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SUMMARY

As our understanding of the cell interior has grown, we have come to appreciate that most cellular operations
are localized, that is, they occur at discrete and identifiable locations or domains. These cellular domains
contain enzymes, machines, and other components necessary to carry out and regulate these localized op-
erations. Here, we review these features of one such operation: the localization and translation of mRNAs
within subcellular compartments observed across cell types and organisms. We describe the conceptual ad-
vantages and the ‘‘ingredients’’ and mechanisms of local translation. We focus on the nature and features of
localized mRNAs, how they travel and get localized, and how this process is regulated. We also evaluate our
current understanding of protein synthesismachines (ribosomes) and their cadre of regulatory elements, that
is, the translation factors.
INTRODUCTION

Proposed in the late 1950s, the Central Dogma of molecular

biology first introduced a framework for how information is

thought to flow within life.1,2 It postulated some constraints on

where the arrows of causality could point, namely from DNA to

RNA to protein; with some proposed bidirectionality between

RNA and DNA, but never from protein backward. These hand-

drawn, one-dimensional arrows representing the conceptual

flow of information (Figure 1) have since been expanded by a

spatial dimension by asking where DNA, RNA, and proteins are

within a three-dimensional cell at any given time (Figure 1).

Whereas at the time of its conception, it was not certain whether

RNA (messenger RNA that is) might even be a meaningful

intermediate step between DNA and protein, this is now clear.

This of course begs the question of why life introduced an

mRNA intermediate and why it would need to be localized.

Within this review, we will point out some of the key conceptual

advantages of local translation as well as the essential compo-

nents and some of their interesting adaptations in subcellular en-

vironments.

So, what dowemean by ‘‘local’’ translation andwhat would be

the opposite? Strictly speaking, the opposite of local translation

would be an entirely even distribution of mRNAs and protein

products across the entire cell. As we know, however, cells

possess compartments such as the nucleus, the endoplasmic

reticulum (ER), mitochondria, etc. As not all proteins are present

in all these compartments, it is perhaps not surprising that their

corresponding mRNAs and translation follow this pattern.

Furthermore, the definition of local is, of course, a function of res-

olution. The closer we look, the more heterogeneity we find. As

an example, recent studies have uncovered the widespread

co-localization of related transcripts into associated polysomes
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or the so-called translation factories harboring several related

mRNAs.3–8 This level of organization would have appeared

entirely homogeneous only a few years ago.

The ingredients needed to enable local translation encompass

all the parts needed for translation in general: a message

(mRNA), a translator (the ribosome), its regulators (translation

factors, RNA-binding proteins, etc.), and the individual decoders

(tRNAs) (reviewed in Shirokikh and Preiss9). In order to impose a

specific location, we also need a cellular delivery system for all of

these components (the cytoskeleton, motors, and transport

granules), a way to retain them once they arrive at their destina-

tion (molecular tethers) (reviewed in Mogre et al.10), and finally an

understanding of how they interact and regulate one another. We

will now introduce these components, discuss some of the sys-

tems they are most prominent in, and try to emphasize some of

the big missing pieces along the way.

ADVANTAGES OF LOCAL TRANSLATION

Most locally synthesized proteins are made close to their site of

action in the cell. As such, the main advantage of local synthesis

is that it creates a point source of high protein concentration

where it is needed, thus avoiding the expense of expressing

the protein throughout the cell, when it is only needed in a small

compartment. For example, during Drosophila development,

local protein expression of several genes patterns the axial

development of the embryo (see Lasko11 for review). Indeed, in

the developing embryo, ectopic or overexpression of one of

these genes leads to malformation of the organism.12 The local

production of the protein also circumvents the problems associ-

atedwith addressing it to the appropriate cellular destination and

thus also minimizes unwanted cellular interactions that might

occur en route. In less common scenarios, cellular signaling
r Inc.
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Figure 1. The Central Dogma decentralized
An originally unpublished outline sketch by Francis Crick in 19562 depicting a
proposed flow of information in biology, represented by solid and broken
arrows.
It indicates that information can flow from DNA to RNA to protein, that both
DNA and RNA can likely replicate themselves, and proposes that direct DNA to
protein and RNA to DNA transfer seems likely although unproven. Boldly it
considered the reverse, a flow from protein back to any other form as
impossible. The concept of localized translation expands this one-dimensional
view by assigning spatial coordinates to each of these macromolecules within
the cell, depicted via a folded paper version of a neuron. While DNA is con-
strained to the nucleus, both RNA and proteins can exist throughout the cell,
but the unidirectional sequence of events remains unchanged as indicated by
the very same arrows. Artwork by Julia Kuhl.
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can drive the local synthesis of a protein that can then travel else-

where in the cell in a signaling capacity. For example, for some

transcription factor mRNAs detected in neurons, the activity-

dependent local synthesis of an immediate early gene mRNA

can serve as a synapse-to-nucleus signal (e.g., NPAS413).

Another benefit of local translation concerns the associated

cost of molecular trafficking of either mRNA or protein. The

mRNAs and proteins that function in specific regions of the cell

need to reach these subcellular compartments, which usually in-

volves energy-dependent transport mechanisms (see below).

