

Supplementary Material

Differential accumulation of cardenolides from *Asclepias curassavica* by large milkweed bugs does not correspond to availability in seeds or biological activity on the bug Na⁺/K⁺-ATPase

Paola Rubiano-Buitrago, Shrikant Pradhan, Veit Grabe, Alfonso Aceves-Aparicio, Christian Paetz and Hannah M. Rowland

- 1. **Supplementary Figure S1.** UV chromatogram and LC-HRMS trace of extract of *O. fasciatus* adults. Cardenolides found in the sample appear from 5.6 to 7.9 min retention time.
- 2. **Supplementary Figure S2.** UV chromatogram and LC-HRMS trace of extract of *O. fasciatus* nymphs. Cardenolides found in the sample appear from 5.6 to 7.9 min retention time.
- 3. **Supplementary Figure S3:** Inhibition curves of *Sus domesticus, Drosophila melanogaster* and *Oncopeltus fasciatus* Na⁺/K⁺ ATPases by compounds from *Asclepias curassavica* seeds and ouabain
- 4. **Supplementary Table S1:** IC₅₀ values of ouabain and *Asclepias curassavica* cardenolides on the three analyzed enzymes N= number of replicates.
- 5. Supplementary Figure S4: Analysis on the effects of cardenolides on the adapted insect (*O.fasciatus*, blue), non-adapted insect (*D.melanogaster*, green) and a vertebrate reference (*S. domesticus*, purple) Na⁺/K⁺-ATPases. The IC₅₀ values (Supplementary Table xx) are compared to the abundant compound, glucopyranosyl frugoside. Log₁₀ transformation of the ratio of IC₅₀ values (glucopyranosyl frugoside/test compound) results in inhibition weaker than glucopyranosyl frugoside indicated by negative values, while inhibition greater than glucopyranosyl frugoside is indicated by positive values. Specific interactions between Na⁺/K⁺-ATPases and cardenolides are called "countervailing effects", where cardenolides are more potent than glucopyranosyl frugoside on some Na⁺/K⁺-ATPases and less potent than glucopyranosyl frugoside on others. Glucopyranosyl frugoside is the most potent of all compounds analyzed for the adapted Na⁺/K⁺-ATPase.
- 6. **Supplementary Figure S5:** Relationship between concentration and inhibitory effects of cardenolides (mg per g of seeds) across the three analyzed enzymes. Black= Frugoside, Yellow= Glucopyranosyl calotropin, Blue= Glucopyranosyl frugoside, Green=Gofruside.
- 7. **Supplementary Table S2**: Comparison of the concentration of individual cardenolides available in the *Asclepias curassavica* seeds to those sequestered by adults and nymphs (log transformed data) using analysis of variance.
- 8. Supplementary Table S3: HRMS data of the cardenolides and compounds putatively assigned as cardenolide metabolites found in samples of *Asclepias curassavica* seeds, *Oncopeltus fasciatus* nymphs and adults.

Supplementary Figure S1. UV chromatogram and LC-HRMS trace of extract of *O. fasciatus* adults. Cardenolides found in the sample appear from 5.6 to 7.9 min retention time.

1.

Supplementary Figure S2. UV chromatogram and LC-HRMS trace of extract of *O. fasciatus* nymphs. Cardenolides found in the sample appear from 5.6 to 7.9 min retention time.

2.

3.

Supplementary Figure S3: Inhibition curves of *Sus domesticus, Drosophila melanogaster* and *Oncopeltus fasciatus* Na^+/K^+ ATPases by compounds from *Asclepias curassavica* seeds and ouabain (N between 4 to 6 replicates). log10 IC₅₀ values were estimated using a four-parameter logistic curve, with the top asymptote set to 100 and the bottom asymptote set to zero, using the nlsLM function of the minipack.lm library in R.

Supplementary Table S1: IC₅₀ values of ouabain and *Asclepias curassavica* cardenolides on the three analyzed enzymes N= number of replicates.

