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ABSTRACT A common strategy used by bacteria to resist antibiotics is enzymatic deg-
radation or modification. This reduces the antibiotic threat in the environment and is
therefore potentially a collective mechanism that also enhances the survival of nearby
cells. Collective resistance is of clinical significance, yet a quantitative understanding at
the population level is still incomplete. Here, we develop a general theoretical frame-
work of collective resistance by antibiotic degradation. Our modeling study reveals that
population survival crucially depends on the ratio of timescales of two processes: the
rates of population death and antibiotic removal. However, it is insensitive to molecular,
biological, and kinetic details of the underlying processes that give rise to these time-
scales. Another important aspect of antibiotic degradation is the degree of cooperativity,
related to the permeability of the cell wall to antibiotics and enzymes. These observa-
tions motivate a coarse-grained, phenomenological model, with two compound param-
eters representing the population’s race to survival and single-cell effective resistance.
We propose a simple experimental assay to measure the dose-dependent minimal sur-
viving inoculum and apply it to Escherichia coli expressing several types of b-lactamase.
Experimental data analyzed within the theoretical framework corroborate it with good
agreement. Our simple model may serve as a reference for more complex situations,
such as heterogeneous bacterial communities.

IMPORTANCE Collective resistance occurs when bacteria work together to decrease the
concentration of antibiotics in their environment, for example, by actively breaking
down or modifying them. This can help bacteria survive by reducing the effective anti-
biotic concentration below their threshold for growth. In this study, we used mathemat-
ical modeling to examine the factors that influence collective resistance and to develop
a framework to understand the minimum population size needed to survive a given ini-
tial antibiotic concentration. Our work helps to identify generic mechanism-independent
parameters that can be derived from population data and identifies combinations of
parameters that play a role in collective resistance. Specifically, it highlights the relative
timescales involved in the survival of populations that inactivate antibiotics, as well as
the levels of cooperation versus privatization. The results of this study contribute to our
understanding of population-level effects on antibiotic resistance and may inform the
design of antibiotic therapies.

KEYWORDS antibiotic resistance, beta-lactamase, inoculum effect, mathematical
modeling, bacterial collective dynamics, population dynamics

Antibiotic resistance is an outstanding global health problem (1, 2). Much research
has been devoted to understanding the molecular mechanisms utilized by bacteria

to resist antibiotics, and multiple resistance and tolerance mechanisms have been dis-
covered and described in the past decades (3). It is increasingly apparent that antibiotic
resistance also depends on population-level effects, which can be broadly categorized
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into two classes. In the first class, the resistance of one cell positively affects the survival
of other cells nearby. This collective (or cooperative) resistance involves decreasing the
effective concentration of antibiotics in the environment, for example, via binding to cel-
lular components or by enzymatic degradation (4, 5). Such a decrease positively affects
all bacteria in the shared environment. In the second class, efforts of an individual cell to
resist antibiotics might harm its neighboring cells, for example, when efflux pumps keep
the internal antibiotic concentration low at the expense of its local increases in the sur-
rounding environment (6).

In this work, we concentrate on the first, collective form of antibiotic resistance. In
particular, we focus on the production of enzymes that degrade or modify antibiot-
ics, rendering them ineffective. In some cases, these enzymes are secreted outside
the cells (7, 8), while in others, most of the degradation takes place inside the cell (9).
b-Lactamases are the best-known enzymes implementing such a degradation strat-
egy by hydrolyzing b-lactam antibiotics, both inside the periplasm and leaking out
of the cell through outer membrane porins (8, 10), but several other examples are
also known (11, 12). The result is a gradual removal of antibiotic in the environment,
which potentially alleviates stress and aids the survival of nearby cells. This helps re-
sistant cells to survive and establish a population (13, 14). Perhaps more conspicu-
ously, this strategy may also enhance the survival of nearby sensitive (nonresistant)
cells: once the antibiotic concentration is reduced below their threshold for growth
(9, 15), the sensitive population can expand and even compete for resources with the
resistant cells (14, 16–19).

In collective resistance mechanisms, the size of the population matters: first, the
time-window available for action before extinction depends directly on population
size. In addition, more cells produce more degrading enzyme, relieving antimicrobial
stress faster and enhancing the probability of recovery before population extinction.
Thus, collective resistance exhibits an inoculum effect (20, 21). This makes the standard
measure of a MIC, defined as the minimal antibiotic concentration that prevents bacte-
rial growth after 20 h using an inoculum density of 5� 105 cells/mL (22, 23), sensitive
to variation in initial conditions. Previous work has addressed this inoculum effect with
several different approaches. Artemova et al. (24) studied selection for resistance and
found that the single-cell MIC (scMIC), defined for an isolated cell, is the primary deter-
minant of fitness of a resistant strain. More recently several models were tested to
describe measurements of inoculum-dependent MIC in different cases (25). Saebelfeld
et al. (14) used a simple branching model to predict the MIC of resistant strains in the
absence of social interactions, as a reference to detect collective resistance. In addition,
the model investigated by Abel Zur Wiesch et al. (26), based purely on binding kinetics
of antibiotics to its target, resulted in the emergent phenomena of an inoculum effect
and an explanation for persister cells within populations.

