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Abstract
Thefirst-order thermodynamics of scalar-tensor theory is a novel approach that exploits
the intriguing relationship between gravity and thermodynamics to better understand
the space of gravity theories. It is based on using Eckart’s first-order irreversible
thermodynamics on the effective imperfect fluid describing scalar-tensor gravity and
characterises General Relativity as an equilibrium state, and scalar-tensor theories as
non-equilibrium states, naturally describing the approach to equilibrium. Applications
of this framework to cosmology, extensions to different classes of modified theories,
and the formulation of two complementary descriptions based on the notions of tem-
perature and chemical potential all contribute to a new and unifying picture of the
landscape of gravity theories.

Keywords Modified gravity · Scalar-tensor gravity · Non-equilibrium
thermodynamics · Cosmology

Mathematics Subject Classification 83D05 · 83Cxx

1 Introduction

Einstein’s General Relativity (GR) is the most successful theory of gravity to date, in
excellent agreement with experimental tests, especially within the realm of our Solar
System [1]. However, there are still considerable motivations to explore extensions
and modifications of gravity beyond GR [2].
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First, Einstein gravity is a non-renormalisable theory involving incurable diver-
gences at high energies, which makes it very challenging to integrate it into the
framework of quantum field theory that works fruitfully for all other fundamental
interactions. This is the reason why the enormous efforts in constructing a consistent
theory of quantum gravity have not yet achieved definitive success and several candi-
dates for such a theory exist, at different stages of development. Some extensions of
GR that include higher-order curvature invariants in the action, such as R2 gravity, are
indeed renormalisable. This stimulates the exploration of gravity theories that could
alleviate GR’s problems in the UV regime.

Second, very compelling motivations to explore modifications or extensions of GR
come from cosmology. The standard cosmological model, �CDM, is built on the pil-
lars ofGRand the cosmological principle (the assumption of homogeneity and isotropy
of our universe). While successful in explaining most features of the observable uni-
verse,�CDMadditionally relies on the presence of two unknown components, namely
the dark energy driving the present accelerated expansion of the universe (� stands
for the cosmological constant, the simplest proposal for dark energy) and dark matter
(CDM stands for cold dark matter). Since GR is not as observationally well-tested on
cosmological scales as it is within the Solar System, there is room for accommodating
deviations from it in those regimes. Especially the unresolved issue of dark energy pro-
vides uniquely fertile ground to explore modified theories: the cosmological constant
is an extremely fine-tuned attempt to solve the problem, and it is natural to ask whether
modifying GR could get rid of the need to introduce such a mysterious component.

In this context, one of the most thoroughly explored approaches is that of extending
GR by adding new degrees of freedom to the two tensor ones, like a scalar or vector
field [3]. Scalar-tensor theories, first explored in [4] and generalized in [5–7], are
the simplest possible extension and their long-lasting popularity is also motivated by
the fact that scalar fields are ubiquitous in cosmological models: one example is the
inflaton field, which is posited to drive inflationary expansion in the early universe.
Othermore baroque extended gravity theories exist, for example those involving vector
fields or those breaking some fundamental assumption of GR.

Because of the plethora of different theories of gravity, it is useful to construct a
unifying perspective on them by thinking of a vast landscape, where GR occupies
a central place. Within this perspective, studying extended theories of gravity helps
to understand GR as a special case in a much more general framework, which is a
promising way to better understand and eventually overcome its limitations.

This is precisely the goal of the approach that we dub “first-order thermodynamics
of scalar-tensor gravity”, first developed in [8] and extended in [9–15]. This proposal
is based on the observation that the contribution of the scalar field φ to the field
equations of scalar-tensor gravity can be described as an effective dissipative fluid,
through a simple rewriting of the equations that does not entail extra assumptions
[16, 17]. The novelty of this approach comes in when we apply a non-equilibrium
thermodynamical description to this fluid. We choose the one developed by Eckart
[18], entailing constitutive relations that are first-order in the dissipative variables
and, despite problems related to causality that stem from this simplistic assumption,
is still one of the most widely used models of dissipative thermodynamics. Giving a
thermodynamical interpretation to the effective φ-fluid leads to the identification of
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its temperature, a sort of “temperature of scalar-tensor gravity”, which is nothing but
a temperature relative to GR, in addition to its bulk and shear viscosity coefficients.
This temperature is the order parameter ruling the approach to equilibrium and it is
positive definite for theories containing a scalar degree of freedom in addition to the
two tensor ones of GR: Einstein’s theory corresponds to the zero-temperature state
in this “thermodynamics of gravitational theories”. Dissipation corresponds to the
relaxation of the effective fluid toward the GR state of equilibrium. This approach fits
into the wider context of trying to gain physical intuition through an effective fluid
description for theories involving complicated derivative self-interaction terms in their
Lagrangians (see, for example, [19, 20]).

