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ABSTRACT
We perform numerical and experimental studies on the melting process of thin films initiated by a small hole in the continuum regime.
The presence of a nontrivial capillary surface, namely the liquid/air interface, leads to a few counterintuitive results: (1) The melting point is
elevated if the film surface is partially wettable, even with a small contact angle. (2) For a film that is finite in size, melting may prefer to start
from the outer boundary rather than a hole inside. (3) More complex melting scenarios may arise, including morphology transitions and the
“de facto” melting point being a range instead of a single value. These are verified by experiments on melting alkane films between silica and
air. This work continues a series of investigations on the capillary aspects of melting. Both our model and analysis approach can be easily
generalized to other systems.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0151788

I. INTRODUCTION

Thermostability of thin films is of great interest in theory and
in practice.1 For example, it is very important to know when and
how an anticorrosion coating, a filter membrane, or a semiconductor
layer would collapse under high temperature. Here, the thermosta-
bility is characterized by the “de facto” melting point of the thin film,
which, due to the ineligible interfacial free energies, is different from
the melting point of the bulk material.

The most used equation for calculating the “de facto” melting
point of a confined system is the Gibbs–Thomson equation.2–5 It
predicts that the melting point of a confined system is lower than
the bulk melting temperature, with a shift that is inversely propor-
tional to the characteristic length of the confinement. This theory
is deduced from a classical two-phase model: a small solid particle
covered by its melt, with one solid–liquid interface. The area of this
interface varies during melting, hence the interfacial energy varies
and contributes to the total free energy change. For thin films, a vari-
ation of this model is used, but still only the solid–liquid interface is
considered.

However, in most real-life cases, there will be at least one cap-
illary surface, i.e., the liquid–air interface. The prerequisite for the
Gibbs–Thomson equation is that the liquid melt covers uniformly

a solid particle floating in the air, so that the capillary surface is a
spherical shell that does not change in shape or area. In practice, this
means all the facets of the floating particle must be “premelting,”6,7

i.e., a thin layer of liquid melt covers the solid facets before the
temperature reaches the bulk melting point.

A bad news is that “premelting” is only confirmed on certain
facets of ice and lead (Pb). Experimental study with lead particles
shows that the Gibbs–Thomson equation breaks down once a non-
premelting facet is involved: The liquid melt wets the facet with a
nonzero contact angle.8 This will also happen when the particle is
not floating but in contact with a substrate. Liquid could be pinned
at the grain boundaries or wet the substrate with a nonzero con-
tact angle. The shape of the capillary surface will become nontrivial,
so does the interfacial energy. For long, it has been known that the
effects of capillary surface on melting is complex.9–13 However, this
problem is rarely systematically analyzed.

Previously, we have observed an unexpected melting scenario
of molecularly thin terrace of long-chain alkanes: Liquid drops
appear at the edge and “eat” into the terrace.14 We have revealed
that the emergence of these drops is due to (1) the coexistence of
liquid and solid under equilibrium and (2) the Plateau–Rayleigh
instability of the capillary surface.15 Later, we analyzed the melting
behavior of cylindrical aggregates16 in gaseous environment based
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on the same experimental system and showed elevated melting point
due to non-premelting facets.

In this work, we study the melting behavior of a thin, planar
solid film from a defect in the shape of a cylindrical hole. Dur-
ing melting, the capillary surface may appear in different shapes.
We show that (1) the hole inside the film may not be the pre-
ferred starting point of melting and (2) if melting starts from
the hole, morphology transitions at different instants during the
melting will lead to different melting scenarios as well as differ-
ent “de facto” melting points. Although the simulation is based on
our experimental system, the long-chain alkane film between air
and silica substrate, the model can be easily generalized to other
systems.

