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Abstract 

Synapse diversity has been described from different perspectives, ranging from the specific neurotransmitters 
released, to their diverse biophysical properties and proteome profiles. However, synapse diversity at the transcrip‑
tional level has not been systematically identified across all synapse populations in the brain. To quantify and identify 
specific synaptic features of neuronal cell types we combined the SynGO (Synaptic Gene Ontology) database with 
single-cell RNA sequencing data of the mouse neocortex. We show that cell types can be discriminated by synaptic 
genes alone with the same power as all genes. The cell type discriminatory power is not equally distributed across 
synaptic genes as we could identify functional categories and synaptic compartments with greater cell type specific 
expression. Synaptic genes, and specific SynGO categories, belonged to three different types of gene modules: gradi‑
ent expression over all cell types, gradient expression in selected cell types and cell class- or type-specific profiles. 
This data provides a deeper understanding of synapse diversity in the neocortex and identifies potential markers to 
selectively identify synapses from specific neuronal populations.
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Introduction
Synapses are the information processing units of the 
brain and function in a use-dependent manner [1, 2]. 
Synapses are diverse with regards to subcellular tar-
gets and physiological properties [3] and are central in 
information processing and storage theories [4]. More-
over, brain regions involved in higher cognitive func-
tions, such as the hippocampus and neocortex, contain 
greater synapse diversity [5]. Synapse diversity also 
overlaps with the connectivity patterns (connectome) 

between brain areas associated to different functions 
[5]. Thus, understanding synapse diversity is crucial for 
gaining insights into the mechanisms for information 
processing in the brain.

Neurotransmitters and biophysical properties have 
traditionally been used for classification of synapses 
[2, 4]. New technologies, including diverse ‘omics’, 
are now uncovering additional layers of complexity 
and diversity on the molecular signatures of synapses 
[6]. Proteome differences between synapse types cor-
relate with functional diversity (strength, kinetics, or 
synaptic plasticity) [4]. These different molecular pro-
files include, for example, scaffold proteins PSD95 and 
SAP102 [5, 7], and AMPA-type glutamate receptors 
(AMPARs) [4] for postsynaptic terminals of excitatory 
cells; and Gephyrin (GPHN) and Collybistin (ARH-
GEF9) scaffold proteins, and the GABAA receptors 
(GABAAR) for inhibitory postsynaptic sites [8]. On the 
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presynaptic side, synaptotagmins 1 and 2, involved in 
calcium-dependent vesicle exocytosis, are differentially 
expressed between synapse types [9]. While most pre-
vious work is centered on inhibitory and excitatory syn-
apses, recent studies have pointed out the expression of 
synaptic genes as correlated with neuronal diversity in 
subpopulations of transcriptomic cell types [10, 11].

Here, we aim to systematically identify how synaptic 
gene expression specifies the diversity of neuronal cell 
types in mouse neocortex using single cell transcrip-
tomics data. Combining the expert-curated, evidence-
based SynGO synaptic ontology [12] and single cell 
expression data we could observe that expression of 
synaptic genes presents a striking diversity. Remarkably, 
specific biological function and synaptic component 
gene categories contained significantly high diversity 
and discrete modules of synaptic genes exhibited differ-
ent modes of variability revealing that synapse diversity 
is organized at different levels.

