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Using the N = 1 supersymmetric, spinning worldline quantum field theory formalism, we compute the
conservative spin-orbit part of the momentum impulse A p¥, spin kick ASY, and scattering angle 6 from the

scattering of two spinning massive bodies (black holes or neutron stars) up to fourth post-Minkowskian
(PM) order. These three-loop results extend the state of the art for generically spinning binaries from 3PM
to 4PM. They are obtained by employing recursion relations for the integrand construction and advanced
multiloop Feynman integral technology in the causal (in-in) worldline quantum field theory framework to

directly produce classical observables. We focus on the conservative contribution (including tail effects)
and outline the computations for the dissipative contributions as well. Our spin-orbit results agree with
next-to-next-to-next-to-leading-order post-Newtonian and test-body data in the respective limits. We also

reconfirm the conservative 4PM nonspinning results.

DOI: 10.1103/PhysRevLett.131.151401

High-precision predictions for the gravitational waves
emitted from the interaction of compact binaries are essen-
tial for data analysis of gravitational wave detectors
[1-6]. They are the prerequisites to address fundamental
questions in astro-, gravitational, particle, and nuclear
physics through observations of gravitational waves. The
third generation of detectors—LISA, Einstein Telescope,
and Cosmic Explorer [7] scheduled to go on-line in the
2030s—will reach an experimental accuracy that goes well
beyond the present state of the art in analytical and numerical
gravitational wave physics [8,9]. This situation has sparked
a renewed effort to extend and innovate traditional
approaches to the classical relativistic two-body problem.

The early inspiral phase of a bound two-body system, or
a small-deflection scattering scenario, is characterized by a
scale separation between the relative distance of the
compact bodies and their sizes. Here, the weakness of
the gravitational field enables an analytic, perturbative
treatment: one models black holes (BHs) or neutron stars
(NSs) as two massive, spinning point particles that interact
gravitationally, controlled by a perturbative expansion in
Newton’s coupling G [10-12]. In addition, finite-size and
tidal effects may be included in the point-particle model by
coupling higher-dimensional operators to the particle’s
worldline theory in the logic of effective field theory
(EFT) [13-15]. Typically, for bound orbits this is done
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in a post-Newtonian (PN) expansion in both G and the
relative velocity v of the bodies, both in the traditional
[11,16—19] and effective-field-theory-based [13—15,20-30]
approaches. The present state of the art is approaching the
5PN level [29-36] including next-to-next-to-next-to-lead-
ing-order (N*LO) spin effects [37-43].

However, quantum field theory (QFT)-based methods
using the PM expansion [44-47], i.e., perturbative in G but
exact in v, are rapidly developing (see Refs. [48-50] for
reviews): They derive from the well-studied perturbative
quantization of Einstein’s theory of gravity about flat
space-time backgrounds. Here, state-of-the-art Feynman
integral technology may be fruitfully ported to the realm of
classical general relativity: integration by parts (IBP)
methods for a reduction to master integrals [51-53], their
computation via differential equations [53,54], and the
method of regions to determine boundary values [55].
Clearly, the natural habitat for the PM expansion is the
scattering scenario. Still, the scattering data in the
conservative sector inform also the (conservative) bound
case through a matching to a real [56—62] or effective-one-
body [63—67] Hamiltonian.

At present, two complementary QFT-based approaches to
the post-Minkowskian (PM) expansion are being pursued:
based on scattering amplitudes [57,68—84] and worldlines
[85-99]. In the scattering scenario, there are three key
observables: the deflection of momentum (known as
impulse), the change of spin vectors (known as spin kick),
and the bremsstrahlung (waveform) in the far-field limit.
Ignoring finite-size, tidal, and spin effects, the impulse is
known at 3PM (two-loop) [73,74,76,84,86,87] and 4PM
(three-loop) [88,89,100-104] order. Preliminary work
has also begun on the 5PM scattering angle using
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electrodynamics as a toy model [ 105]. In the case of spinning
binaries, the impulse is known up to quintic spin interactions
[106,107] at 2PM order, and up to quadratic spin interactions
(including the spin kick) at 3PM order [61,62,98] together
with partial results at all spin orders [107-111]. Leading
tidal effects have been computed at 2PM [112,113] and 3PM
order [87,99,114]. For the bremsstrahlung waveform, the
leading-order result without [90,95,115-118] and with spin
[93,96] or tidal effects [92,99] was recently updated to next-
to-leading order for the nonspinning case [119-122].