Our approach is inspired by and echoes the ideas of [21, 22], but follows a starkly
different path. These previous works derived both Einstein’s equations and the field
equations of f (R) gravity (a subclass of scalar-tensor theories [23]) as equations of
state from purely thermodynamical considerations, also leading to the identification of
GR with an equilibrium state of gravity and modified gravity with a non-equilibrium
one. These results made the interesting relationship between gravity and thermo-
dynamics, originally explored in the context of black holes, even more intriguing.
However, they left open the crucial questions of a precise description of the approach
to equilibrium and the order parameter governing it, which our approach addresses.

The present work is structured as follows: Sect. 2 provides the general framework
of first-order thermodynamics, in Sect. 3 we study equilibrium states different than
GR with the goal of assessing their relevance and stability, Sect. 4 addresses some
applications and extensions of the formalism, such as an alternative picture in Sect. 4.1,
the application to cosmology in Sect. 4.2 and to Horndeski theories in Sect. 4.3.

We adopt the notation of Ref. [24]: the metric signature is (−,+,+,+) and we
use units in which the speed of light c and Newton’s constant G are unity.

2 Effective fluid formalism and Eckart’s thermodynamics

The effective fluid description relies on a single assumption, namely that the gradient
of the scalar field ∇aφ is timelike and future-oriented [14], so that a 4-velocity for the
fluid can be meaningfully defined as

ua = ∇aφ√−∇eφ∇eφ
, (1)

where uaua = −1. This allows the 3+ 1 splitting of spacetime into the time direction
given by ua and the 3-dimensional space of observers comoving with the fluid and the
definition of the induced metric

hab = gab + uaub, (2)

so that had is the projection operator on this 3-space that allows us to define kinematic
quantities such as the expansion tensor �ab and the shear tensor σab (see [10] for
details).
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If the fluid velocity is past-oriented, on the other hand, the kinematic fluid quantities
remain unchanged, but certain thermodynamical variables such as the heat flux change
sign, leading to a negative temperature and a positive shear viscosity, at variance
with previous works. Given that a negative temperature is meaningless, the formalism
presented here is only valid for future-oriented fluid velocity [14].

Let us now see how the effective fluid formalism can be employed, starting from
the scalar-tensor action (in the Jordan frame)

SST = 1

16π

∫
d4x

√−g

[
φR − ω(φ)

φ
∇cφ∇cφ − V (φ)

]
+ S(m), (3)

whereR is the Ricci scalar, the Brans–Dicke scalar φ > 0 is approximately the inverse
of the effective gravitational couplingGeff ,ω(φ) is the “Brans–Dicke coupling”, V (φ)

is the scalar field potential, and S(m) = ∫
d4x

√−gL(m) is the matter action.
The field equations are [4, 5, 7]

Gab ≡ Rab − 1

2
gabR = 8π

φ
T (m)
ab + ω

φ2

(
∇aφ∇bφ − 1

2
gab∇cφ∇cφ

)

+ 1

φ
(∇a∇bφ − gab�φ) − V

2φ
gab (4)

�φ = 1

2ω + 3

(
8πT (m) + φ V,φ − 2V − ω,φ ∇cφ∇cφ

)
, (5)

whereRab is the Ricci tensor, T (m) ≡ gabT (m)
ab is the trace of the matter stress-energy

tensor T (m)
ab , and ω,φ ≡ dω/dφ, V,φ ≡ dV /dφ.

