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Abstract

In this work we analyze the radiative generation of mass scales in high-energy
physics in classically scale-invariant models of particle physics and gravity. Ra-
diative generation in this context is based on the Coleman-Weinberg mechanism
which anomalously breaks scale-invariance. This approach is used to dynam-
ically generate the Planck mass, Majorana masses for right-handed neutrinos
and the Higgs mass from a common origin, and it also presents a convenient
approach for reanalyzing the hierarchy problem. Within this framework, glob-
ally scale-invariant quadratic gravity allows to also describe cosmic inflation
with a radiatively generated inflaton potential and the computed predictions
for inflationary observables are within the strongest experimental constraints.
The ensuing discussion with respect to the dynamical generation of the Planck
mass and inflation is deepened by the inclusion of radiative effects due to grav-
itational degrees of freedom into the picture. In particular, we find that the
quantum corrections of the massive spin-2 ghost, which is necessarily present
in quadratic gravity, plays a decisive role in generating the Planck mass while
simultaneously providing inflationary predictions which are consistent with the
strongest experimental constraint

Zusammenfassung

In dieser Arbeit analysieren wir die quantenmechanische Erzeugung von Mas-
senskalen in der Hochenergiephysik in Modellen der Teilchenphysik und der
Gravitation mit klassischer Skaleninvarianz. Die quantenmechanische Erzeu-
gung basiert in diesem Kontext auf dem Coleman-Weinberg-Mechanismus, der
die Skaleninvarianz anomal bricht. Dieser Ansatz wird verwendet, um die Planck-
Masse, die Majorana-Massen für rechtshändige Neutrinos und die Higgs-Masse
aus einem gemeinsamen Ursprung zu erzeugen. Dieser Ansatz eignet sich insbe-
sondere um das Hierarchieproblem neu zu analysieren. Darüber hinaus erlaubt
die Hinzunahme von quadratischer Gravitation mit globaler Skaleninvarianz
auch die Beschreibung von kosmologischer Inflation mit einem quantenmecha-
nisch erzeugtem Inflatonpotential. Wir zeigen auch, dass die berechneten Vor-
hersagen für Observablen, die in Verbindung zu kosmologischer Inflation stehen,
im Rahmen der stärksten experimentellen Beschränkungen liegen. Die Unter-
suchung in Bezug auf die dynamische Erzeugung der Planck-Masse und die der
kosmologischer Inflation wird durch die Einbeziehung von Quanteneffekten auf-
grund von gravitativen Freiheitsgraden vertieft. Insbesondere stellen wir fest,
dass die Quantenkorrekturen des massiven Spin-2-Geistfeldes, der in quadra-
tischer Gravitation zwangsläufig vorhanden ist, eine entscheidende Rolle spielt
um gleichzeitig die Planck-Masse zu erzeugen und Vorhersagen in Bezug zur
kosmologischen Inflation zu liefern, die konsistent mit den stärksten experimen-
tellen Beschränkungen sind.
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Chapter 1

Introduction

With the steadily increasing number of experimental confirmations and theo-
retical understandings of Quantum Electrodynamics (QED) over the course of
the last century, the merging of special relativity and quantum mechanics was
understood to come in the form of quantum field theory (QFT). In that pro-
cess, it was soon realized that interactions with so-called virtual particles at the
quantum level have an effect on observables and should be incorporated in the
theoretical predictions for these observables. For example, virtual photons give
rise to an anomalous magnetic dipole moment of the electron and this is one of
the reasons these effects were dubbed as radiative corrections [1]. In fact, the
measurement of the electron’s anomalous magnetic dipole is often quoted as
the most precise test of QED and the Standard Model (SM) of particle physics.
The findings show that theory and experiment agree to 1 part in 1012 [2] which
demonstrates the remarkable success of the SM and QFT as its foundation.
Today, the notion of radiative corrections is defined broader, in the sense that
not only photons but any particles take the role of virtual particles in quantum
corrections. Radiative corrections are therefore indispensable in our current
understanding of particle physics.

More than twenty years after the development of QED, Sidney Coleman and
Erick Weinberg [3] showed that radiative corrections may also play a key role
in the process of spontaneous symmetry breaking. They realized that theories
which show no sign of spontaneous symmetry breaking at the classical level,
may do so if radiative corrections to the effective scalar potential are taken into
account when computing the vacuum expectation value (VEV) of the theory.
In other words, the symmetry is broken by quantum effects and the process is
therefore called radiative symmetry breaking (RSB). Adopting this approach,
one can pose a fundamental question about the origin of mass scales in particle
physics.

In [3] it is shown that theories devoid of explicit mass scales in the La-
grangian at the classical level can generate mass scales dynamically by means
of RSB. It is tantalizing to apply this idea to electroweak symmetry breaking in
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2 1. Introduction

the SM where this breaking is achieved traditionally by introducing a tree-level
mass term for the Higgs boson. This quadratic term in the scalar potential
comes with a negative sign in order to trigger the symmetry breaking and is
the only dimensionful parameter of the SM. The field content of the SM alone
cannot account for triggering RSB as a way to break electroweak symmetry
due to the heavy top quark mass [4], however some effort has been made in
extending the SM in such way to understand electroweak symmetry breaking
along those lines, see e.g. [5–13]. In fact, we know that most of the baryonic
matter we observe obtains the majority of its mass through dynamical effects.
For example, the mass of the neutron substantially exceeds the sum of the three
constituent quark masses and this mass surplus is understood through vacuum
condensates of quarks and gluons. This is even the case of quantum chromo-
dynamics (QCD) with massless quarks, where in the non-perturbative regime
of the theory a finite scale ΛQCD arises giving rise to chiral symmetry breaking
and massive bound states. We take this as motivation to apply a similar logic
to the origin of the Higgs mass as this might give a theoretically more satisfying
answer to the origin of electroweak symmetry breaking rather than through the
ad hoc design of the Higgs potential in the SM. If the origin of mass scales is
to be explained in this manner, it remains to be understood how to deal with
the presence of explicit mass terms in the classical action which do not violate
any symmetries of the SM. Already in the fundamental work of RSB [3], the-
ories with no mass scales in the classical action were considered and since the
absence of intrinsic mass scales is tantamount to an invariance under rescaling
of lengths, the classical action acquires scale-invariance as a symmetry.1

Symmetries seem to be the most promising guiding principle in modern
physics, may it be internal gauge symmetries, spacetime symmetries or ap-
proximate global symmetries. One of the most famous examples is the un-
derstanding of the weak and electromagnetic interactions in terms of a locally
gauge-invariant theory which culminated in the development of the SM [14–16].
The weak interactions, due to their short range behavior, are expected to be
mediated by massive vector bosons. Contrary to the electromagnetic interac-
tion with massless photons, it seemed puzzling at first to formulate the elec-
troweak theory in terms of an exact local non-Abelian gauge-invariant the-
ory i.e. a Yang-Mills theory [17]. The apparent violation of gauge-invariance
through the massive vector boson led to theoretical difficulties including non-
renormalizability due to the mass terms of vector fields [18]. The Brout-
Englert-Higgs-mechanism [19,20] came to the rescue and allowed us to reconcile
Yang-Mills gauge theories with massive spin-1 particles as mediators, thereby
restoring renormalizability [21, 22]. The introduction of a fundamental scalar,
nowadays called the Higgs boson, which non-linearly realizes the electroweak

1The exact notion of scale-invariance will be defined more carefully in Section 3.5 and the
general guiding principle for scale-invariant model building in particle physics and gravity will
be laid out.
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symmetry by acquiring a finite VEV, allows the W and Z gauge bosons to
carry masses while maintaining gauge invariance. One of the lessons learned
from this is that the recognition of the symmetry, may it be non-linearly real-
ized, of the theory at hand can be very fruitful when dealing with theoretical
inconsistencies. We will adopt this philosophy with classical scale-invariance
as a guiding principle in this thesis, and try to apply it to some contemporary
puzzles in high-energy physics. In particular, there will be an emphasis on the
existence of multiple and largely separated mass scales, their emergence and
intertwining.

One of these contemporary puzzles, and a major driving force for physics
beyond the SM, is the gauge hierarchy problem of the Higgs mass. The Higgs
boson is the only seemingly fundamental scalar we have observed in nature
so far and is therefore the only particle which is plagued with a quadratic
sensitivity to higher mass scales beyond the SM. The smallness of the Higgs
mass with respect to an embedding scale, e.g. the Planck scale, is deemed
technically unnatural in the sense introduced by ’t Hooft [23]. In this work the
notion of naturalness is tightly connected to symmetry arguments in the sense
that physical parameter can be small and technically natural if their smallness
is protected by an enhancement in symmetry like chiral symmetry protecting
small fermion masses, for example. So are also the most popular solutions or
alleviations to the hierarchy problem based on symmetry arguments, e.g. low-
scale supersymmetry or composite Higgs models. However, an increasing lack
of observational evidence from the LHC for new particles at the TeV scale make
these approaches challenging and gives a strong impetus to explore alternative
ideas. In this thesis, we will adopt scale-invariance as such an alternative. It was
argued that scale-invariance, even though it is an anomalous symmetry, i.e. it
is not a symmetry of the quantum effective action, can alleviate the hierarchy
problem [24]. In this work it was argued that exponentially and radiatively
stable separated scales like the electroweak and the Planck scale can emerge
through the anomalous breaking of scale-invariance (see Section 3.4 for details).
However, one has to keep in mind that there exists evidence for physics beyond
the SM like the masses of neutrinos, dark matter, baryogenesis and inflation
which are likely to come hand in hand with new mass scales. So having a
global picture of mass scales in mind, we want to address the unified emergence
of high-energy scales, in particular the Planck scale, inflation scale, Majorana
mass scale of right-handed neutrinos and the electroweak scale in scale-invariant
models, while simultaneously monitoring the amount of fine-tuning required.

Even if the SM is valid up to very high energies, as it could be up to the
Landau pole associated with the hypercharge coupling at around 1042 GeV
[25], it is expected to be embedded into a theory of gravity at some scale.
This is expected to happen at the Planck scale, also interpreted as the scale
where quantum gravity effects become important. Aside from the cosmological
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constant2, the Planck mass is the single dimensionful parameter of General
Relativity. Following the path of scale-invariance requires a modification to the
standard approach of gravity. Since General Relativity is scrutinized by many
observational test in astrophysics and cosmology to remarkable precision, it is
clear that one must retrieve an effective Einstein-Hilbert term in the action at
low energies. As was argued for the electroweak scale, one has to account for
a dynamical generation for the Planck scale as has been done e.g. in [26–57].
We will implement this with a scalar field that acquires a finite VEV through
the Coleman-Weinberg-mechanism (CW-mechanism) [3] by coupling it non-
minimally to the Ricci scalar by two different approaches in Chapter 5 and
6. Furthermore, in globally scale-invariant gravity, the quadratic terms in the
curvature invariants must be included in the action meaning that quadratic
gravity comes with the advantage of being renormalizable [58], a fact which
carries over to scale-invariant versions of gravity [53, 54, 59]. Intuitively this
is due to an improved behavior of the graviton propagator which scales with
momentum like 1/k4 in the ultraviolet (UV). The other side of this coin is the
risk of losing unitarity [58] due to presence of higher derivative terms in the
action, as these terms also imply the presence of a spin-2 ghost as an additional
degree of freedom stemming from the metric. We will review possible solutions
to this ghost problem which have been put forward in the literature and show
that the radiative corrections of this spin-2 ghost cannot be ignored. In fact,
we will show in Chapter 6 it is key to simultaneously generating the Planck
scale and a suitable inflaton potential in globally scale-invariant gravity.

The threading of General Relativity into the cosmological context has led
to the concordance model of cosmology, the so-called Lambda cold dark matter
model (ΛCDM). If the energy density of baryonic matter is complemented with
that of dark matter and dark energy, we have a consistent picture from the
early universe, starting at big bang nucleosynthesis (BBN), up to the late time
evolution of the universe dominated by dark energy. One of the central pillars
of cosmology is the observation and understanding of the cosmic microwave
background (CMB). The measurement of the CMB by the Planck mission [60]
allows for the determination of the cosmological parameters of ΛCDM, e.g. the
matter density parameter Ωm or the Hubble constantH0. In spite of this success
it was realized shortly after the first observation of the CMB that the high
degree of isotropy of the CMB is puzzling if to be understood in the framework
of the traditional Big Bang theory of Friedmann–Lemâıtre–Robertson–Walker
(FRLW) cosmology. In short, the problem is that within this framework, it
is impossible for regions separated by large distances to have been in causal
contact, so no causal physics could have made them equilibrate to an isotropic
temperature related to the CMB photons. One way to settle this puzzle is
simply setting the Big Bang model up with very special initial conditions, but it

2We will comment only shortly on the related cosmological constant problem in this thesis
at a later point.
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is desirable to solve this more naturally by some dynamics of the early universe
while being insensitive to special initial conditions.

While the possibility of an early accelerated expansion was considered in
[61–63], it was Alan Guth who realized that an early inflating phase could re-
solve the aforementioned problem [64]. The new paradigm of cosmic inflation
was then refined in [65,66] which lead to the contemporary consensus that slow-
roll inflation should be incorporated into ΛCDM. This necessitates at least one
scalar field, the so-called inflaton, which has a flat potential such that the vac-
uum energy dominates over the kinetic energy while the inflaton slowly roles
down the potential. Under these circumstances the universe will inflate until
the slow-roll phase ceases and the energy density of the inflaton field has to be
transmitted to SM particles. After that, the standard ΛCDM timeline for the
evolution of the universe sets in. The slow-roll condition requires a flat scalar
potential, and this can be interpreted as a hint towards scale-invariance since
flat potentials appear naturally in scale-invariant theories simply due to the
lack of mass scales. In this thesis, we will compute the CW-potential in two
different models which can give rise to the generation the Planck scale but also
serve as inflaton potential. The inflationary period also causes the stretching of
primordial quantum fluctuations to cosmological scales which give rise to the
anisotropies of the CMB and the large-scale structure of the universe that we
observe today. This connection also offers the possibility to analyze the statis-
tical properties of the CMB and learn something about the microscopic theory
governing inflation, as we will do also in this thesis. The entailing constraints
on inflation [60] show that the power spectrum for scalar perturbations is very
close to the scale-invariant limit. One can interpret this again as motivation to
consider an underlying scale-invariant model.

Outline

In the next Chapter we will review the derivation of the quantum effective
potential to account for radiative corrections. The derivation of the effective
potential at the one-loop level will be first presented in a very general way, so
that the formulas can also be applied to the gravitational contributions which
will be computed in Chapter 6. In Chapter 3 we will review more details on
RSB and the CW-mechanism. In this regard, we will also discuss the gauge
hierarchy problem in more detail in Section 3.3 and its possible alleviation in
scale-invariant models in Section 3.4. Section 3.5 will clarify the terminology
of scale-invariance, conformal symmetry and so forth. Chapter 4 serves as a
review of the theory of cosmic inflation. After a short recap of ΛCDM and
the related Big Bang puzzles, we give a brief overview of slow-roll inflation.
We then move on to the study of primordial perturbations generated during
inflation with the ultimate goal in mind how to test inflationary models with
CMB observations. In Chapter 5 we develop a scale-invariant model which
addresses the unified emergence of the Planck scale, an inflaton potential, Ma-
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jorana masses for right-handed neutrinos and the electroweak scale. Also, we
shortly discuss the process of reheating and a possibility to incorporate a dark
matter candidate. To achieve RSB, we base our construction on an additional
scalar sector consisting of two real scalars. In Chapter 6 we switch gears and fo-
cus more on the additional gravitational degrees of freedom present in globally
scale-invariant gravity. After discussing the ghost problem and review possible
solutions to it in Section 6.1, we emphasize the effect of the mentioned spin-2
ghost to the effective potential which allows us the reduce the field content we
introduce in Chapter 5 in order to generate the Planck mass and the inflaton
potential. Chapter 5 and 6 will be complemented with further introductory
words extending this introduction.

Conventions

We work in natural units c = ℏ = 1 and with metric signature (+ ,− ,− ,−).
When the Planck mass or Planck scale are mentioned we refer to the reduced
Planck mass MPl = 1/

√
8πGN = 2.435× 1018 GeV.



Chapter 2

The Quantum Effective Action

To take quantum statistical fluctuations into account, the action of classical
field theory has to be replaced by the so-called quantum effective action. In
particular, we would like to analyze spontaneous symmetry breaking at the
quantum level. By taking quantum corrections into account the vacuum expec-
tation value (VEV) of a quantum field can be shifted with respect to its classical
value obtained from minimization of the classical potential. Since in this thesis
we want to study radiative symmetry breaking (RSB), it is paramount to com-
pute the quantum corrections to the scalar potential. These corrections can
be organized in a perturbative manner, i.e. an expansion in couplings. In this
chapter, we will show how to account for quantum fluctuations in an manage-
able manner by constructing the quantum effective action. It is effective in the
sense that all correlations functions are obtained from functional derivatives
of the quantum effective action where we are effectively dealing with classical
fields in an effective potential instead of quantum objects. To do so, we will
briefly introduce some functional methods following [3,67,68] in order to derive
the effective action. This will be illustrated in case of a single scalar field the-
ory. Then, we will specify the results for the effective potential in the one-loop
approximation and discuss the generalization to different particle species.

Let us start with specifying the generating functional for n-point correlation
functions for a scalar theory defined by the classical action S[ϕ] which is given
by the partition function

Z[J ] = ⟨0out|0in⟩J =

∫
Dϕ exp [i (S[ϕ] + ϕ · J)] , (2.1)

which can be interpreted as the complete vacuum to vacuum amplitude in
presence of a classical source J and we introduced the short-hand notation
ϕ ·J =

∫
d4xϕ(x)J(x). By taking functional derivatives with respect to sources

one generates the connected and unconnected correlation functions (i.e. Green’s
functions)

G(n)(x1, . . . , xn) = ⟨0|Tϕ(x1) . . . ϕ(xn) |0⟩ . (2.2)

7



8 2. The Quantum Effective Action

To get of rid of irrelevant information on disconnected diagrams, it is useful to
define the Schwinger functional by

Z[J ] = exp (iW [J ]) , (2.3)

which generates the connected correlation functions G
(n)
c (x1, . . . , xn), i.e. all

connected Feynman diagrams with n external lines, by taking functional deriva-
tives of W [J ] with respect to the source terms

G(n)
c (x1, . . . , xn) =

δnW [J ]

δJ(x1) . . . δJ(xn)

∣∣∣∣
J=0

. (2.4)

The n-point correlation functions obtained by this method are exact, i.e. they
are valid in the full interacting theory. The goal is to organize the interact-
ing quantum theory in an expansion of proper vertices which in turn can be
computed in a perturbative approach. The purpose of the effective action is
therefore to get rid of redundant terms in the Schwinger functional. Since all
physical information is encoded in one-particle irreducible (1PI) diagrams, one
has to go one step further and formulate a generating functional for 1PI dia-
grams which is given by the quantum effective action Γ[φ]. This is achieved by
the Legendre transform of W [J ] where the functional dependence on J will be
replaced by the VEV of the field ϕ in presence of the source, i.e.

φ(x)J =
δW [J ]

δJ(x)
=

(
⟨0|ϕ(x)|0⟩

⟨0|0⟩

)
J

, (2.5)

where φ(x)J is the so-called background field which is a classical field. We will
assume that this equation is invertible and define Jφ as the current for which
(2.5) is solved by

φJ(x) = φ(x) if J(x) = Jφ(x) . (2.6)

The quantum effective action is now defined by the Legendre transformation

Γ[φ] =W [Jφ]−
∫

d4xφ(x)Jφ(x) . (2.7)

Computing the first functional derivative of Γ[φ] gives

δΓ[φ]

δφ(x)
=

∫
d4x′

[(
δW [J ]

δJ(x′)

) ∣∣∣∣
J=Jφ

δJφ(x
′)

δφ(x)
− φ(x′)

δJφ(x
′)

δφ(x)

]
− Jφ(x)

= −Jφ(x) . (2.8)

where in the second equality we used (2.5). The above equation can be con-
sidered as the quantum equation of motion for φ also called Schwinger-Dyson
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equation. In absence of the source we find that the corresponding VEV v(x) =
φ(x)J=0 is determined by a stationary condition of the effective action

δΓ[φ]

δφ(x)

∣∣∣∣
φ=v

= 0 . (2.9)

This nicely illustrates the analogy to classical field theory, where the equation
of motions are obtained from the stationary points of the classical action S[ϕ].
One can state that the VEV of the quantum field ϕ is obtained from the sta-
tionary point of the effective action (2.9). Furthermore, it useful to discuss
the interpretation of Γ in terms of Feynman diagrams. Expanding the effective
action around the field configuration φ = 0 one obtains the vertex expansion

Γ[φ] = Γ[0] +

∞∑
n=1

1

n!