Methods
Datasets
The single cell RNA-sequencing dataset published by 
Tasic et al. [13] together with the information available 
in the SynGO [12] database were retrieved for the study 
of  the expression of synaptic genes in the neocortex. 
The scRNA-seq dataset used was generated using the 
smart-seq RNA-sequencing technique. The tissue used 
was mouse primary visual cortex and anterior lateral 
motor cortex and up to 133 transcriptomic cell types 
and 16 cell classes were identified. The described cell 
classes include glutamatergic neurons, labeled accord-
ing to their preferential layer of residence (for example 
Layer 4 neurons are labelled as L4) and their projec-
tion pattern (intratelencephalic, IT; pyramidal tract, 
PT; near-projecting, NP; and corticothalamic, CT) 
and GABAergic neurons labelled with their predomi-
nant expressed gene including: Sst, Pvalb, Vip, Lamp5, 
Sncg and Serpinf1 [13]. The first release of the expert-
curated synaptic gene ontology, SynGO1.0 was used 
[12]. SynGO1.0 contains 1112 unique human genes 
annotated to 2918 terms hierarchically organized and 
divided into ‘Cellular Components’ and ‘Biological Pro-
cesses’ related to the synapse. These annotated synaptic 
genes encode evidenced proteins that localize to synap-
tic compartments and contribute to synaptic functions.

Pre‑processing and visualization
The scRNA-seq data were filtered to keep only the 
cells belonging to the classes ‘GABAergic’ and ‘Gluta-
matergic’ (n = 22,439 cells) and expression data of the 
synaptic genes included in SynGO (1049 genes). Three 

subsets of the data were used for the downstream 
analysis separately by filtering the genes in the original 
dataset according to the following gene sets: all synap-
tic genes present in the SynGO database, SynGO pre-
synaptic genes and SynGO postsynaptic genes.

Each of the filtered datasets was pre-processed with 
the standard protocol used by the Seurat [14] R pack-
age as follows: log-normalization and scaling (scaling 
factor = 10,000) of the raw count data, identification of 
highly variable genes, PCA dimensionality reduction, 
selection of significant principal components (PCs) by 
the Jackstraw procedure, and tSNE (t-distributed Sto-
chastic Neighbor Embedding) dimensionality reduc-
tion/visualization (perplexity = 50). The significant PCs 
determined for each data subset were: 60 PCs for the 
full dataset, 42 PCs for the dataset with all synaptic 
genes and 21 PCs for both datasets with the pre- and 
postsynaptic genes. No quality filtering was performed 
on the cells since the dataset used was already passing 
the quality criteria in Tasic et al. [13]. The tSNE embed-
ding of the data were color coded with the cluster iden-
tities determined by Tasic et al. [13].

Synaptic function and localisation (SynGO annotations) 
underlying diversity
MetaNeighbor [15] was used to measure the power of 
each of the SynGO annotations to discriminate between 
different cell types. For each gene set (or SynGO anno-
tated term), AUROC (Area Under the Receiver Opera-
tor Curve) scores were calculated for each of the 16 
described cell types. To do so, random samples of the 
dataset were taken to train (2/3) the algorithm and test 
(1/3) the gene sets. Only those gene sets with at least 2 
genes were used in this analysis. The result is an AUROC 
score for each gene set that can be interpreted as the per-
formance of the gene set for the task of identifying each 
cell type, with 0.5 being equivalent to a random guess.

To calculate the statistical significance of the AUROC 
scores, the performance of random gene sets in 
MetaNeighbor was compared to that obtained with the 
SynGO annotations by generating random gene sets of 
the same size. For each gene set size in SynGO 10,000 
gene sets were generated by sampling from all the genes 
expressed in the original dataset, as well as all genes 
found in SynGO. For each of these randomly generated 
gene sets the ‘fast_version’ of MetaNeighbor was used. 
Firstly, the AUROC scores were used to compare the 
average performance of random gene sets and random 
synaptic gene sets of each size. Secondly, the random 
synaptic gene sets were used to calculate the statistical 
significance of the SynGO annotation scorings by 
calculating an empirical p value. As indicated in Eq.  1, 
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this is done by calculating the fraction of scores from the 
randomized gene sets that are higher than the scores of 
the SynGO annotations. To calculate this as the overall 
score across all cell types, the score used for the p value 
calculation was the sum of the AUROC scores in the 16 
cell types. Likewise, we calculated the empirical p value 
of SynGO annotations performing significantly worse 
than random gene sets (fraction of AUROC scores from 
randomized synaptic gene sets lower than the scores of 
SynGO annotations).