Species	Compound		Log ₁₀ IC ₅₀	IC ₅₀ (M)		
			(M)			
Drosophila melanogaster	Ouabain	4	-6.540 (±0.19)	$3.69 \times 10^{-7} (\pm 1.30 \times 10^{-7})$		
Drosophila melanogaster	Glucopyranosyl frugoside [5]	6	-7.748 (±0.06)	$1.90 \mathrm{x10^{-8}} (\pm 3.0 \mathrm{x10^{-9}})$		
Drosophila melanogaster	Glucopyranosyl calotropin [7]	6	-7.937 (±0.33)	$3.10 \mathrm{x} 10^{-8} (\pm 1.5 \mathrm{x} 10^{-8})$		
Drosophila melanogaster	Frugoside [8]	6	-7.052 (±0.14)	1.16x10 ⁻⁷ (±4.1x10 ⁻⁸)		
Drosophila melanogaster	Gofruside [9]	6	-7.970 (±0.20)	2.10x10 ⁻⁸ (±1.4 x10 ⁻⁸)		
Oncopeltus fasciatus	Ouabain	5	-2.829 (±0.02)	1.49x10 ⁻³ (±6.5x10 ⁻⁵)		
Oncopeltus fasciatus	Glucopyranosyl frugoside [5]	6	-3.512 (±0.11)	3.53x10 ⁻⁴ (±7.8x10 ⁻⁵)		
Oncopeltus fasciatus	Glucopyranosyl calotropin [7]	4	-3.006 (±0.07)	$1.02 x 10^{-3} (\pm 1.4 x 10^{-4})$		
Oncopeltus fasciatus	Frugoside [8]	4	-3.481 (±0.18)	4.29x10 ⁻⁴ (±1.8 x10 ⁻⁴)		
Oncopeltus fasciatus	Gofruside [9]	4	-2.857 (±0.24)	$1.47 x 10^{-3} (\pm 4.8 x 10^{-4})$		
Sus domesticus	Ouabain	6	-6.256 (±0.06)	5.80x10 ⁻⁷ (±8.3x10 ⁻⁸)		
Sus domesticus	Glucopyranosyl frugoside [5]	6	-5.541 (±0.09)	3.21x10 ⁻⁶ (±0.7x10 ⁻⁶)		
Sus domesticus	Glucopyranosyl calotropin [7]	6	-5.987 (±0.05)	$1.07 x 10^{-6} (\pm 0.1 x 10^{-6})$		
Sus domesticus	Frugoside [8]	6	-6.390 (±0.08)	$4.50 \mathrm{x10^{-7}} (\pm 1.0 \mathrm{x10^{-7}})$		
Sus domesticus	Gofruside [9]	6	-7.140 (±0.12)	9.0x10 ⁻⁸ (±3.3x10 ⁻⁸)		

*Number is brackets correspond to Rubiano-Buitrago et al. (2023).

Supplementary Figure S4: Selective effects of individual cardiac glycosides on different forms of Na^+/K^+ -ATPase (*O. fasciatus*, blue; non-adapted *D. melanogaster*, green, and *S. domesticus*, pink). Relative inhibition values are based on IC₅₀ values compared with the standard to the abundant compound, glucopyranosyl frugoside (computed as the log10 of the ratio (IC₅₀ reference compound)/(IC₅₀ test compound; number of replicates between 4 and 6). Log₁₀ transformation of the ratio of IC₅₀ values (glucopyranosyl frugoside/test compound) results in inhibition weaker than glucopyranosyl frugoside indicated by negative values, while inhibition greater than glucopyranosyl frugoside is indicated by positive values. Specific interactions between Na^+/K^+ -ATPases and cardenolides are called "countervailing effects", where cardenolides are more potent than glucopyranosyl frugoside is the most potent of all compounds analyzed for the adapted Na^+/K^+ -ATPase.

Supplementary Figure S5. Relationship between concentration and inhibitory effects of cardenolides (mg per g of seeds) across the three analyzed enzymes. Black= Frugoside, Yellow= Glucopyranosyl calotropin, Blue= Glucopyranosyl frugoside, Green=Gofruside.

7. Supplementary Table S2: Comparison of the concentration of individual cardenolides available in the *Asclepias curassavica* seeds to those sequestered by adults and nymphs (log transformed data) using analysis of variance.

*Parametric:

Cardenolide	comparison	arison df sumsq		meansq statistic		p.value	adj.p.value	
glucopyranosyl 12ß hydroxy								
coroglaucigenin	seed_nymph	1	16.2359	16.2359	481.82147	2.27 x10 ⁻¹³	9.07 x10 ⁻¹³	
16a hydroxy calotropin	seed_nymph	1	32.3483	32.3483	376.3054	1.53 x10 ⁻¹²	3.06 x10 ⁻¹²	
frugoside	seed_nymph	1	4.260992	4.260992	74.79661	1.99 x10 ⁻⁷	2.65 x10 ⁻⁷	
gofruside	seed_nymph	1	4.866219	4.866219	33.02439	3.00 x10 ⁻⁵	3.00 x10 ⁻⁵	
glucopyranosyl 12ß hydroxy								
coroglaucigenin	seed_adult	1	7.771768	7.771768	129.09996	4.52 x10 ⁻⁹	4.52 x10 ⁻⁹	
16a hydroxy calotropin	seed_adult	1	26.1799	26.1799	586.729	4.90 x10 ⁻¹⁴	1.96 x10 ⁻¹³	
frugoside	seed_adult	1	9.669131	9.669131	494.95496	1.84 x10 ⁻¹³	3.68 x10 ⁻¹³	
gofruside	seed_adult	1	21.34477	21.34477	290.63016	1.11 x10 ⁻¹¹	1.47 x10 ⁻¹¹	