II. THEORY AND METHODS
A. Quasi-static melting process

We analyze the melting process within a continuum frame-
work. Although the film thickness can be close to the molec-
ular scale, the work of Henrich et al. showed that continuum
models are adequate for ≥2 adjacent liquid monolayers17 Con-
tributions from the line tension,18,19 the disjoining pressure,20

and gravity are neglected. When alkane solid melts, the volume
increases typically by ≈10%.21 This change in volume can be
neglected without affecting our conclusion. We, hence, use the
volume of the liquid melt V l to represent the amount of melted
material. Melting is treated as a slow, quasi-static process: Only an

infinitesimal change of parameter is applied for the status change.
Therefore, the capillary surface is always fully relaxed to the
minimum of the interfacial energy (area).

Note that the quasi-static approach is possible in our system
because we have observed the coexistence of liquid and solid under
(meta-)stable equilibrium.15,16 This is caused by the existence of
non-premelting facets and the nontrivial capillary surface, which is
not the case for a bulk system or a Gibbs–Thomson system. In the
following, we analyze the melting process in detail.

The system status is determined by the total free energy Gtotal,
which is the sum of the bulk energy GB and the interfacial ener-
gies GI. Figure 1(a) illustrates the total free energy as a function of
V l in an example system. Three different temperatures are chosen:
the bulk melting temperature T0, the “de facto” melting temperature
Tm, and a temperature in between. Note that at T0, GB = 0; hence,
Gtotal = GI (black curves). Each (local) minimum on the energy curve
indicates a (meta-)stable equilibrium state, as marked with black
crosses. Red crosses mark the unstable equilibrium states, above
which the melt will complete without any energy barrier. The gray
line connecting the (meta-)stable equilibrium states indicates the
quasi-static melting process. It ends when the system reaches the
temperature at which only unstable equilibrium is possible. We call
this temperature the “de facto” melting temperature Tm of the sys-
tem. In literature, it is sometimes called the “true” or the “critical”
melting temperature.

In order to decide the scenario of melting as a quasi-static pro-
cess, we need to find out the equilibrium curve that plots how the

FIG. 1. Free energy change during melt-
ing of two typical systems. (a) and (b)
correspond to an example system: a
film melting from a hole of r0/h = 20.
(c) and (d) correspond to the typical
Gibbs–Thomson system: a premelting
spherical particle with initial radius r0.
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system parameters change from the initial (all solid) to the final state
(all liquid). At equilibrium, we have ∂Gtotal/∂V l = 0, or

Δμ +
dGI

dVl
= 0, (1)

where Δμ is the bulk chemical potential difference per volume
between liquid and solid under a constant pressure (in this case, 1
bar).

On the one hand, Δμ only depends on the temperature T. More
specifically, when the relevant temperature range is small so that a
constant melting entropy ΔSfus can be assumed, Δμ at an arbitrary
temperature T is calculated as22,23

Δμ ≃ −ΔSfus ⋅ (T − T0), (2)

where T0 is the bulk melting point. That is, Δμ decreases linearly
with temperature T.

On the other hand, dGI/dV l does not change with T. Rather, it
is a function of V l. The equilibrium curve should hence be plotted
with T and V l as the parameters. From Eqs. (1) and (2), we have the
relation

ΔT = T − T0 =
1

ΔSfus

dGI

dVl
. (3)

In Fig. 1(b), dGI/dV l is plotted as a function of V l. More-
over, for the three typical temperatures in Fig. 1(a), we plot the
corresponding −Δμ, which is proportional to ΔT. They appear as
horizontal lines as Δμ does not depend on V l. Their intersections
with the dGI/dV l curve indicate the equilibrium states, as marked
by crosses. In particular, the rising part of the dGI/dV l curve [gray in
Fig. 1(b)] corresponds to the local minima of Gtotal at different tem-
peratures. These are (meta-)stable equilibrium states, hence trace the
equilibrium curve that describes the quasi-static process. The maxi-
mum of dGI/dV l corresponds to the upper temperature limit of the
quasi-static melting, namely, the “de facto” melting temperature Tm
of the system.