The stress-energy tensor of the effective fluid represented by the scalar contributions
can be read off the right-hand side of Eq. (4)

8πT (φ)
ab = ω

φ2

(
∇aφ∇bφ − 1

2
gab∇cφ∇cφ

)

+ 1

φ
(∇a∇bφ − gab�φ) − V

2φ
gab. (6)

T (φ)
ab has the form of an imperfect fluid energy-momentum tensor [16, 17],

Tab = ρ uaub + qaub + qbua + 	ab, (7)

where the comoving effective energy density, heat flux density, stress tensor, isotropic
pressure, and anisotropic stresses (the trace-free part πab of the stress tensor 	ab) are,
respectively,

ρ = Tabu
aub , (8)

qa = −Tcd u
cha

d , (9)

	ab = Phab + πab = Tcd ha
c hb

d , (10)
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P = 1

3
gab	ab = 1

3
habTab , (11)

πab = 	ab − Phab . (12)

Note that the decomposition in (7) applies to any symmetric second-order tensor,
although of course the dissipative quantities would vanish if the effective stress-energy
tensor for the theory at hand takes the form of a perfect fluid (see Sect. 4.1 for more
details). The special feature of scalar-tensor gravity in first-order thermodynamics is
not that the decomposition above can be performed, but rather that the constitutive
relations of Eckart’s thermodynamics hold [25].

These constitutive relations are the simplest (linear) assumptions to satisfy∇αSα ≥
0, the covariant second law of thermodynamics [18, 26]. They relate the viscous
pressure P(φ)

vis to the expansion scalar � through the bulk viscosity coefficient ζ , the

heat current density q(φ)
a to the temperature T through the thermal conductivity K,

and the anisotropic stresses π
(φ)
ab through the shear viscosity coefficient η to the shear

tensor σab. For the φ-fluid, they read:

P(φ)
vis = −ζ � (13)

q(φ)
a = −K

(
hab∇bT + T u̇a

)
(14)

π
(φ)
ab = −2η σab . (15)

They are relativistic generalisations of Stokes’ law, Fourier’s law and Newton’s law
of viscosity, respectively.

A simple comparison between the expressions of the 4-acceleration, u̇a ≡ ub∇bua
and the heat flux density q(φ)

a for scalar-tensor theories described by the action (3)
leads to the identification [8, 10, 16]

q(φ)
a = −

√−∇cφ∇cφ

8πφ
u̇a (16)

and comparison with Eckart’s generalized Fourier law (14) yields an expression for
the product of thermal conductivity and temperature,

KT =
√−∇cφ∇cφ

8πφ
. (17)

Additionally, one finds hab∇bT = 0, which means that a heat flux arises from accel-
erated matter even in absence of a temperature gradient, as first identified precisely by
Eckart [18]. What is most striking is that KT is positive definite and therefore mean-
ingful, which was not to be expected a priori in a formal identification of quantities.
Moreover, KT vanishes when φ = const., namely in the GR limit, where there is no
φ-fluid.

GR can therefore be identified with the KT = 0, equilibrium state in this ther-
modynamics of gravitational theories, whereas in general scalar-tensor theories have
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KT > 0. This is the sense in which first-order thermodynamics provides a picture
of the landscape of gravity theories, namely by putting GR as an equilibrium state
at the centre of a space of theories populated by scalar-tensor theories, representing
non-equilibrium states. This echoes the approach in [21, 22] where a non-equilibrium
thermodynamical setting was required to deal with a modified theory of gravity.

A simple physical interpretation of the quantities K and T arises if we isolate the
temperature from (17) and insert it into hab∇bT = 0, finding the simple solution
K = C

√−∇cφ∇cφ, with C a positive constant that can be set to C = 1/8π , yielding
T = 1/φ = Geff . This sheds light on the GR limit, which recovers the “perfect
insulator” limit of the effective fluid: T reduces to the Newton constant GN, while K
vanishes.