Here, we are interested in the population dynamics of collective antibiotic resist-
ance and highlight a range between cooperative and selfish aspects of such resist-
ance. Intuitively, it may seem that enzymes hydrolyzing antibiotics tend to be public if
they are excreted and more private if degradation happens inside the cell. However,
intracellular degradation reduces the external antibiotic concentration and therefore
has some effect also on other cells. Our modeling framework allows for quantifying a
varying level of privatization in collective resistance. We describe the sensitivity of a
population to antibiotics by an inoculum-dependent MIC, or alternatively, a mini-
mal surviving inoculum (MSI) that can overcome a given antibiotic concentration.
Using mathematical modeling, we show that the shape of this dose-dependent MSI
curve has universal features and is only weakly dependent on molecular details and
reaction kinetics. Rather, it reflects a relationship between the timescales of the
population death rate, the antibiotic removal rate, and the level of privatization of
the antibiotic-removal mechanism. We propose a simple experimental assay to
determine the dose-dependent MSI curve and show that our predictions are in
agreement with experimental data.
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RESULTS
Dynamic model for collective race to survival. In a bacterial population with no

constraints, the number of cells N(t) grows exponentially in time t with a growth rate a:

_N ¼ aN ) NðtÞ ¼ N0e
at: (1)

The effect of antibiotics on a population can be described by a dependence of its
growth rate on antibiotic concentration B. Figure 1A shows this dependence, a(B), meas-
ured for susceptible Escherichia coli cells exposed to different concentrations of cefotax-
ime (CTX), a cephalosporin-class b-lactam. In the absence of antibiotics (B = 0), the popu-
lation growth rate a0 reflects the physiology of the specific bacterial strain and the
nature of the environment, e.g., medium composition. An increasing antibiotic concen-
tration reduces this growth rate sharply around a threshold concentration, B � m. Above
this threshold, growth rate a becomes negative as cells are killed and the population
size decreases. Further increasing the antibiotic concentration, it has been observed that
the rate of death levels out to a constant rate proportional to the growth rate in the ab-
sence of antibiotics (27, 28).

A good mathematical description of this dependence is a decreasing sigmoidal
curve (a Hill function) (29),

aðBÞ ¼ a0
12 ðB=mÞk
11 ðB=mÞk=g : (2)

Here, m is the concentration at which growth decreases to zero and turns into
death (introduced in reference 29 as “pharmacodynamic MIC”), k is the steepness of
the decrease around this threshold, and –ga0 is the maximal death rate. This formula-
tion helps to separate the dependence of growth on medium or strain, through a0,
from the pharmacodynamics of the antibiotics described by the sigmoidal function
(27). (For equivalence to previous formulations, see Text S1 in the supplemental
material).

Consider a finite population placed in a closed environment with growth medium
and an initial concentration of antibiotics B0 larger than the threshold m. As a result of
this antibiotic exposure, the population size of cells begins to decrease as some cells die.
Meanwhile, surviving cells produce enzymes that break down or inactivate the antibiot-
ics, lowering the antibiotic concentration. These two processes define a dynamic race to
survival in which antibiotics must be reduced below a threshold before all cells have

FIG 1 Effect of cefotaxime (CTX) on growth of susceptible E. coli populations using conventional kill curves. (A) Averaged trajectories from 2
replicates of CFU counts at various antibiotic concentrations, specified in normalized units (see panel B). Dashed lines indicate the estimated rate
of growth/death over 1 h; colors correspond to arrows in the right panel. (B) Growth rate a(B) plotted as a function of CTX concentration B/m,
normalized such that at the turning point of zero growth the concentration is B/m = 1. In the absence of CTX, (B0/m = 0; left narrow panel),
bacteria grow with a rate a0, which depends on environmental conditions. Around the threshold of B/m � 1, the growth rate decreases sharply
and then saturates at a negative rate –ga0. Each data point in panel B is extracted as the logarithmic slope, a few examples of which are shown in
panel A. This estimation is labor- and time-intensive, and can contain large errors. The method described in this manuscript circumvents some of
these problems. Note that for the susceptible strains used here, the antibiotic concentration is not expected to change, in contrast to the resistant
strains discussed in the remainder of the manuscript.
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been killed. The success of this resistance strategy therefore depends on the relative
rates of these two processes but also on the initial population size and initial amount of
antibiotics. A larger initial population extends the time window to achieve this goal,
while more antibiotics decrease the time for the population to degrade antibiotics
before it is extinguished.

