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Unbiased choice of global 
clustering parameters 
for single‑molecule localization 
microscopy
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Tatjana Tchumatchenko 1,4,5*

Single‑molecule localization microscopy resolves objects below the diffraction limit of light via sparse, 
stochastic detection of target molecules. Single molecules appear as clustered detection events 
after image reconstruction. However, identification of clusters of localizations is often complicated 
by the spatial proximity of target molecules and by background noise. Clustering results of existing 
algorithms often depend on user‑generated training data or user‑selected parameters, which can 
lead to unintentional clustering errors. Here we suggest an unbiased algorithm (FINDER) based on 
adaptive global parameter selection and demonstrate that the algorithm is robust to noise inclusion 
and target molecule density. We benchmarked FINDER against the most common density based 
clustering algorithms in test scenarios based on experimental datasets. We show that FINDER can 
keep the number of false positive inclusions low while also maintaining a low number of false negative 
detections in densely populated regions.

Super-resolution microscopy has opened up new opportunities in biological and biomedical research by pro-
viding unprecedented molecular insights into the inner workings of  cells1,2. Classical light microscopy can only 
resolve structural features that are larger than the diffraction limit of light (a few hundred nanometers)3. By 
overcoming the diffraction limit, super-resolution microscopy has revealed long hidden mechanisms underly-
ing intracellular transport  processes4 and the spatial organization of mRNA  translation5,6. The major feature of 
single-molecule localization microscopy (SMLM) is its ability to exploit the stochastic and sparse switching of 
fluorescence emission of specific labels binding to target  molecules7. For example, in DNA-based point accu-
mulation for imaging in nanoscale topography (DNA-PAINT), target molecules are labelled with a short DNA 
strand and detected through stochastic and transient hybridization with a sequence-complementary, fluorophore 
labeled DNA  strand8. Over time, each target molecule generates fluorescent detection events that cluster in space. 
Such clustering of single or densely packed molecules is observed for proteins in cells, e.g. the AMPA receptor 
in  neurons9, or on synthetic DNA origami  structures10. In addition, SMLM data sets may contain detection 
events that represent ambiguous information. For instance, a super-resolved image may contain false positive 
localizations (i.e. background noise from nonspecific fluorescent signal that does not originate from a target 
molecule). Furthermore, in high density regions of target molecules, localizations from multiple target molecules 
can overlap or form complex  structures11.

Because of the point-like nature of SMLM data, quantitative analysis opens opportunities to characterize 
cellular structures at the  nanoscale12. One aim in SMLM data analysis is to group multiple detection events into 
a cluster, representing a single labeled protein or an assembly of densely packed proteins that cannot be spatially 
discriminated.

Current state-of-the-art cluster detection algorithms rely on some form of prior, user-provided information. 
This information can be the type of localization patterns to be detected or prior experience with similar data sets. 
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One of the most widely  used13–18 algorithms is the ’density-based spatial clustering algorithm’ (DBSCAN)19,20. 
While DBSCAN is intuitive, simple, and fast for 2D  datasets21 the parameter choice that defines the clustering 
can suffer from human bias. To identify the ’most probable’ clustering parameters based on prior knowledge, 
empirical methods for parameter identification have been  proposed20 (see Table S1). Another algorithm, ‘order-
ing points to identify the clustering structure’ (OPTICS)22 circumvents the use of a global clustering parameter 
by defining borders between clusters of localizations through changes in local point density. Fundamentally 
different approaches to clustering have also gained traction to circumvent the shortcomings of  DBSCAN23–26. 
The importance of benchmarking clustering algorithms has recently been addressed by proposing a unifying 
framework for  comparison27.

In 2015, Rubin-Delanchy et al. introduced a Bayesian parameter finding  approach28,29 which starts from a 
user-generated prior parameter set for a cluster-proposing algorithm, and subsequently computes a posterior 
probability for each parameter set. Also in 2015, Levet et al. introduced SR Tesselation, an algorithm which 
segments large-scale images into polygonal  regions30,31 and is specialized to reveal spatial structures at multi-
ple  scales32. Most recently in 2020, Williamson et al. developed a machine-learning approach named ‘cluster 
analysis by machine learning’ (CAML)33 that classifies localizations depending on their local neighborhood. 
This approach does not require the users to provide parameters. It also outperforms most classical algorithms 
in selected clustering  challenges33, but depends on training data sets. We point out that these methods devise 
clustering approaches to group single detection events. In order to infer molecule numbers, additional analysis 
steps need to be incorporated that correct for multiple emission events detected for the same fluorophore. This 
can directly be implemented in the current approach, by considering the time  domain34,35 or through the analysis 
of binding  kinetics36.

