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Abstract

Majority of the theory on cell polarization and the understanding of cellular sensing and responsive-1

ness to localized chemical cues has been based on the idea that non-polarized and polarized cell2

states can be represented by stable asymptotic switching between them. The existing model classes3

that describe the dynamics of signaling networks underlying polarization are formulated within the4

framework of autonomous systems. However these models do not simultaneously capture both,5

robust maintenance of polarized state longer than the signal duration, and retained responsiveness6

to signals with complex spatial-temporal distribution. Based on recent experimental evidence for7

criticality organization of biochemical networks, we challenge the current concepts and demonstrate8

that non-asymptotic signaling dynamics arising at criticality uniquely ensures optimal responsiveness9

to changing chemoattractant fields. We provide a framework to characterize non-asymptotic dynamics10

of system’s state trajectories through a non-autonomous treatment of the system, further emphasizing11

the importance of (long) transient dynamics, as well as the necessity to change the mathematical12

formalism when describing biological systems that operate in changing environments.13

Keywords cell polarization | responsiveness to changing signals | dynamical "ghost" states | non-autonomous systems14

| non-asymptotic transient dynamics | criticality15

Introduction16

During embryogenesis, wound healing, or cancer metastasis, cells continuously sense and chemotactically respond17

to dynamic spatial-temporal signals from their environment (Samara et al., 2011; Lämmermann et al., 2013; Barton18

et al., 2016; Shellard and Mayor, 2016; Plazen et al., 2023). This response is based on cell polarization - the formation19

of a distinct front and back of the cell through stabilization of polarized signaling activity at the plasma membrane.20

Broad range of cells, including epithelial or nerve cells, fibroblasts, neutrophils, Dictyostelium discodeum etc., display21

multiple common polarization features: quick and robust polarization in the direction of the localized signal, sensing of22

steep and shallow gradients (and subsequent amplification of the internal signaling state between the opposite ends23

of the cell), as well as threshold activation as a means to filter out noise (Jilkine and Edelstein-Keshet, 2011; Welf24
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et al., 2012). Moreover, polarity and thereby directional migration is transiently maintained after the trigger stimulus25

is removed (memory in polarization), but the cells remain sensitive to new stimuli, and can rapidly reorient when the26

signal’s localization is changed. In response to multiple stimuli such as two sources with varying concentrations, rapid27

resolution with a unique axis of polarity towards the signal with higher concentration is ensured (Welf et al., 2012).28

A large diversity of models, both abstract and biochemically detailed have been proposed, that however cannot fully29

describe the experimental observations. For example, the local excitation global inhibition model (LEGI) (Levchenko30

and Iglesias, 2002; Parent and Devreotes, 1999) and its variants (Levine et al., 2006; Xiong et al., 2010; Skoge et al.,31

2014) rely on an incoherent feed-forward motif, whose dynamics doesn’t account for transient memory in polarization.32

The Turing-like models based on a local activation long-range inhibition (activator-inhibitor system) (Otsuji et al., 2007;33

Goryachev and Pokhilko, 2008) are not robust to noise, cannot resolve simultaneous signals in physiologically relevant34

time frame (Jilkine and Edelstein-Keshet, 2011), or maintain responsiveness to upcoming signals with same or different35

spatial localization. The Wave-pinning model on the other hand is based on a higher-order nonlinear positive feedback36

(Mori et al., 2008; Edelstein-Keshet et al., 2013; Mori et al., 2010; Walther et al., 2012), and in contrast to the Turing-like37

models, can account for cell re-polarization (polarity reversal) upon change of signal localization. The robustness of38

the re-polarization is however conditioned on the signal strength and width (Buttenschön and Edelstein-Keshet, 2022).39

However, it has not been studied whether the Wave-pinning model allows to integrate signals that do not change in40

space but are disrupted over time, as expected during a cell migration in complex tissue environment. To address41

in particular cell responsiveness to disrupted and/or signals with complex temporal and spatial distribution, we have42

recently proposed a mechanism, referred to as a SubPB mechanism, that relies on critical organization to a saddle-node43

which stabilizes a subcritical pitchfork (PB) bifurcation (SNPB) (Nandan et al., 2022). We have demonstrated also44

experimentally using the Epidermal growth factor receptor (EGFR) network, that the SubPB mechanism enables45

navigation in complex environments due to the presence of metastable "ghost" of the polarized state, which gives the46

system both a memory of previous signals, but also flexibility to respond to signal changes.47

We take here the conceptual basis of polarity one step further: we argue that cell polarization and responsiveness48

necessary for navigation in changing spatial-temporal chemoattractant fields is a highly dynamic transient process, and49

must be studied via an explicit time-dependent form, or as a non-autonomous process. For non-autonomous systems,50

both the number and the position of steady states change, implying that the steady-state behavior alone does not51

fully capture the dynamics of the system. What is most relevant are therefore the trajectories representing the change52

of the state of the system that follow the steady-state landscape changes. This conceptual shift enables to consider53

transients explicitly, and we demonstrate that a pure non-autonomous succession of steady states, as characteristic for54

the LEGI, Turing-like or Wave-pinning models cannot explain both transient memory in cell polarization and cellular55

responsiveness to upcoming signals. On the other hand, non-asymptotic transient states that arise due to organization at56

criticality, as in the SubPB mechanism enable to maintain the dynamics of the sensing network away from a fixed point,57

and uniquely confer optimal sensing and responsiveness to cells that operate in a changing environment. We therefore58

argue that the formal descriptions how cells sense and respond to dynamic signals must be modified to consider also59

(long) non-asymptotic transient processes.60
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Results61

Studying cell polarity response as transients in non-autonomous systems62

To investigate the dynamical characteristics of polarization, we consider a generalized reaction-diffusion (RD) system63

in a one-dimensional domain with two components u and v,64

∂u(θ, t)

∂t
= fu(u, v) +Du

∂2u

∂θ2
+ s(θ, t)v

∂v(θ, t)

∂t
= fv(u, v) +Dv

∂2v

∂θ2
− s(θ, t)v

(1)

where (θ, t) ∈ R are angular position on the plasma membrane of a cell with respect to its center and time,65

fu, fv : R×R → R are the reaction terms of u and v respectively, Du and Dv - the diffusion constants, and s(θ, t) -66

the distribution of the external chemoattractant signal with respect to the cell. The reaction term fu(u, v) is chosen as67

for the Wave-pinning model (Mori et al., 2008), exemplifying a Rho-GTPase cycle with an inter conversion between its68

active, membrane bound (u) and inactive, cytosolic (v) components (Fig. 1A, top):69

fu(u, v) = (k0 + γu2/(K2 + u2))v − δu (2)

and fv = −fu due to mass conservation
∫ L

0
(u + v) dl = Lctotal, with L = 2πRµm - the total length of the70

one-dimensional domain of the cell perimeter, R - cell radius. The positive feedback from u onto its own production71

