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Substantial opportunities for global health intelligence and research arise from the combined and optimised use of 
secondary data within data ecosystems. Secondary data are information being used for purposes other than those 
intended when they were collected. These data can be gathered from sources on the verge of widespread use such as 
the internet, wearables, mobile phone apps, electronic health records, or genome sequencing. To utilise their full 
potential, we offer guidance by outlining available sources and approaches for the processing of secondary data. 
Furthermore, in addition to indicators for the regulatory and ethical evaluation of strategies for the best use of 
secondary data, we also propose criteria for assessing reusability. This overview supports more precise and effective 
policy decision making leading to earlier detection and better prevention of emerging health threats than is currently 
the case.

Introduction
The use of secondary data represents an enormous 
potential for epidemic intelligence and research. 
Secondary data are defined as data being used for a 
purpose that differs from the intention for which the data 
were collected.1 Typically, these data cover various 
application scenarios and come from a wide variety of 
pre-existing sources.2 Data are understood as health-
related if they provide information on health statuses of 
given individuals or populations. By using machine 
learning and cloud computing, secondary health-related 
data can substantially improve the detection and 
surveillance of emerging diseases.3 In addition, research 
based on such applications potentially provides new 
insights into causes and consequences of diseases.4

Available sources of secondary health data differ in the 
degree to which they are used. For example, real-world 
data sources such as epidemic surveillance, disease 
registries, and population surveys as well as insurance, 
census, and government5 records are widely used. 
Improvements in epidemic intelligence and research 
could be achieved by optimising the processing of data 
from such sources. However, the greatest potential for 
further progress arises from building comprehensive 
data ecosystems that additionally enclose data from 
sources presently on the verge of widespread use. These 
sources contain those with user-initiated content from 
data spaces that include the internet, wearables, and 
mobile phone apps,6 and those with non-user-initiated 
content, such as electronic health records7 and genome 
sequencing.8 Figure 1 depicts real-world sources of a 
possible eco system for secondary health data.

The need to create data ecosystems for knowledge 
generation has been emphasised by WHO.9 The continuous 
exchange of secondary health data within such systems 
plays a crucial role in strengthening policy and research 
activities aimed at achieving health equity for all. At the 
centre of these activities, which can be grouped under the 
heading of global health,10 are epidemic intelligence and 
research in low-income and middle-income countries 
(LMICs). Strengthening epidemic intelli gence and research 

by building data ecosystems requires wide-ranging 
multidisciplinary efforts. Depending on the objectives, 
strategies for building data ecosystems must be adapted to 
the given political environ ments, the available technical 
infra structures, and the human capital.

This Health Policy paper intends to support the 
establish ment of such strategies. The COVID-19 
pandemic has highlighted the challenges of using 
secondary health data effectively. We present the results 
of an open exchange of basic considerations between key 
German research institutions and WHO on how eco-
systems for an effective use of health data could be 
implemented. We first introduce data sources on the 
verge of widespread use and outline specific challenges 
and solutions in leveraging their related data. Reusability 
criteria as well as regulatory and ethical aspects are 
discussed in the subsequent section. We conclude with 
an outlook on the efforts still required.

Figure 1: Real-world sources of a possible ecosystem for secondary health 
data
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Health data sources on the verge of widespread 
use
The internet, wearables, and mobile phone apps
New health-related data sources have become available 
with the internet, wearables, and mobile phone apps 
throughout the past decades. These sources’ core 
strength is that they only rarely exhibit data flow discon-
tinuities. Instead, they efficiently deliver infor mation in 
near real time and at a high spatial resolution. Most web-
based secondary health data are generated through 
health-related behaviour on social media and networks 
or search engine queries.6 Entries in news media can also 
represent web-based data sources.