In this Letter, we provide the conservative, spin-orbit
contributions to the impulse and spin kick at 4PM accuracy,
together with the total scattering angle. These results
provide the basis to refine effective-one-body Hamiltonians
and resummed scattering prescriptions for high-precision
gravitational wave physics. Our worldline quantum field
theory (WQFT) hinges on three innovations to the EFT
approach for gravitational scattering: (i) quantizing both the
worldline degrees of freedom and the gravitational field
allows for a diagrammatic formulation of the classical
perturbation theory yielding the observables as one-point
functions of the worldline or gravitational fields [94],
(i1) capturing the spin of the compact objects through a
supersymmetric worldline theory [97], and (iii) the
Schwinger-Keldysh (in-in) initial value formulation of
WQFT that induces the use of retarded propagators and
a causality flow in the diagrammatic expansion [99].

Supersymmetric in-in WQFT formalism.—The effective
worldline theory of spinning bodies (Kerr BHs or NSs)
with masses m; and space-time coordinates x}(z) on a
general D-dimensional space-time with metric g, is
described up to quadratic order in spin by an N =2
supersymmetric worldline theory [97]. As we are focusing
on the spin-orbit (linear-in-spin) dynamics here, the N = 1
incarnation of this theory will suffice:

Z /df{ G5 +u//m

The real anticommuting vectors y/f (7) are defined in a flat
tangent space using the vierbein ¢4 and (Dy¢ /D7) = ¢ +
i a)“b v With the spin connection wy, b (our metric is mostly
mlnus) We work in D =4 —2¢ d1mens10ns with Sgy the
bulk Einstein-Hilbert action including a gauge-fixing term;
the process of dimensional regularization, wherein we ulti-
mately send € — 0, is aided by only this part of the full action
needing to be lifted to D dimensions. The y¢(7) carry the spin
degrees of freedom with the spin tensors S = —im;y"y"
and the Pauli-Lubanski vectors §¢ = m,d} = 1€,,,145°.

We expand the fields around their respective back-
grounds: the metric g, =n,, + «h,,, with k = V322G,
and the worldlines

+Sgu. (1)

X(0) =0 +ofr+2(x). i) =¥ +yl(). (2

where {b, v}, P} are the initial (background) parameters
of the two bodies. Using background symmetries, we set
b-v;=W;-v; =0 where b* = |b|P* = b —b" is the
covariant impact parameter. We also introduce the
Lorentz factor y =wv;-v, and the relative velocity
v=1/y>—1/y.

Causal observables including radiative effects arise
from the Schwinger-Keldysh (in-in) formalism applied to

WQFT [99] where one doubles the fields: h,, — (h%), 1))
and 7' - (2" ") introducing the worldline “super-
fields” Z; = {z;,y}}. Causal one-point functions follow
from the in-in path integral

/D,

normalized such that (1) = 1 and with {}") denoting the (1)
th copy of the doubled fields. The key property we exploit is

that the WQFT tree-level one-point functions (Zl(-">> solve
the classical equations of motion. Moreover, the computa-
tion of one-point functions of in-in WQFT reduces to the use
of retarded propagators combined with the standard in-out
WQFT Feynman rules [99]. This formalism yields an
efficient QFT-based scheme to solve the classical equations
perturbatively.

The conservative observable can in turn be defined by
neglecting all interactions between hfw) and h,(,J This may be
achieved by using the in-in formalism only for the worldlines
while keeping the in-out formalism for the gravitons and
projecting on the real part of observables [123,124]. This
separation of conservative effects at 4PM has proven its
efficiency for the nonspinning results [89,101].

WQFT Feynman rules.—The graviton propagator in de
Donder gauge with Feynman prescription reads

M-S0 (3)
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with  Py.ps = Mu(oloy — [1/(D — 2)]nﬂyryw, whi/le the
worldline propagators associated with z and y/ read,
respectively,

b= v —inh n =2 for z!', (5)
e w, n * T mi(w+i0T)" | n=1 for Pt

The arrow on the propagators indicates the momentum or
energy flow on the retarded propagators. Importantly, the
Feynman graviton propagators reflect our focus on
conservative observables. Full dissipative results may be
obtained by using retarded propagators instead. The
Feynman vertices of the spinning WQFT to lower multi-
plicities have been exposed in [97]. The generic worldline
vertex couples n gravitons to m worldline fields and reads
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n
“WmmE" eik'bd(k v+ Z%) X

i=1

Vn|m “1 1.
polynomial in w;, k;
of degree 2n +m ,
(6)
where k* =" k! is the total outflowing four-

momentum, and the dotted outgoing line symbolizes the
background parameters {b*, v*, P#} of Eq. (2). We see that
only energy is conserved on the worldline. The bulk graviton
vertices are generic. At 4PM order, we need the worldline
vertices V,,, above for {n=1,...,4m=0,....,5-n},
and the three-, four-, and five-graviton vertices.