(via GEFs) is represented by a Hill function of order 2 with maximal conversion rate γ and saturation parameter K,72

k0 is a basal GEF conversion rate and δ is the constant inactivation rate (via GAPs). This model exhibits a subcritical73

pitchfork bifurcation (Edelstein-Keshet et al., 2013).74

To analyze the dynamical features of the system from aspect not only of the bifurcation structure, but also the quasi-75

potential landscapes as a means to characterize the system’s transitions in the presence of complex spatial-temporal76

signals, we have simplified the cell geometry by considering a one-dimensional projection consisted of two bins (left,77

right) such that uL, uR, vL, vR can be exchanged, mimicking species’ diffusion (Fig. 1A bottom). When subjected to an78

analytical treatment, the resulting ODE system Eqs.(3) demonstrates the existence of a subcritical pitchfork bifurcation,79

equivalently to the full RD model ((Edelstein-Keshet et al., 2013), Materials and methods.) Additionally, numerical80

bifurcation analysis (Ermentrout, 2002) of the system Eqs.(3) in absence of a signal shows that the subcritical PB is81

stabilized via SNPBs at a critical total concentration of the system’s constituents (ccriticaltotal , Fig. 1B). The PB generates82

a transition from a non-polar or homogeneous steady state (HSS, uL,s = uR,s, vL,s = vR,s), to a polar state represented83

as a inhomogeneous steady state (IHSS). The IHSS is manifested via two symmetric branches - a combination of a84

high u at the cell left and low at the right side of the cell (uR < uL or left-polarized, top branch), and uR > uL or85

right-polarized (lower branch). Thus, depending on ctotal, 4 distinct organization regimes are possible (I-IV in Fig. 1B).86

To study how the system responds to transient gradient stimulus for organization in the different regimes, we87

calculated the kymographs representing the spatial-temporal u distributions using the RD simulations (Eqs.(1), the88

signal s(θ, t) is introduced as a Gaussian distribution along the circular membrane, Supplementary Fig.1A, Materials89
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Figure 1: Describing polarization response using transients in a non-autonomous system. (A) Top: Schematic

representation of the two component (u(θ, t) - membrane bound, v(θ, t) - cytosolic) reaction-diffusion system (Eqs.

(1)) of a circular cell stimulated with spatial chemoattractant gradient s(θ, t). (0-2π): angular positions with respect to

cell center. Solid/dashed arrows: causal/conversion link. Bottom: respective one dimensional projection of the model

(Eqs. (3)), with left (L) and right (R) bin. Double-headed arrows: diffusion-like exchange. (B) Bifurcation diagram

of the system in (A), Eqs. (3), with respect to the total protein concentration ctotal, in absence of a signal. Dotted

lines: regions I-IV with qualitatively different dynamical response; solid /dashed lines: stable/unstable homogeneous

(black) and inhomogeneous (red) steady states. Insets: schematic representations of the homogeneous/inhomogeneous

states. PB: Pitchfork bifurcation, SNPB: Saddle-node of a pitchfork bifurcation. Shaded region: criticality/SubPB

mechanism. Parameters: k0 = 0.067s−1, γ = 1s−1,K = 1µM, δ = 1s−1, D̃u = 0.01sec−1, D̃v = 10sec−1. (C)

Spatial chemoattractant distributions (top) and the corresponding kymograph of u(θ, t), obtained using the RD model

(Eqs. (1)), for organization in regions I-IV in (B). Green horizontal lines: gradient duration. For all RD simulations, the

width at half maximum of s(θ, t) is set to 25% of the cell perimeter (unless specified). ctotal = 2.1; 2.21; 2.26; 2.32µM

for regions I-IV respectively, Du = 0.1µm2/sec, Dv = 10µm2/sec, and other parameters as in (B). (D) Top: Time

series of u (corresponding to region II in (B)). Green shaded region: signal interval. Circle/square/triangle: non-

polar/polar/transient-polar (memory) state. Bottom: Respective quasi-potential landscape transitions. Coloured contour

maps: landscape projections in uL-uR plane. Green/black arrows:transitions during signal presence/absence. (E)

Unfolding of the PB in the presence of a spatial step-like signal (sL, sR = 0.0). The bifurcation diagram for each

step-wise increment is shown. Green/black arrows as in (D). Line descriptions as in (B). (F) Representation of Gaussian

curvature estimate of a quasi-potential landscape (top), schematic representation of the subsequent slope distributions

for distinct landscape regions (middle) and resulting contours determining the phase space region characterised

with asymptotic behavior of the system’s trajectory (bottom). See also Supplementary Fig. 1D. (G) Corresponding

instantaneous phase portraits with the integrated progression of the trajectory (blue line) during the last 40s before

signal change. Pink arrow: current trajectory position and direction. Black/grey circles: HSS/saddle; squares - IHSS;

triangles - dynamical "ghost" / memory state. For (D-G), equations and parameters as in (B).

and methods). Moreover, we also tracked the changes in the system’s dynamics by estimating the quasi-potential90

energy landscape changes (Verd et al., 2013; Wang et al., 2010) using the one-dimensional projection model (Eqs.(3),91

signal as a step-like function with amplitudes (sL, sR), Supplementary Fig.1B, Materials and methods). When the92

system is organized in region I, a transient gradient stimulus does not lead to robust polarization (kymograph in Fig.93

1C). The quasi-potential landscapes demonstrate that increasing the signal amplitude only shifts the position of the94

stable homogeneous steady state (the geometry of the landscape changes, Supplementary Fig. 1C, top). This leads to95

a marginal local increase in u, without breaking the system’s symmetry. In region III on the other hand, a transient96

gradient signal irreversibly shifts the system to the stable polarized state (Fig. 1 C). Formally, this regime corresponds97

to the previously described Wave-pinning model (Mori et al., 2008, 2010; Edelstein-Keshet et al., 2013). In this region,98

both the non-polar (homogeneous) and the polarized (inhomogeneous) steady states coexist (Fig. 1B). Thus in absence99

of a signal, the quasi-potential landscape is characterized by three minima - one corresponding to the HSS (circle), and100

the other two corresponding to the IHSS branches (left- and right-polarized states, Supplementary Fig. 1C, middle).101

Upon signal addition, the minimum corresponding to the HSS disappears, leaving a one-well quasi-potential landscape102
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of the stable polar state. Signal removal reverts the system to the the three well quasi-potential landscape, however the103

system remains in the IHSS well, leading to a sustained polarization. Similar steady state transitions are also observed104

for organization in region IV, however the systems here starts from a pre-polarized state, as only the IHSS is stable (Fig.105

1C and Supplementary Fig. 1C, bottom). Formally, this regime corresponds to a Turing-like mechanism of polarization106

(Edelstein-Keshet et al., 2013). Thus for organization in regions III and IV, the system doesn’t reset to basal non-polar107

state after a transient stimulus.108

In contrast, when the system is organized at criticality (before SNPB , shaded region II in Fig.1B, what we refer to109

as the SubPB mechanism), a transient gradient stimulus leads to rapid u polarization in the direction of the maximal110

chemoattractant concentration. The polarized state is only transiently maintained after signal removal, corresponding to111

a temporal memory of the signal direction (Fig. 1C and D (top)). The changes in the quasi-potential landscape further112

clarify these tranistions: in absence of a signal, only the HSS (the non-polar state, single well) is stable (Fig. 1D, HSS:113

circle). However, since the system is positioned close to the critical transition towards the IHSS, the landscape also has114

an area with a shallow slope. Upon signal addition, the topology of the landscape changes. The HSS is lost and the115