In contrast, a typical Gibbs–Thomson system does not have
quasi-static melting. Figure 1(c) shows the total free energy as a func-
tion of V l for a small spherical solid particle (radius r0) covered
with liquid melt. Again, three different temperatures are chosen:
the bulk melting temperature T0, the “de facto” melting tempera-
ture Tm, and a temperature lower than Tm. It could be calculated
that dGI/dVl = −2γsl/(r3

0 − 3Vl/(4π))−1/3, and has the maximum at
V l = 0. Hence, there is no (meta-)stable equilibrium. The “de facto”
melting temperature Tm is characterized by an unstable equilibrium
at V l = 0.

B. Simulation details
We focus on the melting of a film between two different media:

a substrate and air. Melting of a film between identical media or sub-
strates is either straightforward or closely related. Melting starts at a
cylindrical hole (radius r0) in the film that exposes the substrate. For
the simulation, we make the following assumptions:

● The hole in the solid maintains a vertical cylinder geometry.
The substrate is planar and the film is of uniform thickness,

hence the cylindrical hole also maintains a constant height h
during melting.

● The total volume of solid and liquid together remains con-
stant as the density difference between solid and liquid is
neglected.

● The liquid wets completely the lateral surface of the hole,
but only partially the film surface and the substrate, with a
nonzero contact angle.

● The liquid is pinned at the solid/air/liquid contact line of the
hole edge; in other words, there is no fixed contact angle at
this line.

● Young’s equation holds for contact angles at the liq-
uid/substrate/air contact lines.

Long-chain alkane molecules in solid layers align vertically.
Therefore, such a model represents the real case of melting of long-
chain alkane film at silica–air interface evolving from holes in the
film.

The nontrivial shape of the capillary surface during the melt-
ing is solved by relaxing the surface in Surface Evolver24 with a
given V l and corresponding boundary conditions. For the sim-
ulations, we use real data of long-chain alkane systems:25–27 liq-
uid/air interfacial tension γlv = 25 × 10−3 N/m, γlw(hole side wall)
= 10 × 10−3 N/m, γls(film surface and substrate) = 4 × 10−3 N/m,
and ΔSfus = 5 × 105 J/Km−3. The contact angle is θls = 15○ on
both the film surface and the substrate. The model can be easily
tuned to simulate different systems. For example, if θls = 90○, the
model represents not only a film coated on a substrate but also a
self-supporting film in the air (after a reflection in the substrate
plane).

Figure 2 illustrates different liquid shapes that may emerge
during melting. The hole, from where the melting starts, has an
initial radius r0 and a depth h (the film thickness), r0 > h. During
melting, when the radius of the hole becomes r, the liquid volume
Vl = πh(r2

− r2
0). Liquid melt will first appear as a symmetric rim

at the edge of the hole. More precisely, the capillary surface will be
a constant-mean-curvature surface of revolution (Delaunay surface,
or rouloid).28,29 As the liquid volume increases, two different situ-
ations are possible: Either there remains an opening exposing part
of the substrate [“open” shape, (I)] or the liquid covers the entire
substrate [“closed” shape (II)].

The “closed” shape has a geometric limit: The top surface of the
liquid is a concave spherical cap whose boundary is pinned at the
upper edge, hence the “closed” shape will only appear when suffi-
cient amount of the solid has melted. This limit can be calculated
analytically. The radius of the hole has to be larger than a minimum
radius rmin, which is

rmin

h
=

√

2(
r0

h
)

2
−

1
3

. (4)

The “open” shape can be symmetric (rouloid) or nonsymmetric
(bulged); see Fig. 3. However, in this system, the bulged shape is only
possible with sufficiently large V l that the system is already unstable;
hence, it is not the focus of this work.