Despite their successes, none of the current approaches have fully removed the dependency on prior knowl-
edge – either a statistical model is needed, a reference density needs to be set, or a machine-learning model needs 
to be trained on a pre-selected data set. We address the problem of parameter sensitivity and user-generated 
bias by building on the widely applied  DBSCAN13,37–40 algorithm and propose an unbiased parameter selection 
which we call FINDER. FINDER minimizes dependencies on prior knowledge by leveraging what is usually 
seen as a distractor: false positive localizations, or ‘noise’. The core principle of FINDER is to use information 
about the clustering variability with respect to the variation of the parameters to then select the most robust 
clustering. Global noise levels therefore act as a lower boundary for the sensitivity of the algorithm, preventing 
over-segmentation and minimizing false positive cluster inclusions. To validate this approach, we use clusters 
which we identified in super-resolution  images8 to produce synthetic test sets, and compare the performance of 
FINDER with one of the currently best performing clustering algorithms, the adaptive machine-learning algo-
rithm  CAML33. We also compare the performance to classical DBSCAN and density-based OPTICS clustering 
 approaches22. We show that the FINDER algorithm is both independent of training data and is computationally 
tractable. FINDER also exhibits a similar or better performance as measured by true positive detections, and a 
reduction in false-positive cluster detections. Finally, since the parameters explored by FINDER have a precise 
meaning, the algorithm outcome is straightforwardly interpretable.

Results
The assignment of clusters of localizations in super-resolution microscopy is not trivial. Consider, for example, 
DNA-PAINT data sets of super-resolved neuronal AMPA receptor localizations. In Fig. 1 (left) one can see that 
owing to variable cluster sizes, high-noise and overlap the identification of clusters of localizations is difficult. 
Similarly, data sets of DNA origami trimers (Fig. 1 right) indicate that identifying localizations that belong to 
single molecules of interest and separating these locations from the background noise is also a challenge. Algo-
rithms can propose candidate clusters that may correspond to single molecules of interest. However, verifying the 
reliability of the result is difficult because the ground truth is not always known and different parameter settings 
within the algorithm can lead to different outcomes. This means that the presence or absence of molecules of 

Figure 1.  Single-molecule localization microscopy (SMLM) datasets exhibit density variations, noise inclusion 
and can lead to different cluster analysis results. (a) Localizations representing AMPA-receptors in a dendritic 
segment of a  neuron9. (b) Example of four DNA origami trimers, with different clustering results for different 
parameters choices. The FINDER algorithm we propose here identifies parameters that lead to a statistically 
reliable assignment of clusters of localizations.
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interest and their inferred location will vary depending on the parameter settings of the algorithm. In general, 
parameter settings, algorithm training and selection can become sources for clustering bias or errors.

To solve these challenges we developed a new clustering approach (FINDER) which is based on a similarity 
metric rather than prior knowledge. FINDER identifies optimal parameters based on a similarity measure that 
is computed across an interval of probable parameters. To do so, FINDER uses a density-based approach that is 
based on the core points defined in DBSCAN and then optimizes this parameter based on the parameter phase 
space in the particular data set. Core points are points that have at least minPts neighbors within radius ε . With 
DBSCAN, these core points are used to initiate clusters. Instead, in FINDER, all non-core points are identified as 
noise localizations and iteratively removed. We refer to this more conservative definition of core points as ’noise-
free DBSCAN’. Our tests suggest that this self-contained definition of core points is more robust to noise and 
leads to a lower number of false positive cluster detections (see Figs. S6–S11). In the supplemental information, 
we compare the performance of FINDER with a version of FINDER using the classical density-based algorithm 
DBSCAN and with OPTICS, showing a higher false positive detection rate and lower robustness, respectively. 
The clustering results obtained from each parameter combination are then compared using a Similarity Score 
(see “Similarity of clusterings and the definition of the similarity score” in Methods) and the selected parameters 
are identified. A step-by-step explanation can be found in the "Methods" section “FINDER algorithm”. In Fig. 2 
a visual schematic description of the FINDER algorithm is depicted.