Chemical reactions that reduce the antibiotic concentration B can be implemented
in different strains and conditions by various kinetic processes. To illustrate the race to
survival, we consider the production of an antibiotic-degrading enzyme E by each cell
with a rate r . In turn, this enzyme degrades antibiotics B in a first-order biochemical
reaction with catalytic efficiency e :

_N ¼ aðBÞN; (3a)

_E ¼ rN; (3b)

_B ¼ 2eEB: (3c)

With the model defined in equation 3a to c, we can integrate N(t), B(t), and E(t) over
time. Examples of numerically obtained trajectories are depicted in Fig. 2 for N(t), with vari-
ous initial antibiotic concentrations (colors) and inoculum sizes (panels). (An extension of
this figure can be found in Fig. S1.5 in Text S1.) The most crucial property determining the
population’s fate is whether or not it drops below a single cell, N(t) , 1, indicating its
extinction. This is the lower limit shown in the figure; if any trajectory decreases below this
limit, the population is considered extinct. Note that we define extinction at a single cell
but neglect stochastic effects arising from discreteness of the population. It can be seen
that for small antibiotic concentrations (orange and light brown curves), the population
increases exponentially and will continue to do so until it reaches saturation (not modeled
here). In contrast, for larger antibiotic concentrations (darker purple to blue curves) it even-
tually drops below one cell and is considered extinct. Interestingly, for larger inoculum
size, at intermediate antibiotic concentrations the population starts to decrease, but as an-
tibiotic is degraded, it then turns around and succeeds to grow. Examples of this behavior
can be found in Fig. 2.

Minimal surviving inoculum. The standard measure of MIC is used to characterize
a threshold of initial antibiotic concentration B0 beyond which there is no growth at
long times, with a standardized inoculum and timescale of observation (30). However,
our model indicates that collective resistance is dynamic and is determined by the

FIG 2 Survival depends on inoculum size and antibiotic concentration. (A and B) Population size across time, N(t), computed numerically from the model
(equation 3), with various parameters: inoculum size of N0 = 100 (A) and N0 = 1,000 (B); relative initial antibiotic concentration B0/m between 0 and 3 (line colors;
see legend). For B0/m . 1, the bacterial population initially decays but may recover depending on inoculum size. For example, at antibiotic concentrations of B0/
m = 2 (purple line), the larger inoculum (B) recovers and survives, while the smaller one (A) does not. Extinction is escaped if enough enzyme is produced during
the initial population decay, such that antibiotics are reduced below the threshold concentration m rapidly enough. In all simulations, re = 1023.
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interplay of two processes: cell death and antibiotic degradation. This race to survival
implies an inoculum effect: MIC depends on inoculum size (20, 25). Turning this de-
pendence around, we may think of the minimal surviving inoculum as a function of an-
tibiotic concentration: this minimal surviving inoculum (MSI) is a curve, N0(B0), rather
than a single quantity such as MIC.

Using the model in equation 3a to c, we can develop an approximation to estimate
this MSI curve. If the initial antibiotic concentration is large enough, most of the race-
to-survival dynamics takes place with an approximately constant death rate. Thus, we
approximate the sigmoid function for large antibiotic concentrations, B�m, with

aðBÞ � 2a0g : (4)

This approximation allows us to find solutions to our model, which in turn provide
an expression of the MSI curve, N0(B0) (see Text S1, section S1.1 for derivation):

N0 $ t logðB0=mÞ: (5)

The MSI curve, as shown in Fig. 3 (red lines), is an increasing function: as the initial
antibiotic concentration increases, a larger inoculum is needed to ensure survival. Its
simple form is largely robust with respect to the details of the mechanism for antibiotic
degradation or inactivation (see Text S1, section S1.1).

Let us consider the interpretation of the two parameters determining the MSI curve.
The first parameter, m is the threshold antibiotic concentration allowing growth (see
Fig. 1), which sets the scale for antibiotic concentration. In terms of the plots presented
in Fig. 3A,m is the intercept of the MSI curve at the edge at which antibiotic concentra-
tion varies, corresponding to the small-inoculum limit (which approximates the single-
cell MIC [24] or pharmacodynamic MIC [29]).

In addition, the MSI depends on the parameter

t ¼ ða0gÞ2
e r

; (6)

representing a ratio of timescale between the death rate, a0g , and the two rates involved in
antibiotic degradation, e and r . As the degradation process consists of two rates here, the
death rate—against which they are compared—appears squared. (Details on derivation are