Because an mRNA can serve as a template for upwards of

1,000 protein copies (measured in E. coli14), there is an additional

multiplicative energy benefit of transporting an mRNA vs. a pro-

tein. A third advantage is temporal control and speed, that is, the

ability to respond quickly to modulate the proteome. Note that

local cellular signaling events that alter the translation of proteins

at central locations require signaling to the site of protein synthe-

sis and then delivery of the protein product back to the appro-

priate subcellular compartment. In some cells, such as neurons,

the site of protein delivery can be hundreds of microns from cen-

tral, somatically associated ribosomes. Indeed, several rapidly

induced forms of synaptic plasticity make use of local transla-

tion.15–17 When cellular signaling events are coupled to local

translation machinery, then nascent proteins can, in principle,

be delivered within minutes. Studies using fast-folding fluores-

cent reporters18 or SunTag reporters enabled the rapid detection

of nascent proteins.19 In addition, localized translation can be
used to favor the co-translational assembly ofmulti-protein com-

plexes (see Morales-Polanco20 for a recent review).

INGREDIENTS AND MECHANISMS FOR LOCAL
TRANSLATION

The message and delivering it: mRNAs
The localization of mRNAs within the cytoplasm of cells has a

long and rich history. A constellation of studies in the 1980s

noted asymmetries in the localization of poly(A) mRNA and

some individual mRNAs such as actin in developing sea squirts21

and Xenopus eggs.22 These early studies suggested that the

localization of mRNAs within cells is important for driving the

polarized development of the organism. This concept has been

beautifully expanded upon in subsequent studies. For example,

in the developing Drosophila oocyte, the localization of bicoid/

gurken and oskar mRNAs to the anterior and posterior poles,

respectively, is required for the ensuing polarized development

of the embryo (see Martin and Ephrussi23 for review). In an

entirely different setting, the dendritic localization of the Camk2a

mRNA24 is required for plasticity and learning in both flies and ro-

dents.25,26 Outside of these specific contexts, the inhomoge-

neous distribution of individual mRNAs has been observed in a

variety of cell types and organisms (see Martin and Ephrussi23

and Das27 for reviews).

From the many studies and reviews cited above, it seems

reasonable to conclude that mRNA localization and local trans-

lation are likely universal features of cells. Indeed, as our resolu-

tion of the interior of cells becomes increasingly refined with both

imaging and sequencing, the number of mRNAs with heteroge-

neous cellular localization patterns is increasing. For example,

the development of high-resolution in situ hybridization methods

led to stunning images, showing distinct mRNA patterns for 70%

of transcripts imaged at a given developmental stage of

Drosophila embryogenesis.28 Also in neuronal dendrites, high-

resolution images of >100 transcripts revealed many distinct

mRNA localization patterns as a function of distance from the

cell body.29 Advances enabling sequential hybridization of mul-

tiple probes30,31 in the same sample promise to further refine

our understanding of spatial mRNA architectures. For example,

applying these methods to neurons has enabled the detection

of dendritic mRNAs that exhibit different proximal-distal gradient

patterns as a function of distance from the cell body.32

Sequencing studies, often beginning with enriched subcellular

fractions, have further expanded the localized mRNA repertoire.

Because of their highly polarized morphology, neurons have

often been exploited for these types of studies. For example,

in developing and mature neurons, next generation RNA

sequencing (RNA-seq) of isolated dendrites or axons has de-

tected �2,000–4,800 localized mRNAs in axons and dendrites.

The precise number of localized mRNAs depends on the devel-

opmental stage, species, and specific compartment exam-

ined.33–36 Studies using ribosome profiling of the same subcellu-

lar fractions have shown that the fraction of mRNAs that are

translated also depends on the developmental stage and the

cellular context.33–35 For example, in developing (P5) retinal gan-

glion neurons, �2,000 axonal mRNAs are translated, whereas

�1,000 mRNAs are translated in adult axons.34 In mature
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hippocampal neurons by contrast, virtually all neuropil (axon +

dendrite) mRNAs that are detected are also translated to varying

degrees, with over 800 mRNAs exhibiting more translation in

the neuropil than in the somata.33 Going even finer, laser-capture

microdissection to isolate subcellular compartments has

enabled a comparison of the mRNAs resident in individual cell

bodies to those present in the dendritic arbor.37 One can expect

further refinement of subcellular mRNA populations via isolation

of even smaller compartments or by the use of proximity-labeling

methods, where a subcellular compartment of interest can be

endowed with enzymatic activity to label neighboring molecules

(e.g., Halo-Seq38 and APEX-seq39). For example, APEX-seq was

recently used to identify themRNAs associated with the nucleus,

nucleolus, ER membrane, mitochondrial matrix, and several

other compartments. For >3,200 mRNAs, a significant enrich-

ment in at least one compartment was observed.39

The nucleotide sequence of mRNAs contains the region that

codes for a protein (coding sequence) flanked by regulatory se-

quences on either end, the 50 and 30 untranslated regions (UTRs).

The 50 and 30 UTRs contain nucleotide sequences (sometimes

known as ‘‘zip codes’’) that interact with RNA-binding proteins

(RBPs) and other RNAmolecules (such as microRNAs [miRNAs])

that can influence the location (see below), translation, and sta-

bility of the mRNA (see Martin and Ephrussi23 and Mayr40 for re-

views). The number of RBPs (e.g., Castello et al.41) and the

combinatorial nature of their regulation of a given mRNA are

exciting areas that will benefit from new methods (see Hentze

et al.42 for recent review). One common feature that has emerged

from many RNA-seq experiments of localized mRNAs is an

expansion of the 30 UTR, accomplished by alternative polyade-

nylation site selection43–45 (Figure 2A). For example, in

Drosophila, a set of developmental regulatory genes undergo

lengthening of their 30 UTRs during embryogenesis; these genes

are selectively expressed in brain tissue.44 In neurons, localized

axonal and dendritic mRNAs contain the longest 30 UTRs re-

corded,45 which presumably expand the potential for regulation

by miRNAs and other RBPs.46 Indeed, the shortening of some 30

UTRs is important for axonal integrity47 and associated with

plasticity.45 In addition, while most studies have focused on mo-

tifs in the 30 UTR, the 50 UTR also possesses ample regulatory

potential, perhaps most prominently the presence of upstream

open reading frames (uORFs). uORFs can regulate the transla-

tion of the main ORF, often in response to cellular signaling

events (e.g., Starck et al.48) (Figure 2A). Finally, regions within

the coding sequence and even retained introns49,50 have also

been implicated in RNA localization.