To benchmark FINDER, we used super-resolution images of structurally well-defined DNA origami trimers 
and tetramers. DNA origami are folded DNA nanostructures with well- defined binding sites for  fluorophores10. 
As such, the ground truth of the geometry of binding sites is known: the algorithms should identify not more 
than 3 or 4 subclusters for each DNA origami trimer and tetramer, respectively. Note that the subclusters of the 
identified oligomers exhibit considerable heterogeneity in their number of localizations per subcluster. We start 
by comparing FINDER to the recently proposed machine-learning based clustering algorithms (CAML), which 
outperformed most classical clustering algorithms in selected clustering test  cases33. CAML feeds density varia-
tions of the neighborhood of each point into a trained classifier to identify clusters. Here, we use the pre-trained 
models ’CAML 07VEJJ’ and ’CAML 87B144’ from Ref.33, which consider the first 100 and 1000 neighboring 
points, respectively. Let us note that CAML models belong to the class of pre-trained machine learning models, 
and we did not re-train them for this or the following data sets (Figs. 3–5 and Supplemental Information). Since 
FINDER is meant to have a general scope and is intended to work across different length scales and cluster shapes, 
it must be compared with algorithms that are not fine-tuned to a specific dataset. Re-training CAML models to 
adapt to specific data features could presumably result in better performance but could compromise performance 
for data sets that deviate from these statistics. Since the FINDER algorithm is designed to be a general-purpose 
algorithm, we choose to compare it to existing CAML models, which are not fine-tuned to a specific dataset.

In Fig. 3, we show that the FINDER algorithm accurately predicts the number of binding sites of the DNA 
origami oligomer, even though the density of localizations is highly heterogeneous. Notably, the adaptive CAML 
algorithms lead to a wide variety of detected subclusters of localizations. CAML 07VEJJ detects 3-mers most 

Figure 2.  Schematics of FINDER algorithm (a) In DBSCAN, a new cluster is initiated when at least one core 
point (shown in red) is present that has at least minPts other points within distance ε from the core point (see 
circles, left). Inspired by DBSCAN, the clustering algorithm used in FINDER iteratively removes non-core 
points (shown in black) which results in a more frequent identification of noise localizations (grey points, right). 
(b) Two clustering assigments are considered similar, if the number of matching localizations is greater than 
the number of unmatched localizations. Example of two similar cluster assignments (top row) and two non-
similar cluster assignments (bottom row). (c) Phase space of possible clustering outcomes. FINDER computes 
a similarity score among clustering results sharing the same value minPts (i.e., for each line on the plot, like the 
one highlighted with the dashed line). (1–3) represent three possible clustering outcomes within the parameter 
space. The parameters used for (1)-(3) correspond to the location of the respective number in the phase 
diagram, respectively.
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often, but fails in detecting 4-mers. In constrast, CAML 87B144 is more accurate in detecting 4-mers than 3-mers. 
One explanation for this discrepancy is that, on average, the detected 3-mers have 156 localizations per subcluster, 
but 4-mers have 285 localizations per subcluster. This could explain why CAML 07VEJJ, which considers only 
the first 100 neighboring points, performs poorly for the tetramer dataset, but it does not explain the perfor-
mance of CAML 87B144. It also does not explain the segmentation failure of CAML 87B144 if no random noise 
is added (see Fig. S5). This results suggest that a version of CAML which considers the first 1000 points would 
need to be retrained for such 3-mer and 4-mer datasets. Retraining of the model is one possibility to include 
global information into local clustering decisions but selecting training data while considering all aspects of the 
statistics to be captured can be challenging. Furthermore, the ground truth statistics regarding inter-and intra-
cluster distance in experimentally recorded data sets is not a priori known which complicates the selection of 
the reference point for training data. It is therefore hard to define a good training data set without introducing 
user-generated training biases. This highlights a challenge that adaptive algorithms share: information about the 

Figure 3.  Performance of clustering algorithms for an image composed of 25 DNA-Origami 3-mers (left) 
and 44 4-mers (right), with added random noise localizations ( 10% of cluster localizations). The optimal radial 
parameters identified by FINDER for DBSCAN (noisefree) are ε = 8.05 nm and minPts = 9 (3-mers), and 
ε = 3.61 nm and minPts = 8 (4-mers). The histograms show the distribution of the number of subclusters 
detected for each 3-mer and 4-mer in our test data set, respectively. See Fig. S5 for clustering results without 
added noise, leading to a segmentation failure of CAML 87B144, suggesting that retraining is necessary.
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local neighborhood is used for clustering decisions – but often, these decisions need information about the global 
properties of the dataset – such as noise intensity or cluster separation. Often, these global properties are assumed 
a priori through user-defined parameters or training data. This potential source of bias is avoided by FINDER, 
which systematically probes the full dataset to identify one set of global parameters for an easily interpretable 
density-based clustering algorithm. Concerning the computational load, FINDER usually requires more time 
than CAML 87B144, which in turn is slower than CAML0 7VEJJ. For example, for the 3-mers data of Fig. 3, 
the time required for running the algorithms on a laptop were: CAML 07VEJJ 9.914s, CAML 87B144 69.879s, 
FINDER 106.455s. For the 4-mers: CAML 07VEJJ 39.779s, CAML 87B144 229.632s, FINDER 716.328s. However, 
we point out that FINDER does not require any training time, while the other models were previously trained.