∫
d4x1 . . . d

4xn Γ
(n)[φ1, . . . , φn]φ(x1) . . . φ(xn) , (2.10)

where the coefficients

Γ(n)(x1, . . . , xn) =
δnΓ[φ]

δφ(x1) . . . δφ(xn)
(2.11)

encode the one-particle-irreducible connected correlation functions, also called
proper vertices. If we write Γ(n) in terms of its Fourier transform Γ̃(n) and then
expand Γ̃(n) around zero momentum, the effective action takes the form

Γ[φ] =

∞∑
n=1

1

n!

∫
d4x Γ̃(n)(0, . . . , 0)φ(x)n +

1

2

∫
d4xZ(φ)∂µφ∂

µφ+ . . . ,

(2.12)

where the dots stand for higher orders of derivatives. We are usually interested
in vacuum configurations with are invariant under translations, i.e. for φ(x) =
φc constant in space-time. In this case, the description with the functional Γ[φ]
can be replaced by

Γ[φc] =

∞∑
n=1

1

n!

∫
d4x Γ̃(n)(0, . . . , 0)φn

c = −Veff(φc)

∫
d4x , (2.13)

where we are dealing now with an ordinary function Veff called the effective
potential. The functional stationary condition (2.9) is then replaced by a sta-
tionary point of the effective potential

∂Veff
∂φ

∣∣∣∣
φ=v

= 0. (2.14)

Eq. (2.13) offers an interpretation in terms of Feynman diagrams. The ex-
pansion is organized in the so-called proper vertices Γ̃(n)(0, . . . , 0). After the
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desired loop order is specified, one can compute Γ̃(n)(0, . . . , 0) for arbitrary n
in a diagrammatic approach and then performing the summation in (2.13) will
yield the effective potential as is reviewed e.g. in [69]. In contrast to this, we
will derive a more general formula for the one-loop corrections in the follow-
ing section, since it will turn out useful in Chapter 6 to compute gravitational
contributions.

2.1 The One-loop Effective Potential

We derive a general formula for the one-loop effective potential, i.e. to order
O(ℏ), by following [68]. The classical action is expanded around the field con-
figuration ϕ0 which solves the classical equations of motion in presence of a
source, i.e.

δS

δϕ

∣∣∣∣
ϕ=ϕ0

= −J(x) . (2.15)

Then we expand the action around this field configuration

S[ϕ+ ϕ0] =S[ϕ0] +

∫
d4x

δS

δϕ(x)

∣∣∣∣
ϕ=ϕ0

ϕ(x)

+
1

2

∫
d4x

∫
d4x′ϕ(x)

δ2S

δϕ(x)δϕ(x′)

∣∣∣∣
ϕ=ϕ0

ϕ(x′) + I(ϕ0, ϕ) , (2.16)

where the last term collects the higher order interaction terms in this back-
ground. One can define the inverse propagator of the classical theory in a
constant background by

iD−1(ϕ0;x, x
′) =

δ2S

δϕ(x)δϕ(x′)

∣∣∣∣
ϕ=ϕ0

. (2.17)

Taking also (2.15) into account, (2.16) is written in the compact form

S[ϕ+ ϕ0] = S[ϕ0]− J · ϕ+
1

2
ϕ · (iD−1(ϕ0)) · ϕ+ I(ϕ0, ϕ) . (2.18)

The generating functional (2.1) for the shifted theory after taking (2.16) and
(2.15) into account reads

Z[J ] = exp{i(S[ϕ0] + ϕ0 · J)}
∫

Dϕ exp
{
i
(
ϕ · (iD−1(ϕ0)) · ϕ+ I(ϕ0, ϕ)

)}
,

(2.19)

where the last term will lead to terms of order O(ℏ2). The Schwinger functional
(2.3) for the connected n-point functions is therefore at the one-loop level

W [J ] = S[ϕ0] + ϕ0 · J +
i

2
lnDet(iD−1(ϕ0)) +O

(
ℏ2
)
, (2.20)
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where we have used the Gaussian path integral∫
Dϕ exp

{
i

2
ϕ ·M · ϕ

}
= (DetM)−1/2 . (2.21)

To obtain the effective potential (2.7) we need to perform a Legendre transfor-
mation and the functional dependence on J in (2.20) is traded for dependence
on the background field φ. Plugging (2.20) into the definition (2.7) we obtain

Γ[φ] = S[ϕ0] + (ϕ0 − φ) · J(ϕ0) +
i

2
lnDet(iD−1(ϕ0)) +O

(
ℏ2
)
, (2.22)

where J(ϕ0) indicates that J is to be taken as a functional of ϕ0 in light of
(2.15). Expanding the ϕ0 dependent terms in (2.22) around φ and noting that
ϕ0−φ ∼ O(ℏ), one can expand the effective action up to one-loop order (see [68]
for a detailed derivation). One obtains the final result at one-loop1

Γ[φ] = S[φ] +
i

2
lnDet(iD−1(φ)) +O

(
ℏ2
)
, (2.23)

which shows that the one-loop contribution to the effective potential is given
by the functional determinant of the inverse propagator iD−1 in presence
of a background φ. For practical calculations one often uses the relation
lnDet iD−1 = TrLn iD−1 and then evaluates the trace in momentum space,
since it is diagonal for φ = const, as shown in the next section. The remaining
(infinite) integral one has to solve can then be regularized and renormalized
with well-known methods.

2.1.1 Effective Potential for Scalar Fields

Let us illustrate the effective potential computation for a simple scale-invariant
model of a single real scalar field with the classical action

S[ϕ] =

∫
d4x

(
1

2
∂µϕ∂

µϕ− λ

4
ϕ4
)
. (2.24)

As mentioned, the inverse propagator for a translational-invariant background
φ = const in momentum space is diagonal

iD−1(φ, p, q) =
[
p2 −m(φ)2

]
δ4(p− q) , (2.25)

where we have introduced the field-dependent mass m(φ)2 = 3λφ2 of the scalar
field. The one-loop contribution of (2.23) is computed by

Γ(1)[φ] =
i

2
lnDet(iD−1(φ)) =

i

2
TrLn

(
iD−1(φ)

)
, (2.26)

1The capitalized operations Det(. . . ) and Ln(. . . ) are understood to be taken in the func-
tional sense.
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and since the inverse propagator (2.25) is diagonal in momentum space, we can
evaluate the functional trace

Γ(1)[φ] =
i

2
Tr δ4(p− q) ln

[
k2 −m(φ)2

]
=
i

2

∫
d4k

(2π)4
ln
[
p2 −m(φ)2

] ∫
d4x . (2.27)

The extra volume term to the right is removed in the effective potential contri-
bution (cf. (2.13)) so we are left with

V
(1)
eff (φ) = − i

2

∫
d4k

(2π)4
ln
(
k2 − 3λφ2

)
. (2.28)

The effective potential V
(1)
eff (φ) for this example can be also interpreted in Feyn-

man diagrams by

= + + . . .

where the dotted propagator on the left hand side is understood as the prop-
agator (2.25) with field-dependent mass m(φ) in a constant background. The
propagators on the right hand side are considered massless and one has to sum
over the infinite insertion of external legs which contribute the factors φ2n of
the background field .

The integral in (2.28) is UV-divergent and should be regularized with e.g. di-
mensional regularization. The finite part when the minimal subtraction scheme
(MS) is employed gives the standard result

V
(1)
eff (φ) =

m(φ)4

64π2

[
ln

(
m(φ)2

µ2

)
− 3

2

]
, (2.29)

where the divergent terms have been absorbed into the renormalized λ. In the
process the renormalization scale µ was introduced.

The nice feature of the functional form derived in (2.23) is that it can be
easily generalized to more complicated theories. For example, considering a
theory consisting of N scalar fields φi with inverse free propagator given by

iD−1(φ, p, q) =
[
p2δab −Mab(φi)

2
]
δ4(p− q) , (2.30)

where the mass matrix is obtained from the tree-level potential

M2
ab(φi) =

∂2V (0)

∂φi∂φj
. (2.31)
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The derivation of the one-loop effective potential is analogous to the N = 1
case, but with the trace operation acting now also over the mass matrix of the
scalar fields. The finite part in MS-scheme is

V
(1)
eff (φi) = tr

(
M(φi)

4

64π2

[
ln

(
M2(φi)

µ2

)
− 3

2

])
. (2.32)

If the mass matrix is diagonalized, it is easy to see that the trace will account
for the N scalar degrees of freedom.

2.1.2 Effective Potential for General Field Content

The result can be further generalized to different particles species, always taking
into account that the trace operation in (2.23) has to be taken over spin and
other internal degrees of freedom. Following this approach, one can write down
the general formula for the one-loop contributions in MS-scheme as [69]

V (1)(φ) =
1

64π2

∑
i

Nim
4
i (φ)

[
ln

(
m2

i (φi)

µ2

)
− ci

]
, (2.33)

where the sum runs over the particles with respective field-dependent masses
mi(φ) and the remaining constants are given respectively by

Ni =


1 for real scalars

3 for vector bosons

−2 for Weyl fermions ,

(2.34)

ci =

{
3
2 for scalars and fermions
5
6 for vector bosons .

(2.35)
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Chapter 3

Radiative Symmetry Breaking
and Scale-invariance

The methods laid out in the previous section are very useful to study spon-
taneous symmetry breaking at the quantum level. The radiative corrections
are taken into account perturbatively by a n-loop expansion [3] to the scalar
potential. As the scalar potential is crucial for the study of symmetry break-
ing, this begs the question whether an analysis at the tree-level compared to
the one-loop level give the same result. In the SM the breaking of electroweak
symmetry is based on the Higgs mechanism which relies on the tree-level po-
tential with inclusion of a mass term with negative sign to induce the so-called
“Mexican hat” potential

V
(0)
SM (h) = −m

2

2
h2 +

λH
4
h4 , (3.1)

where h is the neutral component of the Higgs doublet H. The minimzation
of the tree-level potential shows that the scalar condensate vEW = ⟨h⟩ ≠ 0 is
formed which breaks electroweak symmetry spontaneously. Consequently, the
SM fermions become massive through their Yukawa coupling to the Higgs dou-
blet and all scales of the SM are generated.1 The general formula for one-loop
corrections (2.33) allows to take into account the one-loop radiative corrections

V
(1)
SM to the tree-level potential of the SM. In the resulting SM effective potential
V eff
SM it is sufficient to sum only particles with masses close to the electroweak

scale, i.e. the electroweak gauge bosons, the Higgs boson and the top quark.
This effective potential then also allows to compute the Higgs mass at one-loop
through

m2
H =

∂2V eff
SM

∂h2

∣∣∣∣
h=vEW

, (3.2)

1Note however, that the QCD condensation scale ΛQCD can arise independently with mass-
less quarks due to its asymptotically free nature.

15
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where

V eff
SM(h) = V

(0)
SM (h) + V

(1)
SM (h) . (3.3)

Irrespective whether the tree-level potential (3.1) or the one-loop effective po-
tential (3.3) are utilized, the qualitative result is the same: Electroweak sym-
metry breaking is successful within the SM which means that the pole mass of
the Higgs and the electroweak scale are given by the measured values

mH = 125 GeV , vEW = 246 GeV . (3.4)

Quantitatively, the inclusion of higher orders alters the fundamental renormal-
ized SM parameters in order to fix the SM observables (3.4).2

The question we want to address now is whether electroweak symmetry
breaking is possible in a scale-invariant version of the SM, i.e. when the Higgs
mass parameter of (3.1) is set to m = 0, also called conformal SM (cSM). Thus,
working with a scale-invariant tree-level potential in the effective potential

V eff
cSM(h) =

λH
4
h4 + V

(1)
SM (h) , (3.5)

one finds a qualitatively different result. It is well known that the heavy mass
of the top quark dominates the potential (3.5) in such a way that it is not
possible to obtain the correct values for the Higgs mass and electroweak scale
shown in (3.4), which renders the scale-invariant SM phenomenologically not
viable. For this reason, one has to complement the particle content of the cSM
with additional bosonic degrees of freedom in order to dynamically generate the
electroweak scale and Higgs mass consistent with (3.4). The viability and con-
crete realizations of this approach are studied e.g. in [5–11,13,72]. Furthermore,
such studies come often hand in hand with incorporation of BSM topics like
dark matter, neutrino masses, baryogenesis and cosmological first-order phase
transitions [73–99]. Parallel approaches haven been developed in [12, 100–106]
which are not based on the CW-mechanism but on non-perturbative mecha-
nisms which give rise a confinement scale, analogous to the situation in QCD.
In this thesis, we will base the dynamic generation of scales on the perturbative
methods by Coleman and Weinberg [3], which we introduce in the following
section with scalar QED as an easy example at hand.

3.1 Coleman-Weinberg Mechanism

The CW-mechanism can be studied within the context of perturbation the-
ory as outlined in Chapter 2. As the simplest scenario one can address the

2The process of electroweak symmetry breaking is often studied, e.g. in [25, 70, 71], by
the parametrization Veff(h) = −m2(µ)h2 + λ(µ)h4/4 of the effective potential where one uses
the running couplings in the MS-scheme to include orders beyond tree-level. Electroweak
symmetry is then achieved at the scales µ where m2(µ) > 0 and λ(µ) > 0.
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scale-invariant theory of one scalar field discussed in Section 2.1.1. To answer
the question, whether this model can lead to RSB, let us collect the effective
potential up to one-loop order (cf. (2.24) and (2.29))

Veff(φ) =
λ

4
φ4 +

m(φ)4

64π2

[
ln

(
m(φ)2

µ2

)
− 3

2

]
. (3.6)

It is obvious that the tree-level term proportional to λ alone can not lead to
spontaneous symmetry breaking, but can the addition of the one-loop term with
its logarithmic form induce a non-trivial minimum? The stationary condition

Veff(φ)

∂φ

∣∣∣∣
φ=v

= 0 (3.7)

at one-loop order for this theory can be rewritten as

λ

[
ln

(
3λv2

µ2

)
− 1

]
= −16π2

9
. (3.8)

For a minimum to occur at finite v, this equation shows that the logarithm
L = λ ln

(
3λv2/µ2

)
must be large, i.e. |L| ≫ 1 [3]. On the other hand, higher

orders in perturbation theory will bring additional terms containing higher
powers of L and this shows that for |L| ≫ 1, the one-loop approximation cannot
be trusted since the higher orders would be dominant. Therefore, one cannot
trust the outlined analysis of radiative symmetry breaking (RSB) for a single
scalar. In fact, [3] showed that the perturbative approach can be improved
with the help of renormalization group (RG) methods which effectively resum
certain terms containg powers of L up to infinite loop order. Nevertheless,
this analysis confirms that the minimum obtained by (3.8) is phony and one
can conclude that a single scalar theory cannot induce RSB by itself in the
perturbative regime.

We turn now to the arguable simplest model of massless scalar QED which
can achieve successful RSB within the range of validity of perturbation theory,
where we again follow [3]. Massless scalar QED with the classical action

SsQED =

∫
d4x

(
−1

4
FµνF

µν +
1

2
(DµΦ)

∗(DµΦ)− λ(Φ∗Φ)2
)

(3.9)

is classically scale-invariant and consists of a complex scalar Φ = (ϕ1+ iϕ2)/
√
2

charged under an U(1) gauge fieldAµ with field strength Fµν and gauge coupling
g. The effective potential up to one-loop order is (cf. (2.33))

Veff(φ) =
λ

4
φ4 +

3mA(φ)
4

64π2

[
ln

(
mA(φ)

2

µ2

)
− 5

6

]
, (3.10)

with field-dependent vector mass m2
A(φ) = g2φ2 and the effective potential

can only depend on the gauge invariant combination φ2 = φ2
1 + φ2

2 of the
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background fields for the two real scalars ϕ1 and ϕ2. In (3.10) we have omitted
the one-loop contribution coming from the scalar itself since it is subdominant
in the perturbative regime as we have seen in the above example. This can
be underpinned with the simple following estimate. The tree-level potential is
O(λ) and the one-loop correction due to the scalar is O

(
λ2
)
. For a radiatively

induced minimum the one-loop part of the effective potential needs to compete
with the tree-level part, i.e. a scaling likeO(λ) = O

(
λ2
)
is needed which violates

perturbativity. The situation changes in the effective potential for scalar QED
(3.10), where the one-loop contribution from the gauge field Aµ scales as O

(
g4
)
.

There is nothing wrong with a scaling of the parameters like O(λ) = O
(
g4
)

and so the one-loop term can substantially modify the tree-level potential. The
stationary condition (2.14) derived from (3.10) with the self-consistent choice
µ = v = ⟨φ⟩ for v ̸= 0 reads

λ = − 3g4

16π2

[
ln
(
g2
)
− 1

3

]
. (3.11)

This equation can be satisfied within the validity of perturbation theory, i.e. for
small λ. One can conclude, that a finite VEV v is generated. This process is also
called dimensional transmutation in [3], since the λ-dependence of the effective
potential can be replaced through (3.11). Effectively, the dependence on two
dimensionless parameters λ and g is then replaced by g and the scale of the
VEV v. In the broken phase the scalar and the gauge boson acquire the masses

m2
ϕ =

∂2Veff
∂φ2

∣∣∣∣
φ=v

=
3g4

8π2
v2 , m2

A = g2v2 , (3.12)

where the would-be Goldstone boson is absorbed into the massive vector boson.
As this mechanism was presented, (3.11) might read as a restriction between
the coupling constants λ and g in order to achieve RSB. However, in the RG
language, the coupling constant should be considered as running coupling con-
stants λ(µ) and g(µ) depending on the renormalization scale µ. As discussed
in [3], if some perturbative boundary values for λ(µ0) and g(µ0) are defined
at some scale µ0 with no sign for RSB, the RG running will always lead to a
lower scale µ∗ at which (3.11) is satisfied. So the classical scale-invariance of
scalar QED will be necessarily broken through the RG-running for arbitrary
but perturbative values of λ and g. It seems like the charging of the scalar
field under some gauge group is necessary for the CW-mechanism to work, but
as we show in the nextion section it can be achieved in a similar fashion for
multi-scalar models.

3.2 Gildener-Weinberg Approach

A few years after the CW-mechanism was proposed [3], E. Gildener and S.
Weinberg (GW) [107] formulated an approach to study RSB by applying the
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CW-mechanism to multi-scalar models. This approach is widely used in the
literature for dynamical generation of the electroweak scale when the SM is
extended with additional scalars. The advantage of the GW-approach is that
it allows to approximate the effective potential with multi-field dependence ef-
fectively by a one-field description of the effective potential. The most minimal
setup to achieve RSB within the GW-approach is a two scalar theory, without
the necessity for additional gauge fields, a setup we will utilize in chapter 5.

First, we briefly review the GW-approach in the general case of a tree-level
potential with quartic interactions for N scalar fields

V (0)(Φ) = λijklΦiΦjΦkΦk , (3.13)

where ΦT = (Φ1, . . . ,ΦN ). The underlying assumption is that at high energies
the theory is in the symmetric phase, i.e. the global minimum is located at
V (0)(0) = 0, but at lower energies the potential develops a flat direction. The
latter, is stated by a condition on the set of couplings λijkl(µ) which become RG-
running quantities when quantum effects are taken into account.3 We refer to
the scale at which this condition is fulfilled as the GW scale µGW in dimensional
regularization. The flat direction of the tree-level potential (see also Fig. 3.1)
can be thought of as a ray in field space parametrized by the vector

Φ0 = nφ , (3.14)

where n is a unit vector and φ is the radial field value along the flat direction.
The tree-level potential vanishes along this ray, i.e.

