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Gaining a mechanistic understanding of the molecular pathways underpin-

ning cellular and organismal physiology invariably relies on the perturbation

of an experimental system to infer causality. This can be achieved either by

genetic manipulation or by pharmacological treatment. Generally, the former

approach is applicable to a wider range of targets, is more precise, and can

address more nuanced functional aspects. Despite such apparent advantages,

genetic manipulation (i.e., knock-down, knock-out, mutation, and tagging) in

mammalian systems can be challenging due to problems with delivery, low

rates of homologous recombination, and epigenetic silencing. The advent of

CRISPR-Cas9 in combination with the development of robust differentiation

protocols that can efficiently generate a variety of different cell types in vitro

has accelerated our ability to probe gene function in a more physiological set-

ting. Often, the main obstacle in this path of enquiry is to achieve the desired

genetic modification. In this short review, we will focus on gene perturbation

in mammalian cells and how editing and differentiation of pluripotent stem

cells can complement more traditional approaches. Additionally, we intro-

duce novel targeted protein degradation approaches as an alternative to

DNA/RNA-based manipulation. Our aim is to present a broad overview of

recent approaches and in vitro systems to study mammalian cell biology. Due

to space limitations, we limit ourselves to providing the inexperienced reader

with a conceptual framework on how to use these tools, and for more in-

depth information, we will provide specific references throughout.
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Our question and how to best tackle it—
models, manipulation, and read-out

Transient vs. stable modifications

Molecular biology offers a number of tools and

approaches for genetic manipulation and one should

carefully consider their advantages and disadvantages

before choosing a specific one. For example, if the

experimental question under investigation can be

addressed in an immortalized cell line that benefits

from rapid growth and high transfection efficiency

(e.g., HEK293, HeLa) then transient transfection of

plasmids and siRNA/shRNAs might be sufficient to

answer our questions [1]. However, this is not always

possible. For example, it may be that the genes that

make up the pathway of interest are not expressed in

such cells. It could also be the case that the cell lines

available cannot be efficiently transfected [2], or alter-

natively, the perturbation of the process investigated

may require sustained construct expression, which

exceeds the capabilities of a transient expression sys-

tem [3] (Fig. 1).

Stable plasmid transfection and viral transduction

with lentiviruses or AAVs, in combination with selec-

tion by fluorescence or antibiotic resistance, are

straightforward approaches to overcome these limita-

tions. In mitotically active cells, sustained transgene

expression can be achieved either by integration of the

expression cassette into the host genome or by delivery

of an episomal vector that can replicate autonomously

and get passed on to daughter cells through successive

rounds of cell division [4]. Integration into the genome

of cells can be achieved in a number of ways. For

example, in certain transformed cell lines and in

mouse embryonic stem cells (mESCs) delivery of a

construct containing an antibiotic resistance cassette

followed by selection is sufficient to achieve random

genomic integration [5]. In our experience, the success

rates of this approach vary greatly across cell lines

and, for example, in human pluripotent stem cells

(hPSCs), lentiviral or transposon-mediated integrations

are considerably more efficient [6]. However, one

should consider that, to varying degrees, all three inte-

gration methods (i.e., spontaneous random integra-

tion, transposon- and virus-mediated) can lead to

disruption of actively transcribed genes and suffer

from position effects [7–9], meaning that their expres-

sion will be strongly influenced by the chromatin sur-

rounding the integration site [10] (Fig. 1). Position

effects and epigenetic silencing processes are especially

relevant when the genetic manipulation is performed

in a precursor cell line that will then be differentiated

into a specific cell type. In fact, during the process of

differentiation changes in chromatin organization and

epigenetic marks [11] can lead to the progressive

silencing of transgenes [12]. Such effects can only be

partially mitigated by the introduction of insulator

sequences flanking our expression cassette [13,14]. For

such applications, the use of an episomal system con-

taining the EBV-encoded nuclear antigen-1 (EBNA1)

and oriP elements [15], minicircles [16], or S/MAR

vectors [17,18] viral delivery with adeno-associated

virus (AAV) [19,20] or Sendai virus [21–23] particles

may be advantageous, as they remain extrachromo-

somal but allow for sustained and long-term transgene

expression (Fig. 1). It is important to point out that,

because their stability and retention are often limited

in time and species-dependent, episomal plasmids (e.g.,

EBNA-based, S/MAR and minicircles) are not com-

monly used in standard laboratory practice. However,

recently developed S/MAR vectors [24,25] with

improved retention and more robust expression might

become a useful addition to the array of tools avail-

able for gene manipulation, especially where integrat-

ing and viral approaches are under very strict health

and safety regulations.