As a second benchmark, we employed two libraries of unit clusters of localizations: (1) manually identified 
clusters in a SMLM dataset of a  synapse9, which contain on average only 17 localizations per cluster (see Fig. 
S1 a) and (2) manually identified sub-clusters of DNA-origami trimers, with on average 113 localizations per 
cluster (see Fig. S1 b). We re-arranged these unit clusters in three different configurations and added random 
noise points. These surrogate test data sets provide a ground-truth, while also retaining the biological variabil-
ity of the cluster geometry. Our clustering outcomes are summarized in Fig 4. As expected, the 07VEJJ model 
fails for the set of unit clusters where the number of points per cluster can be larger than the number of points 
considered (100, see Fig. S1 b). Interestingly, in several test cases CAML 87B144, which considers the first 1000 
neighboring points, also fails for the smaller set of unit clusters (see Fig. S1 a). If the ‘correct’ CAML model is 
chosen, performance is good, with a high number of true positive and low number of false negative detections. 
For all test cases we considered here, FINDER leads to a similar number of true positive cluster detections as the 
CAML model that performs better for the given configuration. FINDER consistently results in the lowest number 
of false positive cluster detections. See Figs. S6-S11 for more expansive tests. This suggests that FINDER is able 
to identify global parameters which give robust results with low false positive detection rates.

Finally, we applied FINDER and other clustering algorithms on SMLM datasets for which the ground truth 
is not known. In Fig. 5, we show the clustering results for single-molecule localization DNA-PAINT data of 

Figure 4.  Performance of FINDER and CAML clustering algorithms across synthetic datasets which are 
composed of clusters of localizations from two libraries. Low-density clusters (a–c) are composed of clusters 
from a SMLM dataset of a a  synapse9 with an average of 17 localizations per cluster. High-density clusters (e–f) 
are composed of manually identified sub-clusters of DNA-origami trimers with on average 113 localizations 
per cluster. (a,d) High overlap: A grid of 5× 5 clusters with distances equal to the maximal cluster diameter 
in the dataset, and with 20% random noise localizations (as a fraction of clustered localizations). (c,d) High 
noise: A grid of 5× 5 clusters with distances equal to the 1.5 times the maximal cluster diameter in the dataset, 
is superimposed with an equal number ( 100% ) of random noise localizations. (e,f) Unstructured: 25 clusters 
are randomly distributed along a sinusoidal path, with 100% and 150% added random noise localizations (as 
a fraction of clustered localizations) in c and f, respectively. The top row shows one instance of a randomized 
pattern for each case, with highlighted ground truth clusters. For further detail, see supplemental figures: 
S6-S11, and Fig. S16.
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newly synthesized proteins after global homeostatic scaling in neuronal  dendrites6 (see Fig. S13 for an analogous 
analysis for a dataset of neuronal AMPA-receptors). Most clusters of localizations detected by FINDER and 
the two CAML algorithms have 50 or fewer localizations. CAML (07VEJJ) leads to an abrupt cutoff of cluster 
sizes at 100, suggesting that typical clusters can exceed that size, and therefore more than 100 neighbors need 
to be included in the analysis. The cluster size distribution obtained using CAML (87B144) leads to a tail in 
which clusters with more than 150 localizations are found, and 40% of all localizations are identified as noise. In 
comparison, FINDER identifies 21% of all localizations as noise localizations. FINDER therefore includes more 
large clusters, which usually represent molecular aggregations, than CAML (87B144). The distribution of cluster 
sizes for CAML (87B144) (see second bin) and visual inspection of the clusters suggests that there is an over-
segmentation, which may require additional filtering. We conclude that the cluster-size distributions are overall 
robust with respect to the choice of the algorithm. We also note that clustering-results provided by FINDER 
have the advantage of being easily interpretable and reproducible: For example here, a cluster is defined if 8 core 
points are found within ε = 76.8nm, and a noise localization is defined if it does not have 8 localizations within 
that radius. Note that the selected value for ε is much larger compared to the previous cases to which FINDER 
was applied (Figs. 3, 4 and Supplemental Information related to them). This is due to the different distribution 
of the points in this recording, which has a larger number of points (more than 400, 000) and a different density.