Deliberate, directed transport of mRNA for local
translation
Localized mRNAs reach their target destinations through various

transport mechanisms including diffusion coupled with local

anchoring (i.e., ‘‘diffusionandentrapment’’),51 restricteddiffusion

(e.g., microtubule lattice diffusion),52–54 directed transport by

motor proteins, and cargo ‘‘hitchhiking’’ on organelles (see

Das55 for review). It was initially thought that all localized mRNAs

are transported in a translationally repressed state until they

reach their functional sites56,57; however, recent findings of co-

translational mRNA targeting from single-molecule and real-
454 Molecular Cell 83, February 2, 2023
time translation imaging studies are beginning to challenge this

long-standing notion. Co-translational targeting, which generally

requires translation to produce a targeting signal in the nascent

polypeptide, has emerged as a widespread mechanism to

localizemRNAs to specific subcellular compartments andorgan-

elles.5 Transport of the mRNA-ribosome-nascent chain complex

is typically associated with translational arrest, as in the classic

example of signal recognition particle (SRP)-mediated targeting

of mRNAs encoding membrane and secretory proteins to the

ER.58,59Apart from theER, co-translational targetinghasbeen re-

ported at many other organelles (e.g., mitochondria,60,61 peroxi-

somes,62 endosomes,5,63 the nucleus [nuclear envelope],5,64

chloroplasts,65 centrosomes5,66–68) and, in some instances, in-

volves simultaneous mRNA transport and translation.8,59,66,69

For further discussion of this topic, see M€untjes et al.70 and Bé-

thune et al.71 for recent reviews.

In eukaryotes, upon nuclear export to the cytoplasm, the

movement of most localized mRNAs shifts from passive diffu-

sion72,73 to active (ATP-dependent), motor-driven transport in

ribonucleoprotein (RNP) granules74,75—membraneless conden-

sates of mRNAs and RBPs.76–80 Among the many types of

RNP granules, both germ granules (in oocytes/embryos; for re-

view in Drosophila, see Trcek and Lehmann81) and RNP trans-

port granules (for review in neurons, see Fernandopulle et al.82)

have a primary function in mRNA localization, and will hereafter

be collectively referred to as ‘‘RNP granules’’ for simplicity. Other

granules important in mRNA metabolism are stress granules

(SGs) and processing bodies (P-bodies), which are generally

associated with cell stress and storage of translationally

repressed mRNA.83 Inclusion of particular translation initiation

factors and mRNA decay factors typify SGs and P-bodies,

respectively; however, their exact composition and function

remain unsettled. The dynamic association of RBPs with

mRNA begins during transcription in the nucleus to regulate 50

capping, splicing, polyadenylation, and export and continues in

the cytoplasm to regulate mRNA transport, translation, and

decay (primarily via 30 UTRs, see above). The complement of

bound RBPs is thus at least partially a vestige of the pre-

mRNA processing that occurred in the nucleus (reviewed in

Singh et al.84). The selection and binding affinity of associated

RBPs depends on the sequence, secondary structure, and

redundancy of cis-acting RNA elements. Given that certain

RBPs can bind either directly to motor proteins or indirectly

through motor protein cargo adaptors (Figure 2C), the repertoire

of RBPs in a given RNP granule can influence the directionality

and transport efficiency of the accompanying mRNA. Further-

more, RBPs with microtubule- or actin-binding capacity may

facilitate filament track binding and thereby activation of motor

proteins.52,85

Microtubule-based transport of mRNAs in RNP granules

The role of RBPs as mRNA-cytoskeletal machinery adapters is

an elegant and evolutionarily conserved strategy for targeted

and specific localization, yet it is highly contextual. The RBPs

and transport machinery involved in the trafficking of a given

mRNA can vary dramatically based on the cell type (e.g., central

neurons vs. sensory neurons), developmental stage, repertoire

of available RBPs, and target mRNA abundance. Since each

mRNA can bind to multiple RBPs, and individual RBPs associate
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Figure 2. From yeast to neurons: Evolutionarily conserved mechanisms for regulating where, when, and how mRNAs are translated
A general depiction of select principles of mRNA localization and translation shared between a spherical cell (e.g., yeast cell; magnified in the background) and a
more polarized cell (e.g., neuron; in the foreground).
(A) Alternative splicing and polyadenylation of pre-mRNAs generate mRNA isoforms that differ in their 50 and 30 UTRs. Dynamic interactions between isoform-
specific cis-acting elements (e.g., sequencemotifs, secondary structure) and trans-acting factors (e.g., RNA-binding proteins [RBPs], microRNAs [miRNAs]) lead
to diverse regulatory control mechanisms affecting the localization, stability, and translation efficiency of the same mRNA.
(B) Heterogeneous ribosomes preferentially translate specificmRNAs. For example,mRNAs translated bymonosomes typically contain an upstreamORF (uORF)
and encode for low-abundance regulatory proteins in yeast and high-abundance synaptic proteins in neurons. On-site remodeling is hypothesized to endow
ribosomes with the ability to translate specific mRNAs in response to external stimuli.
(C) Motor-driven transport of RNP granules on microtubules (and actin filaments—not depicted) occur through dynamic interactions between RBPs and the
cytoskeletal machinery or by RNP hitchhiking on membrane-bound organelles such as endosomes.
(D) Local, cue-induced modification (e.g., phosphorylation) of RBPs regulate RNP anchoring at translation sites and unmasking of mRNAs, likely by altering RNP
condensate properties.
Artwork by Julia Kuhl.
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with overlapping subsets of mRNAs (via recognition of the same

