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Calculation of the absorbed fluence

To determine the absorbed fluence, we consider a sample thickness t = 150 nm and an absorption length
of either l780 nm = 1.5 µm and l1200 nm = 30 µm. Since t ≪ l780 nm, l1200 nm, the absorbed fluence fraction
can be approximated as t/lλ. Thus, 10% and 0.5% of the incident fluence are absorbed at 780 nm and
1200 nm, respectively.

Equilibrium spin Hamiltonian

The magnetic structure of Cu2OSeO3 consists at the microscopic level of 16 Cu ions per unit cell,
each carrying a magnetic moment of |si| ≈ h̄/2. However, due a hierarchy of magnetic interaction
strengths [1], the four spins on each pyramid of the pyrochlore lattice bind together to form effective
magnetic moments of size |Si| = h̄ living on a trillium lattice. After an additional coarse graining step,
valid for magnetic structures where the magnetization is constant over distances comparable with the
lattice size (∇ ·M ≪ a), the effective spin Hamiltonian in equilibrium is

H0 =
∑
⟨ij⟩

[J mi ·mj +Dij · (mi ×mj)] +
∑
i

B ·mi. (1)

For Cu2OSeO3 the skyrmion radius is r = 50.89 nm, compared to the lattice parameter a = 8.91 Å,
such that the coarse graining procedure is justified. To describe the magnetization dynamics we employ
a three-dimensional square lattice with 40×40×10 lattice points. The magnetic moments are normalized
to |mi| = 1, and all interaction parameters are measured in units of the exchange interaction J0 = 48.2
meV. This gives the effective parameters J = 1, D = 0.224 and B = 0.013, corresponding to 20.7 mT, in
agreement with previous work [1].

Simulated annealing and Metropolis Monte Carlo

The equilibrium magnetic phase diagram is found by simulated annealing down to a target temperature
kBT/J0 = 0.02 using the Metropolis Monte Carlo algorithm [2], corresponding to T ≈ 1 K. To minimize
stochastic effects in the phase diagram and the subsequent dynamics, each step involves 2000 thermal-
ization sweeps followed by an average over 2000 Monte Carlo realizations with 40 sweeps each. In agree-
ment with previous work [3], and as illustrated in Figure S1, we find four competing equilibrium phases:
a ferromagnetic phase, a helical spiral phase, a conical phase and a skyrmion crystal (SkX) phase.

Equations of motion

The magnetization dynamics is governed by the Landau-Lifshitz-Gilbert (LLG) equation [4, 5], which in
the present case reads

∂mi

∂t
= −γmi ×

δH

δmi

− λmi ×
(
mi ×

δH

δmi

)
. (2)

Here the effective magnetic field acting on magnetic moment mi is given by the functional derivative of
the total Hamiltonian H with respect to mi. The parameters γ = 1/(1+α2) and λ = α/(1+α2) take into
account the phenomenological damping constant α, which for Cu2OSeO3 is on the order of 10−4. The
LLG equation is solved by geometric Depondt-Mertens algorithm [6].
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Figure S1: Magnetic phase diagram of Cu2OSeO3. Schematic magnetic phase diagram for J = 1 and D = 0.224 as
a function of thermal energy kBT and magnetic field B. The phase boundaries were obtained by simulated annealing with
the Metropolis Monte Carlo method.

Light-matter coupling

The dominant light-matter coupling mechanisms considered here are Raman excitation of phonons and
magnons, an effective magnetic field generated by the inverse Faraday effect, and a direct magneto-
electric coupling via the spontaneous polarization [7–9]. Several studies have found a strong depen-
dence of the Dzyaloshinskii-Moriya interaction (DMI) on strain [10, 11] as well as on a dynamical
coupling to acoustic phonons [12]. To describe such mechanisms we consider the total Hamiltonian
H(t) = H0 +HI(t), with the time-dependent interaction Hamiltonian