A great variety of different wearable devices and apps 
generate large amounts of personalised health data. 
Depending on the app, such data provide information 
ranging from distinct physiological parameters to more 
general medical conditions. The Corona Data Donation 
app released by the Robert Koch Institute, Germany’s 
leading public health authority, is a prominent example 
of the use of data generated by wearables. To gain better 
epidemiological insights into the progression of the 
COVID-19 pandemic up to December, 2022, the software 
connected to wearable devices such as Apple’s 
smartwatch, the FitBit, or the Oura ring and collected 
information on resting heart rate, body temperature, 
blood pressure, or physical activity and sleep.11

Symptom checkers such as Ada or Your.MD aim at 
providing users with insights into their individual health 
status by assessing symptoms and suggesting possible 
diagnoses. Although not relying on exact physiological 
measurements, the data generated by these apps are 
potentially of high importance for epidemic intelligence 
and research. For instance, Menni and colleagues12 
predicted positive results from SARS-CoV-2 PCR with 
information on self-reported symptoms obtained from a 
symptom checker.

Electronic health records 
Assuming sufficient integration into clinical workflows, 
electronic health records can serve as a data source for 
epidemic intelligence and research. The main advantage 
of these records is that they can potentially make 
complete patient data easily accessible. Originally they 
were intended for billing and administrative purposes7 
and have later been adapted to better inform clinical 
decisions and reduce medical errors.13 The most valuable 
information contained in electronic health records 
typically arises during routine care delivery such as 
physician notes and clinical imaging, or even demo-
graphic data. Recommendations on the meaningful use 
of electronic health records also suggest the inclusion of 
socioeconomic measures to assess health gradients more 
precisely.14 In addition, distributed ledger technologies 
allow for electronic health record solutions whereby 
patient data can even be internationally registered across 
jurisdictions.15

Although more traditional surveillance frameworks 
typically rely on either syndrome definitions or laboratory 
results,16 a key benefit of electronic health records-based 
epidemic intelligence and research exists in joining 
information from a flexible range of different domains. 
For instance, the tuberculosis surveillance module of the 
US Electronic medical record Support for Public Health 
depends on case definitions compiled from clinical data 
on prescriptions, test results, and previous diagnoses of 
tuberculosis as indicated by International Classification 
of Disease codes.16 Comparable algorithms are incor-
porated into the electronic medical record architecture 
for the discovery of candidates for HIV pre-exposure 
prophylaxis17 and surveillance of influenza18 or diabetes,19 
among others. However, these examples should not 
obscure the fact that there are considerable barriers to 
the widespread use of electronic health records. A more 
detailed overview of the key organisational, technical, 
and human factors crucial to the successful adoption of 
electronic health records is provided by Fenelly and 
colleagues.20

Genome sequencing
In the past 10 years, the potential of molecular data on 
genomes has gained increasing attention in the fields of 
epidemic intelligence and research.8 Although such 
information allows for tailored diagnostic and therapeutic 
approaches in clinical medicine, genetic data also help 
define population screenings and policy interventions 
more accurately. Similar works show how data generated 
by genome sequencing enable the tracking of spreading 
patterns of specific SARS-CoV-2 variants21 or improve 
COVID-19 incidence estimates.22 Whole-genome 
sequencing of extensively drug-resistant tuber culosis 
also facilitates the exact geographical location of such 
strains.23 Further examples of genome data use for 
population health include recency estimations of HIV 
and hepatitis C viral infections24,25 and outbreak detection 
of foodborne diseases.26 Quality controlled genetic data 
are publicly available from various repositories such as 
GenBank,27 the Sequence Read Archive,28 GISAID,29 and 
the European Nucleotide Archive.30