and/or distinct cis-acting elements with different binding

affinities), this creates a competitive/cooperative interplay in

RBP-mRNA binding that is shaped by the relative abundance

of both RBPs and cognate mRNAs. In the case of b-actin

mRNA, over 60 associated RBPs have been identified,86 and
the RBPs ZBP1 and HuD recognize distinct features in overlap-

ping sites in the 30 UTR in a competitive and mutually exclusive

manner.87 Much less is known about cooperative RBP binding;

however, this can now be addressed by a new single-molecule

approach called TRIBE-STAMP that can identify individual target

mRNAs simultaneously bound by two RBPs.88
Molecular Cell 83, February 2, 2023 455
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The need for RBP-mediated regulatory control of polarized

subcellular mRNA localization is perhaps best exemplified in

vertebrate neurons where axonal microtubules are unipolar

(plus-end-out) and dendritic microtubules have a mixed orienta-

tion.89 In vertebrate neurons, subcellular targeting of b-actin

mRNA is critical for dendritic arborization and axon outgrowth/

branching during development90–94 as well as dendritic spine

plasticity.95 The mechanism of b-actin mRNA transport within

axons vs. dendrites seems to be regulated by the developmental

stage96 and association with specific RBPs.97,98 For example,

the primary transport mode of b-actin mRNA in axon shafts

may change from directed, motor-driven transport during early

development99 to slower, subdiffusive motion.100 New develop-

ments in single-molecule localization microscopy101 and RNA

mobility assays102,103 will allow the dissection of interaction

modes between RBPs and transport machinery.

Actin-based transport of mRNAs in RNP granules

It is generally understood that long-range and short-range

directed transport involves the microtubule and actin cytoskel-

eton, respectively. In cases where the traversed distance is rela-

tively short (%15 mm), mRNA transport seems to depend solely

on actin filaments. Consider the three fungal species: the

budding yeast Saccharomyces cerevisiae, and the two patho-

gens Candida albicans and Ustilago maydis that undergo

yeast-to-hyphal transitions during pathogenesis. During S. cere-

visiae budding, actin-dependent transport is required for asym-

metric localization of �30 mRNAs (e.g., ASH1 mRNA). Despite

the rapid switch to hyphal growth during infection, the transport

of 40 mRNAs to hyphal tips in C. albicans is not dependent on

microtubules but rather the same actomyosin-based transport

system found in S. cerevisiae;104 however, the maximal distance

between the hyphal tip and proximal nucleus is only 15 mm. This

is in stark contrast to hyphal tip growth in U. maydis, which can

be �50 mm from the closest nucleus.104 Here, mRNA transport

occurs on microtubules by hitchhiking on endosomes105; more

on this discussed below.

In many cases, both cytoskeletal networks are required for

spatially precise cargo delivery. If cytoskeletal filaments are in-

terconnected cellular roadways, one can think of microtubules

as the highways and actin as the side streets – both are needed

to arrive at a faraway destination. This can be demonstrated in

filamentous fungi106 and the classic examples in Drosophila107

and Xenopus oocytes108 and in mammalian neurons109 where

actin-dependent mRNA anchoring occurs after microtubule-

based transport. Classic exceptions are the apical anchoring

of mRNA in Drosophila embryos, where microtubules, but not

actin, are required,110 and b-actin mRNA localization in fibro-

blasts, where both cytoskeletal networks are involved in trans-

port and anchoring.85,111 In neurons and filamentous fungi, actin

and microtubule networks interact and are tightly coupled at cell

tips to coordinate polarized growth.112,113 Cytoskeletal track

switching occurs during the trafficking, polarized sorting, and re-

modeling of membrane organelles114–117; however, less is

known about the mechanisms underlying cytoskeletal cross-

talk during the sorting, subcellular targeting, and anchoring

of RNPs.

For navigating complex cellular terrains such as mixed-polar-

ity microtubules in proximal dendrites,89 bidirectional transport
456 Molecular Cell 83, February 2, 2023
ofmembrane organelles is often described as a ‘‘tug-of-war’’ be-

tween plus-end directed kinesin and minus-end directed dynein

motors.118 To what extent membraneless RNPs are associated

with multiple motor types is less clear. One study demonstrated

that the cargo adaptor huntingtin (HTT) mediates dendritic trans-

port of b-actin mRNA as an RNP complex containing RBPs,

kinesin-1, and dynein.119 Here, phosphorylation of Htt acts as

a molecular switch between anterograde (kinesin-1-mediated)

and retrograde (dynein-mediated) vesicular transport,120 but

whether this also affects RNP transport remains to be deter-

mined. More recently, it was shown that TDP-43 cooperates

with two other RBPs, FMRP and Staufen1, to regulate the anter-

ograde (KIF5-mediated) and retrograde (dynein-mediated)

transport, respectively, of Rac1 RNPs in dendrites.121 Since it

is generally thought that dynein mediates selective transport

into dendrites,122–124 continued study of dynein-mediated

neuronal RNP transport will help to understand not only bidirec-

tional movement but also axon-dendrite sorting.