HI(t) =
∑
⟨ij⟩

[Jij(t)mi ·mj +Dij(t) · (mi ×mj)] +
∑
i

[B(t) ·mi − E(t) ·Pi] , (3)

The exchange interaction Jij = gR(t)(esc · dij)(ein · dij) is modified to take into account magnon Ra-
man processes, the inverse Faraday effect generates an effective field B(t) = gIFEE

∗(t) × E(t), and the
magneto-electric effect is described by a coupling to the polarization Pi = gm−el(S

y
i S

z
i , S

z
i S

x
i , S

x
i S

y
i ). As-

suming a uniform excitation of acoustic phonons with momenta k ≈ 0 gives an isotropic modification of
the DMI strength D(t) = D(1− gm−ph(t)), where gm−ph(t) is proportional to the time-dependent average
phonon amplitude. Since the phonon dynamics of Cu3OSeO2 is very complex, we here use a phenomeno-
logical description of gm−ph(t) as a log-normal function, with an onset determined by the laser electric
field and a decay related to the phonon lifetime τph. The laser electric field is described by a normalized
Gaussian envelope of width σ and peak time τ .

Time-dependence of the magnetic parameters

The excitation mechanisms discussed above are associated with different characteristic time-scales. In
particular, both the magnon Raman processes, inverse Faraday effect and magneto-electric effects are
impulsive in the sense that they only are present during the action of the laser pulse. In contrast, the
magnon-phonon coupling is expected to persist for as long as there are phonons in the system. Since
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Figure S2: Time-dependence of magnon-phonon interaction. Examples of log-normal functions with peak time t0 as
used to model time-dependence of the magnon-phonon interaction.

the magnetic moments have a characteristic time-scale of about 1 ps, while a single optical cycle of the
laser is around 1 fs, the magnetic moments are assumed to only respond to the average field given by the
pulse envelope.
Under these assumptions, the first three mechanisms satisfy gi(t) = gif(t) for gi ∈ {gR, gIFE, gm−el} and
can be described by a Gaussian time-dependence of the form

f(t) =
1

τ
√
2π

exp[−(t− t0)
2/(2τ 2)], (4)

where τ is the pulse width and t0 the time of peak intensity. In contrast, the magnon-phonon coupling is
modeled by the log-normal function

gm−ph(t) =
gm−ph

tσ
√
2π

exp[−(ln t− µ)2/(2σ2)] (5)

Here the peak time is given by t0 = eµ−σ2
, and the effective width (or skewness) by τ = (eσ

2
+2)

√
eσ2 − 1.

The width is assumed to be related to the phonon lifetime, which is assumed to be of the order of 100
ps. A few examples of the log-normal function for σ = 1 and different t0 is given in Figure S2.

Definition of the topological charge

To quantify the topology of the spin texture we use the lattice topological charge Q defined by [13]

Q =
1

4π

∑
∆

Ω∆. (6)

In this definition the lattice is triangulated and Ω∆ corresponds to the signed area of the spherical trian-
gle spanned by three neighboring spins, given by [13]

exp(iΩ∆/2) =
1

ρ
(1 +mi ·mj +mj ·mk +mk ·mi + iηijkmi · [mj ×mk]) (7)

ρ =
√

2(1 +mi ·mj)(1 +mj ·mk)(1 +mk ·mi),

where ηijk = +1 (−1) if the path i → j → k → i is positively (negatively) oriented. The surface area Ω∆

is well-defined everywhere except at the zero-measure set mi · (mj ×mk) = 0 and 1+mi ·mj +mj ·mk +
mk ·mi < 0, where exp(iΩ∆/2) has a branch cut.
The topological charge is a compact, convenient indicator of the presence of a non-trivial spin texture:
For a single skyrmion Q = −1, for a single antiskyrmion Q = 1, and for a cluster of skyrmions and anti-
skyrmions Q =

∑
i Qi with Qi their individual charges.
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Supplemental Note: Estimated magnitude of light-matter couplings

As discussed in detail in the following sections, the magnon Raman coupling gives a modulation ∼ 10
% of the equilibrium exchange, the inverse Faraday effect is likely negligible, the magneto-electric effect
gives a contribution of around ∼ 1 % of the equilibrium exchange, while the spin-phonon coupling can
give a modulation on the order of ∼ 50 % of the equilibrium DMI.

