formalized as the
following:

pðhitÞi;j ¼
1

1þ exp� ðβ0;j þ β1jPEþ β2jPOþ β3jPE � POþ ϵi;jÞ :

(11)

The formula represents the probability of correctly recognizing
an object i for a participant j. The intercept β0,j is composed of a
common (fixed) intercept for the population (i.e., the average
p(hit)) plus a subject-specific random effect. β1,j PE and β2,j PO
represent the slopes for PE and prediction outcome, respectively,
while β3,jPE PO refers to their interaction. Each of the slope
coefficients is formed by a common (fixed) slope for the
population level plus a subject-specific random slope. Finally, ∈i,j

represents the within-participant residual term. Note that this
formula does not include the effect of the experiment, which
varied between participants, and thus were included in the
generalized mixed-effect model only as fixed effects and fixed
interaction terms. The variance–covariance matrix for the random
effects was set as unstructured so that the covariances between
the random terms could take any finite positive value. Therefore,
we used the maximal random effect structure justified by the
design51. To test the significance of the parameters, a Wald chi-
square test was used. Effect sizes were reported as odds ratio
(exp(β)), which represents the change in odds. The odds are in
turn calculated as follows:

Odds ¼ pðhit ¼ 1Þ
1� pðhit ¼ 1Þ : (12)

For the analysis of recognition memory as a function of
contingency condition and prediction outcome, and for the
analysis of the effect of binned PE, we used linear mixed-effect
models with hit rate as response variable:

Hit Rate ¼ hits
hitsþmissed

: (13)

Binned PE was treated as a categorical variable with four levels.
Testing for the significance of planned contrasts was corrected for
multiple comparisons by using Bonferroni correction:

pcorr ¼ p � k; (14)

where p is the p-value of the comparison and k is the overall
number of comparisons considered in a model. All tests were two-
tailed.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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