where N = total number of random permutations (10,000)
To calculate the specificity per gene in Additional file 1: 

Table S1 we ranked the synaptic genes according to the 
cell type specificity of their expression by calculating the 
proportion of expression of each gene in each cell type 
similarly to Skene et al. [16]. To do so, we first normalized 
the gene expression in each cell type by aggregating the 
counts for each gene across cells belonging to the same 
cell type, scaling to 1 million counts and then dividing 
by the total counts in all cells in that cell type. Then the 
specificity score was calculated by dividing the normal-
ized expression of each gene in every cell type by the total 
expression if the gene in every cell type. The list of synap-
tic genes was then ranked by the maximum score of each 
gene, indicating that top ranked genes have a higher cell 
type specificity.

Quantification of cell type diversity encoded by synaptic 
genes
To measure and compare the cell type diversity observed 
with different gene sets MetaNeighbor analysis was 
performed as described in the previous section. The 
quantified gene sets included the most high variable 
genes among: all genes in the dataset, non-synaptic genes 
(defined as all genes excluding the genes in SynGO), all 
synaptic genes, presynaptic genes, postsynaptic genes 
and mitochondrial genes (all genes included in the 
dataset and annotated in MitoCarta [17]). AUROC scores 
were calculated for each gene set and cell type, as well as 
for every cell class. Wilcoxon rank test (followed by false 
discovery rate [FDR] correction) was used to determine 
statistically different performance of each pair of gene 
sets.

Synapse gene correlation network analysis
Weighted gene correlation network analysis (WCGNA) 
was used to investigate modules of synaptic genes in 
the transcriptional network of the dataset. In brief, the 
standard pipeline from the WGCNA [18] R package 

(1)
pval =

# random gene sets AUROC ≥ SynGO AUROC

N
;

was used to perform hierarchical clustering on the 
distance between every gene pair, calculated as 1-TOM 
(topological overlap matrix). To generate the TOM 
matrix, the co-expression similarity matrix is raised to a 
soft thresholding power (adjacency) that approximates a 
scale-free topology while keeping the mean connectivity 
of the network (ß = 4) [19]. Finally, the clustered genes 
are grouped into modules of highly interconnected genes 
using a dynamic branch-cutting algorithm. We used 
the dynamic tree cutting function (maximum height 
0.9, 0.95, 0.98) and the modules were selected from a 
consensus of the result.

The gene modules were classified using K-means clus-
tering on the eigenvector that explains the variance 
of gene expression in each cell type (80.3% variability 
explained). To do so, the average gene expression of each 
module in each cell was used to calculate the variance of 
expression for each gene module in each cluster. Next, 
the cell type identity information was removed, and the 
variance matrix ordered. The eigenvector explaining the 
maximum variability in the data (PC1) was used to clus-
ter the modules in groups of similar variances of gene 
expression.

The individual gene modules were characterized using 
two approaches: mapping the average expression of the 
module to the synaptic types and annotating the function 
or cellular compartment they are related to by gene 
ontology enrichment. The former was done by mapping 
the average expression of all genes in each module, 
normalized to the average expression of random genes, 
to the transcriptomic cell types and visualizing it in the 
tSNE generated using only synaptic genes. To map the 
function and cellular component most related to each 
gene module, hypergeometric gene set enrichment was 
used. The background used for this analysis (universe) 
was comprised by all the genes annotated in SynGO 
that were present in the Tasic et  al. [13] dataset. The 
significance scores (p value) from the hypergeometric 
tests were adjusted for multiple hypothesis testing using 
the Bonferroni correction method. Lastly, visualization 
of the test results for every gene module was produced 
with the sunburst custom color-coding tool of SynGO 
ontologies [12].