*Non parametric: Wilcoxon rank sum test with continuity correction

Cardenolide	comparison	statistic	p.value	alternative	adj.p.value
glucopyranosyl		0.1	0.000.11		0.000.44.0
frugoside	seed_nymph	81	0.00041	two.sided	0.000412
calotropin	seed_nymph	81	0.000412	two.sided	0.000412
glucopyranosyl frugoside	seed adult	81	0.00041	two.sided	0.000412
glucopyranosyl	seed_uuun	01	0100011		0.000.12
calotropin	seed_adult	81	0.000412	two.sided	0.000412

8. Supplementary Table S3: HRMS data of the cardenolides and compounds putatively assigned as cardenolide metabolites found in samples of *Asclepias curassavica* seeds, *Oncopeltus fasciatus* nymphs and adults.

compound *	RT	precursor ion	observed m/z	smart formula	calculated m/z	error	observe d m/z	genin fragment formula	calculated m/z	error	Sample* *
A	5.6	[M+ H]+	663.3001	$C_{34}H_{47}O_{13}$	663.3011	1.5					S
В	5.7	[M+ H] ⁺	707.3614	$C_{37}H_{55}O_{13}$	707.3637	3.3					S
3-O-β- glucopyranosyl 12β-hydroxy coroglaucigenin (4)	5.7	[M+ H]+	569.2967	$C_{29}H_{45}O_{11}$	569.2956	-1.9	407.2437	$C_{23}H_{35}O_6$	407.2428	-2.3	S-A-N
С	5.8	[M+ H]+	715.3516	$C_{35}H_{55}O_{15}$	715.3535	1.9	407.2411	$C_{23}H_{35}O_6$	407.24281	1.7	S-A
D	5.8	[M+ H]+	665.2458	$C_{32}H_{41}O_{15}$	665.244	-2.8					S
E	5.9	[M+ H]+	693.3127	$C_{35}H_{49}O_{14}$	693.3117	-1.5					S
F	6.1	[M+ H]+	553.2998	$C_{29}H_{45}O_{10}$	553.3007	0.9	389.2324	$C_{23}H_{33}O_5$	389.2322	-0.2	A-N
4-0-β- glucopyranosyl-3- 0-β-D-allopyranosyl coroglaucigenin (2)	6.2	[M+ H]+	715.3553	$C_{35}H_{55}O_{15}$	715.3535	-2.5	391.2494	$C_{23}H_{35}O_5$	391.2479	-3.8	S
16α- hydroxycalotropin (10)	6.2	[M+ H]+	549.2703	$C_{29}H_{41}O_{10}$	549.2694	-1.6	407.2459	C ₂₃ H ₃₅ O ₆	407.2428	-7.5	S-A-N