In the following plots, we use normalized, dimension-free vari-
ables: G = G/(γlvr0h), V = V/(πr2

0h), r = r/h, dGI/dVl = dGI/dVl ⋅

h/γlv, and the in-plane curvature κ = κ ⋅ h.
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FIG. 2. Melting process from a hole of finite size (r0) in an infinite film of uni-
form thickness h. Drawings illustrate the cross section. The liquid wets the lateral
surface completely and the substrate partially with contact angle θls. Liquid melt
first accumulates at the edge as “open” rim (I), then the liquid front coalesces and
forms a “closed” concave spherical cap (II).

C. Experimental methods

We use silicon wafer covered with a 300 nm thick oxide
layer as substrate. The oxide layer has a refractive index close
to the long-chain alkane. Such a thickness is chosen because it
provides interference enhancement of contrast from thin alkane
layers on the substrate.30 We coat the piranha-cleaned wafer with
long-chain alkane (triacontane C30H62 or hexatriacontane C36H74)
solution in toluene. After a heat–cool cycle, a “surface frozen”
alkane monolayer31 will be formed on the wafer. The sample is
then annealed at a temperature slightly below T0 for a few min-
utes. Films and islands of various size and height will appear. The
suitable ones are chosen for the melting experiments. The height
of the alkane films is measured with atomic force microscope
(AFM).

The substrate in such a system is actually the surface frozen
alkane monolayer, covering the silica surface. This layer, same with
the top of alkane film, can only be partially wetted by liquid alkane
melt with a contact angle around 15○. This contact angle is directly
calculated from microscope observation or alkane droplets: The light
(peak wavelength 550 nm) reflected from liquid–air interface and
that from the silica–silicon interface in the wafer interfere and form
Newton’s rings. From this pattern, we get the droplet surface profile
and the contact angle.

III. DISCUSSIONS
A. Transitions between different morphologies
during melting

Figure 4 plots the normalized interfacial free energy GI and
dGI/dVl against the normalized liquid volume Vl . The plot rep-
resents the melting process of a film from a hole of given size
r0 = 5 on a substrate with θls = 15○. This corresponds to the actual
case of a hole about 500 nm in radius in an alkane film with
h = 100 nm.

Note that at the bulk melting temperature T0, the GI plot also
represents Gtotal. The eventual increase of Gtotal indicates incom-
plete melting. The minimum at a nonzero V l indicates a coexis-
tence of liquid melt and the solid under equilibrium. The same
can be read from Fig. 4(b): As Δμ = 0 at T0, the intersection of
the rising part of the dGI/dV l with the x-axis indicates a stable
equilibrium.

By Eq. (4), the minimal volume for the “closed” shape Vmin ≈ 1
(marked by A). B and E mark the two points where the “open” and
the “closed” shapes have the same energy. Above B, the “closed”
shape becomes more favorable; above E, the “open” shape becomes
more favorable. C and D mark the two points between which the
“open” shape is forbidden.

The melting scenario consists of three stages: (1) melting starts
from a symmetric rim; (2) the liquid closes into a concave some-
where between A and C; (3) the “closed” liquid concave raptures into
“open” rim somewhere after D. We will ignore the closed-to-open
transition in step (3) as it only happens beyond the critical point
of melting. Because of an energy barrier between the two shapes,
the open-to-closed transition can take place anywhere between A
and C.

In Fig. 4(b), both the “open” and “closed” curves have max-
ima, corresponding to the upper limit of the quasi-static melt-
ing. The respective “de facto” melting points and the correspond-
ing “critical” liquid volumes are denoted by (Topen

m , Vopen
m ) and

(Tclosed
m , Vclosed

m ).
The melting process of films from holes of different sizes is

summarized in the phase diagram in Fig. 5, parameterized by Vl
and r0. The phase diagram is divided into three regions where (i)
only “open” shape is possible (dark gray), (ii) only “closed” shape
is possible (white), and (iii) both shapes are possible (light gray).
The boundary between region (i) and region (iii) is derived analyti-
cally from Eq. (4). The dashed-dotted curve is the iso-energy curve
where “open” and “closed” shapes have the same interfacial energy
(Gclosed

I = Gopen
I ).