Stable expression and delivery methods

Sustained and steady transgene expression allows one

to capture phenotypic changes requiring several days

to manifest, which are typically difficult to observe by

transient expression approaches. For example, siRNA

knock-down with a very efficient construct usually

leads to a ~ 70–90% target reduction after 24–48 h,

and beyond this point, the effects of the knock-down

will gradually decrease due to progressive dilution and

clearance of the siRNA [26]. In the case of a very sta-

ble protein with a half-life in the order of days, we

would expect to see a sizable effect on the target pro-

tein levels only after 2–3 days, around the time that

the effects of RNAi begin to wane. Therefore, in order

to achieve robust knock-down and capture any down-

stream phenotypic effects deriving from the loss of the

target protein, two consecutive transfections may be

employed [27]. Alternatively, one might choose to use

any of the aforementioned systems for the sustained

transgene expression of shRNAs against the target of

interest. This is not the case in postmitotic cells, such

as neurons, where plasmids and RNAs are not pro-

gressively diluted out through successive rounds of cell

division, and transfection of standard plasmids yields

long-lasting transgene expression [28]. In this case, the

main limitation is that the transfection efficiency of
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neurons, and generally primary cells, is very low, thus

limiting the range of downstream analyses at one’s dis-

posal. In addition, transfection can be quite toxic to

cells [28]. Alternative approaches are nucleofection and

electroporation, which can be used to increase the

delivery efficiency of naked DNA constructs, RNA,

and ribonucleoprotein complexes (RNPs) [28,29]. A

clear advantage of electroporation over liposome

transfection (i.e., lipofection) is the lower toxicity and

the fact that it can be employed for delivery into tis-

sues [30]: both in vitro differentiated from PSCs

[22,23], in acute preparations and slice cultures [31], or

directly in vivo, to organs such as the brain [32], the

vasculature, and lungs [33]. Nevertheless, using electro-

poration the delivery efficiency is usually not sufficient

to perform bulk-type analyses, such as biochemistry,

proteomics, and genomics.

Transduction with AAVs or lentiviruses can be

employed to achieve more efficient delivery of con-

structs and perform bulk-type analyses. An additional

advantage of using viruses, and specifically AAVs, is

that the capsid type is an important determinant of tis-

sue tropism [34]. Recently, using a multiplexed Cre-

recombination-based AAV targeted evolution (M-

CREATE) platform, researchers were able to generate

a range of capsid types that enable exquisite cell-type-

specific expression of GFP under the control of a con-

stitutive promoter [35]. The ability to encode such a

high degree of cell-type selectivity in the AAV capsid

represents a substantial advance in the field of gene

Fig. 1. Genetic manipulation and TPD approaches, delivery methods, and model systems. The top table summarizes the different genetic

manipulation approaches and TPD strategies available, and lists their advantages and limitations. The schematic below reports the different

delivery methodologies and how well-suited they are for the different model systems, the solid color indicates the method is well-suited for

the model system, and the fading color indicates decreased suitability. Broadly speaking, with increased complexity of the system, the asso-

ciated costs and labor increase.
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delivery and transgenesis and might aid in reducing

the size of the promoter element required for expres-

sion in specific cell types. Nevertheless, the relatively

small packaging limit (~ 4 kb) remains one of the

main limitations of AAVs. For the delivery of larger

inserts (i.e., up to ~ 10 kb), lentiviruses can be

employed; although, they do not have serotypes with

different tissue tropisms [36] (Fig. 1).