Discussion
The identification of clustered localizations in single-molecule localization microscopy data is a crucial step for 
quantifying proteins within nano-clusters24,41.

A bottleneck for automated image analysis is the identification of appropriate clustering parameters, particu-
larly if target molecules themselves are clustered or if noise levels are high. Clustering algorithms used in scientific 
studies of SMLM datasets therefore need to fulfill many – sometimes contradicting – requirements. They have to 
be fast, robust with respect to parameter choice, and offer results that are easily interpretable. Manual parameter 
tuning needs to be avoided, as detailed knowledge about the system may not be readily available and can intro-
duce human bias. Because control experiments with known ground truth clusterings are not always available, 
false positive cluster inclusions need to be minimized in order to avoid over- or misinterpretations of the data.

DBSCAN is one of the most popular clustering algorithms for SMLM  data13–17,37–40. Part of its appeal is the fact 
that its density-based clustering rule is intuitive and it can offer close-to-optimal results if parameters are chosen 
 carefully23. It has two input parameters: a radial parameter ε and the minimal number of points minPts within 
this radial parameter needed to initiate a cluster. However it is not always clear how to set the radial parameter 
manually for heterogeneous cluster sizes or datasets with changing density. Heuristic rules for setting these 
parameters  exist20,23, but in many examples they are ambiguous. For instance, the optimal value for the radial 
parameter ε is commonly estimated from the k-th neighbor curves, which may be not well-defined and vary with 
k23. Several adaptations and improvements of DBSCAN have been proposed to deal with density-variations, and 

Figure 5.  Analysis of newly synthesized proteins in neuronal dendrites in DNA-PAINT  data6. Left: 
Localizations analyzed using FINDER, CAML (07VEJJ) and CAML (87B144)33. Right: The top row depicts 
a section of the full field of view corresponding to the red rectangle in the left panel. Detected clusters are 
highlighted as colored points and localizations that were classified as noise are shown as grey points. The 
optimal parameters identified by FINDER for DBSCAN (noisefree) for minPts = 8 are ε = 76.80nm. FINDER, 
CAML (07VEJJ) and CAML (87B144) assigned 21.8% , 0% and 1.4% of all localizations to clusters with more 
than 400 localizations, respectively. See red circle (I) for an example of a large cluster. The overall structure of 
the results is similar (eg. red circle (II)), but FINDER sets a higher threshold for the selection of small clusters. 
Therefore, it identifies more clusters with a low number of localizations (cluster size < 25 ) as noise, see eg. 
red circle (III). See Fig. S14 for the statistics showing the 10th-neighbor distances, Fig. S12 for an overview of 
the localizations not identified as noise, and for large clusters for each algorithm, and Fig. S17 for clustering 
outcomes within the full phasespace. See Fig. S13 for an analogous analysis of super resolved neuronal AMPA 
receptor localizations  from9.
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the parameter estimation  problem42,43. Reverse-nearest-neighbor approaches such as  RECORD44, IS-DBSCAN45, 
ISB-DBSCAN46 and RNN-DBSCAN47 only require setting one parameter k, and can deal with density-variations 
within the dataset.

In many applications, however, parameters are manually chosen (see Table S1) which may not lead to optimal 
results when analyzing many datasets with differing localization densities.

Here, we pursue an approach that does not locally adapt to varying densities, but which sets a global threshold 
for the required cluster density for scenarios in which the radial parameter cannot unambiguously be extracted 
from k-th-neighbor curves. The idea is to leverage the information given by overall noise levels to set a global 
threshold for cluster inclusions and therefore minimize the number of false positive cluster inclusions. To tackle 
the issue of parameter choice in this scenario, while retaining the advantages of density-based clustering meth-
ods such as DBSCAN, we presented here an unbiased, automated parameter identification algorithm FINDER. 
FINDER combines the following benefits: First, it does not require prior knowledge about the structure of 
clustered localizations and as such it side-steps the need for a statistical model, the need to perform supervised 
training on annotated data sets, or the need for manual parameter choices that might encompass user-generated 
biases. Second, FINDER leads to easily interpretable results and automatically defines parameters which are then 
applied across the full dataset. Finally, FINDER can be applied to large, heterogeneous data sets with clustering 
results which are robust to noise and signal overlap (Figs. 2, 3 and 4).