The melting scenario presented in Fig. 4, with r0 = 5, corre-
sponds to the vertical straight line, with the marks A to E bearing
the same meanings. We also plot the “critical” volumes Vopen

m (solid
curve) and Vclosed

m (dotted curve), as indicated in Fig. 4(b).

FIG. 3. Two types of “open” morpholo-
gies: (a) rouloid, or rotational-symmetric
constant-mean-curvature rim, and (b)
bulged rim.
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FIG. 4. Melting process of a film from a hole of r0 = 5. (a) Normalized interfacial
energy GI as a function of normalized liquid volume Vl . The solid black lines and
the dashed red line indicate respectively the “open” and the “closed” shapes. For
small volume (left of A), only an “open” shape is possible. Between C and D,
only a “closed” shape is possible. Between A and C, also above D, both shapes
are possible but with a difference in energy, except when at B and E, the two
iso-energy points. (b) The corresponding dGI/dVl as a function of Vl .

B. Melting scenarios and blurred melting points
In the following, we look into the melting scenarios for different

r0, i.e., the film melt from a hole of different given sizes. Figure 6
shows the dGI/dVl as a function of Vl with the same markings as
in Fig. 4. Note that for r0 = 4, 5, 6, both the “open” and the “closed”
curves have rising parts. Therefore, there are two equilibrium curves,
each describes a quasi-static melting process. At the overlapping part
(A–C), the system can jump from one equilibrium curve to the other
by overcoming an energy barrier.

For r0 = 4, melting starts from liquid forming a symmetric rim
at the hole edge. Let us assume the morphology transition happens
at B. From b1 to b2, it will first be an isochoric transition. How-
ever, at this temperature, the corresponding liquid volume V l on the

FIG. 5. Phase diagram for the two different shapes (“open” and “closed”) param-
eterized by Vl and r0. The three regions colored differently show where (i) only
“open” shape, (ii) only “closed” shape, and (iii) both shapes can exist due to the
geometrical boundary conditions. The dashed-dotted curve indicates where the
“open” and “closed” shapes have the same interfacial energy. The solid and the
dashed curves shows, respectively, the critical volumes of “open” and “closed”
shape, i.e., the absolute volume limits of thermal stability. A volume-increasing
path is indicated, with the points A to E same as in Fig. 4.

“closed” curve is much larger, hence V l will rapidly increase from
b2 to b3. The system is still metastable because b3 is not yet the
maximum. Same analysis applies to any point between A and C; the
system is always stable after transition. Hence, the maximum on the
“closed” curve, Tclosed

m , is the only “de facto” melting point in this
system.

In practice, this melting scenario allows us to seal small holes
in the solid film: First, raise the temperature slowly until there is
enough liquid inside the hole to form a closed concave while care-
fully keeping the temperature below Tclosed

m . Then, quickly freeze the
system and solidify the closed concave of liquid melt into a glass
state. The hole is sealed.

For r0 = 5, the scenario becomes different around the open-to-
close transition: If the transition occurs at A, it goes from a1 via a2 to
a3, after which the system is still metastable. However, if the transi-
tion occurs at B, it will lead to complete melting as the temperature at
b1 is already higher than Tclosed

m . It is also possible that the transition
does not occur before the temperature reaches Topen

m , the maximum
on the “open” curve. In summary, the “de facto” melting point Tm of
this system is a temperature range rather than a single temperature.
It can be any value between Tclosed

m and Topen
m , depending on when

the morphology transition takes place.
For r0 = 6, even if the transition occurs at the minimum volume

(A), the temperature is already higher than Tclosed
m , and the system

melts immediately. The “de facto” melting point Tm of this system is
also a temperature range, but between Ta1 and Topen

m .
In the case of r0 = 20, the liquid in the system remains a

symmetric rim up to Topen
m . “Closed” shape is only possible when

Vl exceeds the corresponding liquid volume at Topen
m ; hence, it is

absolutely unstable in the sense of melting.
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FIG. 6. Melting scenarios of film from holes of different sizes. dGI/dVl is plotted
as a function of Vl . As discussed in the text, the rising parts are the equilibrium
curves that describe the quasi-static melting processes. Same as in Fig. 4, the
solid black lines and the dashed red lines indicate correspondingly the “open” rim
and the “closed” concave. Point A to E have also the same meaning. Topen

m and
Tclosed

m indicate the “de facto” melting points of the corresponding morphology.