V (0)(Φ0) = 0 , (3.15)

and this gives an infinite set of degenerate non-trivial minima. Including now
the one-loop corrections will give some curvature to the potential along the flat
direction and thereby picks out a non-degenerate minimum at vφ = ⟨φ⟩ ≠ 0.
The nice feature of the GW approach is that the effective potential, which in
general depends on N scalar fields, can be parameterized solely with the radial
field φ in (3.14). Doing that and keeping in mind that the tree-level part van-
ishes by construction (3.15), we can write down the following parametrization
of the effective potential along the flat direction at the GW scale

Veff(Φ0) = Veff(nφ) = Aφ4 +Bφ4 ln

(
φ2

µ2GW

)
. (3.16)

One should be aware that this in approximation and that the one-loop cor-
rections might change the shape of the tree-level potential substantially by
shifting the flat direction or removing it completely. In particular, the addition
of gauge fields or fermions which couple not uniformly to the scalar fields Φi

3See e.g. [76, 107] for details on the GW condition.
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might change this analysis. In such cases, one should therefore carefully check
with the full effective potential Veff(Φ1, . . . ,ΦN ), keeping the dependence on all
fields, if this is the case. We take these matters aside in the rest of this work,
and refer to [13] for a more detailed discussion. The non-trivial stationary point
of (3.16) can now be easily obtained by

ln

(
v2φ
µ2GW

)
= −1

2
− A

B
(3.17)

and determines the VEV vφ and can be related to VEVs of the Φi-fields with
(3.14). The dimensionless functions A and B are obtained by the general one-
loop formula for the effective potential (2.33) depending on the field content of
the model. They explicitly read

A =
1

64π2v4φ

∑
i

Nim
4
i (nvφ)

[
ln

(
m2

i (nvφ)

v2φ

)
− ci

]
, (3.18)

B =
1

64π2v4φ

∑
i

Nim
4
i (nvφ) , (3.19)

where the masses of the scalars, vectors and fermions in the model are evaluated
on the flat direction (3.14). The second derivative of the effective potential
evaluated at the minimum

m2
φ :=

∂2Veff(nφ)

∂φ2

∣∣∣∣
φ=vφ

= 8Bv2φ (3.20)

confirms that the stationary point is indeed a minimum if the field content is
such that B > 0 is satisfied (cf.(3.19)). The scalar excitation φ with mass mφ

is often interpreted as the pseudo-Goldstone boson related to the breaking of
scale-invariance. It is also called scalon in [107] and obtains its mass at the
one-loop level through the anomalous breaking of scale-invariance.

Even if the model contains only scalars, RSB can be achieved in this ap-
proach as we show next with a two scalar field example. We assume the fol-
lowing scale-invariant tree-level potential

V (0)(φ1, φ2) =
1

4

(
λ1φ

4
1 + λ12φ

2
1φ

2
2 + λ2φ

4
2

)
. (3.21)

and the two tree-level stationary conditions with respect to φ1 and φ2 can be
rewritten as

4λ1λ2 − λ212 = 0 , (3.22)

v21
v22

= − λ2
2λ12

, (3.23)

where we have assumed that v1 = ⟨φ1⟩ ≠ 0, v2 = ⟨φ2⟩ ̸= 0 and λ12 < 0. The
above equations can be understood as the GW-condition for a flat direction
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Figure 3.1: Example of a 2-dimensional scalar potential with the red lines indicating the
flat directions.

which should be satisfied at the scale µGW. Using polar coordinates for the
VEVs v1 = vρ cos(θ0) and v2 = vρ sin(θ0), one can determine from (3.23) that
the angle θ0 of the flat direction is determined by

tan θ0 =

√
−2λ1
λ12

, (3.24)

which can be used to adjust the desired flat direction by tuning the quartic
couplings. The one-loop corrections coming from the scalar degrees have to be
included along the flat direction to obtain the value of the radial VEV vρ. The
other case λ12 > 0 has the GW-conditions

λ1 = 0 , (3.25)

sin(θ0) = 0 , (3.26)

such that only one field v1 = ⟨φ1⟩ develops a VEV. This be will the case for
our construction in Section 5.2.

3.3 The Gauge Hierarchy Problem

It is generally accepted that the SM is not complete. One the one hand due to its
shortcomings to account for certain phenomenology we observe like dark mat-
ter, neutrino masses and baryogenesis. On the other hand, there are theoretical
motivations to extend the SM to account for example for the grand unification
of the gauge couplings or to solve the strong CP-problem. It is therefore not
far-fetched to expect related higher mass scales beyond the electroweak scale.
Even if this does not apply, we know that the SM needs to be embedded in
gravity which gives rise to the Planck scale. The fact that the Higgs boson
is interpreted as the only elementary scalar in coexistence with higher energy
scales, may it be the Planck scale, beyond the SM introduces the infamous
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gauge hierarchy problem of the Higgs mass within the SM. The hierarchy prob-
lem is connected to the bare Higgs mass m2 in the tree-level potential (3.1)
and the appearance of quadratic divergences when one-loop corrections to this
parameter are computed. The presentation of the problem is often stated by
regularization with a hard momentum cutoff ΛUV. The Higgs mass corrections
are then quoted to be proportional to δm2 ∝ g2i Λ

2
UV, where gi stands for some

SM coupling. The sole intention of this argument is to expose the quadratic
sensitivity of the Higgs mass to some potential UV scale of new physics, but one
should add two comments to not misinterpret this. First, of course the cutoff
ΛUV is purely technical and any physical result should be independent of it.
Therefore, it should be only seen as a placeholder of a high-energy scale with
physical interpretation. Considering theoretically the SM by itself, meaning if
it is not embedded in some larger theory in the UV like quantum gravity, does
not have a hierarchy problem. To make these subtle points clear-cut, we find
it best to understand the hierarchy problem in the effective field theory (EFT)
picture as for example done in [108]. In this picture, one defines a matching
scale, usually taken to be the heavy mass scale, at which the heavy degrees of
freedom are integrated out and matched to the EFT which is valid at lower
energies, meanwhile computing the induced threshold corrections on the pa-
rameters of the EFT. To clarify the latter comment on the SM in isolation,
one can consider a simple scalar theory. The model consists of a single scale
so the application of EFT methods might seem superfluous, but this treatment
nevertheless shows that a single scale EFT is well behaved at all scales when
RG improved methods are used [108]. Similar arguments apply to the SM in
isolation since it has no heavy scales it can talk to. For example, the Higgs
mass obtains a one-loop correction from itself running in the loop with finite
part given by

δm2 = m2 λ2h
32π2

[
ln

(
µ2

m2

)
+ 1

]
, (3.27)

which is not too large, as for any other particle of the SM running in the loop.
To understand the root of the hierarchy problem, one should consider the EFT
picture for a model consisting of two separated mass scales which will depict
the lack of decoupling of IR physics from UV physics for masses of elementary
scalars. As a toy model, we consider a light scalar ϕ of mass m (resembling the
Higgs boson) coupled to a heavy scalar Φ with mass M (placeholder for UV
scales) with the Lagrangian of the full theory

L =
1

2
∂µϕ∂

µϕ− m2

2
ϕ2 +

1

2
∂µΦ∂

µΦ− M2

2
Φ2 − λ12Φ

2ϕ2 , (3.28)

where we have omitted other quartic couplings for the sake of the simplicity of
the argument to be made. Note that the role of Φ could be replaced by a heavy
Dirac fermion for the sake of this argument. We integrate out the heavy scalar
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at the matching scale µM ≃M and match it onto the EFT consisting solely of
the light scalar ϕ as propagating degree of freedom. The threshold corrections
at the matching scale µ after renormalization induce the matching condition
for the mass parameter [108]

δm2
EFT = m2 − λ12

32π2
M2

[
ln

(
µ2M
M2

)
+ 1

]
, (3.29)

where the m and M are the mass terms in the full theory (3.28) and mEFT is
the mass of the light scalar in the EFT. We see that for m≪M the threshold
corrections δm2 ∝ M2 dominate which shows clearly the quadratic sensitivity
to the heavy scale. This mismatch can be absorbed by fine-tuning the bare m2

term in the full theory order by order in perturbation theory but this is deemed
technically unnatural [23]. This in contrast to a light fermion with mass mF

coupled to a heavy scale M since it is protected by chiral symmetry in the
limit mF → 0 which manifests itself by threshold corrections which scale as
δmF ∝ mF and thus show no dangerous sensitivity to the heavy scale.

We can conclude that if the SM is embedded into an UV theory at the scale
ΛUV, the Higgs mass parameter would obtain large corrections of order ΛUV

in light of the EFT matching condition (3.29) with M ≃ ΛUV and this would
require extreme fine tuning of the Higgs mass parameter to account for viable
electroweak symmetry breaking.

3.4 Anomalous Breaking of Scale-invariance

We turn now to the interpretation of the hierarchy problem in scale-invariant
theories. In Section 3.1 we have seen that when tree-level mass terms are set
to zero, masses can be generated dynamically with the CW-mechanism. Since
scalar mass terms are central to the discussion of the hierarchy problem, as
shown in the previous section, this is a fair question to ask. At first sight, it
might seem convincing that scale-invariance is the symmetry which would make
a small Higgs mass technically natural [23] because the SM is scale-invariant
in the limit m → 0. It is important to note that this is only a symmetry at
the classical level which is not preserved when quantum corrections are taken
into account since they necessarily introduce a dependence on the energy scale
through the process of renormalization for any regularization method used [109,
110].4 In other words, the quantum effective action derived in (2.23) does not
respect the scale-invariance of the classical action. Contrary to spontaneous
symmetry breaking where only the ground state but not the effective action
break the symmetry, this process is called anomalous breaking. The so-called
conformal anomaly is quantified by the anomalous Ward identity of conformal

4Other approaches where scale-invariance is preserved at the quantum level and scale-
invariance can be broken spontaneously haven been proposed but come at the price of non-
renormalizable interactions [111]. We will not follow this approach in this thesis.
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symmetry, which encapsulates how the symmetry is broken. This is encoded in
the non-conservation of the dilatation current Jµ, or equivalently the trace of
the improved energy-momentum tensor Tµν [112]. In general, for a classically
scale-invariant theory it can be written as

∂µJµ = Tµ
µ =

∑
i

βi · Ôi + C , (3.30)

where βj are the one-loop beta functions to the corresponding local dimension
four operators Ôi [109]. The second term C, also called Weyl anomaly [113],
arises in curved backgrounds and contains curvature-dependent terms (see also
[114–116]). We will focus now on the first term in (3.5) because it encapsu-
lates the anomalous breaking of scale-invariance in flat space at the quantum
level through the scale-dependence induced by the RG-running of the couplings
which arise when βi ̸= 0. It has been argued in [24] that this anomalous break-
ing can solve the hierarchy problem, or at least offer a new perspective on it.
Assuming that the conformal anomaly is the only source of breaking, (3.5) re-
veals that IR physics are only logarithmically sensitive to UV physics, because
the β-functions do not know about quadratic divergences and only encode the
logarithmic running of the coupling constants [7, 24]. From this fact it is de-
duced in [24] that two scales, i.e. a radiatively generated scale (for example with
the CW-mechanism) and some embedding scale can be exponentially separated
and remain radiatively stable. This argument is only valid if there are no other
intermediate scales between the breaking scale and the embedding scale. One
should therefore also account for the absence of Landau poles or instabilities in
the potential up to the embedding scale to ensure that the model is viable in
that range [6,7]. In this approach, the embedding scale is interpreted differently
as a standard physical threshold scale in the QFT picture. Rather than seeing
it as some physical scale where EFT matching as in (3.29) is to be performed, it
has been advocated in [7,117] to rather interpret it as scale-invariant boundary
condition at the embedding scale on the RGE of the couplings. The hypothesis
is therefore that the embedding scale, usually identified with the Planck scale
above which concepts beyond QFT might apply, is therefore not interpreted in
the Wilsonian picture of EFTs [6–8].

Under these working assumptions, it seems plausible to dynamically gener-
ate a mass scale which is radiatively stable and exponentially smaller than the
Planck scale and can be applied to a scale-invariant extension of the SM as has
been done e.g. in [5–13, 72–106]. If the model under consideration consists of
multiple scalar fields which are supposed to have widely separated VEV scales,
the hierarchy problem is reformulated in the fine-tuning of the respective por-
tal terms, as λ12 in (3.28), because they can transmit one VEV scale from one
sector to another. In the introduction we have motivated to generate widely
separated mass scales by one common radiative origin, so this will be an issue
of our studies and calls for further explanation. We return to the issue of small
portal couplings and their stability under RG-running in Section 5.4 and 5.5,
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while the answer might still be far from ultimate and satisfactory, we demon-
strate how to soften this huge hierarchy and hope to offer a new perspective on
the hierarchy of dynamically generated mass scales.

3.5 Scale-invariance, Conformal Symmetry andWeyl
Symmetry

We conclude this chapter by clarifying the notion of scale-invariance used in
this thesis and comment on the related concepts of conformal symmetry and
Weyl symmetry. Scale transformations or dilatations have one parameter λ and
rescale the coordinates according to

xµ → λxµ . (3.31)

It useful to define the transformation rule in field theories for scalars, fermions
and vector boson according to their scaling dimension

ϕ(x) → λ−1ϕ(λx) , ψ(x) → λ−3/2ψ(λx) , Aµ(x) → λ−1Aµ(λx) . (3.32)

We refer to a classical Lagrangian invariant under (3.31) and (3.32) as scale-
invariant since it conserves the dilatation current at the classical level. From
this follows, that in d = 4 space-time dimension the general building blocks
of a scale-invariant theory consisting of real scalars ϕi, Weyl fermions ψa and
vector gauge bosons ZA

µ can be written in general in flat space as

S =

∫
d4x

(
−1

4
FA
µνF

A,µν +
1

2
DµϕiD

µϕi − λijklϕiϕjϕkϕl

+
i

2
ψa /Dψa − (yabi ϕ

iψaψb + h.c.)

)
, (3.33)

where D is the gauge-covariant derivative acting on scalar and fermions, re-
spectively. We will base the scale-invariant models discussed in Chapter 5 and
6 on this construction.

Conformal symmetry, on the other hand, is obtained if dilatations (3.31)
are complemented with special conformal transformations which transform co-
ordinates according to

xµ → x′µ =
xµ + vµx2

1 + 2v · x+ v2x2
, (3.34)

and belong to the four parameter group of special conformal transformations.
Invariance under (3.31) and (3.34) is defined as conformal symmetry. The cor-
responding conformal group consists of, next to the ten Poincaré generators,
of the dilatation generator and the four generators of special conformal trans-
formation. Combining only the dilatation generator and the Poincare group
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one obtains a closed algebra which is therefore just a subgroup of the full con-
formal algebra [115]. Mathematically speaking, scale-invariance and conformal
symmetry should therefore in general be distinguished. It is also obvious that
conformal symmetry implies scale-invariance, but not vice versa. However,
if the emphasis is put on well-behaved field theories which are of interest in
physics this view is softened and scale-invariance implies also conformal invari-
ance [118]. More generally speaking, this is conjectured for QFTs in d = 4 on
quite general assumptions (unitarity, Poincaré invariance, discrete spectrum in
scaling dimensions, existence of scale current and unbroken scale invariance)
which is discussed in detail in [115].

The previous consideration where made in the absence of gravity. The gen-
eralization to curved space-time where the metric is considered as a dynamical
field, leads to the further distinction between conformal symmetry and Weyl
symmetry. In this setting, the conformal transformations are coordinate trans-
formation which transform the metric locally according to [119–121]

gµν(x) → g′µν(x
′) =

∂xλ

∂x′µ
∂xσ

∂x′ν
gλσ(x) = Ω̂2(x′)gµν(x′) , (3.35)

which can be read as a coordinate transformation which leaves the metric in-
variant up to the conformal factor Ω̂2. This places restrictions on the rescaling
function Ω̂2. On the other hand, Weyl transformations are not defined by acting
on the coordinates but transform the metric and fields pointwise [119–121]

gµν(x) → g′µν(x) = Ω2(x)gµν(x) , Φ(x) → Φ′(x) = Ω−dΦ(x)Φ(x) , (3.36)

where dΦ denotes the scaling dimension of the field Φ and Ω(x) is an arbi-
trary but non-vanishing function. From these considerations one can deduce
that a diffeomorphism invariant theory with Weyl invariance in a general back-
ground implies conformal invariance in flat space-time but not necessarily vice
versa [119, 120]. In [119] however, it is argued that conformal invariance in
flat space-time implies Weyl invariance for a general background for all local
unitary QFTs with d ≤ 10. One can furthermore define a global version of
the Weyl transformation, i.e. (3.36) with Ω(x) = Ω = const, which leads to
the notion of global scale-invariance. When we are dealing with gravitational
theories in Chapter 5 and 6 we will assume global scale-invariance. Under the
condition of global scale-invariance, the building blocks (3.33) are extended to
the gravitational sector by

S =

∫
d4x

√
−g
(
c1RµνλσR

µνλσ + c2RµνR
µν + c3R

2 +
βij
2
ϕiϕjR

)
, (3.37)

where we included the square of the Riemann tensor Rµνλσ and its contractions,
as well as the non-minimal couplings of the scalar fields to the Ricci scalar R. In
the rest of this thesis, we will not further distinguish these subtle matters and
instead use the notion of scale-invariance, more precisely global scale-invariance
when gravity is included in the picture.



Chapter 4

Cosmic Inflation

In this chapter we review the theory of cosmic inflation which sets the theo-
retical foundation for our further studies presented in Chapter 5 and 6. To do
that, we will follow the lectures notes [122,123] and the text books [124–127].

Our understand of the universe is well established and corroborated by
observations for temperatures below the MeV scale.1 Certainly the most im-
portant observational pillar of cosmology is the cosmic microwave background
(CMB). It was released at temperatures T ∼ 0.1 eV when protons and elec-
trons recombined to form neutral hydrogen. Subsequently, photons could free
stream for the first time and they do so (approximately) until today where we
observe them on the sky as the blackbody radiation known as CMB. The CMB
thereby offers the oldest snapshot of the universe from the so-called last scatter-
ing surface. The observed CMB anisotropies indicate the existence of density
perturbations which grew through gravitational instabilities to the large-scale
structure of the universe we observe today. Collecting this evidence and more,
our understanding of the universe has culminated in a model called Lambda
cold dark matter (ΛCDM) which explains the evolution of the universe un-
der the laws of General Relativity where the total energy density consists of
dark energy (Λ), cold dark matter (CDM) and baryonic matter. For example,
ΛCDM offers an understanding of the angular power spectrum of the CMB, the
power spectrum of large-scale structure, the formation and precise abundance
of the light nuclei by BBN and the accelerated expansion of the universe at late
times.

The ΛCDM model is based on the Friedmann-Lemaitre-Robertson-Walker
(FLRW) ansatz for the metric

ds2 = dt2 − a2(t)

(
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdϕ2

))
, (4.1)

where the scale factor a(t) depends only on the time coordinate and k is the

1The process of Big Bang nucleonsynthesis (BBN) is taking place at temperatures T ∼
1 MeV.

27
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spatial curvature parameter. The FLRW ansatz (4.1) is obtained from the
cosmological principle, which states the homogeneity and isotropy of the uni-
verse when smoothed out on large enough scales. The time evolution of a(t) is
dictated by Einstein’s Equations and for (4.1) they reduce to two differential
equations called Friedmann equations

H2 :=

(
ȧ

a

)2

=
ρ

3M2
Pl

− k

a2
, (4.2)

ä

a
= − 1

6M2
Pl

(ρ+ 3p) , (4.3)

where ρ is the energy density and p the isotropic pressure of the energy-
momentum tensor for a perfect fluid which contributed to the Einstein’s Equa-
tions. If this energy-momentum tensor is specified as being the sum of the
energy density of matter ρm, radiation ρr and dark energy ρΛ, the first Fried-
mann equation (4.2) reads

H2

H2
0

=
Ωr

a4
+

Ωm

a3
+

Ωk

a2
+ΩΛ , (4.4)

where the dimensionless density parameters Ωi are defined by

Ωi =
ρi
ρcrit

, ρcrit = 3H0M
2
Pl , (4.5)

except Ωk = −k/a20H2
0 . Furthermore, we have introduced the Hubble constant

H0 which is the Hubble parameter evaluated at the present time H0 = H(a0)
where a0 = a(t0) is the present scale factor.

If the time evolution of the universe is solely understood by (4.4) at all
times, one obtains the so called hot Big Bang model of FLRW cosmology. It
has an initial singularity at a(t = 0) = 0 and starts with an era of radiation
domination, i.e. when the first term in (4.4) dominates the evolution. If the
structure we observe in the CMB is tried to be understood fundamentally in
the Bing Bang model, one is confronted with the so-called Big Bang puzzles
such as the flatness and horizon problem.