IHSS (Fig. 1D, square) is stabilized, causing the transition to the newly established well. The opposite transition then116

takes place upon signal removal, but in this case, the system is initially transiently trapped in the region with the shallow117

slope (Fig. 1D, triangle), which is manifested as a transient memory of the polarized state. This transient trapping118

dynamically occurs from a "ghost" of a saddle-node bifurcation which is lost when the signal is removed (Strogatz,119

2018; Nandan et al., 2022).120

These observed change of the topology of the system’s phase space suggests that cell polarization should be formally121

treated as a non-autonomous process. In general, in non-autonomous systems, either the geometry (change in the122

positioning, shape and size of the attractors), or the topology (change in the number or stability of the attractors) of the123

underlying phase space is altered (Verd et al., 2013). To gain deeper insight in the quasi-potential landscape changes in124

the presence of a transient signal, we calculated next the bifurcation diagrams during the subsequent increase/decrease in125

the signal amplitude. Even a low-amplitude spatial signal (step (i)) introduces an asymmetry to the system and thereby126

a universal unfolding of the PB (Golubitsky and Schaeffer, 1985), such that a marginally asymmetric steady state (Fig.127

1E, gray solid lines) replaces the HSS (black solid lines in signal absence). Moreover, for the same parameter values,128

now also the IHSS (a remnant of the PB that disappeared) is also stable. Increasing the spatial signal’s amplitude129

in the next steps leads to an increase in the extent of the unfolding, rendering the IHSS as the only stable solution at130

the maximal signal strength (step (iii) in Fig. 1E). This solution corresponds to the single-well landscape in Fig. 1D,131

representing a robust polarization of the system. Decreasing the signal amplitude in the same step-wise manner results132

in the reversed changes in the bifurcation diagram structure, thereby explaining the resetting the system to the non-polar133

HSS after signal removal.134

The non-autonomous treatment of the systems thus allowed us to track the changes in the number and stability135

of the attractors, however the fixed point analysis does not capture the full dynamics of the system, as the memory136

emerging from the SNPB ’ghost’ cannot be examined in this analysis. This implies that the transient dynamics of the137

system must be considered explicitly, through the trajectories of the system which represent the change of the state138

of the system. To classify the nature of the transients, it is necessary to quantify the phase space regions in which the139

steady states asymptotically bind the trajectories. For this, we calculated the Gaussian curvature of the quasi-potential140
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Supplementary Figure 1: Characterizing non-autonomous state transitions for the model in Fig.1A. Schematic rep-

resentation of the gradient signal implementation in (A) the RD simulations, corresponding to Eqs.(1), and (B) the

one-dimensional projection model, corresponding to Eqs.(3). (C) Time series of u and the quasi-potential landscape

transitions during a transient step-like stimulation for organization in region I (top), III (middle) and IV (bottom)

corresponding to Fig. 1B (same equations and parameters). Green shaded region: signal interval. Circle/square/triangle:

non-polar/polar/transient-polar (memory) state. (D) Exemplary estimate of Gaussian curvature (middle) and correspond-

ing slopes distribution in (x, y) = (uL, uR) direction for each of the identified regions. Slopes distribution around 0 in

both direction in conjunction with positive curvature uniquely determines a well (stable steady state) in the potential

landscape. Description as in Fig.1F.
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landscapes for each step of the signal (schematic in Fig. 1F, top). A surface has a positive curvature (K > 0) at a141

point if the surface curves away from that point in the same direction relative to the tangent to the surface, a negative142

(K < 0) - if the surface curves away from the tangent plane in two different directions, and a K ∼ 0 - a flat surface.143

Complementing the curvature calculations with the slopes along each point (e.g. for a well, positive curvature and slope144

values distributed around 0 are a unique identifier, Fig. 1F, middle; Supplementary Fig. 1D ) allowed to identify the145

phase space region where the trajectory asymptotically moves towards the steady state (contour plot in Fig. 1F, right).146

Thus, movement of the system’s trajectory in areas outside of these regions correspond to a non-asymptotic, transient147

dynamics of the system. Detailed phase plane analysis of the system for each signal amplitude showed that during148

transition (i), the marginally asymmetric steady state and the IHSS are stable (as shown in as in Fig.1E), whereas the149

system’s trajectory is trapped in the former one (Fig. 1G). In the next steps (ii, iii), only the IHSS attractor is stable150

but moves its position. The trajectory’s current state falls behind and reacts by travelling towards the moving attractor.151

Since the flow rate along the trajectory is smaller than the velocity of the attractor movement, the system is not able to152

catch up with the moving steady state and temporally reverts from asymptotic to transient behaviour. The trajectory153

is asymptotically bounded to the IHSS only at the highest signal strength (step (iv)). Decreasing the signal strength154

leads to re-appearance of the marginally asymmetric state, whereas the IHSS moves from the previous step, such that155

the trajectory reverts the direction to follow the attractor (step (v)). At a zero signal amplitude, the topology of the156

landscape changes again such that a single stable HSS is generated. In the position where the IHSS attractor was lost157

however, the landscape is characterized with a shallow slope ("ghost" of the SNPB , triangle in Fig. 1G). This lies158

right outside the border determining the asymptotic behavior, and the system’s trajectory not only lags behind, but it is159

effectively trapped in this state for a transient period of time ((vi1, vi2)) resulting in transient memory of the polarized160

state, before it reverts to the HSS attractor ((vi3)). Thus, examining transient dynamics during the signal-induced161

transition reveals important details that shape the trajectory, and hence the response of the system, that could not be162

understood by focusing only on the steady state behaviour.163

Non-autonomous succession of steady states underlies the dynamics of the existing polarity models164

We next examined the dynamical mechanisms underlying the LEGI, Turing-like and the Wave-pining cell polarity165

models. The bifurcation analysis was performed using the linear perturbation analysis LPA, (Holmes et al., 2015;166

Grieneisen, 2009), which allows to identify the dynamical transitions in RD models characterized with large disparity167

between the diffusivity of the system’s components (see Materials and Methods for details). As can be already deduced168

by the LEGI network topology - the incoherent feed-forward motif, this model (Eqs. (18)) has a single HSS (Fig.169