Magnon Raman processes

An isotropic light-matter interaction arises due to the coupling of the laser to the charge of the electrons
underlying the magnetic moments. For spin-1/2 systems, this coupling can be derived by considering a
half-filled Mott insulator subject to an external electric field. The weak-field limit of this coupling repro-
duces the Raman vertex derived by Fleury and Loudon from general symmetry arguments [14–16], and
is described by the Raman Hamiltonian [17]

HR =
∑
qq′

Rqq′a†q′aq
∑
⟨ij⟩

gijqq′mi ·mj (8)

=
∑
⟨ij⟩

Jijmi ·mj.

Here Rqq′ = J(ea/h̄)2γqγq′ is the strength of the Raman coupling, e is the electron charge, a the lattice
parameter, h̄ Planck’s constant, and J is the equilibrium exchange interaction. The function γq describes
the strength of the one-photon vector potential, and the geometric factor gijqq′ = (ê∗q·dij)(êq′ ·dij) encodes
the underlying virtual electronic processes. To simplify the notation we have defined q ≡ {q, s} with s
the polarization.
The leading order term of the Raman Hamiltonian describes a two-photon two-magnon process. To as-
sess the strength of the light-matter coupling, we note that λR,q = Rqq′nq where nq is the number of
photons in the incident field. Using the fact that nq = IV/(h̄ωqc) with the intensity I = (cnϵ0/2)E

2, we
have λR,q = (ea/h̄ωq)

2(n/4)E2. Assuming that a = 5 Å, E = 109 Vm−1 and n = 2.40, we find λR = 0.16
with and characteristic energy scale gR = JλR = 7.7 meV.

Inverse Faraday effect

For a system with non-zero magnetization the dielectric tensor acquires nonzero off-diagonal elements
and can be written as ϵij(M) = ϵ0(ϵrδij − ifϵijkMk). Here ϵ0 is the vacuum permittivity, ϵr the relative
permittivity, f is a small parameter related to the Faraday angle θF discussed below, and δij and ϵijk are
the Kronecker and Levi-Cevita tensors, respectively. Calculating the interaction energy in a volume Vc

around each spin [18–20],

U(t) = −
iθF c

√
ϵrϵ0a

3

2ω

M(r)

Ms

· [E∗(t)× E(t)], (9)

the Faraday coupling is αF = θFVcc
√
ϵr, where θF is the Faraday angle per unit distance, and BF (t) =

ϵ0/(2iω)[E
∗(t) × E(t)] is the effective optical spin density. The IFE coupling Hamiltonian is then written

as

HIFE = αFBF (t) ·
∑
i

mi. (10)

To estimate the light-matter coupling strength, we write the Faraday angle as θF = VB where V is the
so-called Verdet constant, which is smaller than 100 rad/Tm. Taking E = 109 V/m, a = 5 Å and λ =
1240 nm, giving h̄ω = 1 eV, we find the characteristic energy scale gIFE = αF |BF | = 4.3× 10−4 meV.
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Magnetoelectric coupling

Due to the multiferroic nature of Cu2OSeO3 there is a direct magnetoelectric coupling proceeding with
d− p-hybridization [8]. The resulting magnetoelectric coupling Hamiltonian is

Hm−el = −E ·
∑
i

Pi (11)

Pi = γ(Sy
i S

z
i , S

z
i S

x
i , S

x
i S

y
i ).

In Refs. [8, 9] the coupling constant γ is estimated to the value γ = 5.64 · 10−27 µCm by comparison to
experiment. This gives, for an electric field of E = 109 Vm−1, an interaction energy of gm−el ≈ 10−23 J or
equivalently gm−el ≈ 1 meV.