4.1 Big Bang Puzzles

The Big Bang puzzles could be resolved by setting up the Big Bang model with
special and fine-tuned initial conditions. Of course, one can accept this fate,
but as physicists, we would like to find a more natural explanation.

The flatness problem is related the small curvature energy density |Ωk| < 1
we observe today. The combination of CMB and baryonic acoustic oscillations
(BAO) data is consistent with a flat universe Ωk = 0.001 ± 0.002 [60]. This is
hard to understand with the evolution of the Big Bang model because tracing
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the energy density of curvature Ωk(a) = −k/(aH)2 back in time shows that
it must have been constantly increasing through radiation and matter domi-
nation [124]. Therefore, Ωk(a) must have been even smaller at earlier times,
for example one finds that Ωk(aBBN) ∼ 10−16 at the time of BBN [122, 124].
The flatness problem can be avoided if the comoving Hubble radius (aH)−1

(also called Hubble horizon) is decreasing at early times but this is not the case
during radiation or matter domination. So postulating an early phase, where
(aH)−1 is decreasing with time, the problem is solved because Ωk(a) ∝ (aH)−2

is then also decreasing. So no matter what the initial value of Ωk(a) at some
primordial time was, it is driven to flatness Ωk ≈ 0 during this period.

The second well-known problem related to the Big Bang picture is the hori-
zon problem. The CMB is very well fitted by a blackbody spectrum of temper-
ature T0 ≃ 2.7 K and the statistical anisotropy is very small and is quantified
by

∆T

T0
∼ 10−5 , (4.6)

where ∆T is the average deviation from the monopole temperature T0 of the
CMB. One can conclude that the universe was homogeneous and isotropic to a
high degree at the moment of recombination, which is in accordance with the
cosmological principle. The high degree isotropy of the CMB poses however a
problem when it is tried to be understood within the Big Bang picture. In this
cosmological model, the regions we observe in the CMB at different patches of
the sky could have not been in causal contact. To understand this point better,
it is useful to define the comoving particle horizon

dH =

∫ t

0

dt′

a(t′)
=

∫ a

0

da′

a′
1

a′H(a′)
, (4.7)

which measures the maximal distance light can travel between some initial
time t = 0 and time t, and thus serves as an indicator for causal structure in
cosmology. In the last equality we have rewritten the integral in terms of the
comoving Hubble radius. The time evolution for the comoving Hubble horizon
is governed by (4.4) and specifically reads

1

aH
=

1

H0

{
a1/2 (MD)

a (RD) ,
(4.8)

for a purely matter dominated (MD) and radiation dominated universe (RD),
respectively. This establishes that the comoving Hubble horizon is growing
monotonically in the Big Bang model and therefore the integral over the past
in (4.7) shows that the particle horizon is increasing in time according to

dH ∝

{
a1/2 (MD)

a (RD) ,
(4.9)
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and must have been smaller in the past compared to today. This entails that
regions which are widely separated during last scattering haven not been nec-
essarily in causal contact in light of (4.9). In fact, the particle horizon at the
time of recombination subtends an angle of only 1.6° if observed in the sky
today [124], but we do observe isotropy on larger scales. As for the flatness
problem, this can be solved by a phase with decreasing comoving Hubble ra-
dius prior to radiation domination. Then, the integral in (4.7) will be modified
due to this additional period in the far past and if that period lasts long enough
it can causally connect all the regions which we observe at different patches of
the CMB today. In other words, the particle horizons of each point in the CMB
are then overlapping such that the appearance of an isotropic CMB poses no
problem.

The two puzzles we discussed here can be resolved by an early phase during
which the comoving Hubble horizon is shrinking monotonically, as first noted
in [64]. Such an early phase can be realized by an early accelerated expan-
sion of the universe which is called (cosmic) inflation. Inflation was previously
considered in [61–63] without application to the Big Bang puzzles.

4.2 Slow-roll Inflation

The condition on the shrinking Hubble horizon d(aH)−1 /dt < 0 can be refor-
mulated to

ä

a
= H2(1− ϵ) > 0 , (4.10)

which indicates an accelerated expansion and we introduced the slow-roll pa-
rameter

ϵ = − Ḣ

H2
. (4.11)

Using the second Friedmann equation (4.3) we can rewrite (4.10) to a condition
on the energy density ρ and pressure p of a perfect fluid

ä

a
= − 1

6M2
Pl

(ρ+ 3p) > 0 or w < −1

3
, (4.12)

where w = p/ρ is the equation of state. The situation with (ρ + 3p) < 0 is
reminiscent of dark energy which is needed for accelerated expansion in the
late universe. However, the difference is that primordial inflation needs to end
at some point and the vacuum energy during inflation needs to be transferred
to the SM particles such that the conventional Bing Bang timeline can set in.
This transition process is called reheating.

The first ideas in that direction go nowadays under the name of “old infla-
tion” [64]. In that case the inflationary dynamics are realized by a first-order
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phase transition. A scalar field is trapped in the false vacuum and the universe
expands due to the vacuum energy domination. This dominance is ended when
the field tunnels to the true vacuum and consequently the accelerated expansion
would stop. The old inflation idea suffers under the “graceful exit” problem.
Due to the nature of first-order phase transitions, the transition proceeds via
nucleation of true vacuum bubbles in sea of the false vacuum. The idea that
these bubbles coalesce at some point to fill the entire universe with the true
vacuum is problematic. By construction the regions in the false vacuum get
inflated exponentially such that in this background the true vacuum bubbles
have trouble merging and filling the universe. This situation would evolve into
an inhomogeneous universe with most regions trapped in the false vacuum.

A little later the idea of “new inflation” was born which led to the modern
picture of so-called slow-roll inflation [65, 66] where a scalar field called the
“inflaton” is slowly rolling down a potential hill such that accelerated expansion
can be achieved. We will explain this more quantitatively by a scalar field
coupled minimally to gravity

S = Sϕ −
M2

Pl

2

∫
d4x

√
−g R , (4.13)

Sϕ =

∫
d4x

√
−g
(
−1

2
gµν∂µϕ∂µϕ− V (ϕ)

)
, (4.14)

by following [122,123]. The related energy-momentum tensor of the scalar ϕ is
as usual derived by

T (ϕ)
µν = − 2√

−g
δS

δgµν
, (4.15)

and comparing this to the energy-momentum tensor of a perfect fluid in the
FLRW background (4.1) and assuming a spatial homogeneous scalar field ϕ(x) =
ϕ(t) we can deduce the respective density and pressure densities

ρϕ =
1

2
ϕ̇2 + V (ϕ) , pϕ =

1

2
ϕ̇2 − V (ϕ) . (4.16)

The dynamics are governed by the equation of motion for the scalar field in the
FLRW background and the Friedmann equation (4.2)

ϕ̈+ 3Hϕ̇+ V ′ = 0 , H2 =
ρϕ

3M2
Pl

. (4.17)

Using now (4.10), (4.12) and (4.16) we can write the slow-roll parameter as

ϵ =
1

2M2
Pl

ϕ̇2

H2
. (4.18)
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An accelerated expansion is achieved for ϵ < 1 and this requires domination of
the potential energy over the kinetic energy

V (ϕ)

ϕ̇2
≫ 1 , (4.19)

which explains the origin of the name “slow-roll”. In that case one also finds
that pϕ ≃ −ρϕ and

H2 ≃ V

3M2
Pl

. (4.20)

For the accelerated expansion to last long enough we have to ensure that the
second time derivative stays small which is encoded in the second slow-roll
parameter defined by

δ = − ϕ̈

Hϕ̇
, (4.21)

and |δ| ≪ 1 then ensures that the fractional change in ϵ per e-fold of inflation
stays small and that one can omit the ϕ̈ term in the equation of motion (4.17).
For future reference, we also define the related slow-roll parameter

η =
ϵ̇

Hϵ
= 2

(
ϕ̈

Hϕ̇
− Ḣ

H2

)
= 2(ϵ− δ) . (4.22)

Note that ϵ≪ 1 and δ ≪ 1 imply also η ≪ 1. When these slow-roll conditions
and (4.20) are satisfied one can alternatively derive slow-roll conditions on the
scalar potential, by defining the so-called potential slow-roll parameters

ϵV =
M2

Pl

2

(
V ′

V

)2

ηV =M2
Pl

V ′′

V
, (4.23)

where ϵ ≃ ϵV and η = −2ηV + 4ϵV are valid in the slow-roll approximation. In
our later studies we will monitor by

ϵV , |ηV | ≪ 1 , (4.24)

whether the slow-roll conditions are satisfied. In the limit of ϵ , η → 0, where
H2 = const the space-time is approximated by de Sitter space-time where the
scale factor grows exponentially a(t) ∼ eHt. Inflation ends by violating one of
the slow-roll conditions (4.24) and is quantified by the field value ϕend at which

max{ϵV (ϕend), |ηV (ϕend)|} = 1 . (4.25)
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The quantification for the minimal duration of inflation is given by the number
of e-folds the scale factor expands between a and aend, which can be expressed
by the integral

Ne = ln(aend/a) =

∫ tend

t
Hdt ≈

∫ ϕ

ϕend

dϕ√
2ϵV

, (4.26)

where we assumed the validity of the slow-roll approximation in last equality.
To solve the flatness and horizon problem one needs at least N = 60 e-folds of
inflation [124].

4.3 Beyond Homogeneity

Our treatment so far was purely classical and it is able to explain the homo-
geneity of the observed CMB as demanded in Section 4.1. However, we do
observe inhomogeneities in the CMB as indicated in (4.6). The anisotropies
in the CMB are the seeds of all structure we observe today and we remain
with the open question what originated these fluctuations. Fortunately, includ-
ing quantum-mechanical perturbations in the treatment of inflation will answer
precisely this question, as we lay out in the rest of this section. This connection
gives also hope that a precise analysis of the CMB power spectrum might give
opportunities to test inflation models.

4.3.1 Classification of Perturbations

We are now going one step further by including perturbations at the linear
order on top of the FLRW-background (4.1) with k = 0 denoted by the metric
ḡµν(t). Since these perturbations are small, it sufficient to consider the Einstein
Equations only at the linear level, as is usually done in cosmological perturba-
tion theory. We consider the perturbation hµν(x) on top of this background
by

gµν(x) = ḡµν(t) + hµν(x) , (4.27)

as well as the perturbation of the inflaton field δϕ(t,x) by

ϕ(t,x) = ϕ(t) + δϕ(t,x) . (4.28)

The background quantities ḡµν(t) and ϕ(t) only carry time-dependence as ex-
pected for the homogeneous FLRW background.

Metric Perturbations

The metric perturbation hµν is usually further decomposed into scalar, trans-
verse vector and traceless-transverse tensor modes (SVT decomposition). This
simplifies the further treatment substantially since these modes decouple at
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the linear level and can be studied independently of each other. Applying this
decomposition to the metric gives

ds2 = (1 + E)dt2 − 2a(∂iF −Gi)dx
idt

− a2 [(1 +A)δij + ∂i∂jB + ∂iCj + ∂jCi +Dij ] dx
idxj , (4.29)

where we count four scalars (E,F,A,B), two transverse vectors (∂iGi = 0 and
∂iCi = 0), and one traceless-transverse tensor (Dii = ∂iDij = 0). This counts
up to the ten degrees of freedom encoded in hµν .

The next step would be to derive the linearized and SVT-decomposed Ein-
stein equations from (4.29). We will do without this elaborate task and instead
refer to the textbook [124]. One important lesson from the equations of motion
for the vector modes Gi and Ci is, however, that these mode are decaying and
therefore cannot be produced during inflation. Hence, it will be enough to focus
on the scalar modes and the tensor mode. The scalar modes present in (4.29)
turn out be not gauge-invariant and require therefore further scrutiny.

Some of these modes are considered unphysical in the sense that they can be
related to a mere coordinate change of the FLRW background coordinates. The
splitting between what we call the background and perturbation is therefore
not unique and one has to be careful with identifying physical observables. The
gauge transformation acting on the scalar perturbations in (4.29) is inherited
from from the general coordinate invariance of General Relativity

xµ → x′µ = xµ + ϵµ(x) , (4.30)

g′µν(x
′) =

∂xλ

∂x′µ
∂xκ

∂x′ν
gλκ(x) , (4.31)

with ϵµ(x) small. Instead of working with gauge transformations acting on the
coordinates, it is helpful to reformulate this transformation as acting on the
perturbation hµν while keeping the background metric ḡµν(t) unchanged. The
corresponding gauge transformation hµν → hµν + ∆hµν can then be derived
using (4.30) and (4.31)

∆hµν(x) = −ḡλµ(x)
∂ϵλ(x)

∂xν
− ḡλν(x)

∂ϵλ(x)

∂xµ
− ∂ḡµν(x)

∂xλ
ϵλ , (4.32)

where we are keeping only terms at linear order in ϵ(x) and hµν(x). To analyze
the metric perturbations in the SVT-decomposition, we decompose the spatial
part of the coordinate transformation (4.30) as

ϵi = ∂iϵ
S + ϵVi , ∂iϵ

V
i = 0 . (4.33)

Writing now (4.32) component wise with the above decomposition we obtain

∆h00 = −2ϵ̇0 , (4.34)

∆hi0 = −∂iϵ̇S − ∂iϵ0 + 2H(∂iϵ
S + ϵVi ) , (4.35)

∆hij = −∂jϵSi − ∂Si ϵj − ϵVi − ϵVj + 2aȧδijϵ0 . (4.36)
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These can be now compared with (4.29) to obtain the transformation rules for
the SVT variables. One directly finds that the traceless-transverse tensor is
gauge-invariant

∆Dij = 0 . (4.37)

The transverse vector variables transform according to

∆Ci = − 1

a2
ϵVi , (4.38)

∆Gi =
1

a

(
−ϵ̇Vi + 2HϵVi

)
, (4.39)

and finally the scalars by

∆A = 2Hϵ0 , ∆B = − 2

a2
ϵS , (4.40)

∆E = 2ϵ̇0 , ∆F =
1

a

(
−ϵ0 − ϵ̇S + 2HϵS

)
. (4.41)

This clearly exposes that not all of the metric perturbations in (4.29) are gauge-
invariant. To get rid of the gauge redundancy exposed here, we can either work
with gauge invariant quantities or by fixing a gauge. For example one can work
with the combination G̃i = Gi − aĊi of the vector modes such that ∆G̃i = 0.
Similarly one can construct two gauge invariant scalar metric perturbations,
which are also known as Bardeen potentials [128], which in notation of (4.29)
read

ΨB = −1

2

[
A− a2H

(
Ḃ − 2

F

a

)]
, (4.42)

ΦB =
1

2

[
E − d

dt

(
a2
(
Ḃ − 2

F

a

))]
. (4.43)

Matter Perturbations

The Einstein Equations couple the metric perturbations to the matter pertur-
bations given by δTµν , i.e. the perturbation of the energy-momentum tensor.
The primordial quantum-mechanical perturbations δϕ of the of the inflaton field
we lead ultimately to the inhomogeneities we observe in the CMB. Therefore,
δTµν should also be SVT-decomposed for our purpose. This will furthermore
turn out useful to define gauge-invariant scalar modes with the special feature
of being conserved outside the horizon, as we will see shortly.

Let us start with the background, so zeroth-order, energy-momentum tensor
T̄µν in the FLRW ansatz which is modeled by a perfect fluid

T̄µν = (ρ̄+ p̄)ūµūν + p̄ḡµν , (4.44)
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where the barred quantities are the unperturbed energy density, pressure and
the velocity four vector. These quantities are purely time-dependent owing
to the spatial translational and rotational symmetry of the background. The
perturbations of the stress-energy tensor are decomposed according to

δT00 = −ρ̄h00 + δρ , (4.45)

δTi0 = p̄hi0 − (ρ̄+ p̄)
(
∂iδu+ δuVi

)
, (4.46)

δTij = p̄hij + a2 (δijδp+ πij) , (4.47)

where we have introduced the anisotropic stress πij and have decomposed the
three-velocity by δui = ∂iδu + δuVi . Similarly as we have done for the metric
perturbations (4.32), we can derive the gauge transformation for

∆δTµν = −T̄λµ(x)
∂ϵλ(x)

∂xν
− T̄λν(x)

∂ϵλ(x)

∂xµ
− ∂T̄µν(x)

∂xλ
ϵλ . (4.48)

Comparing the components above to eqs. (4.45)-(4.47) and using eqs. (4.34)-
(4.36) we can derive the transformation rules

∆δp = ˙̄pϵ0 , ∆δρ = ˙̄ρϵ0 , ∆δu = −ϵ0 . (4.49)

Note that the anisotropic stress πij and δuVi are gauge-invariant.

Fourier Decomposition

Before we continue, it is useful to define the Fourier transform Ak(t) of a general
perturbation A(t,x) as

Ak(t) =

∫
d3xA(t,x)eik·x . (4.50)

Due to the translational invariance of the FLRW background, Fourier modes
with different wavevector k do not couple to each other at the linear level
of the equations of motion. Thus, two perturbations Ak and Ak′ will evolve
independently from each other at linear level when k ̸= k′.

4.3.2 Conservation of Perturbations Outside the Horizon

We are particularly interested in the gauge-invariant modes which will leave
the comoving Hubble horizon (aH)−1 during inflation an reenter shortly before
recombination, as these correspond to the scales tested by the anisotropies of the
CMB. We refer to those Fourier modes which satisfy k ≪ aH as superhorizon
modes, where k = |k|. The particular feature of these modes is that they
are conserved on superhorizon scales, which is particularly useful since it can
relate the primordial values of the perturbations to the inhomogeneities of the
CMB, and thereby we bypass the unknown evolution of perturbations during
the reheating stage, about which we know very little.
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We start by introducing the gauge-invariant variable [128]

R =
A

2
+Hδu , (4.51)

also known as the comoving curvature perturbation which measures the spatial
curvature of comoving hypersurfaces [122]. It easy to check with (4.40) and
(4.49) that R is gauge-invariant. This quantity is conserved, on superhorizon
scales k ≪ aH under very general conditions on the matter perturbations as
has been proven in [129]. First, we introduce the uniform-density hypersurface

ζ =
A

2
− H

˙̄ρ
δρ , (4.52)

which is equal to R on superhorizon scales which can be seen from the following
relation derived from the linearized Einstein equations in Fourier space [122]

−ζ = R+
k2

a2H2

2ρ̄

3(ρ̄+ p̄)
ΨB , (4.53)

where we dropped the subscripts k of the Fourier modes for convenience. The
continuity equation derived from the local conservation law ∇µT

µν = 0 can be
cast to the form [122,130]

ζ̇

H
= −

˙̄p

(ρ̄+ p̄)
δpen −

k2

3a2H2

[
ζ −ΨB

(
1− 2ρ̄

9(ρ̄+ p̄)

k2

a2H2

)]
, (4.54)

where we have defined the entropic pressure perturbation as

δpen =
δp
˙̄p
− δρ

˙̄ρ
. (4.55)

Since ζ and R are equal on superhorizon scales due to (4.53), it follows that
the superhorizon modes of R are conserved

Ṙ = 0 for k ≪ aH and δpen = 0 , (4.56)

for adiabatic perturbations on superhorizon scales. The adiabatic condition
is satisfied when the ratio δg/ ˙̄g for a general perturbation δg is equal for any
perturbation [127]. In particular, applied to the energy density and pressure
perturbations it follows that (4.55) vanishes. Single-field inflation can only
give rise to adiabatic perturbations but it cannot give rise to a relative density
contrast of different perturbations violating (4.55). In other words, all inhomo-
geneities like that of dark matter or radiation are then tied to the curvature
perturbation R [122]. Up to this point, there is no evidence for non-adiabatic,
or so-called isocurvature perturbations in the CMB [131].

The conservation law (4.56) for adiabatic perturbations allows us, as pre-
viously advertised, to connect the primordial power spectrum of R which is
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initially generated by quantum fluctuations to the anisotropies of the CMB.
These modes are initially on subhorizon scales, leave the Hubble horizon during
inflation when k∗ = a∗H∗ and reenter the Hubble horizon before recombination
(see also Fig. 4.1). Fortunately, the perturbations which we can test with CMB
observations are subject to the conservation law (4.56).

a

1
aH

k∗

a∗ aend aRHaend aeq

Figure 4.1: Evolution of the comoving Hubble radius (solid line) and a perturbation (dashed
line) with corresponding comoving wavenumber k∗ = a∗H∗. The gray area indicates the era
of reheating. The scale factor aend denotes the end of inflation, aRH denotes the start of
radiation domination and aeq denotes matter-radiation equality.