FIG 3 The universal MSI curve: parameters and experiment. (A) The shape of the MSI curve (equation 5), plotted in logarithmic axes (red
curve). This curve only depends on its two parameters t and meff. Increasing t (brown curves) stretches or compresses the MSI curve in
the direction of inoculum size (y axis). Changes in the parameter meff (purple curves) induce a shift of the MSI curve in the direction of
antibiotic concentration (x axis), which includes shifts from the inherent ability to withstand antibiotics, but also the effects of privatization
described in section II C “Single-cell privatization of resistance.” (B) Experimental measurement of the MSI curve with data from a resistant
E. coli strain. A microwell plate is started with serial dilutions of the inoculum size N0 and antibiotic concentrations B0 along the two axes.
The threshold for survival is apparent by color after a long time of growth: blue wells have a population in them, while white cells do
not. If the ranges of dilutions are chosen appropriately, the MSI curve (red line) appears with its typical universal shape as the boundary
between wells with surviving and extinct populations. Protocol details are described in Materials and Methods.
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presented in Text S1.) Large t corresponds to fast killing of bacteria relative to degradation
and thus results in a higher MSI. In terms of the plot of Fig. 3, the parameter t multiplies the
curve by a constant, stretching it along the population size axis (see Fig. 3A). Note that when
comparing to data, population size is measured in cells/mL, and t has the same units; we
assume that the experimental volume remains fixed, so numbers and concentrations are
related in a straightforward manner.

If the initial antibiotic concentration is not very high, but is still above threshold, we
can employ a different approximation for the growth rate. In Text S1, section S1.1.2,
we show that aðBÞ � 2a0

kg
11g logðB=mÞ, which is valid close to B � m, still allows us to

find solutions to our model. In general, a correction close to B � m should not affect
the shape of the MSI curve too much, as the asymptotic behavior for large B0 is still
given by equation 5.

Importantly, although we developed equation 5 for a specific model of enzyme
degradation, the shape of the MSI curve turns out to be insensitive to many details
of the kinetics of collective resistance, as we show in Text S1, section S1.1, for spon-
taneous degradation, irreversible binding of antibiotics to fragments of dead cells,
and absorption and internal degradation. In the different mechanisms we analyzed,
the extant parameter t depends on combinations of underlying molecular parame-
ters for different kinetic mechanisms. Nevertheless, its interpretation is always the
same: t represents the ratio between the rate of population death a0g and the rate
of reduction in antibiotic concentration. This suggests a coarse-grained approach
that utilizes the MSI curve with its two parameters, m and t , as the basic empirical
observation.

Single-cell privatization of resistance. Until now, we have assumed that resistance
is completely cooperative; produced enzymes are secreted to the common environment
and directly affect the global antibiotic concentration. In this view, the antibiotic concen-
tration is homogeneous across space and, hence, the same for the cell which produces
the resistant enzymes and any other nearby cells which benefit from this production. In
reality, at least part of the degradation takes place inside the cell (often in the periplas-
mic space), thus providing an increased benefit to the producing cell relative to its
neighbors. In environments which are not mixed rapidly enough, even if enzymes are
excreted, they are more abundant in the vicinity of producing cells and will take time to
diffuse away, again providing an increased benefit to the secreting cell. Our goal is now
to quantify the level of privatization (or, inversely, of cooperation) in collective antibiotic
resistance. A full model should include transport and diffusion of concentrations in
space. As a first approximation, we include the leading distinction between internal and
external concentrations of both enzyme and antibiotics: Ein, Eout, Bin, Bout (Fig. 4). The
coupled kinetic equations for these variables can be found in Text S1, section S1.2. We
assume that concentrations inside the cell equilibrate much faster than outside, corre-
sponding to its volume being tiny compared to the practically infinite reservoir of the
external environment. This assumption allows us to estimate the internal concentrations
as dynamically dependent on the outer concentrations,

Ein � Eout 1
r

sE
; (7a)

Bin � 11
e r

sEsB

� �21

Bout ¼ ð11UÞ21Bout: (7b)

Here, s E and sB are permeabilities for enzymes and antibiotics, respectively, indicat-
ing the rate of them passing through the cell wall in either direction. High permeability
will prevent the buildup of a concentration difference across the cell wall and thus will
promote cooperativity, while low permeability will promote privatization.

The effect of transport on enzyme concentration is seen in equation 7a, which
describes the difference between internal and external concentrations: internal is always
larger, and high-production r or, alternatively, low-permeability s E work to increase this

Minimal Surviving Inoculum in Collective Antibiotic Resistance mBio

March/April 2023 Volume 14 Issue 2 10.1128/mbio.02456-22 6

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

bi
o 

on
 2

2 
Fe

br
ua

ry
 2

02
4 

by
 1

41
.5

.9
.6

3.

https://journals.asm.org/journal/mbio
https://doi.org/10.1128/mbio.02456-22


difference. Usually, external enzyme concentrations are smaller than internal concentra-
tions, which can be seen directly from equation 7a.

Antibiotic concentration, in contrast, is always lower inside the cell (see equation
7b). The outer concentration, Bout, is multiplied by a dimensionless factor, (1 = U)21,
that depends on both production and transport parameters: intuitively, antibiotics are
supplied on the outside and first need to enter the cell, while being reduced. This
reduction is faster inside cells than outside, as the enzyme concentration is larger
inside. Overall, high production and low permeability support a larger antibiotic con-
centration difference, as is reflected in equation 7b.