Results
Synapse genes contain cell identity information
To evaluate transcriptional diversity of synaptic genes 
in neuronal cell types, we filtered the expression data of 
cell types identified by Tasic et al. [13] using the genes in 
SynGO. We analyzed four gene sets, including all genes 
in the original dataset (Fig.  1A), all synaptic genes in 
SynGO (Fig.  1B), presynaptic genes in SynGO (Fig.  1C) 
and postsynaptic genes in SynGO (Fig.  1D). We then 
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compared the cell class and cell type diversity across the 
four different subsets. Here, we refer to the 133 transcrip-
tomic neuronal types described in Tasic et al. [13] as cell 
types (different colors in Fig. 1) and 16 merged groups of 
these cell types as cell classes. Distinct classes and cell 
types could be discerned using SynGO genes only and all 
genes in the dataset to a similar extent (Fig. 1A, B). Addi-
tionally, the observed transcriptomic diversity of presyn-
aptic (Fig. 1C) and postsynaptic (Fig. 1D) genes showed 
similar levels of cell type specification. Quantification of 
the class and cell type discriminatory power of synap-
tic gene expression was calculated as the cell classifica-
tion performance of each gene set using MetaNeighbor 
[15]. We included a similar sized gene-set from Mito-
Carta [17] as comparison. Synaptic genes had a similar 
power in discerning classes and cell types in comparison 
to all genes or after removing SynGO genes (Fig. 1E, F). 
We observed no difference in the discriminatory power 
between presynaptic and postsynaptic gene sets (Fig. 1E, 
F). Similarly, no difference was observed when measuring 
pre- and post-synaptic genes in excitatory and inhibitory 
neurons independently (Additional file 3: Fig. S1A). How-
ever, there is a considerable overlap between the terms 
pre- and post-synaptic genes. Comparing only the genes 
specific for each category revealed a significantly higher 
score of postsynaptic genes for inhibitory neurons (Addi-
tional file 3: Fig. S1B, C). This suggests that postsynaptic 
diversity is larger among GABAergic cells. These results 
indicate that the diversity of the synapse transcriptome 
across cell types is similar to that of the full transcrip-
tome. In Additional file 1: Table S1 we provide individual 
specificity scores (see methods) for each of the synaptic 
genes in the analysis.

Specific SynGO annotations underlie synapse diversity
To identify whether genes contributing to synapse diver-
sity belong to specific functional sets or are expressed 
in specific synaptic compartments, we analyzed the cell 
type discriminatory power of annotated SynGO terms. 
To test this, we used MetaNeighbor [15] to score the 
performance of each SynGO term on the task of dis-
criminating different cell types (AUROC scores) and 
compared it to random sets (of equivalent size) of genes 
drawn from SynGO and from all expressed genes in 
the dataset (Fig.  2, Additional file  4: Fig.  S2A). Several 
SynGO terms in both biological functions (BP, Fig. 2A, 

B) and cellular components (CC, Fig.  2C, D) discrimi-
nated cell types significantly better than random gene 
sets. Among the top biological process annotations 
are elements of the postsynaptic density organization, 
synaptic signaling, modulation of presynaptic chemi-
cal transmission and synaptic vesicle exocytosis. For 
cellular localisation, both presynaptic and postsynap-
tic membranes, as well as the presynaptic cytosol and 
active zone membrane were significant. A few catego-
ries conversely performed worse than random, includ-
ing ribosomal genes and genes involved in metabolism 
(Additional file  4: Figure  S2B, C). Analysis of average 
expression per category could not explain this result 
(Additional file 4: Fig. S2D, E). This analysis confirmed 
that synaptic genes perform better, on average, in cell 
type identification analysis than gene sets comprised of 
any gene expressed in the data also when normalising 
for number of genes. These results show that synapse 
diversity among different neuronal types accumulates in 
specific functions and cellular components.