2A, shaded region: respective parameter organization as used in the literature (Levchenko and Iglesias, 2002; Levine170

et al., 2006)). The Turing-like model (Eqs. (16), (20)) on the other hand displays a transcritical bifurcation (TC)171

at a critical total concentration of the system’s constituents. The TC marks a transition from non-polar HSS to a172

polarized, symmetry-broken state. In the literature (Otsuji et al., 2007; Goryachev and Pokhilko, 2008), the model173

is parameterized after the TC, where the HSS is unstable (Fig. 2B, shaded region: parameter organization). Such174

organization makes the Turing model dynamically equivalent to organization in region IV in Fig. 1B. The Wave-pinning175

model, as described in (Mori et al., 2008), corresponds to organization in the region where the HSS and the IHSS176

co-exist (Fig. 2C, shaded region; equivalent to region III in Fig. 1B). RD simulations of these models, consistent with177

previous findings, demonstrate that upon transient gradient stimulation, the LEGI model shows a transient polarization178
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that decays to homogeneous non-polar state immediately after stimulus removal. In contrast, both the Turing-like and179

the Wave-pinning models showed a long-term maintenance of the polarized state after signal removal (Supplementary180

Fig. 2A).181

Considering the time-dependence explicitly in the analysis shows that the trajectory describing the state of the LEGI182

model exposed to transient spatial signal asymptotically follows the change in the position of the only steady state183

of the system, thereby marking the steady-state as the only relevant behavior (Fig. 2D,E; Supplementary Fig. 2B).184

As noted by the bifurcation analysis, the Turing-like model is organized in the stable symmetry-broken state, thereby185

cannot describe a stable non-polar state. Thus, the non-autonomous analysis in this case is equivalent to that of the186

SubPB model for organization in region IV (Supplementary Fig. 1B). Due to the organization in the region where the187

HSS and the IHSS coexist on the other hand, the Wave-pinning model can explain both, the non-polar and the polar188

state (Mori et al., 2008). Non-autonomous analysis of the Wave-pinning model however demonstrates that it is fully189

characterized by an asymptotic behavior, realized through non-autonomous switching between the available steady190

states (Fig. 2F). Thus, the LEGI, Turing-like and Wave-pinning models are characterized by a qualitatively different191

dynamics in comparison to the SubPB model: asymptotic behavior towards the available steady states in contrast to the192

non-asymptotic, transient dynamics complemented with transient trapping by the dynamical "ghost", which temporarily193

maintains the system away from the steady state.194

Responsiveness to spatial-temporal signals is optimally enabled by the transient dynamics and metastable state195

in the SubPB model196

To investigate the difference in basic polarization features for the different models, we quantified next from the RD197

simulations a polarization ratio (
uθ=π

uθ=0
) to steep and shallow gradients which are quantified via a stimulus difference,198

sd = (sθ=π − sθ=0)× 100; time to reach stable polarization at a threshold signal amplitude that induces polarization,199

and polarization ratio in response to signals with an increasing offset. Scaling of the models to reflect physiological200

time-scales was implemented as in (Jilkine and Edelstein-Keshet, 2011).201

The RD simulations showed that for the LEGI and Turing-like models, polarization can be induced even when202

the gradient steepness is <0.5 % between the front and the back of the cell (Fig. 3A). However, the polarization ratio203

achieved by the LEGI-type model is relatively small (≈ 1), indicating that the LEGI mechanism cannot account for204

signaling amplification when sensing shallow gradients. This is a direct consequence of the underlying dynamical205

mechanism: an external signal triggers a continuous and reversible re-positioning of the only stable attractor, and206

therefore cannot account for signaling amplification (Fig. 2A, D, E). The Turing-type model also showed polarization207

for very low stimulus differences, which results from organization after the TC, region in which the non-polar state is208

unstable. The Wave-pinning model on the other hand effectively generated robust polarization response. However, the209

response could be triggered even for low gradient amplitudes. This can be explained again by the dynamical structure:210

due to the organization where HSS and IHSS coexist, a "hard" signal-induced transition effectively results in a threshold211

activation (sdthresh = 0.3%). That the Turing and the Wave-pinning models could be activated at low stimulus212

difference across the cell suggests that these models are also susceptible to spurious activation. This could be further213

demonstrated in the presence of fluctuations around the homogeneous steady state (mimicking noisy initial conditions,214

Supplementary Fig. 3A, Materials and methods). Thus, these models do not exhibit reliable threshold activation and are215
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Figure 2: Dynamical characteristics of the LEGI, Turing-like and Wave-pining polarity models. (A) Top: topology

of interaction of LEGI model. Color coding and arrows as in Fig. 1A. Bottom: corresponding bifurcation diagram

and the respective parameter organization in signal absence. Simulations have been performed using Eqs.18, and

ku = k−u = 2s−1, kv = k−v = 1s−1, kw = k−w = 1µM−1s−1. (B), (C) same as in (A) but for Turing and Wave-

pinning models, respectively. The simulations of the Turing model correspond to Eqs.(16),(20), with a1 = 2.5, a2 = 0.7,

and for the Wave-pinning model, Eqs.(2), (16) and parameters as in Fig.1B. In (A)-(C), shaded region: parameter

organization, TC: Transcritical bifurcation, PB: pitchfork bifurcation, SNPB : saddle-node; u/w are membrane bound,

and v - cytosolic component, ulocal: local variable associated with u from LPA analysis, line description as in Fig. 1B.

(D) Quasi-potential landscapes calculated for the LEGI model (Eqs.(19)) subjected to a transient signal. Landscapes in

absence and maximal signal strength are shown. Transitions in signal presence/absence: green/black arrows. Coloured

contour maps: landscape projection in uL-uR plane. (E) Corresponding instantaneous phase portraits and system’s

trajectory (as in Fig.1G). Black circles: stable steady states. Transitions in signal presence/absence: green/black arrows.

(F) Same as in (E) only for the Wave-pinning model. Grey circles: saddles; black squares: IHSS.
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Supplementary Figure 2: Polarization response of the LEGI,Turing-like and Wave-pinning models. (A) Spatial-temporal

response (kymographs) of the membrane-bound active component of the three models. Parameters as in Fig. 2, except

for Du = Dw = 0.5µm2s−1, Dv = 10µm2s−1 for the LEGI, and Du = 0.1µm2/sec, Dv = 10µm2s−1 for the

Turing and Wave-pinning models. (B) Temporal u profile for the LEGI model, corresponding to Fig.2D,E.

thereby not robust to noise. In terms of the polarization times on the other hand, the LEGI- and Turing-type models216

polarized on a time scale longer than 6min, whereas the Wave-pinning model displayed rapid polarization (< 3min, Fig.217

3B). Moreover, testing the polarization responses to gradients with different offset demonstrated that, with exception218

of the LEGI, the remaining models robustly polarized under these conditions (Fig. 3C, Supplementary Fig.3B). The219

equivalent quantifications for the SubPB model on the other hand show that it responds to steep and relatively shallow220

gradients, threshold activation and thereby robustness to noisy signal activation (sdthresh=1.2%), rapid polarization221

times (<3min), and robust polarization to gradients with offset (Fig. 3A-C, Supplementary Fig. 3A,B). That the SubPB222

model displays optimal polarization features can be explained with the criticality organization: in absence of a signal,223

the non-polar state is the only stable steady state, thus threshold activation can be robustly achieved, whereas the224

subcritical nature of the PB gives rise to the signal amplification to shallow signals. Taken together, these results225

demonstrate that SubPB enables optimal polarization response.226

We next tested the re-polarization capabilities of each of the models by subjecting the systems in the RD simulations227

to a spatial gradient until stable polarization was achieved, after which the gradient direction was reversed and228

its maximal amplitude was set to 2 × sdthresh. The Turing- and Wave-pinning-type models did not re-polarize229