Momentum impulse and spin kick—The momentum
impulse Ap/ := [p/]’=t% and spin kick AS! := [§}]7=12

== T=—00

follow from the one-point functions

st =m [ " as( D) — a2 )

o [1u{)-

where we have Fourier transformed to momentum space.
Both observables are given as the sum of all diagrams at a
given PM order with one outgoing Z! line with vanishing
energy. The spin kick is subsequently derived from the kick
of the Grassmann variable as in Ref. [62].

Integrand generation.—The 4PM impulse and spin-kick
integrands are generated recursively via Berends-Giele-
type relations. The one-point functions for the worldline
“superfields” Z; = {z;,w} and for the graviton are repre-
sented as

Ziw) = @ () = @iy (8)

Their recursive definitions follow from the Schwinger-
Dyson equations and are depicted in Fig. 1. Spelling this
out systematically to order G* allows for an algorithmic

iy (®))]—0- (7)

o §++

@NWW): é ......... %+ @_% +% @ .....

construction of the integrand: In our case, we efficiently
inserted Feynman rules into the generated trees using
FORM [125]. There are 201 graphs contributing to the
4PM impulse in the nonspinning case, 529 with spin, and
253 contributing to the 4PM spin kick.

Reduction to scalar integrals.—A generic 4PM diagram
after performing the worldline energy integrals via the &
functions in Eq. (6) takes the form

[ st

q
.
" / umlZ] s
o606, D1+~ Dia

where the D; are either linear or massless propagators
depending on the loop momenta Z;, velocities v;, and
momentum transfer ¢g. The numerators num|¢;| are poly-
nomial in loop momenta. Tensor reduction of num[#;] to
scalar integrals is performed by expanding the loop
momenta on a basis dual to v’f and ¢*, as demonstrated
in the 3PM case [98]. The only dimensionful quantity in the

three-loop #; integral is the momentum transfer ¢*. Hence,

v;,)0(¢5 - v,)8(¢3 - v;,),  (9)

|g| = \/—¢* may be scaled out, and the remaining three-
loop integrals depend only on the Lorentz factor y.

The specific choice of three §(¢v; ) functions in Eq. (9)
follows the mass dependence of a given diagram, which
scales as mym,m; m; m; . Diagrams are thereby grouped
into two categories: test-body contributions with mass

dependence m{m, or m;m3 and comparable-mass contri-

butions m3m3, mim3; see Fig. 2. For the conservative

impulse, we can easily reconstruct the m;m3 and mim3
components using Ap/ ... = —Aph . the impulse on the
second body being given simply by relabeling the two
worldlines. When computing Ay/{ .., no similar relation
exists; however, the integrals in opposing mass sectors are
also related by a trivial relabeling.

Integral families and reduction to masters.—There are
three integral families that need to be reduced to master
integrals. The first 4PM family is (i = 1, 2),

+% ......... +%+
@% $o

B

FIG. 1.

Berends-Giele-type recursion relation to construct (Z (w)) and (h

)) perturbatively. The causality flow is always from the

Z; and h blobs to the outgoing line. They are equivalent to the PM- expanded geodesic and Einstein equations.
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FIG.2. Examples of comparable-mass graphs with mass dependence m? m2 contributing to the 4PM calculation. One should attach an
outgoing worldline to any worldline node and apply the resulting causality flow. The corresponding scalar integrals feature as top sectors
in the differential equations: All graphs can be described by the J family (11), except for the last graph belonging to the 7 family (10).
The first two graphs give rise to the elliptic functions in the final result. The second-to-last graph is nonzero only in the (PR + RP) region
and therefore does not contribute to the conservative results in this Letter.