4.3.3 Quantum Fluctuations as Initial Conditions

The next step is to compute the scalar perturbation R at horizon exit and con-
nect it to primordial quantum fluctuations as initial conditions. These quantum
fluctuations are then stretched out during inflation and give rise to the cosmo-
logical perturbations which are imprinted in the CMB. The starting point is to
expand the action (4.13) up to second order in the fluctuations. Up to a total
derivative, one obtains the so-called Mukhanov action [132]

S2 =
M2

Pl

2

∫
dτd3x

(
v′2 − (∂iv)

2 +
z′′

z
v2
)
. (4.57)

We are left with only one final gauge-invariant scalar perturbation v, where the
treatment of tensor perturbations is postponed to Section 4.3.5. It is related
to the comoving curvature perturbation by

v = zR = z

(
A

2
− H

˙̄ϕ
δϕ

)
, z =

aϕ̄′

H
, (4.58)

where H = a′/a and primes denote derivatives with respect to the conformal
time coordinate τ defined through the line element

ds2 = a2(τ)
(
dτ2 − dx2

)
. (4.59)
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We now promote v to a quantum operator and follow the quantization procedure
analogous to that of a simple harmonic oscillator by following [122]. We start
by introducing creation and annihilation operators for

v̂ =

∫
d3k

(2π)3

(
vk(τ)âke

ik·x + v∗k(τ)â
†
ke

−ik·x
)
. (4.60)

The momentum modes satisfy a Klein-Gordon equation in Fourier space

v′′k +

(
k2 − z′′

z

)
vk = 0 , (4.61)

with the term in brackets defining a time-dependent frequency. The creation
and annihilation operator should satisfy the usual commutation relation[

âk , â
†
k′

]
= (2π)3δ(k − k′) , (4.62)

which entails that the mode functions should be normalized according to

i(v∗kv
′
k − (v∗k)

′vk) = 1 . (4.63)

The vacuum state |0⟩ is defined as usual by

âk |0⟩ = 0 , (4.64)

which imposes a further condition on vk. To define the vacuum state we consider
that modes in the far past τ → −∞ are deeply subhorizon and behave as in
Minkowski vacuum. In this limit (4.61) simplifies to standard mode equation
for a harmonic oscillator

v′′k + k2vk = 0 . (4.65)

As initial condition in the far past we therefore impose the standard normal-
ization in Minkowski space

lim
τ→−∞

vk =
e−ikτ

√
2k

. (4.66)

We can solve (4.61) in the de Sitter limit, i.e. when ϵ→ 0 and H = const, and
furthermore

lim
ϵ→0

z′′

z
=

2

τ2
, (4.67)

which simplifies the mode equation (4.61) in this limit to

v′′k +

(
k2 − 2

τ2

)
vk = 0 . (4.68)

The above equation can be solved with the asymptotic normalization (4.66)
and one finds the solution

vk =
e−ikτ

√
2

(
1− i

kτ

)
, (4.69)

also known as Bunch-Davies mode functions [133], which are related to the
curvature perturbation R by (4.58).
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4.3.4 Power Spectrum of Scalar Perturbations

The CMB temperature map test the statistical properties of the scalar per-
turbations. The power spectrum of these perturbations contains all statistical
information if they follow Gaußian statistics. Therefore, it is important to
compute this power spectrum of the R-perturbation which is defined by the
ensemble average

⟨Rk(t∗)Rk′(t∗)⟩ = (2π)3δ(k + k′)PR(k) , (4.70)

where the delta distribution is a reflection of translational invariance of the
background. Note that non-Gaußianities are suppressed in single-field inflation
models [134] and so far no clear evidence for the existence of non-Gaußianities
has been found in the CMB [135].

It is convenient to also introduce the dimensionless power spectrum

∆R(k) =
k3

2π2
PR(k) . (4.71)

If the power spectrum is exactly scale-invariant this means that k3PR(k) is con-
stant because the factor k3 cancels the volume dependence of PR(k). Therefore,
it is sensible to analyse the real scale-dependence of scalar modes with the di-
mensionless power spectrum (4.71). We now would like to solve the equation
(4.61) at linear order in the slow-roll parameters to compute the power spec-
trum (4.71) in this approximation. Our previous result (4.69) was derived in
exact de Sitter space, so to zeroth order in slow-roll parameters. For this cal-
culation it is useful to rewrite the slow-roll parameters (4.11) and (4.22) in
conformal coordinates (4.59)

ϵ =

(
1− H′

H2

)
, η =

1

H
ϵ′

ϵ
. (4.72)

The above relation for ϵ can be integrated and using that ϵ is constant to the
order we work in ∫

dτ
H′

H2
=

∫
dτ(ϵ− 1) ≈ τ(ϵ− 1) , (4.73)

which yields to order O(ϵ)

H ≈ −1

τ
(1 + ϵ) . (4.74)

Using (4.72) and (4.74) we can compute the time dependent term in (4.61)

z′′

z
=

1

τ2

(
2 + 3ϵ+

3

2
η

)
=:

ν2 − 1
4

τ2
, (4.75)
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which has the correct de Sitter limit (4.67). We also have defined the parameter

ν =
3

2
+ ϵ+

η

2
, (4.76)

such that the second equality in (4.75) holds at leading order. The convenience
of this definition is that the mode equation (4.61) written with (4.75), has a

general solution given by a linear combination of the Hankel functions H
(i)
ν of

the first two kinds [122]

vk(τ) =

√
π

2

√
−τ
[
c1H

(1)
ν (−kτ) + c2H

(2)
ν (−kτ)

]
. (4.77)

The coefficients can be determined by comparing the limit of the far past

lim
(kτ)→−∞

H(1,2)
ν (−kτ) = 2√

π

1√
−kτ

e∓i(kτ+α) , (4.78)

where α = π/2(ν+1/2) is an irrelevant phase shift, to the Minkowski boundary
condition (4.66). One finds therefore that c1 = 1 and c2 = 0 which results in

vk(τ) =

√
π

2

√
−τH(1)

ν (−kτ) . (4.79)

This finally allows to compute the power spectrum (4.70) by the relation

PR(k) =
|vk|2

z2
. (4.80)

As laid out in Section 4.3.2, the benefit of working with the curvature pertur-
bation R is that it is conserved after horizon crossing, so we can compute its
value at that time t∗ where k∗ = a(t∗)H(t∗) and then rely on its constancy for
|kτ | ≪ 1. For the superhorizon limit |kτ | → 0 it useful to use the limit [122]

lim
kτ→0

H(1)
ν (−kτ) = i

π
Γ(ν)

(
−kτ
2

)−ν

≈ i

√
2

π
(−kτ)3/2 , (4.81)

where in the second equality we used the de Sitter limit ϵ = η = 0. Considering
now the dimensionless version (4.71) of the power spectrum, we can combine
the results (4.79) - (4.81) to derive the value of the power spectrum at horizon
crossing

∆R(k∗) ≈
1

8π2M2
Pl

(
1

ϵ

1

a2τ2

) ∣∣∣∣
k=a∗H∗

=
1

8π2M2
Pl

(
H2

∗
ϵ∗

)
. (4.82)

In slow-roll approximation the Hubble rate is approximated by the potential
energy of the inflaton (cf. (4.20)). Furthermore, using the potential slow-roll
parameter (4.23) we define the amplitude of the scalar power spectrum

As := ∆R(k∗) =
1

24π2M4
Pl

(
V∗
ϵV ∗

)
. (4.83)
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Scale-dependence of Scalar Fluctuations

The scale-dependence of the scalar power spectrum is encoded in the so-called
spectral tilt defined by

ns − 1 =
d ln∆R
d ln k

. (4.84)

To analyze the scale-dependence, or k-dependence, we can utilize (4.81) and be
reminded of the additional k3 in (4.71), to obtain the scaling relation

∆R ∼ k3−2ν . (4.85)

The spectral tilt is then determined by the slow-roll parameters

ns − 1 = 3− 2ν = −2ϵ− η = 2ηV ∗ − 6ϵV ∗ . (4.86)

To summarize, the power spectrum is often parameterized in a power law
around the pivot scale k∗, i.e.

∆R(k) = As(k∗)
(
k

k∗

)ns(k∗)−1

, (4.87)

where we neglect the running (k-dependence) of the spectral tilt.

4.3.5 Primordial Gravitational Waves

So far we have only considered perturbations classified as scalar modes. How-
ever, as we have seen in in (4.29) there us is also perturbation described by
a transverse-traceless tensor Dij . It can be understood as a spin-2 degree of
freedom, so corresponds to primordial gravitational waves generated from in-
flation. A substantial simplification with respect to scalar perturbations is that
these tensor modes are already gauge-invariant. Focusing only on the tensor
modes, (4.29) reads in conformal coordinates

ds2 = a2(τ)
[
dτ2 − (δij +Dij) dx

idxj
]
. (4.88)

Plugging this into the Einstein-Hilbert action and expanding to second order
in the tensor perturbations we obtain [132]

ST
2 = −

M2
Pl

8

∫
d3xdη a2

[
(D′

ij)
2 − (∇Dij)

2
]
. (4.89)

We proceed by a Fourier decomposition and an expansion in the two polariza-
tion tensors

Dij(τ ,x) =
∑

s={+,×}

∫
d3k

(2π)3
ϵsij(k)h

s
k(τ)e

−ik·x , (4.90)
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where the massless spin-2 excitation carries two degrees of freedom of helicities
+2 and -2, so it has two independent polarization tensors ϵ+ij and ϵ×ij . They

have the property2 ϵs j
i (k)ϵ

s i
j (−k) = δss′ so that the action becomes

ST
2 = −

M2
Pl

8

∑
s={+,×}

∫
d3kdη a2

[
hs′kh

s′
−k − k2hskh

s
−k

]
. (4.91)

Introducing a new variable

vk(τ) =
MPla

2
hsk(τ) , (4.92)

the action reads up to total derivatives

ST
2 = −1

2

∫
d3kdη

[
vs′kv

s′
−k −

(
k2 − a′′

a

)
vskv

s
−k

]
. (4.93)

The momentum modes satisfy the equation of motion

vsk
′′ +

(
k2 − a′′

a

)
vsk = 0 . (4.94)

Each polarization therefore satisfies a similar mode equation as in the scalar case
(4.61) but with a simpler time dependence a′′/a, which can be approximated
in slow-roll parameters by

a′′

a
≈ 1

τ2
(2 + 3ϵ) =:

ν2T − 1
4

τ2
. (4.95)

As before, we have defined the index

νT =
3

2
+ 3ϵ , (4.96)

such that we can solve (4.94) with the same methods as previously shown in
section 4.3.4. One finds that the power spectrum for a single polarization of
primordial gravitational waves is

∆2
h(k) =

1

π2M2
Pl

H2
∗ . (4.97)

We could proceed by defining a spectral tilt for tensor modes as in the previous
section 4.3.4, but since this is not measured by observations so far, we do not
need it in this thesis. However, what can be inferred from the CMB observation
is an upper limit on the ratio of the tensor amplitude to the scalar amplitude.
This quantity is called tensor-to-scalar ratio and is defined as

r :=
2∆2

h(k∗)
∆2

R(k∗)
= 16ϵ∗ . (4.98)

The factor of two accounts for the sum of the two polarizations for gravitational
waves.

2This can be derived for a plane wave traveling in z-direction.
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4.4 Effect on the Cosmic Microwave Background

We now would like to make contact to observations. In the previous two sec-
tions, we have defined three important quantities: the amplitude of scalar fluc-
tuations As (4.83), the spectral tilt for scalar fluctuations ns (4.86) and the
tensor-to-scalar ratio r (4.98). Through these formulas, their values can be
related to the shape of the inflaton potential encoded in the potential slow-
roll parameters (4.23). Since these three quantities are constrained by CMB
observation this offers the opportunity to test inflation models.

The power spectrum of scalar perturbations is imprinted on the last scat-
tering surface by making some regions overdense, while other regions are un-
derdense. This leads to different amounts of redshifts of the escaping photons
making up the CMB. This phenomenon is known as the Sachs-Wolfe effect [136]
and it basically relates the anisotropy in the temperature δT in the direction
of sight ê to the primordial curvature perturbation [127]

δT (ê)

T0
∼ R . (4.99)

The above is only true for the largest scales we can observe in the CMB. These
just entered the horizon shortly before recombination and where not subjected
to subhorizon evolution. Therefore, one can say that with observation of these
large scales we test the primordial spectrum PR through (4.99) very directly.
On smaller scales, or equivalently smaller angles on the sky, we need to take into
account the evolution between horizon entry and recombination. In contrast to
the epoch of reheating, we know the equations of motion for the perturbations,
since the scales of interest enter during radiation or matter domination.

To make this connection a bit clearer, we consider an harmonic expansion
of the CMB temperature map in spherical harmonics

δT (ê)

T0
=
∑
l,m

almYlm(ê) . (4.100)

The angular CMB power spectrum for temperature correlations for the multi-
poles l is then

CTT
l =

1

2l + 1

∑
m

⟨a∗lmalm⟩ . (4.101)

The multipole moments alm are related to the primordial curvature perturba-
tion by [122]

alm = 4π(−i)l
∫

d3k

(2π)3
Tθ(k, l)RkYlm(k̂) , (4.102)
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where Tθ is the transfer function taking into account the subhorizon evolution
and it is independent of m due to rotational invariance. We can now compute
(4.101) and obtain

CTT
l =

2

π

∫ ∞

0
dk k2 T 2

θ (k, l)PR(k) . (4.103)

We see now the relation between the mulitpole expansion of the CMB power
spectrum CTT

l to the primordial power spectrum PR. From measuring CTT
l

the Planck mission [131] is able to constraint features of the primordial power
spectrum like ns and As. The only missing ingredient is the transfer function
Tθ(k, l) and its calculation can be found e.g. in the textbook [126].

4.4.1 Polarization of the Cosmic Microwave Background

So far we only considered one information of the CMB photons, i.e. their wave-
length. Some additional information on the primordial spectra can be gained
by measuring the polarization of CMB photons. The CMB photons obtain their
polarization through Thomson scattering on free electrons as they emerges from
the last scattering surface during recombination [127]. There are two types of
polarizations which are usually classified as Ek and Bk modes, correspond-
ing to curl-free and divergence-free polarization vectors, respectively. One can
therefore define on top of the TT -correlations (4.101) also e.g. EE correlation
CEE
L or the cross-correlations CTE

L . It is important to note that scalar modes
can create only E-modes. B-modes, on the other hand, are only created by
primordial gravitational waves [137, 138]. The measurement of B-modes of-
fers therefore the interesting possibility to confirm the existence of primordial
gravitational waves and to also determine the power spectrum of tensor modes
(4.97) (see e.g. the review [139]). As of today, only observational constraints on
primordial gravitational waves have been reported in [131, 140] and this con-
straints the tensor-to-scalar ratio r in degeneracy with ns. For this reason the
CMB constraints on inflation models are often reported in the ns-r-plane as we
will do later in Chapter 5 and 6, leaving more details on the polarization of the
CMB aside.
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Chapter 5

Unified Emergence of Mass
Scales and Inflation

We are now well equipped to tackle the radiative generation of widely separated
mass scales in high-energy physics and the inflaton potential in the framework
of classical scale-invariance. To give an overview, a schematic plot of the energy
scales discussed here is shown in Figure 5.1. The highest scale shown is the
Planck mass which sets the strength of gravitational interactions through GN =
1/(8πM2

Pl). It is, next to the electroweak scale vEW, the only scale shown in
Figure 5.1 whose value we can pinpoint by observations. However, confronting
these two scales vis-à-vis, their large hierarchy vEW/MPl ∼ 10−16 is unnatural
in view of the gauge hierarchy problem. To generate both scales from a common
origin, as we will do in this chapter, calls for further explanation and we will
analyze the coexistence of these two scales, and related fine-tuning, if both their
origin is accounted for by the CW-mechanism.

Including inflation into the picture, we have little information on the energy
scale of the microscopic theory realizing the slow-roll dynamics. In principle,
any energy scale between a few MeV and 1016 GeV is expected to be in line with
cosmological observations. The lower bound is not very strict and originates
from the requirement that the reheating temperature TRH > 1 MeV should be
higher than the temperature where BBN is taking place [141]. The energy scale

of inflation, which is dominated during slow-roll by the potential energy V
1/4
∗

of the inflaton potential (cf. (4.20)), can be related to the tensor-to-scalar ratio
(4.98). Since the scalar amplitude As (4.83) is fixed by measurements to high
precision one can derive the upper bound on

V
1/4
∗ =

(
3π2Asr

2

)1/4

MPl ≲ 1.6× 1016GeV , (5.1)

by relating it to the observational upper bound on r [131]. For this reason, the
expected energy range for inflation is shown in Figure 5.1 by the fading red
bar.

47
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Going to lower scales, the existence of a Majorana mass scale MN for right-
handed neutrinos is expected if the smallness of neutrino masses is explained
with the type-I seesaw model [142–146]. The exact value of MN is not de-
termined, since the seesaw mechanism only explains the smallness of neutrino
masses qualitatively, but not quantitatively, because the Dirac-type Yukawa
couplings and MN are free parameters of the model. Therefore, plenty realiza-
tions of type-I seesaw models haven been proposed where the Majorana mass
MN ranges from the GUT scale down to the eV-scale. At the lower end of this
range one should note however that one runs into conflict with the main mo-
tivation of the seesaw mechanism, which is to explain the tininess of neutrino
masses with respect to corresponding charged leptons [147]. The discovery of
neutrino flavor oscillations [148] has established that neutrinos are massive but
since they provide only a measurement of the neutrino mass-squared differences,
the absolute mass scale of neutrinos is still unknown. However, Planck mea-
surements of the CMB provide an upper bound on the sum of neutrino masses
mν =

∑
mν,i < 0.12 eV [60]. This is the lightest mass scale in this discussion

and in Figure 5.1. The blue bar roughly indicates the energy range forMN , but
we have highlighted a special value at MN = 107 GeV. At this value the inclu-
sion of right-handed neutrinos can account for the radiative generation of the
Higgs mass parameter, while meanwhile giving rise to the small mass of neu-
trinos through the usual type-I seesaw mechanism. In this approach, dubbed
neutrino option [149], one ties the scale of neutrino masses, Higgs mass and
Majorana mass scale for right-handed neutrinos together and offers a new per-
spective on the hierarchy problem. In Section 5.5 we incorporate this idea into
the scale-invariant framework which will link the Majorana mass to the same
scalar VEV which is also responsible for generating the Planck mass. We will
lay out that the hierarchy MN/MPl ∼ 10−11 can arise technically natural and
discuss how the hierarchy vEW/MPl can be stabilized. As a last point, and not
indicated by an energy scale in Figure 5.1, we will discuss a possibility to incor-
porate a DM candidate in this setup, with the main purpose of demonstrating
that this does not spoil any other findings discussed in this Chapter.

E[GeV]1018

MPl

1016

Inflation
V 1/4

Majorana
mass MN

102

vEW

10−10

mν

Figure 5.1: A schematic overview of the mass scales on a logarithmic scale discussed in
this chapter. The bars with fading colors indicate energy scales which are undetermined.