C. Experimental results of different hole melting
scenarios

Combined with our previous calculation on melting of cylindri-
cal island16 and straight-edge terrace,15 we have now the full picture
of the melting process of different geometries. In Fig. 7 (bottom), we
plot the scaled melting point shifts ΔT ⋅ h in our model system as
the function of the normalized in-plane curvature of the initial solid
edge. We assign a positive in-plane curvature to the island, κ0 = h/r0,
and negative to the holes, κ0 = −h/r0. One sees the ΔTm decreases
monotonically with the curvature. As a consequence, if a film with
irregular edge and holes melts, the melting will start first from the
island (peninsula), then the straight edge, and finally the tiny defects

FIG. 7. Top: Melting behavior of solid alkane film (h ≈ 100 nm) with three differ-
ent local structures: (1) a protruding “peninsula” (r0 ≈ 40, κ0 ≈ 0.025); (2) a hole
with r0 ≈ 30, κ0 ≈ −0.033; (3) a hole with r0 ≈ 10, κ0 ≈ −0.1. In the same exper-
iment, they melt sequentially. Bottom: Simulated melting point shift (scaled to the
height) of different geometries as a function of initial in-plane curvature (normal-
ized). The model is based on the experimental system of alkane film/island melting.
The gray region shows film melting from hole, and the white region shows melt-
ing of island. The boundary between the two region indicates melting of a straight
terrace edge. The melting point shifts for the three local structures shown in top
frame are marked. The dotted rectangle highlights the geometries with “de facto”
melting points being a range. Bulging, which happens during melting a less-curved
structure and lowers Tm, is not shown on this plot.

(holes) inside. This counterintuitive sequence of melting is verified
by the following experiment.

Figure 7 (top) shows the melting process of an alkane film (C36
H74) of ∼100 nm thickness. The curved edges behave locally like
islands, and inside the film, there are two holes of different sizes. The
top right panel shows how much solid is melted at different posi-
tions under the same temperature. At the “peninsula” (1), compared
to the solid boundary before melting (white line), a large amount of
solid disappears. The liquid accumulates as a big bulge. Around the
big hole (2), some solid melts as well, while around the small hole
(3) barely any change can be observed. Such a melting sequence is
consistent with the estimated “de facto” melting points at these three
geometries: The “peninsula” (1) with the lowest “de facto” melting
point melts the first and the small hole (3) with the highest “de facto”
melting point melts the last.

Note that this sequence of melting makes it very hard to experi-
mentally measure the melting point shift at a hole. Before the melting
starts around the hole, it would have already started from the outer
boundary. Then, according to our previous study, the liquid melt
would appear as drops that run and “eat” into the film at high
speed.14,15 Hence, the geometry would have been destroyed before
any meaningful measurement.
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IV. CONCLUSIONS
When the contribution of the capillary surface (liquid/air inter-

face) is taken into consideration, the melting process becomes non-
trivial. We present a general approach for analyzing this system.
More specifically, we first compute the energy of all the possible con-
figurations with relaxed capillary surfaces, then deduce quasi-static
process from the plot of energy derivative.

We apply this approach to thin films with holes of different
sizes. We come to interesting conclusions, including an elevated
“de facto” melting point that in some cases becomes a range and a
counterintuitive sequence of melting that starts from outer bound-
ary instead of defects inside. These are verified by experiments on
thin films of long-chain alkanes between silica and air.
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