The structure of the imperfect fluid (7) and of the field equation (5) makes the
explicit derivation of the bulk viscosity from the thermodynamic analogy (feasible
but) nontrivial. For the sake of simplicity we shall set the bulk viscosity to zero as in
the original proposal [8, 10].1 Nonetheless, one can still easily infer the shear viscosity
coefficient in a similar way as above, obtaining [8, 10]

η = −
√−∇cφ∇cφ

16πφ
(18)

or η = −KT
2 . The viscosity can be negative as the φ-fluid is clearly not isolated, given

the explicit coupling to gravity in the action (3), which involves a mixing of scalar and
tensor degrees of freedom.

2.1 Approach to thermal equilibrium

It is natural to ask how equilibrium might be approached starting from a non-
equilibrium state, as the understanding of this dissipative process is crucial to establish
the picture we are trying to construct. An effective heat equation for the φ-fluid can
be found by differentiating (17). Although this might seem redundant, the result-
ing equation provides the behaviour of KT with time and allows us to understand
the circumstances where the dissipation to equilibrium takes place. Differentiating
d(KT )
dτ

≡ uc∇c(KT ), we obtain [8, 10]

d(KT )

dτ
= 8π(KT )2 − �(KT ) + �φ

8πφ
. (19)

A general interpretation of this equation is challenging since�φ does not have definite
sign and the dependence of � on φ and its derivatives is not straightforward, but one
can gain some physical intuition by considering the vacuum case, with ω = const.
and V (φ) = 0, so that �φ = 0.

On the one hand, if � < 0, KT grows out of control in a finite time and diverges
away from equilibrium. This behaviour is relevant around spacetime singularities,

1 For a more precise analysis on this matter we refer the reader to [20].
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where � < 0 because the worldlines of the field φ converge: in our formalism, this
means that the deviations of scalar-tensor gravity from GR will be extreme.

On the other hand, if � > 0, depending on which term dominates in (19), KT
could either asymptote to zero and approach the equilibrium state, or not. Thus, the
approach to equilibrium is not granted and cases where it does not happen will be
considered in the following.

3 Analysis of equilibrium states other than GR

We can gain more insight into the effective heat equation above by studying its fixed
points, i.e. when d(KT )

dτ
= 0. Of course, they correspond to situations where either

KT = 0 or KT = const. and constitute equilibrium states in the thermodynamics
of gravitational theories. Our goal is thus to analyse these other possible equilibrium
states that might challenge the uniqueness of the GR equilibrium state and its special
role in this landscape of gravity theories. In turn, this will provide additional tests of
our formalism and its physical interpretation. The thermodynamical quantities of the
effective fluid can of course be found starting from a different scalar-tensor action
than (3), but one can also specify the expressions such as KT to exact solutions of
the theory at hand. The formalism is therefore flexible enough that we can study both
entire classes of theories and specific solutions within it, which is what we show in
the following.

3.1 Zero-temperature states: non-dynamical scalars

In [12], we studied theories of gravity other than GR that have KT = 0, with the
goal of further exploring the theory landscape through the lens of the formalism.
The theories considered are not always physically viable, but they allow to clarify
the existence of other equilibrium states and test the regime of validity of first-order
thermodynamics. The theories with non-dynamical scalar fields that we considered
are Brans-Dicke gravity [4] in the limit ω = −3/2, f (R) gravity in the Palatini
formulation (equivalent to ω = −3/2 Brans-Dicke with a specific potential [23]),
and cuscuton models [27] (which can be recast as special cases of Horndeski theory,
discussed in the following). The first two have ill-defined or zero KT , while the
cuscuton case provides the opportunity for a richer analysis.

Additionally, by extending the formalism to the case of Nordström gravity [28]
(a purely scalar, unviable theory of gravity that only has historical importance as a
stepping stone towards GR), we discovered that a theory with less degrees of freedom
than GR has negative temperature in the formalism (and bulk and shear viscosity
coefficients of opposite signs with respect to the standard case), further validating the
hypothesis that a positive temperature is tied to the existence of an additional scalar
degree of freedom to the two tensorial ones. Of course, a negative temperature is
devoid of meaning and makes the formalism as pathological as the theory itself.