In the absence of a known ground truth- as is the case in most scientific exploratory data analysis- cluster-
ing algorithms need to be transparent, easily interpretable, and minimize false positive detections to avoid 
misinterpretation of data. In local adaptive algorithms, local density changes are employed to detect clusters of 
localizations. But it is often unclear on what basis the threshold for the local density change is set. In 2020, the 
local machine-learning based clustering method  (CAML33) has been proposed. If the correctly trained CAML 
algorithm is chosen, clustering results are generally very good, with high true positive and low false positive 
detections (see Fig. 4). However in some cases, these methods can lead to severe over-segmentation (Figs. 3, 4, 5) 
and in other cases to under-counting of clusters (Fig. 3). For exploratory data analysis with an unknown ground 
truth, this sensitivity is critical, because one does not know which datasets are outside of the validity regime of 
a given trained model. This oversegmentation can be avoided if the global parameter choice is used to transfer 
information from the global to the local scale. For instance, information at the global scale is the overall amount 
of noise, or the general heterogeneity of the clusters. The local scale is the neighborhood of each localization. 
By avoiding pre-filtering of noise, and by performing both noise-filtering and clustering in one step, FINDER 
uses the global information to set the local parameters (minPts and ε ). In brief, FINDER selects the parameters 
which leads to the most robust clustering.

We systematically benchmarked FINDER against existing algorithms using two sets of experimentally 
recorded clusters of localizations. We found that – despite using the same parameters across the full dataset – the 
cluster inclusion and exclusion criteria used in FINDER perform robustly compared to trained machine-learning 
models. Our tests on synthetic data sets in the high noise and the high overlap regimes showed that density vari-
ations due to noise can lead to over-segmentation in adaptive clustering algorithms if an incorrect algorithm 
is used (see Fig. 4). For example, for synthetic reconstructions, FINDER performed similar to the better of two 
pre-trained CAML models. FINDER was able to minimize the number of false positive clusters while main-
taining a high ratio of true positive clusters. We also tested FINDER on a dataset of DNA-origami trimers and 
tetramers and showed that FINDER reduces the number of false positive cluster detections and at the same time 
retains many true positive detections – leading to an accurate prediction of the underlying molecular structure.

In conclusion, we showed that performing noise identification, parameter-choice and clustering in one single 
post-processing step, such as proposed in FINDER, provides a reliable and unbiased method for a spatial analysis 
of SMLM data sets. In most experimental settings, the ground truth is not known, and therefore minimizing 
the number of false positive cluster detections is important to avoid erroneous interpretations of experimental 
results. We showed here that an all-in-one cluster identification can help limit the effect of human biases, and 
can speed up the interpretation of single molecule microscopy datasets.

Methods
FINDER algorithm. The FINDER algorithm identifies the hyperparameters for a cluster-proposing algo-
rithm. Here, we employ two cluster proposing algorithms: DBSCAN, as well as a version of DBSCAN based on 
iterative removal of non-core points (see "Methods"-section on “Noise-free DBSCAN” for details). Both algo-
rithms take two parameters, which are a fixed minimum number of neighboring points (minPts), and a typical 
distance ( ε ). FINDER determines the optimal parameter pairs (minPts∗, ε∗) through the following steps: 

1. Compute the distribution of the distance to the kth-nearest neighbors. Here, we set k = 10 (see discussion, 
and Fig. S17 and Fig. S18).

2. Define the interval in which the algorithm will search for the parameter ε as the interval between the 10th to 
the 90th percentile of the distribution of kth-nearest neighbors. The algorithm will explore n points linearly 
or logaritmically distributed in this interval. In our experiments, we set n = 15 and set a logaritmic scale. 
Here, n governs the numerical precision of the final parameter values and the speed of convergence.

3. The interval for the second parameter, i.e. minPts, is a collection of integer values. In our experiments, they 
span from 5 to 20, since these are close to the biologically plausible lower and upper limits for cluster size, 
but other choices are also possible if they cover the biologically relevant domain.