We refer to the compound parameter appearing in equation 7b as a “privatization
parameter” U = e r /s EsB. High privatization occurs for U � 1, corresponding to very
high enzyme production, r , high catalytic efficiency, e , or low transport coefficients. In
this regime, cells degrade the antibiotics mostly privately by lowering their internal an-
tibiotic concentration and not sharing degrading enzymes with neighbors. At the other
end, U � 1, antibiotic and enzyme concentrations are almost equal inside and outside
the cell, and inactivation of antibiotic occurs in the public domain of the shared envi-
ronment, resulting in maximal cooperativity to all cells. In this limit we effectively
return to the first, naive model, where no distinction was made between internal and
external concentrations. The privatization parameter U enables us to interpolate
between these two extremes. It is a compound parameter; the level of privatization is
determined by the difference in concentration between the intracellular and extracel-
lular environment, resulting from catalytic efficiency, production, transport, or possibly
other microscopic processes.

In a real experimental setting, it is difficult—or even impossible—to measure inter-
nal concentrations of drug and enzyme, and usually only external concentrations are
measurable. Yet, it is the internal concentration which directly affects how antibiotics
alter the growth of a cell or cause its death. As can be seen from equation 2, the effect
of antibiotics on growth rate is measured in units ofm and appears as “normalized con-
centration” B/m in all instances. Thus, equation 7b allows us to translate between the
two concentrations, Bin and Bout, and we can write the effective growth rate as a func-
tion of the observable external antibiotic concentration:

FIG 4 Factors affecting privatization of resistance. To describe different levels of privatization/cooperativity in
antibiotic resistance, we include in our model external concentrations of both enzyme and antibiotics. The
transport between external and internal spaces is governed by permeabilities s E, sB. Enzyme production and
antibiotic catalytic efficiency are described by r and e respectively. The level of privatization is determined by
the relative importance and speed of these processes.
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a
Bin

m

� �
¼ a

Bout

11Uð Þm
� �

¼ a
Bout

meff

� �
: (8)

The discrepancy between (unmeasurable) internal and (measurable) external concen-
trations can be attributed to a modification of the growth thresholdm, which we define as

meff ¼ 11Uð Þm: (9)

With this result, we need to modify the MSI curve obtained in the previous section,
which can now be stated in terms of the quantity, B0 = Bout(t = 0), by exchanging the
previous m withmeff:

N0 $ t logðB0=meffÞ: (10)

This MSI curve in equation 10 has the same functional form as before with two fit-
ting parameters, t and meff, but now one of them also includes transport properties; it
is an effective parameter that deals with the difference between external and internal
concentrations. Specifically, if privatization increases (smaller permeabilities), then meff

will also increase, and vice versa. Thus, the effects of this extension for our model are
already contained in Fig. 3A, as we only infer meff from experimental data.

The two parameters in the MSI curve are, in fact, not independent of one another.
We have encountered t as a ratio between the timescales of cell death a0g and antibi-
otic degradation (Text S1 deals with different processes of how antibiotic concentra-
tion decreases). The transport processes for both antibiotics and enzyme generate a
third timescale in our model. Thus, we may write the privatization parameter as

U ¼ e r

sEsB
¼ e r

ða0gÞ2
ða0gÞ2
sEsB

¼ w

t
: (11)

This representation is useful, because it separates the race between single-cell re-
sistance and antibiotics, represented by t , from the relative extent of cooperativity.
Using equation 11, we can predict a relation between the two fitting parameters of the
MSI, t and meff:

meff ¼ 11
w

t

� �
m: (12)

While each experiment will result in an MSI curve with different parameters, they
are not expected to be randomly scattered in the plane (meff, t ), but rather to be
located on a curve defined by equation 12. To test this prediction, we present an ex-
perimental assay to measure the MSI curve below.

Experimental validations. An experimental procedure that measures the antibiotic
dose-dependent MSI curve is conceptually straightforward to do with a 96-well assay.
Populations are inoculated with increasing inoculum size N0 along one axis and with
increasing antibiotic concentrations B0 along the other (Fig. 3). Concentrations along
the axes are chosen appropriately, such that the shape of the MSI curve fits on the
plate (which requires some prior knowledge about the ranges of the MSI curve).
Following overnight incubation of the cultures, a clear difference is visible between
surviving and nonsurviving populations. As an example, Fig. 3B shows all optical den-
sity (OD) measurements of wells in different shades of blue; white indicates no growth
in the well. Subsequently, one may fit equation 10 with its two parameters, t and meff,
to this transition from surviving to nonsurviving populations on the plate. In Fig. 3B it
is depicted by a red line. All steps in our algorithm to extract parameters from OD
measurements of plates are described in detail in Text S1, section S1.3. The first param-
eter, t , multiplies the MSI curve and mostly determines the intersection on the N0