(in physiologically relevant time-frame, Fig. 3D, Supplementary Fig. 3C). This can be understood from the non-230

autonomous analysis of the system (Fig. 2F): the trajectory remained trapped in the symmetry-broken state after231

signal removal, such that rapid re-polarization cannot be achieved. The LEGI model re-polarized in a time-frame232

> 3min, but the polarization ratio did not depend on the signal amplitude. The SubPB on the other hand, not only233

enabled rapid re-polarization to spatially reversed gradient signals (< 1 min, Fig. 3D, Supplementary Fig. 3C), but234

the polarization response was also sensitive to the amplitude of the reversed signal as reflected in the polarization235

amplification. In contrast to the Wave-pinning model, re-polarization for the SubPB mechanism is possible due to236

organization at criticality - after signal removal, the system is maintained in the dynamical "ghost" state (in contrast to237

the stable IHSS for the Wave-pinning model), thus the system can rapidly respond to the reversed signal and thereby238
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Figure 3: SubPB mechanism enables optimal responsiveness to spatial-temporal chemoattractant signals. (A) Average

polarization ratio (
uθ=π

uθ=0
) as a function of a stimulus difference across the cell (sd = (sθ=π − sθ=0) × 100)). Mean

± s.d from 10 RD simulation repetitions. (B) Minimal threshold that activates the system (sdthresh) and time to

achieve stable polarization (Materials and methods). (C) Polarization ratios upon stimulation with a gradient with an

offset (Supplementary Fig. 3A). (D) Left: schematic representation of gradient reversal across the cell, and respective

representation of the spatial profiles of u(θ, t) and s(θ, t). Right: Quantification of polarization reversal time and the

respective polarization amplification (
uθ=0

uθ=π
) upon stimulation with

sθ=0

sθ=π
= 2. LEGI and Turing-like models did not

demonstrate re-polarization in time-interval of 1000 sec. (E) Left: Schematic representation for numerical stimulation

protocol with simultaneous signals localized on opposite ends, and corresponding schematic spatial profile of u(θ, t)

and s(θ, t). Right: Quantification of the time necessary to achieve unique polarization axis and the corresponding

polarization amplification, for stimulus ratio
sθ=0

sθ=π
= 2. (F) Top: Schematic representation for numerical stimulation

protocol with consecutive transient gradient stimuli from same direction. Bottom: Corresponding quantification of

signal integration index (see Materials and methods). See also Supp. Fig. 3.
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Supplementary Figure 3: Spatial-temporal responses of the four different polarity models. (A) Quantification of

spurious activation for increasing perturbation amplitude around the homogeneous steady state. Colors as in Fig. 3A.

(B) Schematic representation of gradient stimulation with an offset along the cell membrane contour. (C) Kymographs

depicting the spatial-temporal response of each of the models to reversal of gradient stimuli (black horizontal line).

Red horizontal line: time point when stable reversed polarity is established. (D) Comparison of re-polarization in

the Wave-pinning (left) and the SubPB (right) models, for varying stimulus width and maximal stimulus amplitude.

(E) Kymographs depicting the spatial-temporal response of each of the models stimulated with simultaneous signals

with different amplitudes from opposite cell ends. Red horizontal line: time point where stable polarization with

unique axis was established. (F) Exemplary temporal response to consecutive signals from same direction (left: LEGI,

Wave-pinning and SubPB; right: Turing model). 13
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quickly re-polarize. Additional analysis on the Wave-pinning and the SubPB model by systematically scanning the239

stimulus width and maximal amplitude of the re-polarization gradient showed that re-polarization in the Wave-pinning240

model is possible only for signals ≈ 7 × sdthresh. In contrast, the re-polarization in the SubPB mechanism can be241

achieved for reversed gradients with wide range of widths and amplitudes (Supplementary Fig. 3D). When presented242

with two simultaneous, but distinctly localized signals with different amplitudes, only the SubPB and Wave-pinning243

mechanisms demonstrated effective resolving and rapid and robust polarization in the direction of the stronger signal244

(Fig. 3E, Supplementary Fig. 3D). In contrast, both LEGI-, Turing- models required more than four times longer time245

to resolve the signals and polarize in direction of the stronger signal.246

We next tested how the models respond to consecutive transient gradient stimulation from same direction, mimicking247

signals that are disrupted. This reflects the capability of the models to integrate signals with complex temporal profile,248

and adapt the duration of the polarized state accordingly. The response in the LEGI model rapidly decayed after249

signal removal, demonstrating complete absence of memory. Thus the system responds to each gradient independently250

(Supplementary Fig. 3F), as also reflected in the low signal integration index (Fig. 3F). The Turing and the Wave-pinning251

models maintain the polarized state on a long-term after signal removal, thus they are insensitive to consecutive gradient252

signal stimulation from same direction: stimulation with a single or multiple consecutive signals does not change the253

total duration in which the polarized state is maintained, resulting in a constant signal integration index. In contrast,254

the SubPB model displays signal-integration features, adapting the polarization duration depending on the number255

of consecutive stimuli. These results therefore demonstrate that the SubPB mechanism uniquely enables sensing and256

responsiveness to dynamic signals, as a result of the critical organization that allows utilizing transient dynamics via the257

presence of a dynamical "ghost" state to adapt to dynamic signals in the environment.258

Discussion259

We have demonstrated that it is necessary to consider transient dynamics and explicit time-dependence in order to260

describe cellular responsiveness to spatial-temporal chemoattractant signals. The current models in the literature rely261

on an autonomous system’s description, where the system’s topology determines the number, stability and type of262

available steady-states, whereas the external signals are thought only to induce switching between them. Description263

of the asymptotic behavior at or near a steady state is also attractive from mathematics point of view, as it provides a264

tractable analysis of the system using linear stability analysis (Guckenheimer and Holmes, 1983). However, this view265

only accounts for robustness of regulatory processes, ignoring the temporal system’s changes. As we have shown here,266

the steady-state view cannot account for cellular responsiveness to dynamic cues or how cells resolve simultaneous267

signals, crucial features of cells that operate in the dynamic environments of tissues and organs.268

In contrast, one of the basic characteristics of non-autonomous systems is that the quasi-potential landscape is269

dynamic itself under time-varying signals, resulting in changes in the number and stability of the steady states. These270

landscape changes thus guide the movement of the system’s trajectory. For system’s organization at criticality, as271

demonstrated here, a non-asymptotic transient behavior emerges upon the landscape changes, enabling the system to272

maintain both robustness (i.e. by transient trapping or slow motion in specific landscape region), while maintaining273

flexibility in the responses to upcoming cues. Indeed, recent experimental evidence has demonstrated that cell’s protein274
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activity dynamics is maintained away from steady state, thereby enabling them to retain transient memory of the275

previous signal’s localization, while being responsive to newly perceived signals (Nandan et al., 2022).276