4. For the input dataset, compute clustering results for every possible parameter combination using the cluster-
proposing algorithm.
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5. Compute the similarity score among clustering results sharing the same minPts value, by varying ε . This 
choice was motivated by the fact that the radial parameter seems to play a predominant role in the clustering 
outcome  (see18 and also the variation w.r.t. the number of clusters in Figs. S17 and S18). For details, refer to 
Methods section “Similarity of clusterings and similarity score”. see Methods section “Similarity of cluster-
ings and similarity score”.

6. For each minPts, the value of ε that correspond to the clustering with the largest similarity score is selected. 
This list of pair of parameters is referred to as the line of optima.

7. The values for the similarity score of the elements of the line of optima are re-scaled so that they span from 
0 to 1. This is accomplished by removing the minimal value from each element and then dividing by the 
maximum value.

8. The selected parameters are chosen moving along the line of optima. They are selected to be the first for 
which the normalized similarity score fall below α = 0.5 , i.e., when its value is less than 50% of the highest 
similarity score.

The procedure is illustrated in Figs. S3 and S4.

Noise‑free DBSCAN cluster definition. DBSCAN initiates clusters using core points. Core points 
are points which have a at least minPts neighboring points within a distance ε . Here, we modified this classic 
DBSCAN cluster definition to make it more robust to noise. First, we iteratively remove all non-core points 
from the dataset of localizations X such that only core points remain (see Fig. S2). Next, FINDER partitions the 
remaining core points into clusters. The algorithm is illustrated by the following pseudo-code:

1 input : X, eps , minPts
2 output : X, l a b e l s
3 beg in
4 whi l e l en (X) > 0
5 n ← l en (X)
6 X ← GetCorePointsDBSCAN(X, eps , minPts )
7 i f l en (X) < n
8 break
9 end

10 l a b e l s ← GetLabelsDBSCAN(X, eps , minPts )
11 return X, l a b e l s
12 end

In all figures of the main manuscript, we used the noise-free DBSCAN cluster definition inside FINDER. 
For comparison with the classic DBSCAN cluster definition see Figs. S6-S11 in the supplementary material.

Similarity of clusterings and the definition of the similarity score. Let Ci = {X1,X2, . . . ,Xr} 
be a clustering of a set of points P = {p1, p2, . . . , pN } . We define the similarity score of two clusterings 
C1 = {X1,X2, . . . ,Xr} and C2 = {Y1,Y2, . . . ,Yt} as the sum of similar subsets within the partitions:

Two subsets Xi and Yj are said to be similar if the number of overlapping points (i.e., points shared by the two 
clusters) is larger than the number of non-overlapping points for each of the subsets:

The similarity score of a clustering Ci within an assembly of clusterings A = {C1, C2, . . . , Cm} is defined as the 
sum of similarity scores:

Generation of surrogate test data from DNA origami images. To benchmark the performance of 
FINDER on experimental data sets and compare its performance to alternative existing clustering methods we 
used a DNA origami data set with a known cluster structure. We considered images of DNA origami contain-
ing three or four binding sites that we measured using DNA-PAINT8. Even though three or four localization 
clusters are expected for this DNA origami data set and this knowledge can provide a ground truth for clustering 
outcomes, we found that all clustering methods consistently detected a varying fraction of dimers. Upon visual 
inspection, we found that some expected trimers or tetramers appeared incomplete because some fluorophore 
binding sites were absent from some origami. We thus divided the trimer data into two groups: visibly resolved 

(1)S(C1, C2) =
∑

i,j

s(Xi ,Yj).

(2)s(Xi ,Yj) =

{

1 if |Xi ∩ Yj| > max(|Xi \ (Xi ∩ Yj)|, |Yj \ (Xi ∩ Yj)|

0 otherwise
.

(3)S̄(Ci ,A) =
∑

j

S(Ci , Cj).
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and visibly un-resolved trimers. We also introduced the group of resolved tetramers, in order to test the perfor-
mance of all algorithms on a different geometric configuration See Fig. 3 for analysis of both groups.

In a second test, we accessed the robustness of the algorithms in the limit of overlapping clusters, in the 
high-noise limit, and with geometric constraints. We manually selected clusters representing single binding 
sites from resolved trimers (see Fig. 4b) and, in a second set, we manually selected from AMPA receptor images 
(see Fig. S1). We then re-assembled those monomers in pre-defined grid and path geometries, and with varying 
levels of added random noise localizations.