RNP tethering on organelles

In addition to directed transport facilitated by RBP-cytoskeletal

machinery interactions, microtubule- and actin-based transport

can occur through RNP tethering or hitchhiking on various mem-

brane-enclosed organelles such as the ER,125,126 mitochon-

dria,61,127 and endosomes (see M€untjes et al.,70 Béthune

et al.,71 and Vargas et al.128 for recent reviews). Cargo hitchhik-

ing is an economical mode of transport as it reduces energy

expenditure and occupancy of transport machinery. Notably,

organelles of the endocytic pathway are common vehicles for

RNP hitchhiking in filamentous fungi129 and neurons63,69,130,131

(Figure 2C). Why endosomes are commonly used as vehicles

may be due to their high motility, activity-dependent traf-

ficking,132,133 capacity for long-distance, bidirectional move-

ment on both microtubule and actin networks, and their role as

platforms for integration of signaling pathways. Furthermore, en-

dosomes are central components of the tip-growth machinery,

coordinating endocytosis and exocytosis to drive rapid and

polarized growth of cell tips. They also serve as platforms for

local translation. In U. maydis, septin cdc3 mRNA translation

and filament assembly take place on Rab5a-positive early endo-

somes (EEs) for subsequent delivery to growth poles.129 Simi-

larly, in axons of Xenopus retinal ganglion cells (RGCs), mRNAs

encoding mitochondrial proteins are translated on Rab7a late

endosomes (LEs) to sustain mitochondrial function69; however,

how RNPs are tethered to LEs remains unknown. Mechanistic

insight comes from other vertebrate models of neuronal RNP

transport, where the lipid-binding protein annexin A11130 and a

novel Rab effector complex131 serve as molecular tethers onto

lysosomes and EEs, respectively.

Regulating mRNA localization and translation through

phase separation

Cytosolic RNP granules are heterogeneous in size, function, and

biophysical properties. The regulation of mRNA condensation

through liquid-liquid phase separation (LLPS) has emerged as

an important phenomenon underlying RNP granule assembly

and function (see Tauber et al.134 for review). RBPs with prion-

like domains and other intrinsically disordered regions (e.g.,

FUS,135,136 hnRNPA1,137 TIA-1,138 TDP-43,139 and FMRP139)

function as scaffold proteins that drive LLPS. Mounting evidence
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suggests that dynamic compartmentalization through phase

separation may be advantageous for long-distance mRNA

transport as well as serve as a regulatory mechanism for activ-

ity-dependent translation. During Drosophila embryonic devel-

opment, the RBPs with prion-like domains Bruno and Hrp48

phase separate with oskar mRNA into liquid-like condensates

that rapidly mature into a solid state, and preventing this liquid-

solid phase transition impairs oskar mRNA localization.77 Simi-

larly, post-translational modifications (e.g., phosphorylation) of

scaffolds can trigger RNP granule disassembly and this is

thought to ‘‘unmask’’ mRNAs for activity-dependent transla-

tion139,140 (Figure 2D).

Transport of translation machinery

The composition of RNP granules is best characterized in neu-

rons, where a large diversity exists in the identity of the mRNA(s)

and RBPs present. Evidence from many studies points to

directed transport in RNP granules as a primary means of local-

izing translational machinery to the cell periphery. Several

studies demonstrate enrichment of initiation factors as well as ri-

bosomal RNA (rRNA), ribosomal proteins (RPs), individual sub-

units, and entire ribosomes in neuronal RNPs,56,74,141–147

although there are reports where ribosomal machinery compo-

nents are few (e.g., a few RPs)148 or excluded entirely.76,149,150

The presence of ribosomes may be characteristic for only sub-

sets of RNP granules (e.g., TDP-43- and FMRP-positive

RNPs),151,152 and may even vary based on the RBP isoform

present (e.g., ribosome-free vs. ribosome-containing Stau2-

positive RNP granules).153,154 The presence of ribosomes

does not preclude translational repression of mRNAs during

transport. Mounting structural evidence suggests that ribo-

somes in RNP granules are stalled onmRNAs in a pre-transloca-

tion state141,146. Since translation initiation is a rate-limiting

step, this is an attractive strategy for rapid mRNA/ribosome ‘‘un-

masking’’ for cue-induced translation at discrete sites140,155

(Figure 2D).

Apart from transport in RNP granules, alternative mecha-

nisms to localize components of the translation machinery

may include: (1) non-granule-associated directed transport;

(2) via exosome delivery from neighboring cells156; (3) associa-

tion with mobile ER-derived ‘‘ribosome-associated vesicles’’

(RAVs),157 and (4) the trafficking of translation machinery-en-

coding mRNAs instead of the proteins themselves152,158 (see

below). For example, in adult C. elegans mechanosensory neu-

rons, polysomes and monosomes outside of RNA granules

localize to presynaptic terminals within an hour after axon injury

for local protein synthesis-mediated regrowth.159 While this

accumulation of ribosomes was shown to be dependent on

microtubules and regulated by a kinesin-1 cargo adaptor, it re-

mains unclear whether the ribosomes interface directly with the

microtubule transport machinery or if other proteins mediate

binding.