edge of the plate for large antibiotic concentrations. The second parameter, meff, corre-
sponds to the intersection of the MSI curve on the B0 edge of the plate for small initial
population sizes, which approximates the single-cell MIC (24).
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We applied this experimental procedure to several E. coli strains expressing various
b-lactamases. In a first set of experiments, we used mutants of E. coli MG1655 with a
chromosomally integrated gene encoding and expressing b-lactamase TEM-1 at a sin-
gle intermediate level. These include a susceptible wild type without the TEM-1 gene
(suscWT) and a consecutive series of mutations in the TEM-1 enzyme (TEM1, G238S,
E104K/G238S, E104K/M182T/G238S), which exhibit increasing catalytic efficiency e for
cefotaxime (31). A second set of experiments used E. coli BW27783, where two of these
TEM alleles (G238S and E104K/M182T/G238S) are located on plasmid pBAD322T, and
their expression is controllable using an arabinose-inducible promoter. This allows us
to manipulate enzyme production r ; the subset of mutations in TEM-1 again alters the
catalytic efficiency e to moderate and high values. A detailed experimental protocol is
described in Materials and Methods.

For most experiments, the MSI curve can be fit nicely to the data and the effective pa-
rameter estimates inferred. An example of such a fit is shown in Fig. 3B; all other data
are presented in Fig. S1.3 and S1.4 in Text S1. In some cases, the low resolution of a 96-
well plate caused a large uncertainty in parameter values. Nevertheless, our repeated
experiments yielded similar parameter values in practically all tested cases.

In our experimental setup only the gene (including its promoter) for TEM-1 is changed
within both sets of experiments. Thus, we can expect that the transport properties, which
have been separated out and captured by the parameter w in equation 12, should be
unchanged. Under this assumption, equation 12 predicts a relation between the two fit-
ting parameters, t andmeff, across different plates (gray lines in Fig. 5).

The resulting fitting parameters, as estimated for our collection of experiments, are
shown in Fig. 5. Panel A shows the results of our first set of experiments with a strain
without TEM-1 and strains expressing TEM-1 and its three mutants at a fixed expression
level. The data points are not scattered in the plane, and they follow the predicted curve
to a good extent with TEM-1, the single, double, and triple mutant being positioned
increasingly higher along the curve, mirroring their respective increase in resistance level
(31). Panel B presents the results for the second set of experiments exhibiting different

FIG 5 Relation between meff and t inferred from measured MSI curves using b-lactamase-producing strains with various resistance levels. (A) Best fit of
equation 9 for strains expressing TEM-1 variants with different catalytic efficiency « toward cefotaxime. We also included a susceptible strain (suscWT)
without TEM-1. (B) Best fit of equation 9 for a strain with low (G238S; rhombus) or high catalytic efficiency e (E104K/M182T/G238S; hexagon) and different
expression levels r . The gray line corresponds to equation 12, with w fitted from the data. Error bars of individual data points are estimated in the fitting
algorithm (see Text S1, section S1.3). Each symbol corresponds to a single MSI experiment; overall, the same conditions were applied in duplicate (B) or
triplicate (A).
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expression levels of two TEM variants (single and triple mutant). While the single mutant
follows our prediction, the triple mutant deviates from the curve at medium and high
expression levels. We speculate that this deviation could arise due to heavy stress on the
bacteria from the overexpression of b-lactamase, which significantly lowers their overall
growth rate a0 (Fig. S1.6). Moreover, it is possible that the external enzyme concentration
is not negligible and that the approximation equation 7b is invalid. In these cases, the
relation between the two fitting parameters is not expected to obey the scaling relation.
However, in general, the compound parameter estimates for the different experiments
clearly do not scatter randomly in the parameter plane but are strongly correlated with
one another, and—except for the two outlying conditions—are well described by our
model.

DISCUSSION

Collective resistance is a phenomenon by which a bacterial population can survive
an antibiotic dose which a single bacterium cannot (18). This collective behavior may
have a profound influence on the effectiveness of an antibiotic therapy and thus may
pose serious health risks. Using mathematical modeling, we studied collective resist-
ance via the common mechanism of antibiotic degradation or modification and pro-
posed a unifying framework to describe the minimal population size needed to survive
a specific antibiotic concentration. We developed a conveniently simple approximation
of our model that allows us to determine the dose-dependent minimal surviving inoc-
ulum (MSI) curve. This curve is a generally increasing function, with a larger inoculum
being able to survive increasingly higher antibiotic concentrations. Interestingly, we
showed that basic features of this curve, and by extension of collective resistance via
antibiotic degradation or modification, are insensitive to details of the exact resistance
mechanism. Rather than kinetic parameters, the central quantities determining survival
are ratios between timescales, when populations race against time to survive by collec-
tively decreasing the antibiotic concentration.