Definition of true and false positive cluster detections. In Fig. 4, a cluster X from the ground truth 
clustering C1 is counted as being correctly detected by cluster Y from clustering C2 if the overlap between both 
clusters covers at least 30% of the points of cluster X, i.e. if |X ∩ Y | > 0.3|X| and if cluster Y does not detect any 
other clusters of clustering C , i.e. one cluster Y cannot detect two clusters from C1 . All clusters from C2 that can 
be attributed to a cluster of C1 in such a way are counted as true positives, and the remaining clusters of C2 count 
as false positives. In Fig.S16, we vary the overlap threshold between 0% and 100% , and show robustness of the 
results with respect to this variation.

Note that other metrics for the similarity of two  clusterings47 such as the Adjusted Rand Index (ARI)48 or the 
Normalized Mutual Information (NMI)49, mix the similarity and the number of correctly identified clusters. In 
contrast, for the second benchmark in Fig. 4, we focus on how many clusters have been correctly and incorrectly 
identified. We therefore use a metric that uses a hard, binary, threshold for individual clusters.

Experimentally recorded super‑resolution microscopy data. DNA Origami data. DNA origami 
containing 3 (‘trimers’, 3-fold symmetry, 55 nm interspacing, see Fig. S15) and 4 (’tetramers’, 4 fold symmetry, 
40 nm interspacing) binding sites (containing P1 docking oligos) were imaged on the same N-STORM system 
(Nikon, Japan) as the above reported AMPA-receptor data: an Eclipse Ti-E inverted microscope, equipped with 
a Perfect Focus System (Ti-PSF) and a motorized x-y stage. Total internal reflection fluorescence (TIRF) was 
adjusted using a motorized TIRF illuminator in combination with a 100 x oil-immersion objective (CFL Apo 
TIRF, NA 1.49) with a final pixel size of 158 nm. For imaging, 647 nm excitation wavelength was used, housed 
in a MLC400B (Agilent) laser combiner. An optical fiber guided the laser beam to the microscope body and 
via a dichroic mirror (T660LPXR, Chroma) to the sample plane. Fluorescence emission was separated from 
excitation light via a bandpass filter (ET705/72m, Chroma) and detected by an iXon Ultra EMCCD camera (DU 
- 897U-CS0-23 #BV, Andor). The software NIS-Elements Ar/C (Nikon) and µManager were used to control the 
setup and the camera. TIRF illumination was used for super-resolution acquisitions of DNA origami data with 
a power of 30–40 mW, which was de- termined directly after the objective and under wide-field configuration. 
Time-lapse datasets with 24000 frames for DNA origami trimers and 10773 frames for DNA origami tetramers 
and 16 bit depth were acquired at 3.3 Hz frame rate and 5 MHz camera read-out bandwidth; pre-amplification: 
3; electron multiplying gain: 50. For DNA-PAINT imaging, the imaging buffer contains P1- Atto655 (CTA GAT 
GTAT-Atto655, Eurofins Genomics) in 500 mM NaCl, pH 7.3. The P1-Atto655 concentration was 10 nM for 
origami trimer and tetramer data, and 0.5 nM for AMPA receptor DNA-PAINT  experiments9.

DNA-PAINT acquisitions were reconstructed using Picasso:Localize, a module of the Picasso software 
version 0.4.08 (https:// github. com/ jungm annlab/ picas so), by applying a minimal net gradient of 1500. With 
Picasso:Render, drift corrections were applied based on the redundant cross-correlation (RCC), with a segmen-
tation of 1000 was applied. Drift-corrected data was filtered using Picasso:Filter. To generate the DNA origami 
trimer and tetramer cluster datasets for cluster-identification validation, trimer and tetramer clusters were identi-
fied by eye using Picasso:Render and manually selected with a picking diameter of 2 camera pixels.

Newly synthesized protein data. Newly synthesized protein data was previously reported (see Ref. 6). In brief, 
cultured neuron was incubated in a growth medium containing (Tetrodotoxin) TTX for 1 h 15 mins before the 
treatment ended, the neuron was metabolically labelled with AHA. The immuno-stained neuron samples were 
then imaged using DNA-PAINT8.

AMPA‑receptor data. AMPA-receptor validation data was previously reported (see Ref. 9). In brief, cultured 
neurons were stained by primary antibody against AMPA receptor GluA2 subunit before fixation and secondary 
antibody staining, in which the secondary antibody was modified to carry a P1 docking oligo. The immuno-
stained neuron samples were then imaged using DNA-PAINT8.

Code availability
The code and the data used for this project are publicly available at the following link: github. com/ NoldA ndreas/ 
FINDER.

Received: 17 October 2022; Accepted: 23 December 2022
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