Barriers and possible solutions
Quality of secondary data
As well as the advantages of sourcing health-related data 
from the web, wearables, apps, or electronic health 
records there are also considerable limitations (table):32,42 
estimates solely resting on data gathered from these 
sources are prone to sampling bias. Depending on 
cultural and economic context, some user communities 
or patients with electronic health records are more or less 
likely to be selected into samples than other population 
members. Results obtained based on such samples are 
therefore not transferable to broader populations. 
Furthermore, correlations of data generated by internet, 
wearable, or app usage and parameters of interest might 
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vary over time and across individuals due to unobserved 
heterogeneity.43 This type of bias could even occur in 
appropriate samples. Further considerations regarding 
the generating processes of web-based data are needed. 
These processes are very often affected by self-
perpetuating patterns such as enfolding discussions on 
social media or news feeds. Models trained on such data 
are thus prone to autocorrelation bias, resulting in time-
dependent variations in sensitivity and specificity.44

Validating internet, wearable, app, or electronic health 
record data with reference data from more conventional 
sources is a viable remedy to these shortcomings. By 
gauging the data-inherent biases, evaluation metrics can 
be constructed that enable the development of corres-
ponding correction procedures. A readjustment of 
internet, wearable, app, and electronic health record 
samples is essentially possible by applying well known 
survey methods such as weighing or raking the data after 
collection.32,44 In light of data collected with non-
quantifiable sampling biases, an increasingly common 
solution exists in the combined analysis of data from 
different sources. Although respective procedures do not 
help obtain valid inference results, such approaches yield 
satisfying results con cerning the prediction of disease 
incidences. For example, Quer and colleagues45 
augmented sensor data on resting heart rates and sleep 
and activity metrics with information from a symptom 
checker app. The authors were able to show that the 
combination of both data types discriminates significantly 

better between test results of individuals who are 
COVID-19 positive and individuals who are COVID-19 
negative than models relying solely on the app data.

In the statistical analysis of observational secondary 
data, unit or time-varying unobserved heterogeneity can 
be controlled for by applying fixed effects, differences-in-
differences, regression discontinuity, instrumental 
variable, or synthetic control designs. More recent 
approaches in this field also use machine learning 
methods to improve statistical estimates, especially when 
many covariates are present.46 Unobserved heterogeneity 
only impairs the predictive performance of machine 
learning algorithms if correlations between observed 
features and unobservable features change over time. 
This circumstance can be accounted for by either 
eliminating any variance between observational dates or 
by including unit-specific time trends. Careful modelling 
choices are also essential for the correction of 
autocorrelation bias in internet-based data. By joining 
data from the Centers for Disease Control and Prevention 
with Google Trends’ data, Yang and colleagues47 showed 
that bias in Google Flu Trends resulting from alternating 
search behaviours of internet users can be captured by 
including error terms allowing for autocorrelation in 
machine learning models. Statistical models could be 
specified in the same manner.

Random or systematic measurement errors affect data 
quality, too. Random errors are the result of randomly 
distributed deviations in the measurement of a value 

Type of analysis Correction 

Sampling bias, ie, bias resulting from 
unequal sample selection probabilities of 
observational units from a given population

Statistics Weighing or raking

Sampling bias, ie, bias resulting from 
unequal sample selection probabilities of 
observational units from a given population

Machine learning Data from differing domains can be combined such that accuracy is improved

Unobserved heterogeneity, ie, variation 
across observational units or time due to 
unobserved factors

Statistics Fixed effects, difference-in-differences, regression discontinuity, instrumental variables, 
synthetic-control method, and machine learning methods for improving statistical 
estimates

Unobserved heterogeneity, ie, variation 
across observational units or time due to 
unobserved factors

Machine learning Fixed effects or unit-specific time trends

Autocorrelation, ie, correlation of an 
observational unit with its time-lagged own 
values

Statistics and 
machine learning

Inclusion of error terms allowing for autocorrelation in models

Measurement error Statistics If the measurement error is: random, use instrumental variable methods for linear models 
(see Schennach31 for non-linear specifications); systematic, see Schennach31 for linear and 
non-linear specifications; causing misclassification of disease phenotypes, use estimators 
assuming either a bias depending on heterogeneity across patients,32 or a joint time-
dependent disease and disease-driven data generating process33