A first parameter central to the MSI curve describes the ratio of timescales between
population extinction by antibiotic killing and the competing process of antibiotic degra-
dation. This parameter, referred to as t in our model, is agnostic to the exact mechanism
by which the antibiotic is degraded or modified (Text S1). This is in line with previous
work (32), which also reported that it is hard or even impossible to determine details of
the degradation mechanism by only observing microbial population dynamics. The hid-
ing of microscopic kinetic details from higher-population-level dynamics is a form of buf-
fering between levels of organization. While insights into the molecular mechanisms
need to be known for a targeted antimicrobial therapy to be effective, the relative robust-
ness of population-level dynamics, as shown by our modeling, is important for a basic
understanding of resistance at the population or community level.

The second central feature in our model is the level of privatization of the resistance
mechanism, namely, how much of the degradation or modification of antibiotics takes
place in the shared environment, relative to the intracellular environment. Previous work
has considered the limit of maximally private degradation which takes place inside the
periplasmic space (33). Their relation between internal and external threshold concentra-
tion is similar to ours in that limit, consisting of the ratio between hydrolysis rate and
permeability. Other works directly incorporated one form of collective resistance, e.g.,
the lysis of cells as they die and the release of their enzyme content (24). Our general
result (equation 9) interpolates between the high privatization limit and the other limit
of low privatization, where hydrolysis takes place primarily in the public domain. This
provides a coarse-grained phenomenological description that could apply specifically to
lysis or secretion.

Although we here studied the MSI curve of single strains, quantifying the level of
privatization may have far-reaching consequences for cross-protection between micro-
bial communities and the eco-evolutionary dynamics of antibiotic resistance (14, 34).
The relationship between single-cell and population-level MIC was characterized also
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in previous work, where it was found that the single-cell properties affect long-term ev-
olutionary outcomes (24). Nevertheless, intermediate timescale dynamics of mixed
populations can also be strongly affected by the collective dynamics highlighting the
importance of the MSI concept. Future work may utilize this concept to characterize
the mutual interactions between different strains as they race for survival, potentially
enhancing resistance or one another.

Based on our model, we proposed a simple 96-well microtiter-plate assay that allows
us to characterize the parameters describing the MSI curve. We provide a detailed proto-
col in Materials and Methods to perform this assay and extract the relevant parameters,
t andmeff. This method relies on the idea that a 96-well plate can serve to scan inoculum
sizes and antibiotic concentrations in parallel and provide a platform for mapping the
MSI curve. A similar idea was proposed for characterizing antibiotic persistence, where
the exposure time is a critical variable and is varied along one axis of a 96-well plate by
changing the time at which the medium is inoculated (35).

The microtiter-plate assay was used to assess the model at two levels. First, we tested
the fit of our predicted MSI curve to describe the border between surviving and nonsur-
viving populations and found good agreement. Second, we performed two sets of
experiments, where we independently varied the catalytic efficiency or expression level
of an antibiotic-degrading enzyme in bacterial strains. Under the approximation of signif-
icant privatization and independence of other physiological properties of the bacteria,
we derived a relation between fitting parameters across the set of experiments (equation
12). The results show that this relation agrees rather well for all but two data points from
strains expressing a b-lactamase with very high catalytic efficiency (the triple mutant) at
high levels (Fig. 5). The current experiments do not allow us to identify the source of this
qualitative discrepancy, but since the triple mutant MSI curve was assayed at significantly
higher antibiotic concentrations, this may affect cell physiology via the induction of the
SOS response and b-lactam-induced filament formation (36) or by a varying level of lysis
and release of enzyme. This would modify the privatization parameter, which the model
assumes to be fixed along the curve. Moreover, differences in cost of expression between
b-lactamase alleles could also lead to differential effects of expression on cell physiology
and permeability, potentially affecting the timescale ratios describing the MSI curve.

In summary, our work contributes to identifying generic mechanism-independent pa-
rameters that can be inferred from population data. It identifies robust parameter combi-
nations that govern population dynamics in collective resistance. Specifically, it reveals
relative timescales in the race for survival of populations which inactivate antibiotics that
kill them, as well as levels of cooperation versus privatization of resources in the fight
against antibiotics. Our experimental framework adds a dimension to the characteriza-
tion of antibiotic resistance by a concentration threshold: it extends this notion to an
inoculum-dependent threshold relevant for cells utilizing a collective resistance mecha-
nism. Our framework is expected to be amenable for extension also to the interaction
between resistant and sensitive strains, which has been partially addressed from a differ-
ent perspective in previous work (17).