Genome editing—beyond transgenesis

The limitations of overexpression and knock-

down approaches

The approaches discussed so far are ideal for gain-

and loss-of-function experiments where one can either

overexpress or knock-down a target gene via delivery

of overexpression or RNAi constructs. Albeit very

powerful for probing gene function, these approaches

are relatively coarse, in that, ultimately, they only

allow one to increase or reduce the levels of a given

target and can produce nonspecific effects. For

instance, RNAi can have off-target effects due to non-

specific antisense binding to other cellular RNAs, and

in some cases, RNAi has been reported to activate an

interferon response [37] and alter endogenous miRNA

pathways [38]. Therefore, the use of a complete set of

controls, which includes nontargeting constructs and a

non-RNAi transfection control, is essential to discern

genuine phenotypes. Albeit more challenging in terms

of delivery, an alternative to RNAi is the use of mor-

pholino oligos, which have higher specificity and do

not engage the endogenous RNAi machinery but act

by blocking the translation of the target RNA [39].

Beyond nonspecific effects, it is important to note that

transient manipulations of target genes can lead to

expression levels well outside a physiological range,

which in itself might lead to artefactual phenotypes.

For example, in the case where one may be interested

in the function of a specific domain or set of amino

acids in a protein, or a nucleotide sequence in a regu-

latory RNA species. The simplest and most common

approach to tackle these questions is to overexpress a

mutant construct in a wild-type background and

attempt to override the system to see the effects pro-

duced by the mutant protein or RNA species. How-

ever, by doing this, we are not simply changing the

species present, we are also grossly altering overall tar-

get protein/RNA levels and this might give rise to

artefactual dominant-negative effects. A more informa-

tive approach is to replace the species in question with

its alternative form; one way of doing so is to knock-

down or -out the endogenous copies of the gene-of-

interest and then introduce a transgene encoding the

mutant variant [40]. However, by this strategy the

transgene introduced will not be under the control of

the endogenous regulatory elements and its net expres-

sion dynamics might differ considerably from those of

the endogenous gene.

A direct handle on gene expression

A more elegant and powerful way of performing this

type of replacement experiment, but also query the

function of specific cis-regulatory elements [41] and

introduce expression cassettes at precise sites within

the genome [42], is to use CRISPR-Cas genome edit-

ing. This is a two-component system comprising a

CRISPR-associated nuclease (Cas) and a guide RNA

sequence (sgRNA), which targets the nuclease to a

specific site in the genome [43–45]. After cleavage, the

cells will try to repair the double-strand break via dif-

ferent endogenous repair pathways and these can be

exploited to introduce different types of mutations.

Generally, gene knock-out is achieved by the introduc-

tion of out-of-frame indels into the open reading frame

(ORF) or excision of a critical exon by the nonhomo-

logous end joining (NHEJ) repair pathway, while

knock-in is achieved by hijacking the endogenous

homology-directed repair (HDR) pathway to insert the

desired repair template. The advantage of CRISPR-

Cas9 over zinc-finger nucleases and TALENs [46] is its

ease of programming. In fact, the sgRNA is a short

synthetic RNA species comprising a scaffold, necessary

for Cas binding, and a ~ 20 bp spacer sequence that

specifies the genomic target site. For a sequence to act

as a spacer it needs to be unique within the organism’s

genome and be directly adjacent to a protospacer adja-

cent motif (PAM)—in the case of Cas9 this is 50-
NGG-30 [43,44], while for Cas12a/Cpf1, a different

CRISPR-associated nuclease, the PAM site is TTTA/

C/G [47]. There is a wealth of resources for sgRNA

design that provide both an on-target score, indicative

of the efficiency of target site cleavage, and off-target

score, which reports on the likelihood of hitting unre-

lated genomic loci [48]. One way to limit potential off-

target effects is to use a mutated version of Cas9, Cas9

nickase (Cas9n), which can only introduce a single-

strand break or nick within the genome [49]. The

rationale is that while off-target nicks are efficiently

repaired in mammalian cells, two sgRNAs targeting

Cas9n to two genomic sites in close proximity will pro-

duce a double-strand break (DSB) that can then be

repaired by the cellular NHEJ or HDR pathways [49].

The increased specificity of nickase has been confirmed

experimentally [50]; however, their main limitation is
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that activity can be strongly reduced compared with

wild-type Cas9 [50]. One aspect to consider is that

inefficient editing will produce only few rare clones

within a population of cells and their isolation, irre-

spective of any selection one might use, will inevitably

require extended culture and sub-pooling or single-cell-

cloning steps. Because cells in culture spontaneously

accumulate mutations [51–53], this might lead to

genetic drift and the emergence of background muta-

tions producing confounding artefactual phenotypes.