Measurement error Machine learning If the measurement error is: random or systematic, see Song and colleagues34 for deep 
learning methods, Frénay and Verleysen35 for non-deep learning methods; causing 
misclassification of disease phenotypes, there are no established methods yet

Missing data Statistics and 
machine learning

In the case of: missing completely at random (also known as MCAR), observations can be 
deleted either listwise or pairwise; missing at random (also known as MAR), use 
imputation36 or estimation by Full Information Maximum Likelihood or Expectation 
Maximation;37 missing not at random (also known as MNAR), use estimators accounting 
for selection into non-missingness38,39 or pattern mixture models40,41

Table: Potential biases in secondary health data and means for correction
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assumed to be true. Systematic errors occur due to non-
random measurement deviations. Both error types lead 
to biased statistical estimates and impair machine 
learning predictions. In the case of electronic health 
records and app data, for instance, measurement errors 
might result in misclassification of disease phenotypes. 
The disease-related information obtained from such 
sources could be erroneous due to manifold causes. 
Insurance incentives possibly lead to preferential 
assignments of diagnostic codes included in electronic 
health records.48 Specific symptom-related data included 
in electronic health records and apps could also be biased 
by over-reporting or under-reporting by patients. 
Furthermore, past patient histories are likely to be 
inconsistently recorded in electronic health records.32

Correction procedures must be specified according to 
the respective type of measurement error, the functional 
form of the specified model, and whether the error 
occurs in the dependent or independent variables. 
Instrumental variable methods can be used to account 
for random errors in linear statistical models. 
Schennach31 reviews the available statistical approaches 
for non-linear random as well as linear and non-linear 
systematic measurement errors. For misclassification in 
electronic health records data due to systematic 
measurement error, there are two classes of non-linear 
statistical approaches for correction: Beesley and 
Mukherjee32 presume that electronic health records 
misclassification is caused by factors varying across 
patients to derive estimators for misclassification rates. 
The second class of statistical models is suggested by 
Lange and colleagues.33 As opposed to Beesley and 
Mukherjee,32 the authors ground their method in the 
expectation of inter-individually constant sensitivity and 
specificity. Misclassification risks are then determined by 
taking a joint time-dependent disease and disease-driven 
observation process as a basis for the likelihood esti-
mation of the observed electronic health records data. 

Numerous robust machine learning methods are 
available for random and systematic measurement errors 
in training data. An overview of corresponding deep 
learning approaches is provided by Song and colleagues.34 
Frénay and Verleysen35 present the existing non-deep 
learning methods. Machine learning methods that con-
sider misclassification of disease phenotypes in electronic 
health records training data due to measurement error 
have not yet been developed.49

Missing data is another substantial source of bias. 
Existing strategies for bias correction need to be chosen 
with regard to distinct missingness patterns:50 with data 
missing completely at random (also known as MCAR), 
observations with missing values could be deleted either 
listwise, ie, generally, or pairwise, ie, only in cases relevant 
to specific analyses. However, bias is likely to be induced 
by missing at random (also known as MAR) data—that is, 
if missingness depends on some observed trait but not on 
the missing data points themselves. A means for 

correction of bias owing to missing at random patterns is 
the imputation of missing values.36 As a viable second 
option for statistics or machine learning, models can be 
fitted to missing at random data by Full Information 
Maximum Likelihood or Expectation Maximation.37 A 
further bias emanates from missingness pertaining to 
certain values of one or more of the given data points. 
Solutions based on machine learning or statistical models 
for such missing not at random data (also known as 
MNAR) consist of specifications that account for selection 
into non-missingness.38,39 An alternative is to partition the 
data and apply pattern mixture models that condition on 
subgroup-specific missing not at random patterns.40,41

Interoperability
To enable the exchange of health data within ecosystems, 
data need to be processed across countries and 
organisations. This approach requires the adoption of 
standard data formats and vocabularies providing 
human-readable and machine-readable data structures 
with unambiguous semantics. A means for accom-
plishing this goal is interoperability, ie, “the ability of two 
or more systems or com ponents to exchange information 
and to use infor mation that has been exchanged”.51 Inter-
operability is therefore not just defined by exchanging 
information but also by using the shared data in a 
meaningful way.