Let us briefly review the case of the cuscuton model [27], which corresponds to a
special case of the Lorentz-violating Hořava–Lifshitz gravity [29] and has intriguing
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cosmological implications [30, 31]. The cuscuton field (denoted as φ in the following)
is a scalar that does not propagate additional degrees of freedom with respect to GR
and whose equation of motion is shown to reduce to a constraint. The cuscuton action
is

SC =
∫

d4x
√−g

( R
16π

+ P
)

+ S(m), (20)

where the Lagrangian density is equivalent to the pressure that we denote with P in
this section, is [31]

P(φ, X) = ±μ2
√
2X − V (φ), (21)

X ≡ − 1
2∇cφ∇cφ, μ is a mass scale and in the following fX ≡ ∂ f

∂X . The effective
stress-energy tensor appearing in the Einstein equations, namely

T (φ)
ab = Pgab + PX∇aφ∇bφ =

[
±μ2

√
2X − V (φ)

]
gab ± μ2 ∇aφ∇bφ√

2X
, (22)

takes the perfect fluid form Tab = (P + ρ) uaub + Pgab (in contrast to (7)), so that
no imperfect fluid description can arise and, accordingly, KT = 0.

These results confirm the intuition that theories of gravity with dynamical scalar
fields have KT > 0, while those with non-dynamical fields have either zero or com-
pletely arbitrary KT . The theories with KT = 0 that we analysed are peculiar and/or
pathological and cannot compete with the central role of GR as an equilibrium state
at KT = 0.

3.2 Constant temperature states: stealth solutions

The so-called stealth solutions commonly arise in scalar-tensor theories: they have
the same geometry of GR solutions but a nontrivial scalar field profile that does not
contribute to the effective stress-energy tensor. Currently, the motivation to study them
comes from the fact that such solutions can violate some assumptions of the black
hole no-hair theorem, which would make it possible in principle to observationally
distinguishGR from scalar-tensor theories through the detection of gravitationalwaves
from black hole mergers.

In [10], it was noticed that a stealth solution of scalar-tensor gravity was charac-
terized by KT = const., corresponding to a fixed point of (19). This is interesting
because it would mean that stealth solutions are examples of states that never approach
the GR equilibrium. In [32], this solution was studied in more detail and found to be
metastable and in [15] we undertook a more extensive analysis of stealth solutions in
our formalism. In order to assess the relevance of the equilibrium states corresponding
toKT = const., it is essential to check their stability with respect to some criterion. Of
course, in different systems, distinct types of stability can arise (thermal, dynamical,
etc.) which are not necessarily expected to coincide: in the following, we make use of
different types of stability criteria. If the equilibrium states we study are not stable, it
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means they cannot compete with the zero-temperature state constituted by GR, fur-
ther strengthening its special role. Of course, it is not practically feasible to study all
possible equilibrium states and, for the time being, first-order thermodynamics is not
in the position to turn the statement that GR is the only possible equilibrium state into
a formal theorem. Therefore, the nature of this statement is an inductive result based
on the most relevant theories that we studied.

In [15] we considered stealth solutions where Minkowski geometry results from
a tuned balance between matter and the scalar field or, in a vacuum configuration,
between different terms in the scalar contribution to the stress-energy tensor. These
solutions are often degenerate de Sitter spaces with non-constant scalar fields, which
are cannot be realized in GR and constitute a signature of modified gravity.

In order to study the stability of these solutions, we develop a criterion based
solely on the thermodynamical formalism. In general, this criterion should be seen as
complementary to others, such as the gauge-invariant one developed for cosmological
perturbations [33–36].

The criterion is obtained from rewriting (19) as

�φ − m2
effφ = 0, (23)

where

m2
eff ≡ 8π

[
d (KT )

dτ
− 8π (KT )2 + �KT

]
. (24)

One can easily see that if the square of the “effective mass” ism2
eff < 0, this tachyonic

behaviour signals an instability and renders the solution at hand problematic, while
there is stability if m2

eff ≥ 0. Of course, these considerations fully rely on first-order
thermodynamics only and are therefore meaningful only within the formalism. Since
KT is a scalar, this stability criterion is covariant and gauge-invariant.

This criterion is not particularly useful for entire classes of scalar-tensor theories
because the quantities appearing in (24) are not necessarily known, but it is suitable
for the study of specific solutions (or classes of solutions) of the field equations in
these theories, which is why we use it for stealth solutions.