In general, it is advisable to follow the simplest and

most efficient editing strategy and to implement appro-

priate controls to identify genuine phenotypes. For

instance, if one is interested in modeling the effects of

complete or partial loss of a given gene, one valid

strategy would be to use wild-type Cas9 and, sepa-

rately, three different sgRNAs to introduce indels

within the target ORF by NHEJ. Following accurate

genotyping, karyotyping, and assessment of target

mRNA and protein levels, if the clones generated with

the three distinct sgRNA display a similar phenotype,

then this would increase the confidence that the gene-

of-interest had been effectively targeted. In addition, a

rescue experiment in which the target CDS is reintro-

duced by means of plasmid transfection or transduc-

tion [54,55] would add further support to the findings.

Rescue experiments can also help to rule out any

effects arising from the disruption of enhancer ele-

ments at the target locus or from the emergence of a

cryptic genetic variation. In addition to nickases, one

way to reduce off-target effects while maintaining high

on-target activity is to use DD-Cas9, which enables

conditional expression and temporal control of Cas9

levels by destabilization of the protein by FKBP12

synthetic ligands [56]. Another way to increase editing

specificity is to use precomplexed Cas9 WT ribonu-

cleoprotein complexes (RNPs) [57,58]. In fact, while

plasmid delivery is slow-acting (i.e., it requires between

24 and 48 h to produce active nuclease complex) and

long-lasting (i.e., expression can last for up to a week),

RNPs are active immediately after delivery and are

cleared within 24 h [58]. By reducing the window of

time cells express Cas9 both approaches reduce the fre-

quency of off-target effects (Fig. 1).

dCas9 for transcriptional and epigenomic

modulation

The epigenome, the collection of all epigenetic marks

in the genome, together with transcription factors,

determines the gene expression pattern of individual

cells. Early attempts to modify the epigenome

involved knock-down/out and pharmacological

inhibition of epigenetic modifiers [59]. These global

approaches suffer from pleiotropic effects that do not

allow targeted interrogation of the epigenetic state of

a specific genomic region. Targeted transcriptional

and epigenetic modulation became possible with the

development of zinc-finger proteins [60], TALENs

[61], and nuclease-deactivated Cas9 (dCas9) [62].

dCas9 in particular provides a flexible platform for

site-specific targeting by different modulation modali-

ties including transcriptional blockade [63], gene

expression modulation [64], epigenetic editing [65],

and labeling of chromosomes for imaging [66]. In its

simplest form, dCas9 can be used to interfere with

RNA polymerase by steric blockade of transcription

initiation or elongation [63,67]. While this strategy is

very effective in prokaryotes, in mammals it produces

only modest effects [63]. To increase the potency of

modulation in mammals, dCas9 can be fused to

either a transcription activator domain (VP64, p65)

for transcriptional activation (CRISPRa) or a repres-

sor domain (KRAB, SID) for transcriptional silenc-

ing (CRISPRi) [62,64], and multiple units of each are

targeted to nearby genomic sites by using multiple

sgRNAs. Modulation can be further enhanced by

providing dCas9 with additional motifs, such as the

SunTag [68] or RNA aptamers fused to the sgRNAs

[69], so as to recruit a higher number of effector

domain copies. Transcription repressors and activa-

tors modulate the target gene transcription indirectly

by recruiting a host of epigenetic modifiers, chroma-

tin remodelers, and secondary transcription factors.

By contrast, epigenetic effectors (e.g., the DNA

methyltransferase DMT3A, the histone demethylase

LSD1, and the histone acetyltransferase p300 and

CBP) fused to dCas9 alter the epigenetic state of the

target in a direct and more predictable manner [62],

without recruiting additional effectors. These

approaches are extremely useful when one wants to

probe how different epigenetic states affect gene

expression, which is highly relevant in the context of

development and disease. At the same time, by virtue

of their rapid onset, robust effects and reversibility,

CRISPRi, and CRISPRa represent alternatives to

knock-out/down and overexpression approaches to

interrogate gene function.