Core translation machinery: Ribosomes
How are ribosomes localized in cells? In some cases, ribosome

localization arises simply from the passive exclusion from

membrane-bound or membraneless compartments160 or the

tethering of the ribosome by virtue of interactions of its nascent

peptide chain.161,162 In bacteria, for example, both ribosomes
and a fraction of the cellular tRNA pool (that are perhaps

ribosome-associated) are somewhat excluded from the nuc-

leoid.163–167 This localization appears to be dependent on active

transcription though,168 indicating that already in prokaryotes,

ribosome localization involves active processes.

But are there systems where ribosomes are actively trans-

ported and retained to remote outposts to provide a local reser-

voir for translation? Yes, and cells with obvious polarity have

been the front-runners in localized ribosome detection. For

example, one hot-spot for the detection of localized ribosomes

is the leading edge of migrating cells, including neuronal growth

cones (more on this below). Co-localization of core ribosome

components with components of the cell adhesion machinery

have been observed repeatedly169–171 and can be dependent

on the type of substrate,169,171 an intact actin cytoskeleton,

and enacted force.169 Attachment to the correct substrate has

widespread and drastic effects on the cell’s translatome.172,173

The recruitment of the core translation machinery to these

transient cell adhesion sites might be mediated through the

multifaceted ribosomal protein RACK1,170,174–176 likely via its in-

tegrin-binding site.169,177 Interestingly, RACK1 is a peripheral

component of the ribosome, exhibiting one of the highest ex-

change rates.178 RACK1 dynamics may therefore contribute to

ribosome heterogeneity and the tuning of translation.179–181

For example, it could be that some ribosomes are recruited to

nascent focal adhesion sites via RACK1, which could lead to

the specific translation of a subset of adhesion-relevant mRNAs.

The polarized compartments of neurons, including axons and

dendrites, also represent an abundant source of localized ribo-

somes. One of the earliest known neuronal studies detected ri-

bosomes in electron micrographs of dendritic ‘‘synaptic knobs’’

in primate spinal cord neurons.182 Twenty years later, Steward

and colleagues used electron microscopy (EM) to detect polyri-

bosomes within dendritic spines in the hippocampus.183 Subse-

quently, evidence was accumulating for the presence of

ribosomes in presynaptic axon terminals,184,185 confirmed and

expanded bymore recent studies.34,186 Serial EM and 3D recon-

struction have provided a more quantitative view of ribosome

abundance in hippocampal dendrites and detected polyribo-

somes in about 10% of the postsynaptic spines under control

conditions; this fraction rose to 40% after plasticity, suggesting

a movement of local ribosomes into synapses.187 Importantly,

these EM studies possess strict criteria for the classification of

objects as polyribosomes, including at least three ribosomes in

a particular arrangement. Smaller ribosome formats such as

monosomes, which carry out a substantial fraction of translation

near synapses188 will thus be missed. A recent study using su-

per-resolution microscopy which can detect both monosomes

and polysomes has estimated a much higher ribosome popula-

tion in dendrites.189

In most non-polarized cells, however, it has proved more diffi-

cult to identify an explicitly localized population of ribosomes.

This difficulty arises because ribosomes are highly abundant

and have to translate all of the mRNAs of a cell. It is clearly easier

to detect localized mRNAs. One approach, then, is to focus on

cells with biased translatomes, where only a small portion of

mRNAs account for the majority of nascent proteins, and where

many of those transcripts are localized. Muscle cells represent
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one such system, where e.g., in cardiac muscle, the most abun-

dant 11 transcripts account for almost 13% of the entire tran-

scriptome.190 Here, and in skeletal muscle, many major mRNAs

are localized to the periodic contractile unit, the so-called sarco-

meres.53,190–193 This localization appears to depend on active

transport along the microtubule cytoskeleton and coincides

with markers of protein synthesis.190,194,195 This and other

biochemical evidence of rapid incorporation of nascent sarco-

meric proteins led to the suggestion of co-translational insertion

of nascent muscle fiber components into the sarcomere.196–198

Correspondingly, ribosomes have also been visualized at these

sites both via immunofluorescence or in situ hybridiza-

tion53,190,194 and by EM,199 especially in developing muscle or

upon forms of injury or myofiber induction. Importantly, this

localization does not appear to follow a simple steric exclusion

effect of tightly packed muscle fibers but rather depends on an

intact microtubule cytoskeleton and the presence of the micro-

tubule motor kinesin-1.194 A common theme that emerges

between these discussed examples of specific ribosome locali-

zation at the leading edge, neuronal processes, and the contrac-

tile apparatus of muscles, is the cytoskeleton. As discussed

below, there is ample visual and biochemical evidence for a

strong interplay between the translational apparatus and either

F-actin or microtubules,198,200–203 and these ties go beyond a

simple means of transporting and tethering them to the right

place at the right time.

More recently, it has become clear that RPs can also selec-

tively be translated at protrusion sites198 and the basal/apical re-

gions of gut epithelial cells.204 Similar to muscle, all of these cells

are (temporarily) polarized enough to detect an enrichment of to-

tal translation. Interestingly, in intestinal epithelium of fasted

mice, RP-mRNAs (alongside many other transcripts) are local-

ized opposite of its protein products and consequently exhibit

low translation.204 This picture changes upon re-feeding, where

RP-mRNAs are actively relocated to the apical side where the

translation machinery is anchored and consequently exhibit an

increased translational efficiency. Also, for migrating cells, RP-

mRNAs are translated at the leading edge, thus in both cases

potentially creating a positive feedback loop of locally synthe-

sized RPs. And although at least in migrating cells, the majority

of nascent RPs are shuttled back into the nucleus for increased

de novo ribosome assembly,204 it is possible that a fraction of

locally synthesized RPs are used to repair or specialize ri-

bosomes.