There are different levels of interoperability: technical 
interoperability provides basic data exchange capabilities 
between systems and syntactic interoperability specifies 
data format and structures.52 The structured exchange of 
health data is supported by international standards 
development organisations. One major standard for 
communication of health data was established by Health 
Level Seven International (also known as HL7): Fast 
Healthcare Inter operability Resources (also known as 
FHIR). This standard defines data structures for typical 
health-care concepts, so-called resources, which can be 
modified and extended for specific use cases.53 The 
advantage of Fast Healthcare Interoperability Resources 
is its reliance on existing internet technologies already 
supported by mobile devices. Furthermore, semantic 
interoperability uses terminologies, nomenclatures, and 
ontologies to define medical concepts unambiguously, 
making sharing them across worldwide systems possible. 
One of the largest terminologies to date is the 
Systematized Nomenclature of Medicine, Clinical Terms 
(also known as SNOMED CT). Additional domain-
specific terminologies, such as the Logical Observation 
Identifiers Names and Codes (also known as LOINC) for 
laboratory data or the Human Phenotype Ontology (also 
known as HPO) for phenotypes, can complement the 
Systematized Nomenclature of Medicine, Clinical Terms.

Major steps need to be taken to promote data inter-
operability: policies should particularly aim for inter-
operable data exchange or even enforce interoperability 
through legal regulations.
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Record linkage
Record linkage means the individual-level linkage of data 
records stored in separate databases to facilitate the 
combined analysis of person-related data from different 
sources. Such record linkage augments a dataset with 
additional information that was not originally included. 
An example is the assessment of incident cancer patients 
by linking cancer registries to data on prescribed 
medications collected by health insurers.

Linkage of individual-level records via person-
identifying data such as name and address requires the 
informed consent of study participants. Such consent 
can usually be obtained in studies collecting primary 
data. Asking for informed consent is standard practice in 
studies such as the German National Cohort.54 Here, 
privacy is preserved by pseudonymisation of study data 
through the agency of a trust centre, keeping person-
identifying data and corresponding pseudonyms securely 
locked up.55 However, if individual-level data from 
secondary data sources are to be linked, and informed 
consent is not feasible, legal restrictions often prohibit 
such linkage. Linkage of pseudonymised or anonymised 
datasets via individual characteristics might then be an 
alternative to linkage through person-identifying data. 
However, the necessary overlap in common variables 
allowing for this type of linkage with sufficient accuracy 
is rarely available in secondary health-related datasets.

Federated and swarm learning
Federated learning has been identified as a promising 
analytical tool for surveillance and research applications 
because it allows collaborators to keep their data private. 
This approach eliminates the need to share sensitive data 
between different parties:56 instead, local machine 
learning models are trained at each partner site using 
local data. These models are then combined to improve 
overall predictive performance while maintaining a 
maximum amount of personal data protection. Going 
beyond federated learning, swarm learning is a recent 
technique main taining confidentiality without the need 
for a central coordinator. As a decentralised machine 
learning approach, swarm learning unites edge 
computing, blockchain-based peer-to-peer networking, 
and coordination.57 Figure 2 illustrates key differences in 
federated and swarm learning architectures.

The idea of federated learning can be divided into two 
types: horizontal and vertical federated learning. 
Horizontal federated learning is very close to the idea of 
ensemble and distributed learning. Different models are 
trained and aggregated in ensemble learning and 
horizontal federated learning, eg, by averaging. The 
training can be done in parallel, ie, all models are trained 
independently and then aggregated, or iteratively, ie, 
models are trained iteratively rather than independently. 
An example of iterative training is neural networks, 
typically trained in epochs, but these epochs are split 
among different parties in federated learning. The main 

difference between ensemble and federated learning is 
that the different models (and underlying data) come 
from different parties. In contrast to horizontal federated 
learning, vertical federated learning combines models 
with different features but identical samples. Federal 
techniques based on the same concepts as those 
presented previously are also available for fitting 
statistical models.