CRISPR for knock-ins

In addition to loss-of-function experiments and epige-

netic modulation, CRISPR-Cas can be used in combi-

nation with homology-directed repair (HDR) to

perform scarless genome editing and insert new ele-

ments at specific genomic sites [43,70]. While small
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(~ 50–200 bp) modifications only necessitate symmet-

ric/asymmetric single-stranded oligonucleotide donors

(ssODNs) with 30–80 bp of homology, larger modifi-

cations (> 200 bp) are typically introduced by circular

or linearized plasmids containing 500–1000 bp homol-

ogy arms [43,71] or with large ssODN derived by in

vitro transcription and retrotranscription [72]. The

decrease in the costs of gene synthesis and the estab-

lishment of ligation-independent cloning methods, such

as Gibson assembly [73] and In-Fusion [74,75] cloning,

have considerably simplified the generation of large

and complex templates for HDR. Importantly, the

PAM site or the sgRNA seed sequence in the HDR

template should be mutated so as to prevent nuclease

cleavage. Additionally, in order to promote HDR over

the more common NHEJ repair pathway, pharmaco-

logical treatment or a mutant version of Cas9 can be

used [76]. An alternative repair pathway to HDR is

microhomology-directed end joining (MMEJ) [77],

which is active during the M1 and S phases of the cell

cycle, and is error-prone but has the advantage of

requiring only 5–30 bp of homology. Due to their cell-

cycle phase requirements, HDR and MMEJ have lim-

ited suitability for genome editing in postmitotic cells

such as neurons [76]. HDR has been used successfully

to fluorescently tag synaptic proteins in neurons, both

at the neural progenitor state [78] and after cell-cycle

exit [79]. However, it should be noted that the HDR

pathway is scarcely active in postmitotic cells and suc-

cessful knock-in requires neurons derived from Cas9

knock-in mice and AAV-mediated delivery of the

HDR template. To provide some context, it was esti-

mated that postmitotic neurons require a ~ 100-fold

higher concentration of repair template compared with

neural progenitors [79]. For targeted genomic integra-

tion directly in neurons, the alternative NHEJ-based

homology-independent targeting integration (HITI)

[80] repair approach was shown to be more efficient

(Fig. 1). Unlike HDR, HITI does not yield predictable

repairs, as small indels are introduced along with the

insert [81]. Systems such as HiUGE [80], ORANGE

[82], and CAKE [83] are based on HITI and enable

tagging and manipulation of endogenous synaptic pro-

teins in neurons. Editing strategies that can overcome

potential problems with out-of-frame repair are TKIT

[84] and CRISPIE [85], which target intronic regions

and thus are less sensitive to frame changes. Whilst

these approaches are powerful for microscopy studies,

delivery issues combined with the low efficiency of cor-

rect repair leading to tagging, complicate the use of

such strategies for bulk-type approaches. Furthermore,

it remains difficult, if not impossible, to distinguish

between monoallelic vs. biallelic targeting, which

complicates the interpretation of the results. All these

limitations stem from the fact that postmitotic cells

cannot be single-cell cloned, expanded, and genotyped.

Transgenic animals and in vitro
differentiation

As previously mentioned, immortalized cell lines are a

valuable tool for studies of gene function; however,

due to the high rates of aneuploidy and spontaneous

mutations, observations made using such models

should be ultimately tested in systems that more

closely capture normal cell physiology. In this regard,

the generation of transgenic animals [86] allows for

precise genomic manipulations in a more physiologi-

cally relevant context. The use of conditional knock-

outs by tissue-specific recombination [87], engineering

of inducible expression cassettes at safe-harbor loci

(i.e., intra- and intergenic genomic regions that enable

the stable expression of integrated transgenes) [88],

precise excision of specific enhancer regions from the

germline [41] and the establishment of complex genetic

reporter systems for lineage tracing studies [89,90] are

some of the examples that showcase the power of

mouse models. Nevertheless, generating a mouse

model can be a considerable financial undertaking, it

is particularly cumbersome and time-consuming and

ultimately it may not yield the expected results (Fig.