Ribosome heterogeneity/dynamics

Our understanding of translation regulation has recently

expanded to include the possibility of selective translation by

‘‘specialized or dynamic ribosomes’’ (e.g., Shi and Barna205).

The classic view of the ribosome as a generic, static assembly

of four rRNAs and �80 RPs has been challenged by demonstra-

tions of intra-/intercellular compositional heterogeneity and

context-dependent, on-site remodeling in a variety of organ-

isms. Ribosome heterogeneity can manifest through myriad

ways including the incorporation/exclusion of RP paral-

ogs,206,207 differences in core RP stoichiometry,208 RP post-

translational modifications,209,210 rRNA chemical modifica-

tions,211 rRNA isoforms,212 and association with distinct

ribosome-associated proteins.213,214 Because we now know
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that monosomes are key contributors to the local transla-

tome,188,215 heterogeneity can be further extended to include

differential translation by ribosomal subpopulations (mono-

somes vs. polysomes) (Figure 2B). For example, monosome-en-

riched mRNAs often encode low-abundance regulatory proteins

in yeast215 and high-abundance synaptic proteins in neurons.188

In both yeast and neurons, monosome-enriched mRNAs often

contain an upstream open reading frame (uORF), the presence

of which is generally associated with reduced translation of the

downstream ORF.216 Translation of the uORF or mainORF is

regulated during global protein synthesis inhibition following

phosphorylation of eukaryotic initiation factors (eIFs) and/or eu-

karyotic elongation factors (eEFs). Apart from canonical stress

signaling pathways (see Costa-Mattioli and Walter217 for recent

review), translation factor phosphorylation is enhanced in

neurons duringmany forms of protein-synthesis-dependent syn-

aptic plasticity through activation of distinct calcium signaling

cascades. Even in the absence of evoked/action-potential-

driven neural activity, dendritic spines are maintained in a trans-

lationally repressed state through miniature-synaptic-event-

induced phosphorylation of eEF2.218,219 While this suggests

that global translation inhibition during neural activity enables

uORF-controlled translation of proteins important for plasticity,

direct evidence for this is lacking.

Almost 50 years ago, radioactive labeling and two-dimen-

sional gel electrophoresis experiments in HeLa cells demon-

strated that a subset of RPs can exchange between ribosome-

bound and -free states in the cytoplasm.220 Since then,

metabolic labeling and quantitative mass-spectrometry-based

proteomics studies have shown context-specific RP exchange

in response to changes in nutrient availability in budding yeast221

and rodent liver tissue222 as well as for purposes of ribosomal

repair in response to chemical damage in E. coli223 or oxidative

stress in rodent neurons.80,178 Furthermore, dynamic RP ex-

change on mature, translationally competent ribosomes in

developing Xenopus RGC axons92 and rodent neurites178 is fu-

eled by a local supply of newly synthesized RPs. It is thought

that on-site remodeling of the ribosome could lead to changes

in mRNA selectivity and translational efficiency (Figure 2B),

although direct functional evidence of specialized ribosomes re-

mains elusive. For example, yeast ribosomes containing specific

RP paralogs necessary for respiratory growth confer more effi-

cient translation of mitochondrial proteins224; yet, it is unclear

as to whether these paralog-specific ribosomes form indepen-

dently of the nucleolus through on-site incorporation of locally

synthesized RP paralogs.

Ideally, wewould like to know the position, composition, trans-

lational status, and mRNA engagement of individual ribosomes.

With the recent advent of structural cell biology, specifically

in situ cryoelectron tomography and subtomogram averaging,

the first three of these now seem feasible. In fact, the ribosome

appears to represent the ideal target as it (1) is sufficiently large,

(2) displays good contrast due to heavy electron scattering, and

most of all (3) is highly abundant. This combination of attributes

has made the ribosome the current poster child of in-cell struc-

ture determination and resulted in record resolutions of up to

3.5 Å.225–227 This has allowed us to unravel many of its distinct

states and compositional differences within the cell.226,227 While
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this has approach has been applied to single-celled organisms

with limited polarization so far, it is likely that we will soon see

a number of studies examining the spatial arrangement and

translational states of ribosomes in many of the local translation

systems discussed here. Over the years, numerous biochemical

and molecular biology studies have uncovered important as-

pects concerning ribosome occupancy,228 preferential transla-

tion on monosomes vs. polysomes,188 or ribosomal stalling,229

and it will be a tremendous step forward to finally visualize these

with extraordinary spatial precision directly within cells.

Translation factors and other regulatory factors
Besides the presence of ribosomes, other auxiliary factors are