Stealth solutions commonly encountered in the literature in the context of the scalar-
tensor theory described by (3) are usually of two kinds:

1. gab = ηab and φ = φ0 eα t ;
2. gab = ηab and φ = φ0 |t |β ,
where ηab is the Minkowski metric, φ0, α, β are constants, and φ0 > 0. Keeping in
mind that the scalar field gradient needs to be future-oriented for the 4-velocity of the
effective fluid (and consequentially, for the whole formalism) to be meaningful [14],
we restrict to cases satisfying the conditions

1. α < 0;
2. β < 0 if t > 0 or β > 0 if t < 0.
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In the first case

KT =
√−∇cφ∇cφ

8πφ
= |α|

8π
= const. > 0, (25)

so this solution can never approach the GR equilibrium state. Applying the criterion
(24), we find a constant and negative effective mass, meaning that this stealth solution
is unstable.

In the second case, we restrict to β = 1 and β = 2, which are the most relevant
cases in the literature.

We find

KT = β

8π |t | → +∞ as t → 0− , (26)

for the effective temperature, while the effective mass reads

m2
eff = �φ

φ
= −β(β − 1)

t2
. (27)

The case of β = 1 corresponds to marginal stability since m2
eff = 0, while β = 2

entails the instability corresponding to m2
eff = −2/t2 < 0. In both cases, as t → 0−,

we approach a singularity of the theory where Geff diverges just as KT does: gravity
becomes infinitely strong and deviates from GR drastically, which is the expected
behaviour for singularities in first-order thermodynamics, as explained in Sect. 2.1.

We applied these general considerations to some specific stealth solutions [15],
including some specific cases of exact solutions of FLRW cosmology in scalar-tensor
theories and degenerate cases of de Sitter solutions that reproduce Minkowski space
with a nontrivial scalar field. The result is that no stable states of equilibrium have
been found, except for solutions that are unstable according to various criteria and thus
irrelevant. This result strengthens the special role of GR as an equilibrium state in the
landscape of gravity theories, seen through the lens of first-order thermodynamics.

4 Further extensions of the formalism

4.1 Alternative formulation with chemical potential

The entire thermodynamical formalism so far has been developed starting from the
Jordan frame action (3), where there is an explicit coupling between the Ricci scalar
and the φ field. However, scalar-tensor theories can also be studied in the (conformally
related) Einstein frame, where the scalar couples minimally to gravity but nonmini-
mally to matter. Switching to the Jordan frame amounts to performing the conformal
transformation gab → g̃ab ≡ φ gab, together with the field redefinition φ → φ̃, where

dφ̃ =
√ |2ω + 3|

16π

dφ

φ
and quantities with tilde refer to variables in the Einstein frame.
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The action for GR with a minimally coupled scalar reads

Smin =
∫

d4x
√−g

[ R
16π

+ L (φ, X)

]
+ S(m). (28)

The thermodynamical formalism based on the notion of temperature could not be
applied to theories in the Einstein frame, since the minimally coupled scalar gives
rise to an effective fluid that is perfect. Since all imperfect fluid quantities vanish,
the analogy built in the previous sections becomes trivial: KT is always zero and no
approach to equilibrium (or departure from it) can be analysed.

However, in [13], it was realised that an alternative but equivalent picture of first-
order thermodynamics, based instead on the notion of chemical potential, can address
this problem. Although KT vanishes for the fluid describing the minimally coupled

scalar, the chemical potential, defined as μ̃ =
√
2X̃ does not, and the dissipation to

equilibrium can be characterised as φ̃ → const. and μ̃ → 0.
This approach is reminiscent of the influential one in [19], that exploited the analogy

between an imperfect fluid and a special class of scalar-tensor theories to help gain
physical insight into such theories and their interesting cosmological applications.