However, a general theory to analyze or formally describe non-asymptotic transient dynamics is lacking, and current277

analysis has been mostly limited to systems with regular external forcing (Rasmussen, 2007), or numerical investigation278

of simple two dimensional models (Verd et al., 2013). Here, we provide an additional tool (although also applicable279

mainly to low-dimensional systems) based on combination of extended bifurcation analysis and quantification of the280

Gaussian curvature of the landscape and the corresponding point-wise slope distribution, to separate quantitatively281

asymptotic from non-asymptotic behavior. Importantly, this framework enables to identify manifolds with a specific282

topology that maintain the system for a prolonged period of time away from the steady state. Such long non-asymptotic283

transients have been characterized in neuronal networks and have been particularly informative, not only about the284

identity and temporal features of the external signals (Mazor and Laurent, 2005), but also about basic forms of learning285

such as signal associations (Sharpe et al., 2017). Stable heteroclinic channels have been proposed as an underlying286

dynamical mechanism that generates longf stable transients in neuronal models (Rabinovich et al., 2008). Moreover,287

transient phenomena with much longer time scales have been also described in the context of regime shifts due to288

anthropogenic global changes in ecological systems (Hastings et al., 2018). We hereby argue that it is necessary to shift289

the description of biochemical computations in single cells towards non-autonomous system’s description and focus on290

the role of transient dynamics for processing and interpreting spatial-temporal varying signals.291
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Materials and methods299

Analytical treatment of the SubPB model300

Let us consider the system Eqs. (1) with reaction terms as in Eq. (2). This describes the Wave-pinning model (Mori301

et al., 2008), and the SubPB model discussed here. To identify analytically the existence of a sub-critical PB, as well302

as to further caluclate the quasi-potential landscapes, we consider a simplified one-dimensional projection where the303

cell constitutes of two bins (left, right) between which the species can be exchanged:304
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duL

dt
= G1(uL, vL, uR) = fu(uL, vL)− D̃u(uL − uR)

dvL
dt

= G2(uL, vL, vR) = fv(uL, vL)− D̃v(vL − vR)

duR

dt
= G3(uL, uR, vR) = fu(uR, vR)− D̃u(uR − uL)

dvR
dt

= G4(vL, uR, vR) = fv(uR, vR)− D̃v(vR − vL)

(3)

The subscripts L and R stand for the two bins (Fig. 1A, bottom), D̃u and D̃v are the diffusion-like terms, and305

G1 - G4 combine the reaction-diffusion terms. Let Us =
[
uL,s, vL,s, uR,s, vR,s

]T
be the stable homogeneous steady306

(non-polar) state of the system (uL,s = uR,s, vL,s = vR,s). Stability of this state can be probed using a linear307

perturbation of the form U(t) = Us + δU(t), where δU =
[
δuL, δvL, δuR, δvR

]T
exp (λt), is a small amplitude308

perturbation with growth rate λ. Plugging this into Eq. (3) gives the linearized equation:309

λ


δuL

δvL

δuR

δvR

 exp (λt) = J′


δuL

δvL

δuR

δvR

 exp (λt) (4)

where J′ is evaluated at Us, and is given by:310

J′ =



∂G1

∂uL

∂G1

∂vL

∂G1

∂uR
0

∂G2

∂uL

∂G2

∂vL
0 ∂G2

∂vR

∂G3

∂uL
0 ∂G3

∂uR

∂G3

∂vR

0 ∂G4

∂vL

∂G4

∂uR

∂G4

∂vR


(5)

The occurrence of zero-crossing eigenvalues leads to either pitchfork or saddle-node bifurcations, and the solution311

for λ = 0 can be readily obtained by taking the well-defined limit λ → 0 (Paquin-Lefebvre et al., 2020). The existence312

of the PB bifurcation is related to the odd mode of the perturbation (δuL=−δuR and δvL=−δvR), due to the symmetry313

of this bifurcation. Substituting these constrains in Eq. (4) gives:314

0 = J′


δuL

δvL

−δuL

−δvL

 (6)

The symmetry in the perturbation further reduces the dimensionality of the Eq. (6).315
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0 = Fλ

[
δuL

δvL

]
(7)

where316

Fλ =

∂G1

∂uL
+ ∂G3

∂uR
)− ( ∂G1

∂uR
+ ∂G3

∂uL
) (∂G1

∂vL
+ ∂G2

∂vR
)

(∂G2

∂uL
+ ∂G4

∂uR
) (∂G2

∂vL
+ ∂G4

∂vR
)− (∂G2

∂vR
+ ∂G4

∂vL

 (8)

The linear system in Eq. (7) has non-trivial solution only if the determinant of Fλ = 0.317

|Fλ| =

∣∣∣∣∣ (
∂G1
∂uL

+
∂G3
∂uR

)−(
∂G1
∂uR

+
∂G3
∂uL

) (
∂G1
∂vL

+
∂G2
∂vR

)

(
∂G2
∂uL

+
∂G4
∂uR

) (
∂G2
∂vL

+
∂G4
∂vR

)−(
∂G2
∂vR

+
∂G4
∂vL

)

∣∣∣∣∣ = 0 (9)

where |.| denotes the determinant of the matrix. The parameter values of Eqs. (3) that satisfies the condition in Eqs.318

(9) corresponds to the symmetry breaking PB.319

To identify next whether the PB is of sub-critical type, and thereby identify the presence of a SNPB , a weakly320

nonlinear analysis of Eq. (1) must be performed to obtain a description of the amplitude dynamics of the inhomogeneous321

state. This can be achieved using an approximate analytical description of the perturbation dynamics based on the322

Galerkin method (Becherer et al., 2009; Rubinstein et al., 2012; Bozzini et al., 2015). For simplicity, we outline the323

steps for a reaction-diffusion system in a one-dimensional domain. As we are interested in the description of a structure324

of finite spatial size (i.e. finite wavelength k of the symmetry-broken state), the final solution of the system Eq. (1) is325

expanded around the fastest growing mode, km into a superposition of spatially periodic waves:326

u(θ, t) = ϕ(t)eikmθ + ϕ∗(t)e−ikmθ + u0(t) +
3∑

n=2

(un(t)e
nikmθ + u∗

n(t)e
−nikmθ)

v(θ, t) = ϕ(t)eikmθ + ϕ∗(t)e−ikmθ + v0(t) +
3∑

n=2

(vn(t)e
nikmθ + v∗n(t)e

−nikmθ)

(10)

where u(v)n(t) is the complex amplitude of the nth harmonics. The expansion is taken to n = 3rd order, rendering327

an amplitude equation of 5th order. For simplification, the Hill function in fu(u, v) is approximated by assuming328

(K/u) >> 1 to yield fu(u, v) = (k′0 + γ′u2)v − δu where k′0 = k0

K2 and γ′ = γ
K2 . By substituting Eq. (10) in Eqs.329

(1) gives,330

dϕ

dt
eikmθ +

du0

dt
+ .. = k′0(ϕe

ikmθ + v0..) + γ′((3|ϕ|2ϕ+ 2u0v0ϕ)e
ikmθ + 2(u0 + v0)|ϕ|2 + ...)