Ui)é(fz : 01)5(f3 : Ul)
Dy'Dy - Dyy
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with the propagators (j =1, 2, 3 and k =1, 2):

Dlzfl'ﬂy‘i‘GliOJr, D1+k:£1+k'1}2+61+ki0+7
Dy=(¢1+C62+063+q). Ds=(¢1+62+q)°.
Ds = (¢x+¢3)% Dyj=¢3. Digu=(r+q)%
(10b)
and 1 = 2,2 = 1. The I!" and 1? families contribute to the

test-body and comparable-mass regimes, respectively. The
other 4PM family is given by

o (£, - 11)8(£5 - v,)8(Z5 -
Jioes) .:/ (G 0)olfs 0)o(5 - v) g
Orlrts D\'Dy*---Dy;

with (j =1,2,3, k=1, 2),
Dk = fk ) +O'ki0+,
Dy = (£x = ¢3)%,

) _
Dg.j =175, Dy, j =

:f3 * Uy +G3i0+,
D¢ = (fl _Zfﬂ2)27

(Z;+q)*. (11b)

Each family splits into two branches: even (b type) or odd
(v type) in the number of worldline propagators. In the
nonspinning impulse, these integrals multiply terms pro-
portional to b*, v¥, respectively (16). Using integration by
parts (IBP) relations [126—-129], we reduce the families to
23 master integrals for the /-b and I-v types each, as well as
64 of J-b type and 66 of J-v type. The complete spinning
impulse computation (including dissipation) results in
approximately 103 integrals for reduction to scalar masters.

Differential equations.—To solve for the master inte-
grals, we employ the method of canonical differential
equations (DEs) [54]. Each master integral family is
grouped into a vector / ordered according to the number

of active propagators. The DE in x = y — y/y*> — 1 reads

dl/dx = M(e,x)I with a lower-block triangular matrix
M (e, x). Finding a transformation matrix 7 that brings us to

a canonical basis with an e factorized DE dI / dx = eA(x )
is a highly involved procedure in which we employ the
packages [130-133]. The resulting symbol alphabet is
{x,1+x,1—-x,1+x?}, and we encounter elliptic inte-
grals in the J-b family [103,130].

Fixing boundary conditions.—Boundary conditions
on the master integrals are determined in the static
limit (y -1, v - 0) using the method of regions
[82,101,134,135] to expand the integrand in ». Regions
in the static limit are characterized by different scalings of
the bulk graviton loop momenta with potential (P) and
radiative (R) modes defined by relative scalings of their
spacial and timelike components:
=)~ 1), =)~ vv). (12)
Only gravitons which may go on shell can be radiative, and
there are at most two of these defining the three regions:
(PP), (RR), and (PR + RP). The regions (PP) and (PR + RP)
are purely conservative and dissipative, respectively, while
the (RR) region carries both kinds of effects. In the (PP)
region, the integrals reduce to test-body integrals described
by the 71! family (10); in the (RR) region, they reduce to
double-mushroom integrals like the first graph of Fig. 3.
Either way, the boundary integrals are independent of y and
thus functions only of D =4 —2¢. In our conservative
observables, we include only the (PP) and (RR) regions as
the (PR + RP) region generates terms odd in v.

Reaching 4PM order introduces the physical phenome-
non of tail effects [89,101]. In the 4PM contributions to an
observable X (impulse, spin kick, or scattering angle), poles
in € = [(4—D)/2] appear in the (PP) and conservative
(RR) contributions:

_45%#“, (13)

P

X(PP)
2e

“+ ..., grli):—v

higher-order terms being finite as ¢ — 0. Nonanalytic
dependence on »7* in the (RR) region is a direct
consequence of the velocity scaling of the two radiative
gravitons. The cancellation of these poles when assembling
Xcons Introduces logarithmic velocity dependence:

-1
Xeons = X (PP) +X((:0m) = ( )log + ..., (14)

MW

FIG. 3. Two examples of graphs contributing in the (RR) region
but not the (PP) region.
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the dots indicating terms that are rational in y/y> — 1 in the
static limit. @
. . " 4
Results.—We begin with Ap; . . the G* component of
the impulse Ap/ ... It may be decomposed as

2 2 2 2
4) mym; ) n; (o) my _(o)
APeons1 = ‘ll]|4 IZ; " Km_lclﬁ () +rel” (7))
,0=Db,V
# 30 (mad )+ i) | 09
where the basis vectors and spin structures pgh'v)” are
u A ap l’: A, ape l’; ~u
- bﬂ’ b”7 L* s
8 { oI 7 el }
() _ #ai'i‘ﬂai'vﬂ
CRR Ui ) D
There are five and eight elements in pgb)” and pgv)” ,

respectively, and the normalized angular momentum
L = €,1¥15b° [yv. The Cz )(y) and d >( ) and their
barred counterparts are rational functions (up to integer
powers of /7> —1). All nontrivial dependence on 7 is
contained in the 16 functions F.”’ (y) withyy =y £ 1:

b)