IfL = L(X), the theory is invariant under the shift symmetry φ → φ+C , whereC
is a constant. This means there is a conserved Noether current Na = LX∇aφ = nua ,
which satisfies ∇aNa = 0, where Na is the analogue of the particle number current
density and n is the particle number density in the comoving frame and corresponds
to the Noether charge

n = −N 0 = −ucNc = − ∇aφ√
2X

LX∇aφ = √
2X LX . (29)

However, in Eckart’s thermodynamics, which corresponds to choosing the reference
frame comoving with the fluid, no flux of “φ-particles” is visible because this frame
follows the effective fluid motion (for a discussion of frame choices and their physical
interpretation, see [37]).

4.2 Application to cosmology

Cosmology is the natural arena toworkwith scalar-tensor theories, not only because on
cosmological scales there is still room to accommodate deviations from GR, but also
since these theories were formulated in the first place to incorporate Mach’s principle
and to allow for a variation of the gravitational coupling, meaning that the distribution
of matter on cosmological scales could have effects on local gravity [4].

In [11], we applied first-order thermodynamics to a cosmological setting by restrict-
ing toFLRWspacetime,whose symmetries (homogeneity and isotropy) allow for some
simplifications in the thermodynamical quantities. We subsequently tested our phys-
ical intuition of the formalism on some exact solutions of scalar-tensor cosmology.
The main result is that the GR equilibrium state of zero temperature is almost always
approached at late times throughout the universe’s expansion, while the behaviour
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expected for singularities is confirmed for solutions endowed with a singularity at
early times.

Because of homogeneity and isotropy, in FLRW φ = φ(t), the heat flux density
q(φ)
a = 0 and the anisotropic stresses π

(φ)
ab = 0. Therefore, shear viscosity vanishes,

but the isotropic bulk viscosity that was previously neglected can be considered, and
the only two non-vanishing contributions to (7) are the isotropic pressure and energy
density. The viscous contribution to the pressure can be isolated from the non-viscous
terms by noticing that, in a FLRW spacetime, the expansion scalar is θ = 3H and
thus

P(φ)
vis = −3ζH , (30)

according to Eckart’s constitutive relation (13). The bulk viscosity coefficient is
identified as

ζ = φ̇

24πφ
, (31)

while

KT = |φ̇|
8πφ

. (32)

The bulk viscosity coefficient ζ = KT /3 then scales linearly with the temperature
and both vanish in the GR equilibrium state.

These general formulas have been applied in [11] to the specific universe models
described by exact solutions of scalar-tensor cosmology that generally have a power-
law behaviour in time both for the scale factor and the scalar field [38], such as the
Brans-Dicke dust solution [4] and the Nariai family of solutions [39] (see also [40]).
We found that these solutions all approach the GR equilibrium state at KT = 0 and
ζ = 0 at late times, in the limit t → +∞. A Big Rip solution [41] exhibiting a singular
behaviour at late times with the scale factor diverging at a finite time proved puzzling
because of the competition between the singularity behaviour KT → +∞ and the
behaviour at late times. In the end, we found that gravity still departs from equilibrium
in the Big Rip solution.

4.3 Extension to Horndeski theories

An application of the thermodynamical formalism that yielded compelling results was
that to Horndeski gravity [9], the most general class of scalar-tensor theories exhibit-
ing second-order equations of motion and thus avoiding Ostrogradsky instabilities.
Horndeski theories represent a cornerstone of the literature on modified gravity which
has seen a flurry of activity in recent years [42]. Such theories were employed in
models of dynamical dark energy and as late-time modifications of GR, but have been
severely constrained by themulti-messenger gravitational wave event GW170817 [43]
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that showed that gravitational waves propagate at the speed of light up to remarkable
precision.

The thermodynamical formalism does not work for the most general Horndeski
theories: some terms in their field equations explicitly break the thermodynamical
analogy. Strikingly, these terms are precisely those that violate the equality between
the propagation speeds of gravitational and electromagnetic waves. Therefore, the cru-
cial finding is that first-order thermodynamics indicates the direction of the physical
constraints on Horndeski gravity, which paves the way for intriguing further develop-
ments. The analogy is spoiled for those operatorswhich contain derivative nonminimal
couplings and nonlinear contributions in the connection. This relates to thewell-known
but hard to tackle problem of separating matter from gravity degrees of freedom in
terms of a local description.