1). An attractive alternative to bridge the gap between

standard in vitro preparations and in vivo models are

2D [91–93] and 3D [94–98] in vitro differentiated PSC-

derived cultures. These models capture more closely

the complex cellular interactions found in tissues [98–
100] and allow the study of both transient and mature

cell types. In addition to modeling both normal physi-

ology and pathology with higher fidelity than immor-

talized cell lines, such differentiation approaches can

be easily implemented in a standard laboratory setting

in a cost-effective manner. The fact that PSCs can be

derived from several different sources with minimally

invasive procedures has led to the establishment of

PSC lines from many different species, thus allowing

cross-comparative and functional evo-devo studies

[54,101–103]. An important advance for such studies

has been the recent development of PSC-culture media

suitable for the culture of cells from different mamma-

lian species [54] and that can significantly improve cell

viability under conditions of stress [104,105], such as

those encountered during single-cell-cloning procedures

for genome editing applications. Although editing

human PSCs remains challenging, efficient delivery of

WT Cas9 plasmid constructs and RNPs by electropo-

ration or lipofection followed by clonal selection with
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StemFlex supplemented with RevitaCell [106] on plates

coated with rhLaminin-521 [104,107] is generally suffi-

cient to isolate NHEJ knock-out clones from one to

two 96 well plates without any enrichment strategy or

selection. For more complicated applications involving

HDR or MMEJ, antibiotic selection or FACS can

greatly expedite the isolation of mutants. However, in

many cases, the target gene is not expressed in PSCs

and thus fluorescent tagging or fusion to an antibiotic

resistance cassette via a self-cleaving tag are not viable

options for enrichment. Another instance in which

selection is not possible is in the case of scarless

genome editing to generate cells that differ only at the

engineered mutation site. In such cases, TaqMan

probe-based assays by ddPCR and sib selection (i.e., a

method to isolate clones from a population based on

the repeated fractionation and selection of a positive

subfraction) [108] can be used to progressively enrich

and purify edited clones (Miyaoka et al. [109]). How-

ever, it should be noted that these approaches are

laborious and time-consuming, so wherever possible a

more ‘quick and dirty’ approach is advisable (Fig. 1).

Targeted protein degradation (TPD)
for rapid and acute protein removal

So far, all the perturbation strategies discussed act at

the level of genes and their transcripts. They provide a

means to directly manipulate the target when one wants

to modify a certain genomic region or RNA species.

However, in the case of protein-coding genes, they

affect changes in protein levels indirectly through their

DNA or RNA precursor. As a consequence, the effi-

cacy of the modification will depend on the transcript

and protein half-life; compensatory feedback mecha-

nisms might be invoked and, invariably, there will be a

lag between the time of perturbation and the time phe-

notypic changes start to manifest [110]. Such shortcom-

ings are particularly restrictive when we want to explore

the consequences of acute protein depletion, which is

highly relevant in the case of dynamic and transient

processes such as those seen during development and in

response to cellular stimuli and insults. Advances in

chemical biology have made it possible to use the pro-

teasomal and endo-lysosomal protein degradation path-

ways to rapidly destabilize soluble intra- and

extracellular proteins, as well as membrane proteins

with dose tunability, reversibility, and high selectivity

(Fig. 1) [110–113]. Since the array of systems and tech-

nologies developed is vast and ever-expanding, we pro-

vide a general conceptual framework and highlight

systems that can be easily implemented in a laboratory

setting, using off-the-shelf reagents, without the need

for screening protein binders and synthesizing novel

compounds. The idea underlying all TPD approaches is

the use of a bifunctional compound or antibodies to

bring the protein of interest (POI) into close proximity

with an effector that triggers its degradation by either

the ubiquitin-proteasome system (UPS) or the endo-

lysosomal pathway [111,112]. Approaches for the desta-

bilization of intracellular proteins include proteolysis

targeting chimeras (PROTACs), autophagy-targeting

chimeras (AUTACs), and autophagosome tethering

compounds (ATTECs; Fig. 1). PROTACs [114] and

AUTACs [115] consist of a chemical warhead, which

binds the POI, fused via a flexible chemical linker to an

E3 ligase ligand or a guanine derivative, respectively.

ATTECs [116,117] are linker compounds that tether the

POI to LC3 proteins of the phagophore, during autop-

hagosome formation. Destabilization of extracellular

and membrane proteins can be achieved with lysosomal

targeting chimeras (LYTACs) or antibody-based PRO-

TACs (AbTACs) (Fig. 1). While LYTACs [118] com-

prise a chemical warhead that binds the POI fused to a

lysosome targeting receptor ligand, AbTACs [119] are

recombinant bispecific antibodies that bind both the

POI and the transmembrane E3 ligase RNF43 (Fig. 1).