Supplementary Materi	al										
3-0-β-allopyranosyl coroglaucigenin (1)	6.2	[M+ H]+	553.3016	$C_{29}H_{45}O_{10}$	553.3007	-1.8	391.2488	$C_{23}H_35O_5$	391.2479	-2.2	S
G	6.2	[M+ H]+	636.2463	$C_{31}H_{42}NO_{11}S$	636.2473	1	407.2429	$C_{23}H_{35}O_6$	407.2428	0	Ν
3-0-β- glucopyranosyl 16β- hydroxycalotropin (3)	6.3	[M+ H]+	693.3127	$C_{35}H_{49}O_{14}$	693.3117	-1.5	421.223	$C_{23}H_{33}O_7$	421.2221	-2.2	S
Н	6.4	[M+ H]+	861.4132	$C_{41}H_{65}O_{19}$	861.4115	-2	391.2488	$C_{23}H_{35}O_5$	391.2479	-2.2	S-A
I	6.4	[M+ H]+	553.2982	$C_{29}H_{45}O_{10}$	553.3007	2.5	371.2214	$C_{23}H_{31}O_4$	371.2217	0.3	A-N
J	6.4	[M+ H]+	617.2698	$C_{29}H_{46}O_{12}P$	617.2721	2.3	391.2459	$C_{23}H_{35}O_5$	391.2479	2	A-N
4-0-β- glucopyranosyl frugoside (5)	6.5	[M+ H]+	699.3592	$C_{35}H_{55}O_{14}$	699.3586	-0.8	391.2484	$C_{23}H_{35}O_5$	391.2479	-1.3	S-A-N
К	6.6	[M+ H]+	859.3963	$C_{41}H_{63}O_{19}$	859.3958	-0.6	353.2115	$C_{23}H_{29}O_3$	353.2111	-1	S
L	6.6	[M+ H]+	615.2461	$C_{29}H_{43}O_{12}S$	615.247	0.9	371.2199	$C_{23}H_{31}O_4$	371.2217	1.8	А
4-0-β- glucopyranosyl gofruside (6)	6.7	[M+ H]+	697.3426	$C_{35}H_{53}O_{14}$	697.343	0.6	371.222	$C_{23}H_{31}O_4$	371.2217	-0.8	S-A
3-0-β- glucopyranosyl calotropin (7)	6.8	[M –H ₂ O + H]+	677.3163	$C_{35}H_{49}O_{13}$	677.3168	0.6	399.1811	$C_{23}H_{27}O_6$	399.1802	-2.3	S-N
Μ	6.8	[M+ H]+	595.2299	$C_{29}H_{40}O_{11}P$	595.2303	0.4	391.248	$C_{23}H_{35}O_5$	391.2479	0.1	А
Ν	6.8	[M+ H]+	617.2611	$C_{32}H_{41}O_{12}$	617.2593	-1.9					N

0	6.9	[M+ H]+	695.3279	$C_{35}H_{51}O_{14}$	695.3273	-0.8	389.2329	$C_{23}H_{33}O_5$	389.2323	-1.7	S
Frugoside (8)	7	[M+ H]+	537.3056	$C_{29}H_{49}O_9$	537.3058	0.5	391.2483	$C_{23}H_{35}O_5$	391.2479	-1	S-A-N
Р	7.0	[M+ H]+	615.2433	$C_{32}H_{39}O_{12}$	615.2436	0.3	405.2266	$C_{23}H_{33}O_6$	405.2272	0.6	A-N
Q	7.1	[M+ H] ⁺	547.2545	$C_{29}H_{39}O_{10}$	547.2538	-1.3	371.2224	$C_{23}H_{31}O_4$	371.2217	-2	S
R	7.1	[M+ H]+	683.3639	$C_{35}H_{55}O_{13}$	683.3637	-0.2	375.2536	$C_{23}H_{35}O_4$	375.253	-1.8	S
S	7.1	[M+ H] ⁺	620.2517	$C_{31}H_{42}NO_{10}S$	620.2524	0.7	391.2468	$C_{23}H_{35}O_5$	391.2479	1.1	A-N
Gofruside (9)	7.2	[M+ H]+	535.2897	$C_{29}H_{43}O_9$	535.2902	0.8	371.2218	$C_{23}H_{31}O_4$	371.2217	-0.4	S-A-N
Т	7.3	[M+ H] ⁺	620.2502	$C_{31}H_{42}NO_{10}S$	620.2524	2.2					Ν
V	7.4	[M+ H]+	543.2468	$C_{23}H_{43}O_{12}S$	543.2469	0.1					Ν
W	7.5	[M+ H]+	533.2748	$C_{29}H_{41}O_9$	533.2745	-0.6	389.2364	$C_{23}H_{33}O_5$	389.2328	-7.19	S-A-N
Х	7.6	[M+ H]+	579.3159	$C_{31}H_{47}O_{10}$	579.3164	0.4	373.2355	$C_{23}H_{33}O_4$	373.2373	1.8	A-N
Y	7.7	[M+ H]+	653.3865	$C_{39}H_{57}O_6S$	653.3870	0.6	389.2318	$C_{23}H_{33}O_5$	389.2322	0.5	Ν
Z	7.9	[M+ H]+	593.3294	$C_{32}H_{49}O_{10}$	593.3320	2.6	355.2265	$C_{23}H_{31}O_3$	355.2268	0.3	A-N

*numbers correspond to the cardenolides in P. Rubiano-Buitrago, S. Pradhan, C. Paetz, H. M. Rowland, New Structures, Spectrometric Quantification, and Inhibitory Properties of Cardenolides from *Asclepias curassavica* Seeds. Molecules 28, 105 (2023).

**(S=seeds, A=O. *fasciatus* adults, N=O. *fasciatus* nymphs)