−δ(ϕeikmθ + u0 + ..)−Du(k
2
mϕeikmθ + v0 + ..)

(11)
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Collecting coefficients of harmonics up to first order on either side gives an equation that governs the evolution of331

the amplitude:332

dϕ

dt
= (k′0 − (Duk

2
m + δ))ϕ+ 3γ′|ϕ|2ϕ+ 2γ′u0v0ϕ

du0

dt
= (2γ′|ϕ|2 − δ)u0 + (k′0 + 2γ′|ϕ|2)v0

(12)

The complex coefficients of the n = 0th harmonics is next approximated as power series of ϕ(t) (Becherer et al.,333

2009):334

u0(t) ≈ u
(2)
0 |ϕ|2 + ...

v0(t) ≈ v
(2)
0 |ϕ|2 + ...

(13)

Eq. (13) is then substituted into Eq. (12) giving:335

dϕ

dt
= (k′0 − (Duk

2
m + δ))ϕ+ 3γ′|ϕ|2ϕ+ 2γ′u

(2)
0 v

(2)
0 |ϕ|4ϕ

du0

dt
= (2γ′|ϕ|2 − δ)u

(2)
0 |ϕ|2 + (k′0 + 2γ′|ϕ|2)v(2)0 |ϕ|2

(14)

Higher order amplitudes were assumed to be in quasi-steady state, thus du0

dt = 0, rendering v
(2)
0 ∝ −u

(2)
0 .336

Substituting this into Eq. (14) yields an approximated expression for ϕ:337

dϕ

dt
= c1ϕ+ c2ϕ

3 − c3ϕ
5 (15)

where c1 = (k′0 − (Duk
2
m + δ)), c2 = 3γ′ and c3 = 2γ′(u

(2)
0 )2. Eq. (15) is of Stuart-Landau type and represents a338

normal form of a sub-critical pitchfork bifurcation. Taken together, this guarantees the existence of SNPB for system339

Eqs. (3).340

Local perturbation analysis (LPA)341

Local perturbation analysis is a method to identify dynamical transitions in spatially-extended system (Grieneisen, 2009;342

Holmes et al., 2015). The method can be applied to any system where the two species (i.e. (u, v)) are characterized343

with at least order-of-magnitude difference between their diffusivity, i.e Dv >> Du. In such a case, it is possible to344

consider the limit Du → 0, Dv → ∞, further allowing to probe the stability of the HSS of the PDE system under study345

(i.e. Eq. (1) for s(θ, t) = 0) with respect to a local perturbation in the form of a narrow peak of the slow variable with346

a negligible total mass. Thus, the height of this peak can be represented as a local variable (ulocal(t)) that does not347

spatially spread. Due to the fast rate of diffusion of v, it can be represented by a uniform global quantity vglobal(t).348

Since u does not spread and v is uniform on the domain, u can then be represented on the remainder of the domain349
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(away from the perturbation) by a global quantity, uglobal(t), which for mass-conservation systems as in Eq. (1) also350

captures the evolution of vglobal(t):351

dulocal

dt
= fu(ulocal, (ctotal − uglobal))

duglobal

dt
= fu(uglobal, (ctotal − uglobal))

(16)

Such systems can be further analyzed by means of classical (numerical) bifurcation analysis.352

Description of the different cell polarity models353

LEGI model354

The LEGI-type model system is characterized by an incoherent feed forward loop topology, where w is the membrane355

bound activator, v is the cytosolic inhibitor and u is the membrane bound response component (Levchenko and Iglesias,356

2002). The equations are given by,357

∂w(θ, t)

∂t
= fw(w) + kws(θ, t) +Dw

∂2w

∂θ2

∂v(θ, t)

∂t
= fv(v) + kvs(θ, t) +Dv

∂2v

∂θ2

∂u(θ, t)

∂t
= fu(w, u, v) +Du

∂2u

∂θ2

(17)

with

fw(w) = −k−ww

fv(v) = −k−vv

fu(w, u, v) = kuw(utotal − u)− k−uvu

s(θ, t) is the external stimulus.358

Applying LPA on this system, we obtain:359

dwlocal

dt
= fw(wlocal);

dwglobal

dt
= fw(wglobal)

dvglobal
dt

= fv(vglobal)

dulocal

dt
= fu(wlocal, ulocal, vglobal)

duglobal

dt
= fu(wglobal, uglobal, vglobal)

(18)

The one dimensional projection of LEGI model is given by,360
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duL(t)

dt
= fu(w

qss
L , uL, v

qss)− D̃u(uL − uR)

duR(t)

dt
= fu(w

qss
R , uR, v

qss)− D̃u(uR − uL)

(19)

with

vqss = 0.5
kv
k−v

(sL + sR)

wqss
R =

kw
k−w

(sL + sR)− wqss
L

wqss
L =

kw

(2D̃w + k−w)
(sL +

D̃w(sL + sR)

k−w
)

This two component simplification was obtained from Eq. (17) after a quasi-steady state approximation of v and w.361

Turing model362

For the Turing-like model, the reaction term was taken from (Otsuji et al., 2007):363

fu(u, v) = a1(v −
(u+ v)

(a2(u+ v) + 1)2
) (20)

with fv = −fu (mass conservation). The external signal s(θ, t) was introduced same as in Eq. (1), in contrast to364

(Otsuji et al., 2007), where s(θ, t) was introduced in the denominator of the reaction term.365

Estimating quasi-potential landscapes366

In order to obtain the quasi-potential landscapes for the systems Eq. (3) and Eq. (19), the method described in (Wang367

et al., 2010) is adopted. For non-equillibrium systems, the underlying potential that defines the state-space flows cannot368

be obtained by integrating the force terms (the reaction terms of the ODE system). This issue can be bypassed by369

introducing stochasticity into the system. In a stochastic system, each state x (here x= (x, y) = (uL, uR)) is described370

using a probability in time and state space position x, P(x, t). The time evolution of the P(x,t) not only depends on the371

forces that drive the system, but also the stochastic transitions between adjacent points in the state space. This can be372

formalized using a Fokker-Planck equation that captures the interplay between deterministic and stochastic nature of373

the system and is given by,374

∂P (uL, uR, t)

∂t
= −∂(G1P )

uL
− ∂(G3P )

uR
+ (

∂2

∂u2
L

+D
∂2

∂u2
R

)P (21)

where D is the diffusion constant associated with stochastic transitions, G1 and G3 - as in Eq. (3). By numerically375

solving Eq. (21), the asymptotic state of the probability distribution, Pss, given by the limit P(x, t → inf), is376

estimated. Analogous to the equilibrium state, an approximate expression for the quasi-potential is then given by,377

Q(x) ≈ −ln(Pss). The Fokker-Planck equations were solved numerically using the python package provided by378
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(Holubec et al., 2019), with D = 0.02. The two dimensional grid on which the system is solved has a spatial step size379