Gene network analysis reveals different levels of synaptic 
organisation
WGCNA analysis and hierarchical clustering of the 
gene co-expression network revealed a high level of 
modularity of synaptic genes (Fig.  3A, Additional 
file  2: Table  S2). Classification of the gene modules 
according to the eigenvector calculated from the vari-
ance of gene expression across cell types (Fig.  3B), 
showed that synaptic gene modules can be clustered 
into three types: modules with specific expression in 
cell types or cell classes (discrete modules), modules 
showing a gradient of expression in a specific cell class 
(intermediate gradients) and modules with a similar 
gradient of expression in all cell types (pure gradients). 
Notably, these different classes of diversity were simi-
larly found in pre- and postsynaptic gene modules. The 
results from this analysis were mapped to cell types 
using the average expression of the gene module in 
each cell (Fig. 3E, G, I; Additional file 5: Fig. S3). Inter-
estingly, we observed modules with cell type specific 
expression in Vip-cells, sometimes shared with other 
cell types including Sncg-cells (pink; Fig.  3I) and near 
projecting cells (dark green; Additional file 5: Fig. S3). 
This suggest that some synaptic specializations can 
be re-used between GABAergic cell types and across 

(See figure on next page.)
Fig. 1  Neuronal diversity is recovered using only synaptic genes. t-SNE embedding visualization of the dataset from Tasic et al. [13] using the most 
variable genes among A all genes in the dataset, B only synaptic genes annotated in SynGO, C only presynaptic genes or D only postsynaptic 
genes, allow distinction of the annotated cell types to a similar extent. Dotted lines indicate cell classes and colors correspond to cell types 
described in Tasic et al. [13]. Quantification was performed by calculating the cell class (E) and cell type (F) discriminatory power of each gene set in 
the MetaNeighbor pipeline. Wilcoxon rank test was used to determine statistically different performance of each pair of gene sets (*: p <  = 0.05; **: 
p <  = 0.01; ***: p <  = 0.001; ****: p <  = 0.0001)
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Fig. 1  (See legend on previous page.)
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GABAergic and excitatory cell types. In addition, gene 
set enrichment analysis of the obtained gene modules 
showed the biological processes and cell compart-
ments (SynGO terms) to which each gene module is 
most related (Fig. 3D, F, H). Interestingly, none of the 
enriched SynGO terms in the different groups of mod-
ules are overlapping between groups. Modules exhib-
iting gradients of expression included terms related 
to metabolism, post- and pre-synaptic ribosome, and 
protein translation (similar to those terms indicated in 
Additional file  4: Fig. S2B). Interestingly we observed 

two gradient modules with opposing expression pat-
tern (Fig.  3C) suggesting that these are specific pro-
grams that are anti-regulated, perhaps in response to 
external signals or each other. This included the genes 
CTBP1 and ARL8 involved in “presynapse to nucleus 
signaling pathway” and “regulation of anterograde 
synaptic vesicle transport  respectively” (yellow mod-
ule), opposing the expression pattern of ribosomal 
and translational machinery genes (turquoise module). 
These results suggest that there are different types of 
synaptic organisation, ranging from cell type-specific 

Fig. 2  Synapse diversity resides in specific functions and cellular compartments. For all SynGO categories, the mean AUROC score across the 16 
cell types is shown for biological functions (A) and cellular compartments (C) annotated in SynGO. Some SynGO terms (red) perform better than 
random synaptic gene sets of the same size (black line). Randomly generated synaptic gene sets (black line) discriminate cell types better than 
random gene sets (grey line) regardless the set size (Wilcoxon rank sum test; W = 3049, p = 0.001). The sunburst plots show the SynGO biological 
processes (B) and cellular compartments (D) where most variability lies across all neuronal subclasses. The color code (p value) indicates SynGO 
terms that perform significantly better than random synaptic gene sets of the same size
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Fig. 3  WGCNA reveals different levels of synaptic organisation: pure gradients within cell types, intermediate gradients and discrete expression in 
specific cell types and cell classes. A WGCNA dendrogram and gene modules selected. B Density distribution of the eigenvector (PC1) that explains 
the variance of gene expression across cell types in the gene modules (80.3% variance explained). Colour coding corresponds to the K-means gene 
module classification according to their gradients across cell types. C Anticorrelation of the average gene expression of the turquoise and yellow 
gradient modules. D, F, H Sunburst plots showing the biological functions (left) and cellular components (right) for which the gene modules of 
each type show enrichment. Dark grey indicates non-significant SynGO terms that contain genes in the modules, and coloured SynGO terms 
indicate enrichment in one of the gene modules. E, G, I tSNE plot of example modules within each group colour coded with the average gene 
expression of the genes in each module
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to pan-neuronal programs, specified by distinct sets 
of genes at the transcriptome level, which also involve 
specific cellular functions.