A parallel goal of this chapter is the simultaneous generation of an inflaton
potential realizing successful slow-roll inflation. Also in that respect we stay
faithful to our general guiding principle of scale-invariance. As briefly men-
tioned in the introduction, the constraints on inflation reported by the Planck
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collaboration [131], indicate that the spectral tilt ns is close to one, i.e. the
scale-invariant limit, and the tensor-to-scalar ratio r is constrained to be small
which can be achieved by very flat inflaton potentials since (4.98) and (4.23)
relate r to the gradient V ′ of the inflaton potential. This can be achieved by
two very popular and economical models, which are Starobinsky inflation (or
R2-inflation) [61] and Higgs inflation [150]. Both give rise to sufficiently flat
potentials when transformed from the Jordan to Einstein frame. Note that in
both models, one includes globally scale-invariant terms into the action, i.e. R2

and βH(H†H)R respectively. Their dominance with respect to the Einstein-
Hilbert term (γ R2 with γ ∼ O(109) and β|H|2R with β ∼ O(104)) can be seen
as an indication for the positive impact of scale-invariant terms. In fact, the ap-
proaches of Starobinsky and Higgs Inflation have been combined into so-called
Scalaron-Higgs-Inflation [151, 152]. Our setup for inflation is related but with
the distinction that we exclude terms which are not globally scale-invariant
and that the Higgs field will not participate in the inflationary dynamics. The
latter is because the inflaton field S in our scenario is also responsible for gen-
erating the Planck mass by its VEV vS . Since the physics of cosmic inflation
discussed in Chapter 4 was based on single field inflation coupled to Einstein-
Hilbert gravity, we have to extend our discussion to a theory of gravity which
contains quadratic orders of curvature tensors and non-minimal couplings to
scalars, but we will argue in Section 5.3 that we can effectively treat inflation
as a single-field model, such that we can apply some of the formulas derived in
Chapter 4 directly in order to present inflationary predictions for this model.

The total Lagrangian of the model discussed in this chapter is divided into
four parts

LT = LGR + LCW + LcSM + LNχ , (5.2)

where LGR describes globally scale-invariant gravity, LCW consists of an ad-
ditional scalar sector to realize radiative symmetry breaking with the CW-
mechanism, LcSM is the scale-invariant SM with additional Higgs portal cou-
plings and LNχ includes the right-handed neutrinos NR and the DM candidate
χ. Each part will be discussed in more detail as passing through the following
sections.

5.1 Gravity with Global Scale-invariance

Scale-invariant gravity has been studied extensively, for example with global
scale-invariance [26–39, 39, 153–160] or local Weyl invariance [40–57] (see also
Section 3.5). The action for scale-invariant gravity (3.37) can be rewritten such
that the three independent squares are

SGR =

∫
d4x

√
−g
(
c1CµναβC

µναβ + c2RµνR
µν + c3R

2
)
, (5.3)
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where Cµναβ is the Weyl tensor, Rµν the Ricci tensor and R is the Ricci scalar.
The first term is locally scale-invariant while the other two are only globally
invariant. We can simplify the action by using the Gauß-Bonnet invariant

G = CµναβC
µναβ − 2RµνR

µν +
1

6
R2 , (5.4)

which is a total derivative leading to a boundary term at the level of the action
[161]. Using it to replace the second term in (5.3) and dropping the boundary
term we obtain

SGR =

∫
d4x

√
−g
(
κCµναβC

µναβ + γ R2
)
, (5.5)

where we have redefined the dimensionless constants. A theory of gravity based
solely on (5.5) would not pass the many test of GR and its Newtonian limit,
i.e. no identification of the gravitational coupling constant GN can be made.
Instead, we have to rely on the inclusion of scalar fields which couple non-
minimally to the Ricci scalar via

Sϕ =

∫
d4x

√
−g
(
−gµν∂µϕ∂νϕ+

βϕ
2
ϕ2R

)
, (5.6)

through a dimensionless coupling constant βϕ. It is now feasible to generate
the Planck mass

M2
Pl = βϕv

2
ϕ , (5.7)

by the scalar VEV vϕ = ⟨ϕ⟩. At low-energies we can therefore recover the well-
tested phenomenology of General Relativity. The combination of the actions
(5.5) and (5.6) will form the base for the realization of inflation. Before that
discussion we have to dynamically induce the Planck mass in light of (5.7).

5.2 Symmetry Breaking of Scale-invariance

For the purposes of breaking classical scale-invariance we need at least two
scalars S and σ because a two-scalar sector is the most economic way to real-
ize the CW-mechanism in the Gildener-Weinberg approach [107].1 The scalar
sector is described by the classical action

SCW =

∫
d4x

√
−g
[
−1

2
gµν∂µS∂νS − 1

2
gµν∂µσ∂νσ − V (S, σ)

+
1

2
(βSS

2 + βσσ
2)R

]
, (5.8)

1Alternatively, one could realize this with one scalar which is gauged under an additional
U(1) such as the scalar QED example of Section 3.1. Note that our notion of minimality
in that respect will be reevaluated in Chapter 6 where we also take gravitational degrees of
freedom into account.
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and we also assume a Z2 symmetry with the scalar σ being Z2-odd (more
details on this in Section 5.6). The inclusion of the Higgs scalar is postponed
to Section 5.4. The most general scale-invariant tree-level potential is then

V (S, σ) =
1

4
λSS

4 +
1

4
λσσ

4 +
1

4
λsσS

2σ2 . (5.9)

In order to simultaneously avoid the domain wall problem [162] and to stabilize
the DM candidate χ discussed in Section 5.6, we want to choose the minimum
of the scalar potential, such that the Z2 symmetry remains unbroken, i. e. for
⟨S⟩ ≠ 0 and ⟨σ⟩ = 0. This can be realized according to the Gildener-Weinberg
method [107] by assuming an approximate flat direction in the contour param-
eterized through σ = 0. The tree-level couplings should therefore satisfy (see
also Section 3.2)

λS ≪ λSσ and λS ≪ λσ . (5.10)

With this choice, we see from (5.8), a non-zero VEV vS = ⟨S⟩ will generate
the Einstein-Hilbert term with the (reduced) Planck mass MPl ≃

√
βSvS . We

integrate out the quantum fluctuations δS and δσ from the two scalars by
utilizing (2.29). In the Gildener-Weinberg approximation the background fields
are set to S ̸= 0, R ̸= 0 and σ = 0 and we obtain the effective potential at
one-loop

Ueff(S, σ,R) = V (S, σ,R) +
1

64π2

[
m̃4

s ln

(
m̃2

s

µ2

)
+ m̃4

σ ln

(
m̃2

σ

µ2

)]
, (5.11)

where the field-dependent masses in this background are

m̃2
s = 3λSS

2 + βSR and m̃2
σ =

1

2
λSσS

2 + βσR . (5.12)

Here, we have used the MS scheme and furthermore absorbed the constant
−3/2-term into the renormalization scale µ.2 Since by construction ⟨σ⟩ = 0,
and the field direction perpendicular to it is steep due to large λσ (cf. (5.10)), we
assume that σ will not play any role during inflation. We proceed by computing
vS . During inflation we can assume that βSR < 3λSS

2 and βσR < (1/2)λSσS
2

such that we can expand (5.11) in powers of the Ricci scalar, and furthermore
setting σ = 0,

Ueff(S,R, σ = 0) = UCW(S) + U(1)(S)R+ U(2)(S)R
2 +O(R3) , (5.13)

2Note that integration also gives rise to divergences that have to be absorbed into the
couplings λS , γ, and βS . This agrees with the earlier computation of e.g. [163, 164] and
references cited therein. Furthermore, the βS and βσ terms in (5.12) should actually read
βS − 1/6 and βσ − 1/6, if one properly does the computation in a curved background [165].
However, since βS will turn out be large, i.e. βS ≳ 102, for successful inflation and βσ will
play an irrelevant for inflation, we will be ignoring the constants 1/6 term throughout.
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where

UCW(S) =
1

4
λSS

4 +
S4

64π2

[
9λ2S ln

(
3λSS

2

µ2

)
+
λ2Sσ
4

ln

(
λSσS

2

2µ2

)]
, (5.14)

U(1)(S) =
1

128π2

[
6βSλSS

2

(
1 + 2 ln

(
3λSS

2

µ2

))
+ βσλSσS

2

(
1 + 2 ln

(
λSσS

2

2µ2

))]
, (5.15)

U(2)(S) =
1

128π2

[
β2S

(
3 + 2 ln

(
3λSS

2

µ2

))
+ β2σ

(
3 + 2 ln

(
λSσS

2

2µ2

))]
. (5.16)

Since we are assuming a negligibly small but non-zero value of the Ricci scalar
R, we obtain theR-independent leading-order estimate for vS from the potential
UCW(S) through the stationary condition

∂UCW(S)

∂S

∣∣∣∣
S=vS

= 0 , (5.17)

and then verify it is indeed a minimum. The induced vacuum energy at the
VEV is

U0 := UCW(vS) = −µ4 βλS

16
exp [−1− 16C/βλS

] , (5.18)

where βλS
is the one-loop β-function for λS in the absence of further couplings

other than seen in (5.8). It reads

βλS
=

1

16π2

(
18λ2S +

1

2
λ2Sσ

)
, and (5.19)

C =
1

4
λS +

1

64π2

(
9λ2S ln(3λS) +

1

4
λ2Sσ ln(λSσ/2)

)
. (5.20)

The negative zero-point energy density (5.18) is a consequence of the sponta-
neous breaking of global scale-invariance. This zero-point energy density, which
contributes to the cosmological constant, is finite in dimensional regularization
because of the scale-invariance of the considered model. Since the induced value
of U0 is too large compared to the observed value of the cosmological constant,
we choose to subtract the zero-point energy density by an ad-hoc subtraction
and redefining the effective potential as

ŨCW(S) = UCW(S)− U0 , (5.21)

such that we now have ŨCW(vS) = 0. The above corresponds to an explicit
super-soft breaking of scale invariance at tree level, which is the cost of getting
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rid of the cosmological constant problem. To properly address the cosmologi-
cal constant problem one should probably also take into account gravitational
quantum corrections, also coming from the Weyl-tensor squared term. In the
rest of this thesis, we set this issue with the cosmological constant problem
aside. We can now identify the Planck mass by (5.8) and (5.13)

MPl =

√
βS +

2U(1)(vS)

v2S
vS . (5.22)

Since vS = µfS(λS , λSσ) (cf. (5.14) and (5.17)), the formula above relates MPl

with the renormalization scale MPl = µfP (βS , βσ, λS , λSσ), where fS and fP
are dimensionless functions of the coupling constants.

5.3 Effective Action for Inflation

For successful inflation through slow-roll at least one bosonic degree of freedom
is necessary [65, 66, 166]. It was realized relatively early [61] that the inclusion
of the R2-term in the action leads to an additional scalar degree of freedom3,
the so-called scalaron, can play the role of the inflaton field. However, the
quantum corrections of the scalaron alone to a scalar field S cannot account for
the generation of MPl via the CW-mechanism. Also, in the context of Higgs
inflation the CW-mechanism does not suffice to generate a VEV for a scalar S
which thereby generates MPl. It is for these reasons that we need two scalars
σ and S. The former is necessary because of its quantum correction in the
effective potential such that a global minimum with vs ̸= 0 is generated. Of
course, the R2-term is natural in a scale-invariant model, and as we will see
later, it helps in pushing the tensor-to-scalar ratio r to smaller values, as is
preferred by current observations.

The role of scale-invariance in inflation models is widely studied, e.g. in [38,
57,154,156,157,167–169] where the inflaton potential is not explicitly generated
by the CW-mechanism as in contrast to e.g. [31,39,158,170–174]. Most similar
to our setup are the studies in [172,173], although the inflaton potential is there
derived differently. In [172, 173] the transition from Jordan to Einstein frame
is performed before it is shown that scale-invariance is broken. This means one
implicitly assumes that scale invariance is broken, since the Weyl rescaling to
the Einstein without a scale is not possible. In contrast to that, we computed
the CW-potential in the Jordan frame which yields the effective Lagrangian
(5.23). In this way, we can show that a finite scale is generated in the Jordan
frame and the transition to Einstein frame is therefore allowed. In principle,
it would be also possible in our approach to compute the predictions for slow-
roll inflation in the Jordan frame since they are frame independent [175, 176],

3This additional degree of freedom is in fact inherited from the metric and can be made
an explicit propagating scalar field in the Einstein frame.
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but we will not so and continue the computation in the more familiar Einstein
frame to use the results of Chapter 4.4

For the laid out reasons we start with the relevant effective Lagrangian for
inflation5

Leff√
−gJ

= −1

2
M2

PlB(S)RJ +G(S)R2
J − 1

2
gµνJ ∂µS∂νS − ŨCW(S) , (5.23)

where the subscript J denotes the metric and corresponding curvature invari-
ants in the Jordan frame. It is obtained by the combination of the classical
actions (5.5) and the inclusion of one-loop contributions of the effective po-
tential summarized in (5.13) and (5.21). The two functions above are given
by

B(S) =
1

M2
Pl

(
βSS

2 + 2U(1)(S)
)

and G(S) = γ − U(2)(S) . (5.24)

We should note that in (5.23) we have omitted the Weyl tensor term present
in (5.5), because it is assumed that irrespectively of the value of κ, the Weyl
tensor squared term only has relatively negligible effects on r [183–185]. This
point be will reevaluated in Chapter 6. We continue with our discussion by
noting that the equation of motion of S does not depend on κ.

We will proceed by removing the R2
J term by introduction of an auxiliary

scalar field through the substitution

G(S)R2
J → 2G(S)RJψ −G(S)ψ2 . (5.25)

One can easily check that the equation of motion for ψ delivers a constraint
which returns (5.23). The next step is to perform a Weyl transformation which
transform the metric according to

gµν = Ω2 gJµν , with Ω2(S, ψ) = B(S)− 4G(S)ψ

M2
Pl

. (5.26)

The Lagrangian (5.23) is then transformed to the Einstein frame

LE
eff√
−g

=
1

2
M2

Pl

(
R− 3

2
gµν ∂µ lnΩ

2(S, ψ) ∂ν lnΩ
2(S, ψ)

)
− gµν

2Ω2(S, ψ)
∂µS ∂νS − V (S, ψ) , (5.27)

4Note that that transformations between the Jordan and Einstein frames should be taken
with care at the quantum level when also taking graviational quantum contributions into
account [177,178]. We are treating gravity here classically so this should be of no concern.

5A similar Lagrangian with a priori arbitrary functions B, G, and U has been already
studied in [151,179–182].
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where we dropped the subscript J for the metric and the Ricci scalar in the
Einstein frame. The scalar potential is transformed to

V (S, ψ) =
UCW(S) +G(S)ψ2[
B(S)M2

Pl − 4G(S)ψ
]2 M4

Pl , (5.28)

which depends now on two scalar fields S and ψ. The latter, as we see in the
second term of (5.27), is promoted to a propagating scalar field in the Einstein
frame. Its canonically normalized expression, the scalaron field ϕ [186, 187], is
defined as

ϕ =

√
3

2
MPl ln

∣∣Ω2
∣∣ . (5.29)

The Einstein-frame Lagrangian now reads

LE
eff√
−g

=
1

2
M2

PlR− 1

2
gµν ∂µϕ∂νϕ− 1

2
e−Φ(ϕ) gµν ∂µS ∂νS

− V (S, ϕ) , (5.30)

where Φ (ϕ) =
√
2ϕ/

√
3MPl, and the V (S, ϕ) potential (5.28) now reads

V (S, ϕ) = e−2Φ(ϕ)

[
UCW(S) +

M4
Pl

16G(S)

(
B(S)− eΦ(ϕ)

)2]
. (5.31)

We arrive at an effective Lagrangian (5.30) where all metric degrees of freedom
are described by the Einstein-Hilbert term, as it was the case in Chapter 4.
The novel feature of (5.30) with respect to our previous considerations is that
two scalar fields are present with a relatively involved potential (5.31) which
could play the role of the inflaton.

5.3.1 Valley Approximation

We could proceed by studying inflation using multifield techniques (see e.g. [188])
for the 2d-potential (5.31). Instead of this rather involved approach, we will
argue that it is possible to obtain an effective one-field description and to derive
predictions for CMB observables. The contour plot of the potential (Fig. 5.2)
indicates that the potential exhibits a clear valley structure along which the
potential is relatively flat and suitable for slow-roll inflation. We will assume
that the inflationary trajectory during slow-roll evolution in the S-ϕ plane is
confined to this valley and can be parameterized by a single field. In fact, this
behavior was confirmed in [31] for a similar model in which the classical trajec-
tories with different initial conditions converge to an inflationary attractor line,
i. e. the valley contour. The existence of this valley structure is guaranteed
as long as a large hierarchy between the two mass eigenvalues of the scalar
mass matrix derived from (5.31) exists. Then, the gradient along the valley
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Figure 5.2: Scalar potential for benchmark point 3 of Table 5.1. The two contours defined
in Eqs. (5.33) and (A.1) are shown on top of the contour plot of V (S, ϕ) (5.31) (right) and
the corresponding one-dimensional inflaton potentials along those contours (left).

is hierarchically smaller than the gradient perpendicular to it. To parametrize
the contour of the valley one can use two different approaches and we compare
them in Appendix A and discuss the respective viability.

We discuss one of the approaches here which is based on the observation
(Fig. 5.2) that there is precisely one local extremum in the scalaron direction
for each S > vs which can be obtained by

∂V (S, ϕ)

∂ϕ

∣∣∣∣
ϕ=ϕ̃(S)

= 0 ⇒ ϕ̃(S) =

√
3

2
MPl ln

(
B(S) +

16G(S)UCW(S)

B(S)M4
Pl

)
,

(5.32)

which in turn defines the valley contour in the two-dimensional field space
through

C = {S, ϕ̃(S)} where
∂V (S, ϕ)

∂ϕ

∣∣∣∣
ϕ=ϕ̃(S)

= 0 . (5.33)

The inflationary trajectory can be assumed to satisfy (5.32) at all times if the
scalaron mass satisfies

m2
ϕ

H2
inf

≫ 1 , (5.34)

where mϕ is evaluated along the contour C and Hinf is the inflationary Hubble
parameter during. If (5.34) holds, the heavy positive scalaron mass is able
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to stabilize the contour C during the slow-roll phase and any motion leaving
the contour C can be neglected. Inserting ϕ̃(S) into (5.31) we obtain the one-
dimensional inflaton potential along this contour,

Vinf(S) = V (S, ϕ̃(S)) =
UCW(S)

B(S)2 + 16G(S)UCW(S)/M4
Pl

. (5.35)

The kinetic terms in (5.30) now read

e−Φ(ϕ̃(S)) gµν∂µ S∂ν S + gµν∂µ ϕ̃(S)∂ν ϕ̃(S) ⇒ F (S)2gµν∂µ S∂ν S , (5.36)

where the non-standard normalization is

F (S) =
1

[1 + 4A(S)]B(S)

{
[1 + 4A(S)]B(S) +

3

2
M2

Pl

(
[1 + 4A(S)]B′(S)

+4A′(S)B(S)
)2}1/2

with A(S) =
4G(S)UCW(S)

B(S)2M2
Pl

. (5.37)

Finally, we arrive at the effective one-field description with the Lagrangian,

LE
eff√
−g

= −1

2
M2

PlR+
1

2
F (S)2 gµν ∂µS ∂νS − Vinf(S) , (5.38)

and a canonically normalized inflaton field Ŝ can be obtained by integration

Ŝ(S) =

∫ S

vS

dxF (x) . (5.39)

If the condition (5.34) is satisfied we can safely use the effective one-field de-
scription (5.38) to study slow-roll inflation. An important step is to compute
the potential slow-roll parameters (4.23). These equations have been derived
for a canonically normalized scalar field and in the present model (5.36) we
have to take the additional F (S)-term into account. These modify (4.23) to

ϵV (S) =
M2

Pl

2F 2(S)

(
V ′
inf(S)

Vinf(S)

)2

, (5.40)

ηV (S) =
M2

Pl

F 2(S)

(
V ′′
inf(S)

Vinf(S)
− F ′(S)
F (S)

V ′
inf(S)

Vinf(S)

)
. (5.41)

The number of e-folds (4.26) in this case is computed by

Ne =

∫ Send

S∗

F 2(S)

M2
Pl

Vinf(S)

V ′
inf(S)

, (5.42)

where S∗ denotes the field value at the time of CMB horizon exit of the scale k∗.
The field value at the end of inflation Send is obtained by the condition (4.25).
With this at hand, we can compute the scalar power spectrum amplitude As,
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the scalar spectral index ns and the tensor-to-scalar ratio r with (4.83), (4.86)
and (4.98). The quantities with an asterisk are evaluated at S = S∗. The
parameters of our model relevant for inflation are the quartic couplings λS , λSσ,
non-minimal coupling βS and the R2 coefficient γ (cf. (5.5) and (5.8)). The
renormalization scale µ in the effective potential (5.11) is fixed through the
identification of MPl in (5.22). Note that all these parameters (except µ) are
dimensionless as they should be for a scale-invariant theory. The other two
present parameters λS and βσ are irrelevant for inflation or the determination
of MPl in leading order because of the flat direction condition (5.10) which
ensures that the field σ plays no role for inflation. For this reason we will
present all further model prediction for fixed values of λS = 0.005 and βσ = 1.
The mentioned CMB observables As, ns and r are measured or constrained
by the latest data from the Planck mission [131]. For our purpose we assume
Ne ≃ 50 · · · 60 e-folds from CMB horizon exit until the end of inflation and
constrain the parameter space spanned by λSσ, βS and γ, such that the well
measured scalar spectrum amplitude constraint is fulfilled [131]

ln
(
1010As

)
= 3.044± 0.014 . (5.43)

Figure 5.3: The lines indicate pairs of the parameters γ and βS for which the As-
constraint (5.43) is satisfied, for a varying number of e-folds Ne (left) or varying λSσ (right).
All shown points are obtained for βσ = 1 and λS = 0.005 and the three benchmark points
summarized in Table 5.1.