In contrast to PROTACs, which recruit E3 ubiquitin

ligases that catalyze K48 polyubiquitination of the POI

and engage the UPS, the mechanism of action of

AbTACs remains elusive and it is not clear whether

RNF43 triggers ubiquitination of the POI to initiate

internalization [112]. The development of such tools is a

considerable chemical biology undertaking in that it

requires the identification of a specific ligand of the

POI, optimization of the linker, and identification of an

effector able to degrade the POI; all this while main-

taining good bioavailability [110]. The investment neces-

sary to develop these reagents is such that at present

available TPD tools target only a relatively small set of

POIs, many of which are disease-relevant and of inter-

est to the pharma industry. For discovery biology, an

approach to bypass these hurdles is to employ genome

editing to fuse the endogenous gene-of-interest with a

HaloTag [120], a degradation tag (dTAG) [121,122], an

Achilles TAG (aTAG) [123] or the auxin-inducible

degron (AID) [124,125], among others. These tags

endow the POI with ‘standardized’ domains that can be

bound by predesigned and commercially available

degrader molecules, which recruit different E3 ubiquitin

ligases (i.e., VHL, CRBN, OsTIR1(F74G)) to initiate

degradation by the UPS (Fig. 1). Albeit conceptually

similar, an important difference between the AID and

the other TAG systems is that while the former is a

plant-derived system [124,125] that requires an exoge-

nous E3 ubiquitin ligase (TIR1 or OsTIR1(F74G)), the
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latter systems hijack the endogenous and ubiquitously

expressed E3 ligases VHL or CRBN. These tags are rel-

atively small and they should not impact POI function.

The suitability of a given system for POI destabilization

will depend on the cell type expression, intracellular

localization, and biochemical properties of the POI and

E3 ligase pair. Preliminary overexpression of the POI-

TAG fusion in the cell type of choice is essential to

identify the optimal destabilization system before per-

forming genome engineering [122]. While UPS-

recruiting TAG systems are now well supported by a

range of off-the-shelf reagents, this is not the case for

TPD systems that rely on the endo-lysosomal protein

degradation pathway. However, spurred by its thera-

peutic potential, the field of TPD is rapidly growing

and we anticipate that more plug-and-play systems

based on a variety of degradation modalities will make

their way into discovery biology in the near future

[110]. Lastly, valuable TPD strategies that do not rely

on chemical degraders and do not require cumbersome

genome editing are antibody-based approaches such as

Trim-Away [126] and FingR intrabodies-E3 ligase

fusions [127]. Being entirely genetically encodable, the

latter tool is particularly powerful as it can be packaged

into viruses for efficient delivery and combined with a

Tet-On inducible promoter for tunability.

Conclusions and outlook

In this short piece, we have discussed some of the tech-

nologies and methodologies available to explore target

gene function across a range of different mammalian

systems. Due to space constrains, we only focused on

those that we routinely use in our line of research, but

we hope that the breadth of topics covered will serve

as a starting point and orient the reader on how to

best tackle their scientific question. It should be noted

that all approaches and systems come with advantages

and disadvantages and these should be weighed care-

fully. Generally, a sensible strategy is to start from the

simplest system in which a given process can be mod-

eled to then expand to more complex and cumbersome

ones to address very targeted questions that could not

be answered otherwise (Fig. 1). With the discovery of

RNAi, CRISPR-Cas and TPD technologies the past

20 years have witnessed a revolution in the way we

can dissect signaling pathways. Now, the development

of base editors [128], CRISPR enzymes that enable

manipulation of RNA [129–131], and many other vari-

ations [132] promise to take this to the next level. At

the same time, the rise of in vitro PSC-differentiation

models has provided an ideal platform to make the

most of such approaches [98]. At present, the use of

these models cannot replace animal studies, and it is

difficult to envisage a future where they will entirely;

however, their value is unquestionable and we antici-

pate that they will increasingly become a powerful

complement to animal studies in both basic and trans-

lational research.
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