F2(7) = { arccosir). ogl] o /5.
5

1 1
3 el el 5]
log? [ } L12{j:y ],Liz{ 7—‘],
7+ 7+
o8 2 R e
Y+ Y+ Y+ v+
and the much simpler set F\) = {1, arccoshly]}. The first
line of Eq. (17) includes transcendental weight-1 functions,

the second and third lines weight-2 functions, and the final
line quadratic combinations of elliptic functions of the

arccosh?y], arccosh[y] log

first and second kind. The barred coefficients E;”) and z_z’;’

may be obtained from the unbarred ones by relabeling

l,lSlIlg Ap(()()ili 11— Apcolls 2°

The G* component of the spin kick AS'"*

icons admits a

similar decomposition involving the same functions F’ S,bm)

but a different set of basis vectors and spin structures:

~

b
50 — {a bﬂ ﬂ}
P
] \bl

~

o Jar-bs, ar-vy
5 >u_{wbu, " 1)’;}, (18)

and takes the schematic form
2 2
(o (mz (0) mi (o) )
D —e; (y)+—e¢; (v
(et + 23l

# R0 (marf )+ mF) |- 09

2.2
(4)u nynt;
ASconsl |b|3

Here, eg';) (y) and ff:l)

rational functions (again, up to integer powers of y/y> — 1).
For the full expression, we refer the reader to the
Supplemental Material [136].

As checks on these two observables, we have confirmed
(1) the cancellation of all 1/¢ poles occurring between the
(PP) and (RR) regions and the (i) conservation of p?, S?,
and the A/ = 1 global supercharge Q; = p; - ;. While the

first two only check the simpler terms carrying F, ((,”), the

(») (B

(y) and their barred counterparts are

latter also compares Fy and

Al//< and thus, ASHH

1,cons’ ,cons*
We also define the total scattering angle 6 for generic

spin configurations as

terms between Ap

0 [AD consl E ~(GM\" 6"

sin— = —————, 0=— —_— —, 20
2" 2. w2 \Jor ) o 0

with p = mymy\/y* — 1/E, total energy E = |p/| + ph],

and total mass M = m; +m,, n and m counting PM

and spin orders, respectively. The 4PM spin-orbit contri-

bution is

16
4,1 b
gf:ons) = 5 v <S+ a (}’) + Os_ h(<1 )( ))F((l )(}’)

a=1
B 217y(33y* — 307> + 5)(13s, — 35s_)
32(y% — 1)>/2 '

(21)

where the test-body contributions (second line) agree
with the geodesic motion in a Kerr background [137].
Here we use the mass parameters v = m;m,/M? and § =
(my —my)/M, and we have defined s, = —(a; £ a,) - L.
The 32 polynomial functions hf,i)(y) are given in the
Supplemental Material Eq. (23) [136]. We have checked
this result against the corresponding N3LO PN [39,41]
literature and found agreement by taking the PN expansion.
The tail term P(4)( ) of the scattering angle is simply

related to the 3PM radiated energy Eﬁag as follows:

4 aE§ )
Py(r) = E=, (22)

where J = p|b| is the initial angular momentum. This
equation follows the pattern derived in Ref. [138] and
constitutes another nontrivial check of our results. All of
our results are included in the Supplemental Material [136].
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Outlook.—Having produced a complete set of 4PM
linear-in-spin  conservative scattering observables—
and successfully compared them with N3LO spin-orbit
PN [39.,41]—our next step will be upgrading them to
include dissipative effects, as has already been done in the
nonspinning case [102,103]. This will require two changes
to our setup: retarded graviton propagators in place of time-
symmetric Feynman (see Ref. [99]) and incorporation of
the (PR 4 RP) regions when fixing boundary conditions on
master integrals. Notwithstanding the added complexity,
quadratic-in-spin order is also an achievable target—
corresponding N3LO quadratic-in-spin PN results are
already available [38,40]. In the near future, we also seek
to use these results to describe bound orbits, the main
obstacle being the aforementioned tail effect [89,101].
Recent numerical relativity simulations of spinning black
holes on hyperboliclike orbits [139] also offer us future
numerical comparisons of the scattering angle 6.
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