Magnon-phonon coupling

The spin-phonon coupling of Cu2OSeO3 has been discussed in the context of non-reciprocal magnon
propagation [12], where a coupling Hamiltonian of the form

Hs−ph = γD∂zux(S
y
i S

z
j − Sz

i S
y
j ) + γD∂zuy(S

z
i S

x
j − Sx

i S
z
j ) (12)

was derived for a phonon propagating along the z-direction. Assuming acoustic phonons propagating
along all cubic axes are excited with the same probability, this gives a spin-phonon coupling Hamiltonian

Hs−ph = γD · (Si × Sj) (13)

where the DMI vector has been shifted according to the following

Dx = Dx0(1 + γ[∂y + ∂z]ux) (14)

Dy = Dy0(1 + γ[∂z + ∂x]uy)

Dz = Dz0(1 + γ[∂x + ∂y]uz).

To estimate the size of the DMI modulation, we note that in Ref. [12] the value of γ was estimated to
be in the range γ = 50 − 90 by fitting the calculated magneto-chiral effect towards experiment. With
an estimate of the phonon derivatives of ∂jui ≈ kjui ≈ 0.01, the spin-phonon coupling can still give a
modulation of the DMI on the order of 50 %. This gives a characteristic energy scale of gm−ph = 0.5D =
5.4 meV. This large value is in line with previous studies, where the strain-induced modulation of the
DMI has been found to be very large for a number of chiral magnets [10,11].
Although the time-dependence of the phonon coordinate u could in principle be obtained by a full
dynamical simulation of the coupled vibrational modes of Cu2OSeO3, such a calculation becomes pro-
hibitive in practice due to the complexity of the system. Here we instead take a phenomenological
approach and parameterize the time-dependence of the DMI with a log-normal function, whose onset is
determined by the pulse parameters of the laser electric field and whose decay is set by the lifetime of
the phonon modes.
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Brink, H. Rosner, Nature Communications 2014, 5, 1.

[2] E. V. Boström, C. Verdozzi, Phys. Status Solidi B 2019, 256, 7 1800590.

[3] S. Buhrandt, L. Fritz, Phys. Rev. B 2013, 88 195137.

[4] M. Lakshmanan, Philos. Trans. Royal Soc. A 2011, 369, 1939 1280.

5



REFERENCES

[5] V. G. Baryakhtar, B. A. Ivanov, Low Temp. Phys. 2015, 41, 9 663.

[6] P. Depondt, F. G. Mertens, Journal of Physics: Condensed Matter 2009, 21, 33 336005.

[7] J. H. Yang, Z. L. Li, X. Z. Lu, M.-H. Whangbo, S.-H. Wei, X. G. Gong, H. J. Xiang, Phys. Rev.
Lett. 2012, 109 107203.

[8] S. Seki, X. Z. Yu, S. Ishiwata, Y. Tokura, Science 2012, 336, 6078 198.

[9] Y.-H. Liu, Y.-Q. Li, J. H. Han, Phys. Rev. B 2013, 87 100402.

[10] K. Shibata, J. Iwasaki, N. Kanazawa, S. Aizawa, T. Tanigaki, M. Shirai, T. Nakajima, M. Kubota,
M. Kawasaki, H. S. Park, D. Shindo, N. Nagaosa, Y. Tokura, Nature Nanotechnology 2015, 10, 7
589.

[11] L. Deng, H.-C. Wu, A. P. Litvinchuk, N. F. Q. Yuan, J.-J. Lee, R. Dahal, H. Berger, H.-D. Yang,
C.-W. Chu, Proceedings of the National Academy of Sciences 2020, 117, 16 8783.

[12] T. Nomura, X.-X. Zhang, S. Zherlitsyn, J. Wosnitza, Y. Tokura, N. Nagaosa, S. Seki, Phys. Rev.
Lett. 2019, 122 145901.
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