A limitation is that federated learning requires different 
elements learned by respective partners to combine 
linearly. This restriction puts con straints on the plasticity 
of federated learning approaches to model real-life 
phenomena. Furthermore, implementing models in a 
federated manner does not inherently ensure privacy 
protection. Outliers can be detected in federated linear 
regression, and the under lying personal data can be back 
calculated through data and model poisoning, for 
example.58 Implementers, therefore, need to weigh 
privacy requirements against the disclosure risks specific 
to different modelling strategies.

Data storage and harvesting 
To continuously use and exchange secondary data, 
ensuring their availability is important. Besides 

Figure 2: Federated and swarm learning
(A) The federated learning scheme includes a central trusted server used for communication between the partners 
and where the individual models trained at the different partner sites are combined. However, the data used for 
training the individual models never leave the safe information technology infrastructure at each partner site and 
are never disclosed. (B) The swarm learning scheme does not include a central server. Communication between the 
partners is carried out in a peer-to-peer manner, thus enabling an iterative improvement of local models. The data 
stay at the local information technology infrastructure at each partner site and are never disclosed. This figure was 
created with www.biorender.com.

A

B

Central trusted server
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harvesting, data availability is achieved through storage 
in either data warehouses or data lakes. Data warehouses 
are centralised systems suitable for structured and 
consistent data.59 Such data might originate from 
registries or surveys on health behaviours, for instance. 
Storage in warehouses requires extensive routines for 
data pre-processing. Data availability itself is maintained 
by comprehensive data models that contain meta-
information of datasets and reference folder structures 
and file indices. Hence, maintenance and implementation 
of warehouse architectures are usually costly and time-
consuming on the one hand. By their stable design, on 
the other hand, warehouses warrant high degrees of 
availability once the data have been entered.

Data lakes constitute a storage concept most suited for 
unstructured data. Such data are typically obtained from 
the internet, wearables, or apps. Within lakes, data are 
retained with their native formats.60 Data schemes are 
thus not fixed until the data are being queried by users.61 
Unlike warehouses, data extraction depends on data 
models, including contextual layers describing the 
semantic meaning of data fields. Regarding imple-
mentation, the costs associated with such extensive 
metadata management need to be balanced against the 
advantages of lake systems that rapidly process large 
amounts of heterogeneous data.

In contrast to data warehouses and data lakes, harvesting 
systems index data objects by their sources and maintain 
data availability without storage. Harvesting requires 
metadata to reference all data in question. To build up 
metadata frameworks themselves, modern harvesting 
systems rely on routines for automated extraction of 
metainformation from multiple sources, such as text 
mining. Once indexed, data objects are linked via unique 
identifiers or stable links included in the metainformation. 
As identifiers or links need to be updated rather often, 
harvesting demands high main tenance efforts. Decision 
makers need to set the maintenance costs against the low 
implementation costs of harvesting systems that result 
from their lean architecture.

Key considerations for implementation
FAIR data
Any digitalisation initiative in global health faces the 
challenge of enabling the exchange of secondary data 
between countries and organisations for routine use. 
Such data come from manifold sources and are often 
incompatible with each other. To generally improve data 
management, the FAIR principles have been developed 
by a group of stakeholders from academia and industry.62 
The principles are thought of as general guidelines that 
ensure quality standards concerning the reusability of 
secondary data to develop data-driven applications.

FAIR data are defined as data that are findable, 
accessible, interoperable, and reusable. To be findable, 
data and metadata should be assigned a unique and 
persistent identifier and registered or indexed in a 

searchable resource. The principle of accessibility 
stipulates that data and metadata are retrievable by their 
identifier using a standardised, automated retrieval 
protocol. In addition, metadata should be accessible, 
even when the data are no longer available. To be 
interoperable, data and metadata should be expressed 
and shared using published standards for knowledge 
presentation. Moreover, reusability demands data and 
metadata to be described as clearly as possible with 
accurate and relevant attributes and clear and accessible 
conditions for use.