This tight constraint can be used to effectively remove one free parameter
of the model. Fig. 5.3 shows that there is a relation between βS and γ once As,
Ne and λSσ have been fixed. We can use this and express the βS dependence
of the CMB observables ns and r in terms of γ only. One can also see that
there are maximally allowed values (βS,max ∼ 103 and γmax ∼ 109) due to this
constraint, where the exact maximal values depend on Ne and λSσ. Utilizing
the constraint (5.43) (corresponding to points shown in Fig. 5.3) we are able
to illustrate the parameter dependence of this model through γ only in the
ns − r plane in Fig. 5.4. From Fig. 5.4 we see that the predictions of this
model interpolate between two familiar inflation models. The lower end of the
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prediction corresponds to that of R2 inflation [61,189,190], while the upper end
is reminiscent of linear chaotic inflation [191].6

Figure 5.4: Predictions for the scalar spectral index ns and the tensor-to-scalar ratio r with
varying number of e-folds Ne (top) and varying λSσ (bottom). All shown points are obtained
for βσ = 1 and λS = 0.005 and satisfy the As-constraint (5.43). The βS-dependence is fixed in
light of Fig. 5.3. In the top panel we included the Planck TT,TE,EE+lowE+lensing+BK15
68% and 95% CL regions [131].

Contour C Contour C′

# βS γ ns r As send/µ s∗/µ ns r As ϕend/µ ϕ∗/µ
1 1.01× 102 5.24× 108 0.967 0.004 3.032 0.09 0.11 0.965 0.004 3.088 0.83 4.75
2 5.69× 102 1.68× 108 0.972 0.010 3.041 0.11 0.45 0.972 0.010 3.075 2.02 13.46
3 8.67× 102 2.80× 107 0.973 0.034 3.038 0.13 2.56 0.973 0.034 3.040 2.74 23.46

Table 5.1: Parameters for the three benchmark points marked in Fig. 5.3. For all points we
have fixed λSσ = 0.77, λS = 0.005 and βσ = 1 and the VEV in each case is vS = 0.088µ. The
last six columns show the predictions for the CMB observables and the related field values for
the inflationary contours C or C′ for Ne = 55 e-folds. The valley approximation is discussed
in Appendix A .

6The results of linear inflation were also reproduced in another context in [192,193].
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5.4 Embedding into the SM

So far, all discussion of this model was completely decoupled from the SM.
However, we have introduced two new scalar fields which are singlets under the
SM gauge group in (5.8). Of course, the SM also includes the Higgs and it
allows for new terms in the scalar potential. Since H†H is gauge invariant two
portal couplings are allowed which are also scale-invariant. Furthermore, also
the Higgs is allowed to have non-minimal coupling βH . To embed the discussed
model into the SM, we have to add the following terms to the Lagrangian

LcSM√
−g

= LSM|m=0 −
1

4
(λHSS

2 + λHσσ
2)H†H +

1

2
βH(HH†)R . (5.44)

The first term denotes the scale-invariant SM Lagrangian with the quadratic
Higgs termm2H†H suppressed. The additional couplings βH , λHS and λHσ are
new with respect to (5.8) and can thereby couple the Higgs field to the process
of inflation and to the generated scale vS . First, we assume that βH ≈ 0 and
therefore the Higgs plays no role in this inflation scenario. The portal couplings
λHS and λHσ have to be tuned extremely small.7 Otherwise, it will give rise to
a too large Higgs mass proportional to

m2 =
λHS

2
v2S . (5.45)

The amount of fine-tuning on the portals λHS and λHσ will be discussed in
the next section. We note here, that we will not rely on fine-tuning to a
specific value of the portal couplings as to account for electroweak symmetry
breaking through the mass term (5.45). Therefore, we have to rely on an
alternative approach to account for electroweak symmetry breaking by the so-
called neutrino option.

5.5 Neutrino Option

The true origin of the quadratic Higgs mass parameter is puzzling so far, in
particular in light of the related gauge hierarchy problem. It has been proposed
under the name neutrino option in [149, 194] that it could be related to the
Majorana mass scale of right-handed neutrinos and that offers a new perspective
on the hierarchy problem.8 This idea is based on the type-I seesaw mechanism
[142–146] in a specific parameter region where it can account for the light active
neutrino mass and also the Higgs mass parameter. For this matter, we extend
the model according to the scale-invariant realization of the type-I seesaw model
where instead of explicit mass terms we count on Yukawa couplings to the

7Note that if λHS is tiny but λHσ is sizable, it will regenerate λHS at one loop level with
corrections proportional to ∆λHS ∼ λHσλSσ/16π

2.
8Similar considerations had been already made in [195–198].
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scalars we already introduced in (5.8). We introduce right-handed neutrinos
NR which are allowed to have a Majorana-type Yukawa coupling yM to the
scalar S and the Dirac-type Yukawa yν to the SM lepton doublet L and the
Higgs doublet. Furthermore, we include χ as additional right-handed Majorana
neutrinos to accommodate dark matter into the model which will be the subject
of the next section. Having the discrete Z2 symmetry which was mentioned
below (5.8), with σ and χ as the only Z2-odd fields, in mind, we can add the
following interactions for the new fermions

LNχ√
−g

=
1

2
N̄Ri/∂NR − 1

2
yMSN̄RN

C
R +

1

2
χ̄i/∂χ− 1

2
yχSχ̄χ

C

−
(
yNχσN̄Rχ + yνL̄H̃NR + h.c.

)
. (5.46)
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Figure 5.5: Neutrino contributions to the Higgs mass term (left) and Higgs quartic coupling
(middle). The Feynman diagram in right panel generates light active neutrino masses through
the type-I seesaw mechanism.

In general, the Yukawa couplings yM , yχ, yNχ and yν should be interpreted
as matrices in the generation space, but since this structure will be of no impor-
tance in this work we will treat them as representative real numbers. In Sec-
tion 5.2 it was established that scale-invariance is broken by a finite ⟨S⟩ = vS
which therefore leads through the introduced Yukawa interaction to a Majo-
rana mass MN = yMvS for the right-handed neutrinos and also mχ = yχvS .
The central idea of the neutrino option is to take advantage of the one-loop
corrections involving right-handed neutrinos (see Fig. 5.5) to the Higgs mass
term which scale as [149,194]

∆m2 ≃
y2νM

2
N

8π2
, (5.47)

and the Fermi statistics fix the correct sign in front of m2 in the effective
potential. In the EFT picture, this means that the heavy right-neutrinos are
integrated out at the scale µ =MN and the theory is matched to the SM EFT by
including the threshold correction (5.47) at the matching scale. The parameter
space which satisfies this matching is indicated by the dashed black line in
Fig. 5.6. At lower scales, the standard SM RG-running is assumed. Thereby one
can say in other words that the Higgs potential is generated radiatively through
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interaction with right-handed neutrinos. For completeness, we should note
that the matching also induces some corrections to the quartic Higgs coupling
(middle panel of Fig. 5.5) which scale as [149,194]

∆λH ≃ y4ν
64π2

, (5.48)

and are negligible for small yν . The interesting parameter space for the neutrino
option is

MN ∼ 107GeV , yν ∼ 10−4. (5.49)

Under inspection of (5.47) and Fig. 5.6 we see that in this ballpark this will
lead to m ∼ 102 GeV and thereby fixes electroweak symmetry breaking. The
underlying idea of the neutrino option is that (5.47) is the major origin of the
Higgs mass parameter and this of course leads to scale-invariance as an under-
lying guiding principle since it sets the tree-level mass of the Higgs m naturally
to zero. The embedding of the neutrino option, which in the original construc-
tion in [149, 194] is not scale-invariant due to an explicit Majorana mass MN ,
was therefore embedded into a scale-invariant model in [95,96,160]. Then, the
origin of m is purely explained by (5.47) in light of the neutrino option. In
the case of broken scale-invariance, the right-handed neutrinos acquire mass
MN = ymvs and the interactions in (5.46) will lead to the type-I seesaw mecha-
nism (see right panel of Fig. 5.5). The light neutrino masses are then obtained
by the suppression of the electroweak scale vEW through the Majorana mass

mν ≃
y2νv

2
EW

MN
. (5.50)

Fixing this mass scale to be of order mν ∼ 0.1 eV and using (5.47) to generate
the Higgs mass parameter one is lead to the parameters shown in (5.49) (see
also Fig. 5.6).

We like to give more details on the embedding of this idea in our model.
The VEV vS leads to the generation of the Planck scale (5.22) and is therefore
expected to lay at rather high energies. The origin of MN is therefore tied to
the origin of MPl. In fact, using (5.22) we can write down the relation

MN = yMvS = yMMPl

(
βS − 2U(1)(vS)/v

2
S

)−1/2
. (5.51)

Since βS ≫ 2U(1)(vS)/v
2
S is satisfied in the parameter space we consider, this

simplifies to

yM ≃
mNβ

1/2
S

MPl
≃ 10−10 ×

(
βS
103

)1/2

. (5.52)

For the values of βS we consider (see e.g. Fig. 5.4) this therefore fixes the
Yukawa couplings to very small values yM ∼ 10−10. However, the smallness of



5.5. Neutrino Option 63

Figure 5.6: The threshold correction to the Higgs mass parameter (5.47) due to the Majo-
rana mass MN of right-handed neutrinos. Along the black dashed line the matching condition
is satisfied, where the threshold correction at the matching scale µ = MN equals the running
Higgs mass parameter of the SM m(mN ) at the matching scale. The blue line indicates the
light neutrino mass scale obtained by the seesaw mechanism (5.50). Both conditions are sat-
isfied at the intersection of the two lines at yν ≃ 10−3.9 and MN ≃ 107 GeV.

yM is technically natural in the sense of ’t Hooft [23], because it restores the
U(1)B−L symmetry as yM (and yNχ) go to zero.

We have to return to the discussion of the portal couplings between the
SM and the additional sector, since our assumption is that the Higgs mass is
generated solely by (5.47). The interactions introduced in (5.46) will lead to
new quantum corrections to λHS by the Feynman diagram in the left panel of
Fig. 5.7. This one-loop correction scales as

(∆λHS)N =
y2νy

2
M

16π2
, (5.53)

where the subscript N denotes that this corrections is due to the right-handed
neutrinos. In the previous section we have argued that we have to tune the
portals λHS and λHσ to small values as to not spoil the neutrino option. In
light of (5.53), we have to assume though that the natural value is of order
y2νy

2
M through RG-running. However, since the two Yukawa couplings in this

scenario are rather small, yν ∼ 10−4 and yM ∼ 10−10, the idea of the neutrino
option is not jeopardized by a large λHS which otherwise generates a large
Higgs mass directly from vS by

(∆m)N = (λHS)N vS ≃
√
y2νy

2
M

16π2
vS . (5.54)
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From yν ∼ 10−4, yM ∼ 10−10 and vS ∼ 1016 GeV (this follows fromMPl ≃ βSvs
and βS ∼ 102) one can therefore estimate that (∆m)N ≪ 102 GeV. Similar
arguments have to be made for a small yNχ which couples the right-handed
neutrinos to the dark matter candidate χ. Through the two-loop diagram
shown in Fig. 5.7 it will generate a further correction to the Higgs mass which
is estimated by

(∆m)χ ≃
yνyNχmσ

16π2
. (5.55)

Demanding as before (∆m)χ ≪ 102 GeV leads to yNχ ≪ 10−8.
Frome these considerations we can argue that the set of couplings λHS ,

λHσ, yM , yχ and yNχ remain small at higher orders in perturbation theory if
they are all set small enough at tree-level. Their smallness is preserved under
RG-running. In some sense, the small values for these couplings are therefore
natural, even though no enhancement of symmetry is associated.9

A last point we would like to mention here is that leptogenesis [200, 201],
i.e. the generation of the baryon asymmetry of the Universe, works successfully
within the framework of the neutrino option [97, 202]. Under the assumption
that the right-handed neutrinos N can be reheated only through the contact
with the SM particles, 10 the bound TRH ≳ 2 × 109 GeV must be satisfied
in order to realize thermal leptogenesis with mN ≳ 2 × 107 GeV [203]. This
lower bound on TRH is indicated in Fig. 5.9 (black dotted line). For the three
benchmark points in Table 5.1, we find that thermal leptogenesis works only if
inflation last longer than Ne ≳ 54 e-folds.
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Figure 5.7: Neutrino contribution to the Higgs portal coupling λHS (left) and dark matter
two-loop contribution (right) to the Higgs mass.

5.6 Reheating and Dark Matter

This section can be seen as an addendum to the overall story of this thesis and
can be skipped by readers who are interested mainly in the discussion of the
generation of hierarchical energy scales. We do not intend to specify a reheating

9See however [199], where a protection through an enhanced Poincare symmetry is dis-
cussed.

10The direct reheating through the coupling yM of N to S is very small due to (5.52).
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mechanism or advocate for a particular DM model. It should be rather seen
as a general proof of concept that dark matter can be accommodated without
spoiling the advocated scale-invariant framework where the generation of all
scales is accounted for dynamically. Nevertheless, we give a brief overview of
the results obtained in [204].

The process of reheating starts at the end of inflation when the energy
density stored in the inflaton is converted to radiation (see e.g. [205, 206] for
reviews). In general, we do not know much about this process and the evolution
of the universe during that time, as indicated also in Fig. 4.1. We will follow
the results of [207,208] to take into account the effect of the reheating phase to
some extent without specifying the underlying reheating mechanism. The basic
unknown quantities in this approach are the expansion rate aend/aRH during
the reheating and the energy density ρRH at the end of reheating. These two
uncertainties are combined to a single parameter [208]

Rrad =
aend
aRH

(
ρend
ρRH

)1/4

, (5.56)

where ρend = ρS(Send) is the energy density of the inflaton field at the end of
inflation. The reheating temperature TRH is defined through

ρRH =
π2

30
gRH T

4
RH , (5.57)

where gRH accounts for the relativistic degrees of freedom at the end of reheat-
ing. We assume that Rrad can be written as [208]

lnRrad =
1− 3w̄

12(1 + w̄)
ln

(
ρRH

ρend

)
, (5.58)

where w̄ is the average equation of state parameter during reheating.

We can now constrain the number of e-folds Ne = ln (aend/a∗) between the
horizon exit of the pivot scale set by the Planck mission [131] and the end of
inflation. All quantities marked with an asteriks are meant to be evaluated at
horizon exit defined by k∗ = a∗H∗. One finds [208,209]11

Ne = ln

(
aend
a∗

)
= ln

(
aRH ρ

1/4
RH√

3a0H0

)
− ln

(
k∗
a0H0

)
+

1

4
ln

(
V 2
inf ∗

M4
Pl ρend

)
+ ln (Rrad) , (5.59)

where gRH = 106.75 + (7/8)12 = 117.25, a0 = 1 and H0 = h × 2.13 × 10−42

GeV and k∗ = 0.002Mpc−1 [210]. The first term of (5.59) can be computed by
using (5.57)) and the conservation of entropy a3RH sRH = a30 s0, giving aRH/a0 =

11This equation is derived from aend/a∗ = Rrad

(
aRHρ

1/4
RH/

√
3a0H0

)(√
3H∗/ρ

1/4
end

)
(a0H0/k∗)
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(q0/qRH)
1/3 T0/TRH, where q0 = 43/11, and qRH = gRH are the degrees of

freedom that enter via entropy at the present day and at the end of the reheating
phase, respectively. Then, using the CMB temperature today T0 = 2.725K one
finds [131,211] for this term

ln

(
aRH ρ

1/4
RH√

3a0H0

)
= 66.89− 1

12
ln gRH . (5.60)

The energy density at the end of inflation can be expressed with the help of
slow-roll parameter as

ρend =
Vend(3− ϵ∗)
(3− ϵend)

, (5.61)

where Vend = Vinf(Send) with the inflaton potential (5.35). The average equation
of state parameter w̄ can be deduced from the curvature of the inflaton potential
Vinf near the minimum. Under examination of (5.24), (5.15), (5.16) and (5.36)
we can deduce the scaling of the inflaton potential near the minimum S = vS
by

Vinf(S) ≃ UCW(S) = (3λSv
2
S + . . . )Ŝ2 +O(Ŝ3) (5.62)

where Ŝ ≃ S − vS and the dots stand for the higher order contribution coming
from the effective potential (5.14). From the formula [212]

w̄ =
p− 2

p+ 2
, (5.63)

where p is defined as the scaling exponent V ∼ Ŝp. Therefore, we find from
(5.62) that p = 2 and hence w̄ = 0. Once the slow roll parameters of a given
inflation model are computed, the only quantity on the right hand side of (5.59)
that is not determined so far is the reheating temperature TRH. Eq. (5.59) can
be understood as a constraint on Ne, assuming that ρRH ∈ [1 (TeV)4, ρend] is
satisfied [131]. On the other hand, since the number of e-folds needed to solve
the Big Bang puzzles is 49 < Ne < 59 [131], (5.59) gives a constraint on TRH

assuming that ρRH ∈ [1 (TeV)4, ρend] is also satisfied.
The relation between Ne and TRH in (5.59) can be used to demonstrate

how varying Ne affects the CMB observables r and ns via the corresponding
reheating temperatures in Fig. 5.8 for the benchmark points of Table 5.1.

Dark Matter Production

In (5.46) the fermion χ was introduced as a DM candidate and it has not yet
been specified how it can be produced. Utilizing the freeze-in production [213]
mechanism, the DM candidate can be produced during or after reheating (see
also [214–216]). The two Z2-odd particles χ and the scalar σ are stable since
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Figure 5.8: Predictions for the scalar spectral index ns and the tensor-to-scalar ra-
tio r with varying number of e-folds Ne ∈ [50, 60] and (slightly) varying βS to account
for the As-constraint (5.43). The reheating temperature TRH is shown using its depen-
dency on the number of e-folds Ne through (5.59). For all shown points we have fixed
λS = 0.005, λSσ = 0.77, βσ = 1 and γ as seen labeled in the figure. Due to the lower
bound on βS , we only display Ne ∈ [53.5, 60] for benchmark point 1. We also show the Planck
TT,TE,EE+lowE+lensing+BK15 68% and 95% CL regions [131].

the Z2 symmetry is not spontaneously broken by the VEV vS , as accounted for
by choosing the flat direction according to (5.10). One should note that the
scalar σ has a rather heavy mass mσ ∼ 1016 GeV (cf. (5.12)) and therefore it
is too heavy to be produced via decay of the inflaton S. For this reason we
focus on the production of χ which can either be produced by the decay of the
inflaton S → χχ or by the scattering process NN → χχ. In Section 5.5 we
have argued that yNχ is very small and so is the cross section for the process
NN → χχ since it scales as σNχ ∼ y4Nχ. One then finds that this process
is negligible for the production of dark matter. The focus is therefore on the
inflaton decay into two χ which has a decay width

γχ =
3 y2χmS

16π
(1− 4m2

χ/m
2
S)

1/2 . (5.64)

Note that χ has contact with the SM particles only through N and because of
the constraint yNχ ≪ 10−8, the contact of χ to SM particles is very suppressed.
Under these assumptions one can consider a system comprised of the inflaton12

S and DM χ only with the coupled Boltzmann equations [214]

dnS
dt

= −3HnS − ΓS nS , (5.65)

dnχ
dt

= −3Hnχ +BχΓS nS , (5.66)

where n stands for the respective number densities, ΓS is the total decay width
of S and Bχ = γχ/ΓS is the branching ratio. The Boltzmann equations (5.65)

12We assume that S is the dominant part of the inflaton field, which in general is a mixture
of S and the scalaron ϕ. Otherwise, if the mixing is large, one should incorporate it into the
decay width (5.64).
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are not coupled and can be solved [205] with the solutions

nS(a) =
ρend
mS

[aend
a

]3
e−ΓS (t−tend) , (5.67)

nχ(a) = Bχ
ρend
mS

[aend
a

]3 (
1− e−ΓS (t−tend)

)
, (5.68)

where all quantities with the subscript “end” are evaluated at the end of infla-
tion. The asymptotic value at t→ ∞ yields the DM relic abundance

Ωχh
2 = mχBχ

ρend
mS

[
aend
a0

]3 M2
Pl

3(H0/h)2
. (5.69)

The unknown (due to reheating) expansion rate aend/a0 between the end of
inflation and today can be computed similarly to (5.59) and one finds

aend
a0

=

(
aend
aRH

) (
ρ
1/4
end

ρ
1/4
RH

) (
aRH ρ

1/4
RH√

3a0H0

)(√
3H0

ρ
1/4
end

)
. (5.70)

Using the relations (5.56), (5.57), (5.58), (5.60) and (5.63) one can relate Ωχ

to the reheating temperature

Ωχh
2 =

√
3 exp(3× 66.89)

BχH0

M2
Pl

(
π2

30

)1/4 (
mχ

mS

)
TRH (5.71)

≃ 2.04× 108Bχ

(
mχ

mS

)
TRH

1GeV
, (5.72)

which agrees with the findings of [215]. The branching ratio Bχ can be obtained
with (5.64) for γχ and by assuming that the lifetime 1/ΓS of the inflaton can
be identified with the time scale at the end of the reheating phase [205, 214],

i.e. 1/H(aRH) =
(
3M2

Pl/ρRH

)1/2
.