Discussion
In this study, synapse diversity was mapped to previously 
defined transcriptomic neuronal cell types. We found 
that synaptic genes contain considerable cell identity 
information at the transcriptome level. Among synap-
tic genes, certain groups of genes associated to specific 
synaptic functions and localisation, annotated as SynGO 
terms, underlie the observed synapse diversity. Moreo-
ver, we identified additional candidate modules of co-
expressed genes that contribute to synaptic functional 
diversity. These gene modules suggest different types of 
synapse organisation or different hierarchies of synaptic 
specification.

These results agree with the proposed vast synapse 
diversity arising from the combination of the different 
proteins that have been described as part of the synapse 
proteome [4, 20]. Therefore, transcriptomic synapse 
diversity exists to a deeper extent of that depicted by the 
classical classifications of synapse types, possibly integrat-
ing the anatomical and physiological features classically 
described, as proposed for GABAergic interneurons in 
previous studies [11].

We observed cell type-related diversity in both the 
pre- and postsynaptic genes. Our findings add additional 
gene-level resolution to the postsynaptic site diversity 
previously proposed in the brain based on protein expres-
sion of Dlg4 (PSD95) and Dlg3 (SAP102) [5]. Additionally, 
our data highlights the existence of such diversity also in 
the presynaptic site, showing a similar molecular diversity.

Our results show that synapse diversity, as well as 
similarity, between different cell types resides in spe-
cific synaptic functions and components. We identified 
cytoskeleton organisation, cell adhesion and synaptic 
signaling, as important for synapse diversity. As expected, 
we observed gene modules specific to excitatory/inhibi-
tory synapse classification but also gene modules being 
specific to neuronal classes and neuronal types. An addi-
tional layer of diversity seems to be related to gradient-
like expression of gene modules within each cell type, and 
surprisingly gene modules showing opposing expression 
which is likely an indication of dynamic synapse regula-
tion as proposed by Zu et al. [5].

Despite the single-neuron synapse diversity depicted 
here, recent studies have also described synapse diversity 
within a single neuron [6]. Differential spatial distribution 
of synapse mRNA and proteins across the dendritic tree 
or between the cell body and synapses likely represent dis-
tinct functions within the same cell. It is our hope that our 

results broaden the understanding of synapse diversity and 
generate hypotheses for future single synapse research. 
Revealing the subcellular localization of these mRNA and 
proteins can provide insights on the synapse diversity 
within one neuron and the dynamic processes that occur 
in response to activity, perhaps through local translation 
of proteins. As an example, gene modules showing gradi-
ent expression profiles within cell types could reflect dif-
ferent cell states of the same cell types, in which single 
synapse variability could have a role. Our study provides 
the opportunity to expand the knowledge on the specific 
synaptic profile of distinct cell types. Further work in this 
direction could be used to selectively identify populations 
of synapses derived from specific populations of neuronal 
cell types, in intact tissue as well as in disease models.
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the 16 cell types is shown for biological functionsand cellular compart‑
mentsannotated in SynGO. Some SynGO termsscore significantly worse 
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