International regulations 
Using secondary health data in accordance with FAIR 
principles remains extremely difficult due to the absence 
of international regulatory standards or guidance. The 
need to overcome this barrier has been acknowledged by 
the Focus Group on AI for Health.63 The group has been 
set up by WHO and the International Telecommunication 
Union to build a framework for using artificial 
intelligence (AI) for health.64 Concerning the regulatory 
concepts of AI for health, the Focus Group on AI for 
Health’s Working Group on Regulatory Considerations 
identified six general topic areas: Documentation and 
Transparency, Risk Management and AI Systems 
Development Lifecycle Approaches, Intended Use and 
Analytical and Clinical Validation, Data Quality, Privacy 
and Data Protection, and Engagement and Collaboration. 
In an international, multidisciplinary effort involving 
regulatory bodies, policy makers, academia, and industry, 
the Working Group on Regulatory Considerations is 
working towards publishing an overview of the key 
regulatory concepts of AI technology deployment and AI 
systems development in health. The initiative is also 
preparing a list of relevant key recommendations for the 
way forward. Throughout the work of the working group, 
a particular emphasis is put on the introduction of 
international regulations for the exchange of secondary 
health data. Regarding such regulations, the working 
group intends to adopt data quality and protection 
regulations and standards that have been worked out in a 
benchmarking framework by the Focus Group on AI For 
Health. The framework incorporates task-specific gold 
standards for data modalities, annotations, and 
interoperability.65

Ethical considerations
Even assuming that FAIR data are available in accordance 
with international regulations, their use raises several 
ethical issues that must be adequately addressed. In 
addition to issues of safety and protection of sensitive 
information, the use of secondary data could have 
ambivalent implications on health equity. On the one 
hand, they could improve access to better disease 
prevention and health care in disadvantaged populations. 
On the other hand, some populations are partly or 
entirely excluded from health data coverage due to scarce 
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conventional or digital resources.66 This shortfall  
potentially results in a digital divide regarding data-
driven innovations for epidemic intelligence and 
research.67 The main barriers affecting health data equity 
have been identified in a scoping review.68 Using the Data 
Equity for Health and Health Equity framework based on 
these findings, O’Neil and colleagues68 provide guidance 
on promoting equity in secondary health data. Access to 
data needs to be largely improved across communities 
and health-care sectors in LMICs. In line with FAIR data 
principles, improving data access means establishing 
open data policies and measures to strengthen technical, 
syntactic, and semantic inter operability. In addition, 
further action is needed to increase the usability of health 
data in LMICs. To better enable decision makers to gain 
insights, data should be provided in a ready-to-use format 
and the timespan for data dissemination should be 
shortened. According to the authors,68 the availability of 
equitable secondary data in LMICs also depends on the 
quality of data collection. Quality can be ensured through 
standardisation of data collection methods and the 
training of people conducting the surveys. Moreover, 
health equity is largely enhanced by secondary data that 
include information about individuals’ subjective 
perceived health states in addition to objective health 
outcomes. Subjectively perceived health states can be 
reliably recorded using questionnaires and compared 
using patient-reported outcome measures. The main 
value of these questionnaires is that, besides enhancing 
health equity, they contribute to an overall improvement 
in the quality of prevention and care.69

Closely related to data fairness are specific challenges 
in the context of machine learning applications to health 
data.70 When trained on incomplete or skewed datasets, 
some algorithms have been shown to aggravate social 
inequalities in out-of-sample predictions.71 But even 
unbiased training data could lead to machine learning 
models producing ethically questionable results if used 
in inappropriate environments. The transferability of the 
results of newly developed machine learning applications 
should therefore be tested on standardised datasets such 
as MIMIC-IV. MIMIC-IV is an open-access dataset that 
contains case-based information on clinical, laboratory, 
and administrative data from emergency departments 
and intensive care units at a large US hospital.72 However, 
not all findings obtained from such datasets are 
representative of other health-care systems.