required for successful (local) translation. These translation fac-

tors (TFs) are broadly divided into the three stages of translation

they participate in: initiation factors, elongation factors, and

termination factors. Besides being essential for the process to

function, they also heavily modulate all aspects of translation

such as fidelity, initiation/elongation speed, resolution of road-

blocks, and many others.230 Similarly to ribosomes, TFs can

be viewed as part of the underlying translational infrastructure

of the cell and hence need to be available wherever even a single

mRNA is to be translated. Indeed, the cellular levels of these fac-

tors seem to reflect this: elongation factors are among the most

abundant proteins within the cell, reaching up to 2–53 the levels

of ribosomes and 40–1003 that of all mRNAs in S. cerevisiae.231

Perhaps unsurprisingly then, at least in yeast, most TFs appear

to be homogeneously distributed throughout the cytoplasm.232

There are, however, some notable exceptions such as eIF2

and eIF2B, which are found in specific granules from yeast232

to mammals,233 or eEF1A at the cytoskeleton (more below).234

As with other components of the translational machinery, this

changes under various forms of cellular stress, where many

translation factors are relocated to a variety of storage and/or

degradation granules.235

A recurring theme in TF localization, and the entire translation

machinery for that matter, is an association with the cytoskel-

eton.236 Aside from its canonical function of delivering amino-

acyl-tRNAs to the elongating ribosome, the elongation factor

eEF1A has a well-established moonlighting function as the regu-

lator of the actin and microtubule cytoskeleton.234,237–239 This

role is mutually exclusive with its canonical role in elongation.240

The regulatory relationship is reciprocal, as when the actin cyto-

skeleton is disrupted (e.g., via eEF1A mutation), translation is in-

hibited at least partially via phosphorylation of the initiation factor

eIF2a241,242—a common hub for translational modulation.243

Numerous other TFs have been found in association with the

cytoskeleton over the years,236,244 including several eEF1B sub-

units245,246 and different components of the eIF3 complex, which

alternatively interact with F-actin,247 microtubules,248 and kera-

tin. TFs can also be found at cytoskeleton-rich structures such

as centrosomes,5 focal adhesions,249 or protrusions more

broadly.171,250 eEF1A, alone or when attached to F-actin at the

leading edge, can also bind and tether b-actin mRNA, and can

be released by addition of competing peptides both in vitro

and in vivo.251

In the context of neurons, activities such as memory consoli-

dation via synaptic plasticity critically depend on both structural
changes via a re-modeled cytoskeleton252 and local translation

of effector proteins.16 The two are undoubtedly connected, as

induction of long-term potentiation (LTP) leads to an F-actin-

dependent influx of RNPs109,253 and TFs such as the cap-binding

protein eIF4E into spines.254,255 Similar to previously discussed

examples of RPs, the mRNA of eIF4E is also located in den-

drites33 and locally recruited to synapses,256 thus likely providing

a fresh supply of new translation factors via local translation it-

self. At the synapse, eIF4E can boost translation in response to

synaptic activity via relieved repression by FMRP-CYFIP1,257

and pharmacological inhibition of eIF4F complex assembly im-

pairs memory formation in certain learning paradigms9—a deficit

shared with eIF2a impairment.258 During translation initiation,

eIF4E as part of the eIF4F pre-initiation complex is responsible

for 50-cap binding and thus recruitment of mRNA.9 On the other

end of the reaction, the multimeric eIF3 complex as part of the

43S pre-initiation complex brings along the 40S small ribosomal

subunit and initiator Met-tRNA.9 Not surprisingly then, also eIF3

subunits have been credited with several crucial functions in

neurons, including dendritic pruning of developing Drosophila

sensory neurons259 and modulation of neuronal excitability in

C. elegansmotor neurons.260 On the whole, most if not all trans-

lation factors have been identified in neurites and synapses to

various degrees,261,262 and mis-regulation of many of them is

evident in diverse forms of neurodegenerative diseases.263

CONCLUDING REMARKS

The original depiction of the Central Dogma (Figure 1) concerned

the unidirectional flow of genetic information fromDNA to RNA to

protein. In this review, we have examined how the latter part of

this flowchart is distributed within cells to enable rapid trans-

lational responses to signals and economize on trafficking

demands. We have noted that as technology has increased

our resolution of the cell interior, we have come to appreciate

that the localization of mRNAs and protein synthesis machines

in subcellular compartments is ubiquitous across cells and or-

ganisms. We have highlighted the features of the elements

needed for local translation, how theymove to different locations

within cells and how translation is carried out and regulated by its

components. Although as originally formulated, the Central

Dogma did not make any statements on the spatial relationships

of its components, we believe that our ever-increasing knowl-

edge about functionally specialized micro- and nano-domains

within cells has shown how mRNA localization and translation

is both needed and exploited. We imagine that the coming years

will bring an even more refined view of what we can call ‘‘local’’

and provide much needed information on the temporal dy-

namics/stasis of these local translation domains.

ACKNOWLEDGMENTS

We thank Sara Mota for help with formatting the manuscript. We sincerely
apologize for the omission of work that could not be mentioned here because
of space limitations. This work was funded by EMBO LTFs to A.M.B. and A.S.
(ALT 238-2021 and ALT 836-2020), the Max Planck Society, and the European
Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No. 743216). Views and opinions
expressed are, however, those of the authors only and do not necessarily
reflect those of the European Union or the European Research Council. Neither
Molecular Cell 83, February 2, 2023 459



ll
OPEN ACCESS Review
the European Union nor the granting authority can be held responsible
for them.
DECLARATION OF INTERESTS

The authors declare no competing interests.

REFERENCES

1. Crick, F.H. (1958). On protein synthesis. Symp. Soc. Exp. Biol. 12,
138–163.

2. Cobb, M. (2017). 60 years ago, Francis Crick changed the logic of
biology. PLoS Biol 15, e2003243. https://doi.org/10.1371/JOURNAL.
PBIO.2003243.

3. Morisaki, T., Lyon, K., DeLuca, K.F., DeLuca, J.G., English, B.P., Zhang,
Z.J., Lavis, L.D., Grimm, J.B., Viswanathan, S., Looger, L.L., et al. (2016).
Real-time quantification of single RNA translation dynamics in living cells.
Science 352, 1425–1429. https://doi.org/10.1126/science.aaf0899.
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