MATERIALS ANDMETHODS
Quantification of bacterial growth with antibiotic dosage. Methods used to estimate the impact

of antibiotic levels on the growth of bacterial cultures—referred to as “kill curves”—were adapted from
reference 29. Briefly, Escherichia coli MG1655 galK::SYFP2-FRT was cultured overnight in M9 minimal me-
dium (supplemented with 0.4% glucose, 0.2% Casamino Acids, 1 mg/mL thiamine, 2 mg/mL uracil, and
50 mM IPTG [isopropyl-b-D-thiogalactopyranoside]). Stationary-phase cultures were diluted 1:1,000 into
minimal medium and incubated with shaking, and meanwhile, dilution series were made of cefotaxime in
minimal medium; 140mL of each dilution was aliquoted into a row of a 96-well plate. All medium for subse-
quent culturing was then prewarmed to aid continuous growth of bacteria. After 120 min, the concentration
of cells was measured by flow cytometry and diluted in minimal medium to approximately 20 � 106 cells/mL,
and 140 mL of cells was added to each well containing cefotaxime. A 20-mL sample was immediately taken,
and the plate was incubated with orbital shaking for 60 min at 37°C, with further 20-mL samples taken every
10 min. For each sample a dilution series of 1021 to 1023 was made, and 100 mL of each dilution was plated
on minimal medium solidified with agar. Plated cell solution was spread with 12 to 14 3-mm glass beads.
Plates were incubated for;24 h, and CFU were counted from appropriate dilutions.
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Experimentally determining the MSI curve. The proposed assay exposes different inoculum sizes
of bacteria to different concentrations of antibiotics until the boundary between wells with surviving
and extinct populations is evident. The population size is varied across the eight rows (A to H) of a 96-
well plate, while antibiotic concentrations vary across the 12 columns of the plate. Care should be taken
when choosing the antibiotic dilution range to fully capture the MSI curve. The examples shown in this
study involved 2-fold dilutions of antibiotic; however, alternative dilution strategies could be used to
more appropriately observe the MSI curve.

Protocol.

1. Grow the strain of interest overnight in a suitable growth medium.
2. Prepare an antibiotic solution in the chosen growth medium that is four times the highest

concentration that will be tested.
3. Fill all wells in a sterile 96-well plate with 100mL of growth medium.
4. Dispense 100 mL of the antibiotic solution with a concentration 4 times the intended final

concentration in column 1 of the microtiter plate. Using a multichannel pipette, mix the
antibiotics and transfer 100mL from column 1 to column 2. Mix again and repeat this procedure
down to column 12. Discard 100mL of solution from column 12.

5. Prepare a serial dilution of the bacterial overnight culture in eight appropriate tubes. The
highest concentration should be twice the desired highest inoculum. The highest inoculum size
in the validation experiments was approximately 1.25 � 106 CFU/mL or 2.5 � 105 CFU/mL. The
examples presented in this study involved 4-fold dilutions, which allowed low concentrations of
cells (a few hundred cells/mL) to inoculate the final wells in the dilution series, with the primary
constraint being the 8 rows of the 96-well plate.

6. Dispense 100mL of each of the 8 dilutions of cells across each row of the 96-well plate.
7. Incubate the plates at 37°C for 24 h or until satisfactory growth is obtained.
8. Growth can be visually assessed or by spectrophotometric reading (optical density at 600 nm

[OD600]).

The validation experiments described in this study were performed using the above-mentioned pro-
tocol. For the set of experiments using enzyme variants with a different catalytic activity, TEM-1 and
three alleles (G238S, E104K/G238S, E104K/M182T/G238S) were amplified from previously described plas-
mid constructs (37) and introduced into chromosomal galK of Escherichia coli MG1655 using the Quick
and Easy E. coli gene deletion kit (Gene Bridges). Mutants were selected by selection for ampicillin resist-
ance, and the introduction of b-lactamase genes was confirmed by PCR and Sanger sequencing. The
MSI assay was performed with the same minimal medium used for kill-curves. For the set of experiments
assessing the effect of expression, TEM-1 alleles G238S and E104K/M182T/G238S were subcloned into
pBAD322T behind an arabinose-inducible promoter and transformed in E. coli BW27783 (CGSC no.
12119), which carries a deletion for the arabinose-metabolizing genes (38, 39). Here, the MSI assay was
performed in standard LB medium supplemented with 0.1% (high expression), 0.003125% (medium
expression) 0.00078125% (low expression), or 0% (no/leaky expression) L-arabinose. For both sets of
experiments, growth was measured after 24 h using a Victor3 plate reader (Perkin-Elmer).

Parameter estimation on plates. Estimating the two parameters t and meff from the OD of one
plate involves multiple steps. First, we estimate a threshold between growth and no growth by applying
Otsu’s method to find a threshold value that separates the modes in a bi-modal distribution of OD val-
ues. We compute the contour line of this threshold value on each plate to obtain points on a curve close
to the growth/no-growth threshold. In the last step we fit the predicted MSI curve, N0 � t log(B/meff), to
this contour line, which yields values for t and meff. The main concepts and equations of all steps are
described in more detail in Text S1. The implementation in Python can be found at https://github.com/
lukasgeyrhofer/antibiotics.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
TEXT S1, PDF file, 0.9 MB.
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