The root causes of questionable results can be 
particularly hard to identify when generated by black-box 
machine learning models.73 International legal frame-
works, such as the General Data Protection Regulation or 
the European Charter of Patients’ Rights, thus require a 
minimum of explainability for machine learning-
supported health-related decisions. While developing 
machine learning algorithms for epidemic intelligence 
and research, explainable models should be tested 
whenever possible. In this regard, the WHO guidance on 

Ethics and Governance of Artificial Intelligence for 
Health has been published as part of the Focus Group on 
AI for Health framework with contributions from leading 
experts in ethics, digital tech nology, law, and human 
rights, and experts from ministries of health.74

Ethical implications vary considerably and so each 
application involving the use of secondary health data 
needs to be assessed individually. Ethical assessments 
should follow a systematic approach on the basis of a 
predefined list of normative criteria.75 The goal should be 
to identify ethically relevant implications and then 
provide guidance for the ethically justified design and 
implementation of digital tools in global health. In 
addition, individuals affected by data-based policy 
decisions should be informed about what data were 
collected, what was analysed about them, and how 
decisions were made.

Outlook
Harnessing the full potential of secondary data enables 
ground-breaking innovations in epidemic intelligence 
and research and sets new standards for decision makers. 
To make progress in this regard, the usability of 
secondary data needs to be substantially improved 
following FAIR and ethical principles. Most notably, 
policy makers should further strengthen their efforts to 
promote health data equity across sectors and global 
communities. The technical approaches and consid-
erations we set out are not equally important for each of 

Search strategy and selection criteria

This Health Policy paper is based on the results of an open exchange between German 
research institutions and WHO. The exchange was initiated with the goal of enabling 
future use of secondary health data that would help strengthen surveillance and research 
in a sustainable manner. It was motivated by the inadequacies of existing infrastructures 
for secondary use of health data that became apparent during the COVID-19 pandemic. 
Each of the institutions brought their specific perspectives and expertise to first outline 
the technical framework of the paper. This outline was accomplished by identifying topic 
areas deemed relevant to building comprehensive ecosystems for secondary health data 
exchange. On the basis of the identified topic areas, the following search terms for the 
literature review were derived by consensus of all authors: “global health”, “public health 
surveillance”, “public health internet”, “genetics public health”, “electronic health records”, 
“causality”, “measurement error”, “label noise”, “missing data”, “selection bias”, 
“interoperability”, “HL7”, “record linkage”, “federated learning”, “data lake”, “FAIR 
principles”, “data equity”, and “patient reported outcome measures”. Using these terms, 
the relevant literature was identified by the authors primarily responsible for each of the 
manuscript’s topic-related sections. English language was imposed as a restriction on all 
searches. Papers from searches were included if they presented technical approaches or 
theoretical frameworks considered relevant for the processing and analysis of secondary 
health data for global health digitalisation. In addition, to avoid overlap, only papers that 
represented an extension of the content of the literature already identified were 
considered. Initial literature searches were conducted between April 1 and Dec 31, 2021, 
via Google Scholar, yielding 31 papers. A second round of searches took place between 
June 20 and July 12, 2022, which led to the identification of another 8 papers. In addition 
to these, 36 papers were selected based on the expertise of the respective authors.
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the specific problems involved. Instead, relevant aspects 
enable the use of secondary health data in one of the 
numerous application areas, such as short-term detection 
of disease outbreaks, tracking of trans mission patterns, 
accurate epidemic forecasting, or precise assessments of 
envisaged non-pharmacological interventions.

In general, the goal must be to share health-related 
data and insights for the common good. This goal is 
made possible through broad engagement and collab-
oration between different disciplines and stakeholders. 
Thereby, substantial progress can be made in global 
health.
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