The most general Lagrangian of Horndeski gravity reads [42]

L = L2 + L3 + L4 + L5, (33)

where

L2 = G2

L3 = −G3�φ

L4 = G4 R + G4X

[
(�φ)2 − (∇a∇bφ)2

]

L5 = G5 Gab∇a∇bφ − G5X

6

[
(�φ)3 − 3�φ (∇a∇bφ)2 + 2 (∇a∇bφ)3

]
.

The Gi (φ, X) with i = 2, 3, 4, 5 are generic coupling functions, Giφ ≡ ∂Gi/∂φ and
GiX ≡ ∂Gi/∂X . The viable subclass of Horndeski theories that restricts to a luminal
propagation of gravitational waves is given by the choices G4X = 0 and G5 = 0.

Building the thermodynamical analogy through Eckart’s constitutive equations
(13), (14) and (15) starting from the Horndeski Lagrangian (and making the choice of
neglecting bulk viscosity), one obtains

KT =
√
2X(G4φ − XG3X )

G4
, (34)

for the product between conductivity and temperature and

η = −
√
X G4φ√
2G4

(35)

for the shear viscosity coefficient. These expressions would of course reduce to (17)
and (18), respectively, for G4 = 8πφ and G3 = 0.

In [9] it is shown that, whenever we try to apply the thermodynamical formalism
to theories beyond the viable class considered above, whose effective stress-energy
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tensor contains the term

T (φ)
ab ⊃ ζ(φ, X)Racbd∇cφ∇dφ , (36)

where ζ(φ, X) is a generic function, the Riemann tensor Racbd ends up breaking the
proportionality between the traceless shear tensor σab and the anisotropic stress tensor
π

(φ)
ab , so that Eckart’s constitutive equations (13), (14) and (15) no longer hold.
These results spurred some further developments, such as the considerations in [25]

that pave the way for extending the study of first-order thermodynamics of Horndeski
gravity to FLRWandBianchi universes. The imperfect fluid analogy developed for this
class of theories has also been exploited with the goal of attempting to classify Horn-
deski theories based on the nature of the effective fluid, specifically on its requirement
to be a Newtonian fluid [20].

5 Conclusions and outlook

The first-order thermodynamics of scalar-tensor gravity is a recent approach that char-
acterises GR as a zero-temperature equilibrium state and scalar-tensor theories as
non-equilibrium states, providing an interesting picture of the space of gravity theo-
ries. This idea is based on the imperfect fluid description of scalar-tensor theories and
the application of Eckart’s first-order thermodynamics to this effective fluid. However,
it is not the recasting into an imperfect fluid form that the formalism relies on, but the
fact that the constitutive relations of Eckart’s thermodynamics hold and allow one to
find a positive-definite expression for the temperature of modified gravity, which is
nothing but a temperature relative to GR, representing the zero-temperature state.

In this work, after introducing the formalism and reviewing the analysis of several
theories and some of their solutions without finding a stable equilibrium state that can
challenge the central role of GR, we presented several applications and extensions of
this approach. For example, an alternative picture based on the notion of chemical
potential instead of temperature, that allows to treat scalar-tensor theories in the Ein-
stein frame, an application to cosmology that confirms the physical intuition behind
the formalism, and an extension to Horndeski theories that holds only for theories
respecting physical constraints imposed by astrophysical observations.

There is still much more to be done to explore the potential of first-order thermo-
dynamics for modified gravity. For example, it is very natural to consider an extension
to vector-tensor theories to see if gravity with an additional vector field still has a
positive, non-zero temperature. For this purpose, we are in the process of studying
the simplest of these theories, Einstein–æther [44], and plan to extend to Generalized
Proca theories [45], in an attempt to widen of our map of the landscape of gravity
theories.

As a cosmological application, it would be interesting (albeit non-trivial) to
consider what happens in anisotropic cosmological spacetimes, such as Bianchi space-
times, exploring the interesting connection between the presence of viscosity and
cosmological anisotropies [46].
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The long-term goal, however, remains that of going beyond Eckart’s first-order
thermodynamics to overcome its limitations, for example with the second-order
formalisms by Israel and Stewart [47] and by Müller and Ruggeri [48].
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