0.02.380

To quantify the landscapes, the Gaussian curvature K of the landscapes is given by:381

K(x, y) =
QxxQyy −Q2

xy

(1 +Q2
x +Q2

y)
2

(22)

where Qx = ∂Q
∂x , Qxx = ∂Qx

∂x , Qy = ∂Q
∂yy , Qy =

∂Qy

∂y , Qxy = ∂Qx

∂y are the first and second order partial derivatives382

of the quasi-potential surface. State space regions with positive K values were identified using a threshold given by383

Kmean + 0.1Kstd. The boundary that determines the asymptotic behavior of the trajectory in the vicinity of a steady384

state, Qbound, is estimated as the mean of the quasi-potential values at the boundary of the identified region that satisfies385

the condition that the slopes are distributed around zero (Fig. 1F).386

Model implementation387

The models were implemented using a custom-made Python code. The PDE solving method that we have used is as388

follows. Given a generic reaction diffusion system on a 1D domain (equivalent to Eqs.(1)), where θ ∈ [θmin, θmax],389

the domain is first discretized to N=20 spatial bins with uniform bin size δθ = θi+1 − θi for i = 1, 2, . . . , N − 1. The390

discretized version of the PDE then becomes391

∂ui

∂t
= fu(ui, vi) +Du

∂2ui

∂2θ
∂vi
∂t

= fv(ui, vi) +Dv
∂2vi
∂2θ

(23)

where ui = u(θi, t), vi = v(θi, t). Conversion of this PDE to ODE is then done using the method of lines (Schiesser,392

1991) where the second order partial derivative terms are approximated using finite difference method. This enables us393

to rewrite the equations with partial derivatives in t as total derivatives,394

dui

dt
= fu(ui, vi) +

Du

δθ2
(ui+1 − 2ui + ui−1) +O(δθ2)

dvi
dt

= fv(ui, vi) +
Dv

δθ2
(vi+1 − 2vi + vi−1) +O(δθ2)

(24)

Depending on the type of boundary conditions, equations at the boundary bins i = 1 and i = N are fixed. For395

example, for periodic boundary conditions, two fictitious bins θ−1 and θN+1 with constrains θ−1 = θN and θN+1 = θ1396

are considered, which allows to re-write the equations at the boundary as:397

du1

dt
= fu(u1, v1) +

Du

δθ2
(u2 − 2u1 + uN ) +O(δθ2)

dv1
dt

= fv(u1, v1) +
Dv

δθ2
(v2 − 2v1 + vN ) +O(δθ2)

(25)

and398
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duN

dt
= fu(uN , vN ) +

Du

δθ2
(uN+1 − 2uN + u1) +O(δθ2)

dvN
dt

= fv(uN , vN ) +
Dv

δθ2
(vN+1 − 2vN + v1) +O(δθ2)

(26)

This set of equations can now be solved using any standard numerical solver for ODEs. In order to ensure399

numerical stability of the solutions, we have used explicit Runge-Kutta method of order 5(4) with adaptive time step dt400

(implemented using solve_ivp package in python). Truncation error of the order O(dt6) was sufficient to capture sharp401

transitions.402

The external perturbations into the system of ODEs is modeled as a Wiener process where Gaussian white noise is403

introduced as an additive term at each time step. This results in a stochastic differential equation (SDE) in the Ito form404

dui = [fu(ui, vi) +
Du

δθ2
(ui+1 − 2ui + ui−1)]dt+ σdW (0, 1)

dvi = [fv(ui, vi) +
Dv

δθ2
(vi+1 − 2vi + vi−1)]dt+ σdW (0, 1)

(27)

where dW (0, 1) is the Gaussian white noise term with unit variance and σ is the noise intensity. Euler-Maruyama405

algorithm (implemented using sdeint package in Python) was then used to solve this system. For the RD simulations, the406

stimulus gradient was generated using Gaussian function from scipy.signal.windows in Python. This package truncates407

the Gaussian function which otherwise extends from −∞ to +∞ within a given window. For a window of length N (in408

our case N = 20), Gaussian profile is constructed using the expression s(n) = s0e
−1
2 ( n

w )2 where n ∈ [−N−1
2 : N−1

2 ],409

s0 is the signal amplitude, and the variance is w = N−1
2α . Varying the value of the constant α results in Gaussian410

profile of varying spread. The generated Gaussian will be maximum at the center and when overlayed on the membrane411

(Supplementary Fig. 1A top, bottom) results in a maximum at θ = π with negligible discontinuity at θ = 0, 2π. For412

Fig. 1C and Fig.3 (except differently specified), s0 = 0.02 and α = 2 is fixed to have 25% of width at half maximum.413

For the RD simulations in Fig/3A, s0 is systematically varying while keeping α fixed, whereas for Supplementary Fig.414

3D, α is systematically varyed. For simulation of the one dimensional projection models, a step like signal function was415

used (Supplementary Fig. 1B), with signal amplitude sL and sR (generally set to 0).416

Model comparison417

In order to compare polarization features arising from the different types of dynamical mechanisms, we quantified418

several metrics: polarization ratio ( uθ=π

uθ=0 ) to steep and shallow gradients quantified via a stimulus difference (sd =419

(sθ=π − sθ=0)× 100), time to reach stable polarization at a threshold signal amplitude inducing polarization (sdthresh),420

polarization ratio to signals with increasing offset, time necessary for polarization reversal/resolving simultaneous421

stimuli and subsequent polarization amplification, and response to consecutive stimuli (using signal integration index).422

In order to estimate the polarization time (Fig. 3A), u(θ, t) was normalized between max and min values to enable423

model comparison. Polarization time was then estimated as the first time point at which the normalized response reaches424

within a small window ( ±10−2) around the mean of the last 100 time points during gradient stimulation. The threshold425

for activation (sdthesh) represents the minimal stimulation amplitude for which stable polarization was achieved, and426

was estimated from Fig. 3A as the sd where 50% of the maximum polarization ratio is reached. sdthresh was manually427
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set for the LEGI model to 0.5%, and for the Turing-model to 0.1%, as both systems exhibit spurious activation to428

noise. For model responsiveness to signals with an offset, the maximal signal amplitude was systematically varied429

by adding an increasing off-set amplitude to the sdthresh. Polarization reversal and resolving times were estimated430

equivalently to the polarization time. For the reversed polarization in Fig. 3D, the Turing and the Wave-pinning models431

are not depicted, as they did not re-polarize in the time frame of 1000s. The signal integration index in Fig. 3F is432

estimated as ([uθ=π,a]−[sθ=π ])
tmax

where [uθ=π,a] is the total duration in which uθ=π > 0.5, [sθ=π] is the total duration of433

signal gradient stimulation, and tmax is the total simulation time. The spurious activation in the absence of signal in434

Supplementary Fig. 3A is performed by considering a random perturbation around the homogenous steady state (us,435

vs) which is implemented as (us + ξperr, vs − ξperr) where r is a random number between [0,1]. For the LEGI model,436

the perturbation is also implemented on the ws variable.437
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