For example, for the benchmark point 2 in table 5.1 we obtain

Ωχh
2 ≃ 4.4× 1031 y3χ ≃ 0.12 for yχ ≃ 1.4× 10−11 , (5.73)

and for the mass of the DM candidate mχ = yχ vS ≃ 4.3 × 106 GeV. Using
(5.72) to fix the right DM relic abundance one can plot mχ against TRH for a
benchmark point. This is shown in Figure 5.9, where βS is varied such that
Ne varies between 50 and 60, leading to a variation of TRH in light of (5.59).
We have included the lower bound on TRH for viable thermal leptogenesis by
right-handed neutrino mass MN ≳ 107 GeV [203].
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Figure 5.9: Dark matter mass mχ against reheating temperature TRH. The non-minimal
coupling βS is varied around the benchmark value 5.69×102 (see benchmark point of Table 5.1)
to account for a variation of e-folds Ne. All the other parameters are held fixed and the result
is found to be quite insensitive against the change of these parameters. The black dotted line
shows the lower bound on TRH for viable thermal leptogenesis with MN ≳ 2× 107 GeV [203].
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Chapter 6

Inflation with Massive Spin-2
Ghosts

In the preceding discussion on Planck scale generation (Section 5.2) and in-
flation (Section 5.3), the effects of the Weyl tensor term in the action were
left aside. Therefore, this chapter will pay special attention to this term and
the entailing spin-2 ghost.1 As the name suggests, the Weyl tensor was first
constructed and discussed by its eponym Hermann Weyl [218]. It can be con-
sidered as the pivotal curvature tensor related to conformal symmetry since by
its construction it is invariant under conformal transformations (3.35), i.e. it
transforms trivially as

Cµ
νλσ → Cµ

νλσ . (6.1)

The related CµνλσC
µνλσ term, hereinafter C2-term, is therefore necessarily part

of the globally scale-invariant gravity action (5.5). This term is often ignored in
the literature even when other higher order terms are considered like in f(R)-
models or more specifically in the Starobinsky model [61]. The principle reason
for this is to avoid the threat of unitary violation due to the presence of a spin-
2 ghost state as an additional metric degree of freedom when the C2-term is
included in the action. This is the so-called ghost problem which is a subtle and
complicated issue beyond the scope of this thesis. However, we will provide an
overview of some approaches discussed in the literature to tackle this problem
in Section 6.1.

Despite this serious concern, one should not discard the presence of the
C2-term. Of course, in a scale-invariant theory this term cannot be avoided
due to the invariance of C2-term shown in (6.1). But even in a more general
setting taking scale-invariance aside, ghosts may still be generated by quantum
effects even when higher curvature terms are set to zero at tree-level. This

1This ghost should not be confused with the Faddeev-Popov ghosts which are unphysical
fields introduced to cure the gauge redundancy in Yang-Mills theories, nor with the Boulware-
Deser ghost in massive gravity [217].
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was shown e.g. in [54, 59, 219] where the one-loop diagrams of matter fields
in a curved background will generate an effective action with a divergent part
which is proportional to C2. Furthermore as advertised in the Introduction,
the C2-term renders quadratic gravity renormalizable [58].

These considerations lead to the serious question of what effect the C2-term
might have on inflationary predictions. This has been partially addressed in
the literature and it has been shown that the inclusion of the Weyl tensor will
have an effect on primordial tensor perturbations which gives corrections to the
tensor-to-scalar ratio r [183–185]. Beyond that, we will show in this chapter that
the spin-2 ghost, and also the scalaron degree of freedom (cf.(5.29)), give rise
to novel contributions to the Coleman-Weinberg potential. Theses additional
radiative contributions are computed explicitly in Section 6.3 and can give rise
to dynamical generation of the Planck scale and the inflaton potential. In some
sense, the spin-2 ghost takes here the analogues role of the gauge field of the
basic scalar QED example for the CW-mechanism discussed in Section 3.1.
Applying this calculation to the model of Chapter 5, we can achieve a similar
mechanism that utilizes only the metric degrees of freedom and one additional
external scalar S. The other scalar σ introduced Chapter 5 is in fact therefore
not strictly necessary. In Chapter 5, σ was necessary to induce sizable quantum
corrections proportional to λSσ in the effective potential and therefore generate
a global minimum along the flat direction leading to ⟨σ⟩ = 0 and ⟨S⟩ ≠ 0. This
role is now filled by the spin-2 ghost which will couple to the scalar S through
the non-minimal coupling β.

6.1 The Ghost Problem

In general, when considering equations of motion in physics we are dealing
with at most two time derivatives. The underlying reason for this choice is that
higher-derivatives lead to linear instabilities of the Hamiltonian. This fact was
already noted in 1850 by Ostrogradksy [220] for classical mechanics. In the
quantum version of the so-called Ostrogradsky instability the instability can
be cured by introducing negative norm states, i.e. ghost states, which in turn
violate the conversation of probability [221]. The resulting quantum theory
is doomed to be non-unitary. One might then naturally wonder whether the
same fate applies to quadratic gravity [58] or scale-invariant gravity, due to the
presence of higher derivatives hiding in the C2-term, cf. (6.10).2 To establish
unitarity for higher derivative theories, in particular quadratic gravity, many
interesting ideas have been put forward in the literature which are often based
on alternative quantization procedures.

The so-called fakeon prescription [224,225] is based on an alternative Feyn-
man prescription for the ghost propagator, which quantizes the ghost states as

2See also [222, 223] for a recent in-depth discussion of unitarity violation in quadratic
gravity and conformal gravity.
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a “fake” particles. This entails that the ghost is always purely virtual and does
not appear in the asymptotic spectrum of physical states. In [226, 227] a new
type of norm for quantum states is imposed that leads to positive quantum me-
chanical probabilities. Other approaches are centered around a construction of
PT -symmetric rather than Hermitian Hamiltonians which comes with a Hilbert
space equipped with a positive definite inner product [228,229]. Donoghue and
Menezes [230, 231] adopt the view that the ghost is an unstable particle when
the Lee-Wick contour [232] in the calculation of the Feynman propagator is
used. Therefore, the ghost state should not included in the asymptotic states
of the S-matrix and the only effect that the ghost leaves behind is the viola-
tion of microcausality at the mass scale of the ghost, similarly to the fakeon
prescription [224,225].

Leaving the finer details of the incomplete list of works aside, the relevant
takeaway is that the presence of the spin-2 ghost does not render globally
scale-invariant gravity immediately unphysical. In particular, the list above
shows the quantum-mechanical effects of the massive ghost should be taken
seriously and so it is important to also compute the ghost contribution to the
CW-potential, as we will do in the following two sections.

6.2 The Model and its Degrees of Freedom

We start with the following general action ST describing globally scale-invariant
gravity as already introduced in (5.5) non-minimally coupled to a single addi-
tional matter scalar S(x),

ST = SGR + SS , (6.2)

SGR =

∫
d4x

√
−g
(
γR2 − κCµνρσC

µνρσ
)
, (6.3)

SS =

∫
d4x

√
−g
(
1

2
∂µS∂

µS − β

2
S2R− λ

4
S4

)
, (6.4)

where γ, κ, β, and λ are arbitrary dimensionless constants and the theory is
globally scale-invariant. To separate out the gravitational degrees of freedom,
we consider the small fluctuations hµν around Minkowski space with metric
ηµν ,

gµν = ηµν + hµν , (6.5)

and in a similar spirit, we expand the scalar around a constant background field
Scl,

S = Scl + Ŝ , (6.6)

where Ŝ are the quantum fluctuations around the background value. To study
the propagating modes of the action, we expand (6.2) up to second order in the
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fields hµν and Ŝ and obtain

S
(quad)
T =

∫
d4x

[
β

8
S2
cl

(
hµν□hµν + 2hµν∂ν∂

ρhµρ − hµ
µ□hν

ν − 2hµ
µ∂ν∂ρh

νρ
)

+ γ
(
hµν∂µ∂ν∂ρ∂σh

ρσ + hµ
µ□2hν

ν + 2hµ
µ□∂ν∂ρh

νρ
)

+
κ

6

(
− 3hµν□2hµν − 6hµν□∂ν∂

ρhµρ − 2hµν∂µ∂ν∂ρ∂σh
ρσ

+ hµ
µ□2hν

ν + 2hµ
µ□∂ν∂ρh

νρ
)

− 1

2
ŜβScl (∂ν∂µ +□ηµν)h

µν +
1

2
Ŝ
(
□− 3λS2

cl

)
Ŝ

]
, (6.7)

where we have performed partial integration and introduced the d’Alembert
operator □ = −ηµν∂µ∂µ. In the equation above we have omitted the terms
related to the induced cosmological constant proportional to S4

cl and the tree-
level equation of motion for Scl. York decomposition [233] allows us to further
separate the gravitational degrees of freedom encoded in hµν according to their
spin

hµν = h̃µν + ∂µVν + ∂νVµ +

(
∂µ∂ν −

1

4
ηµν□

)
a+

1

4
ηµνhρ

ρ , (6.8)

where h̃µν is a traceless-transverse tensor mode, Vµ is a transverse vector mode
and a and the trace hµ

µ(x) are scalar modes. As the name suggest these modes
have the property ∂µh̃µν = h̃µ

µ = 0 and ∂µV
µ = 0. It will also turn out to be

useful to introduce the scalar quantity [161]

ϕ = hµ
µ −□ a , (6.9)

which is gauge-invariant under diffeomorphisms hµν → hµν +∂µξν +∂νξµ. This
field can be identified with the scalaron degree of freedom originating from the
R2-term in Starobinsky inflation [61]. After applying (6.8) and (6.9) all terms
containing the gauge-dependent Vµ and a cancel out and the action simplifies
to

S
(quad)
T =

∫
d4x

[
9γ

16
ϕ

(
□2 −m2

ϕ□

)
ϕ− κ

2
δµνρσh̃

µν
(
□2 −m2

gh□
)
h̃ρσ

−Ŝ
(
3

4
βScl□

)
ϕ+

1

2
Ŝ
(
□−m2

S

)
Ŝ

]
, (6.10)

where δµνρσ = 1
2(ηµρηνσ + ηµσηνρ) and we have identified the field-dependent

masses

m2
ϕ(Scl) =

β

12γ
S2
cl , m2

S(Scl) = 3λS2
cl , m2

gh(Scl) =
β

4κ
S2
cl . (6.11)
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In addition to the two scalar degree of freedoms ϕ and S, the spin-2 ghost ob-
tains a field-dependent mass mgh(Scl) proportional to the classical background
field Scl. In this York-decomposed form, one can also easily calculate the prop-
agator for the spin-2 degrees of freedom by performing a Fourier transform and
identifying the inverse propagators as the Hessian with respect to h̃µν

i ⟨0| T h̃µν h̃ρσ |0⟩ =
4

βS2
cl

(
1

p2
− 1

p2 −m2
gh

)
δµνρσ , (6.12)

where p2 = pµp
µ. Once can see, that next to the massless pole corresponding

to the spin-2 graviton there is an additional pole at p2 = m2
gh corresponding

to the massive spin-2 ghost which has the opposite sign in (6.12) as opposed
to the conventional field. The computation for the two scalar propagator from
(6.10) is more involved due to the mixing between Ŝ and ϕ. For our purposes
it will be sufficient in the next section to compute the functional determinant
of the inverse propagator in the non-diagonal form.

6.3 Derivation of the Effective Potential

We now turn to the contribution of the massive spin-2 and spin-0 sectors
in (6.10) to the one-loop effective potential. Since the inverse propagator in
(6.10) reveals a kinetic mixing between Ŝ and ϕ, spin-2 fields and also higher-
derivatives it is not possible to use the standard results presented in Section
2.1.1. Instead one can rely on the result derived in (2.23) in which the one-loop
contribution to the effective action can be computed by taking the functional
determinant of the inverse propagator. To do so, we collect the fluctuations in
ψ = (h̃µν , ϕ, Ŝ)

T and identify the inverse propagator with the Hessian of (6.10)
such that we can write

Γ(1)[S] =
i

2
ln

[
Det

(
δ2S

(quad)
T

δψδψ

)]
=
i

2
ln(DetM)− i

2
Tr
[
ln
(
δµνρσ

(
−□2 +m2

gh□
))]

. (6.13)

Note that from here on we drop the subscript of Scl for convenience. In the
second line in the above equation we have split the spin-0 sector from the rest.
The Hessian in the spin-0 sector is

M =

(
9γ
8

(
□2 −m2

ϕ□
)

−3
4βS□

−3
4βS□ □−m2

S

)
. (6.14)

After computing the determinant of the matrixM , the logarithm can be rewrit-
ten as

ln(DetM) = Tr
[
ln
(
□−m2

+

)]
+Tr

[
ln
(
□−m2

−
)]

+ · · · (6.15)
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where the “· · · ” stand for terms irrelevant for the effective potential which have
no S-dependence. The introduced mass terms are3

m2
± =

1

2

(
m2

S + (1 + 6β)m2
ϕ

)
± 1

2

√(
m2

S + (1 + 6β)m2
ϕ

)2
− 4m2

Sm
2
ϕ . (6.16)

The functional trace in (6.15) can be evaluated in momentum space where the
inverse propagators are diagonal, cf. (2.25). With this, scalar contributions to
the effective action are given by

Γ
(1)
scal[S] =

i

2

∑
j=±

∫
d4p

(2π)4
ln

(
p2 −m2

j

)∫
d4x (6.17)

From here we get the corresponding effective potential contribution by removing
the volume term and changing the sign, cf. (2.13).

Uscal(S) = − i

2

∑
j=±

∫
d4p

(2π)4
ln

(
p2 −m2

j

)

=
∑
j=±

1

64π2
m4

j

[
ln

(
m2

j

µ2

)
− 3

2

]
. (6.18)

In the second equality we have employed dimensional regularization in the MS-
scheme, introducing the renormalization scale µ in the process, and we have
absorbed the divergent terms into the renormalized constant λ.

The calculation of the spin-2 part follows in much the same way as for the
scalars. This contribution comes from the last term in (6.13), which can be
rewritten as

Tr
[
ln
(
δµνρσ

(
−□2 +m2

gh□
))]

= Tr
[
ln
(
δµνρσ

(
□−m2

gh

))]
+Tr ln(−□) ,

(6.19)

where only the massive part, i.e. the spin-2 ghost, of the inverse propagator
contributes.4 However, in order to correctly count the degrees of freedom in
momentum space, we must take advantage of the transverse-traceless nature of
h̃µν to write

h̃µνδµνρσh̃
ρσ = h̃µνP (2)

µνρσh̃
ρσ , (6.20)

3This agrees with the two mass eigenstates computed in the Einstein frame in [30].
4Here we dropped the irrelevant contribution − i

2
Tr ln(−□) to the effective potential which

is independent of S, as we did in (6.15) Therefore, the overall sign of the ghost contribution
to the effective potential in (6.24) is the same as for a normal particle, which is consistent
with the β-function of the quartic coupling λS (see e.g. the β-functions in [30]).
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where

P (2)
µνρσ =

1

2

(
θµρθνσ + θµσθνρ

)
− 1

d− 1
θµνθρσ (6.21)

with θµν = ηµν −
pµpν
p2

, (6.22)

is a spin-2 projection operator [234]. Making this replacement ensures that we
count the correct number of degrees of freedom for a massive spin-2 field in d
space-time dimensions, by computing the trace for rank-2 tensor

Tr
(
P (2)
µνρσ

)
= δµνρσP (2)

µνρσ =
1

2
(d+ 1)(d− 2) , (6.23)

which gives five in d = 4 as expected for a massive spin-2 excitation. With these
considerations, we find that the massive spin-2 contribution to the effective
potential coming from (6.19) reads

Uh(S) = − i

2
lim
d→4

[
µ4−d

∫
ddp

(2π)d
1

2
(d+ 1)(d− 2) ln

(
p2 −m2

gh

p2

)]
=

5

64π2
m4

gh

[
ln

(
m2

gh

µ2

)
− 1

10

]
(6.24)

In the second equality we have again subtracted the divergent part according
to the MS-scheme.

Finally, the total effective potential is given by

Ueff(S) =
λ

4
S4 + Uscal(S) + Uh(S) + U0 , (6.25)

where we introduced U0 as an arbitrary constant background that may be
tuned in order to ensure that the classical zero-point energy vanishes at the
global minimum, as we did already in (5.21). Note, that once the cosmological
constant is canceled in the Jordan frame, it remains zero after transforming to
the Einstein frame in our framework.

6.4 Effective Action for Inflation

As we have done similarly in Section 5.3, the effective action for inflation may
be written as

Seff =

∫
d4x

√
−g
(
1

2
S□S − β

2
S2R+ γR2 − κCµνρσC

µνρσ − Ueff(S)

)
, (6.26)

where Ueff is the quantum effective one-loop potential we computed in the
previous section. One can write (6.25) as [3]

Ueff(S) = U0 +

[
C1 + C2 ln

(
S2

µ2

)]
S4 , (6.27)
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with C1 and C2 being dimensionless constants that depend only on the coupling
constants λ, β, γ and κ which can be derived from (6.25).

To study the process of spontaneous symmetry breaking, one needs to com-
pute the VEV vS by minimizing the effective potential

∂Ueff(S)

∂S

∣∣∣∣
S=vS

= 0 , vS = µ exp

(
− 1

4
− C1

2C2

)
. (6.28)

The non-zero value of vS indicates a spontaneous breakdown of global scale-
invariance. One can also calculate now the explicit value of U0 in (6.27) by
requiring that the effective potential vanishes at the global minimum, i.e.

Ueff(vS) = 0 , U0 =
µ4

2
C2 exp

(
− 1− 2C1

C2

)
. (6.29)

The Planck mass that is generated after symmetry breaking is obtained by
identifying the non-minimal coupling to the VEV vS in (6.26) with the canonical
Einstein-Hilbert term as

− 1

2
βS2R

∣∣∣∣
S=vS

= −1

2
M2

PlR , M2
Pl = βv2S . (6.30)

Compared to the previous results of Chapter 5, the need for an additional scalar
next to S is not necessary since now it is possible to achieve radiative symmetry
breaking of scale-invariance in the Jordan frame thanks to the contributions of
gravitational degrees of freedom. However, we can still calculate the prediction
for inflationary observables along the lines of Section 5.3 with the effective
potential obtained in (6.27). We established that scale-invariance is broken, so
we can introduce an auxiliary field to remove the R2-term and then transform to
the Einstein frame. As in Section 5.3, we find a 2-dimensional potential for the
scalar S and the scalaron which exhibits a valley structure which is expected to
be the inflationary trajectory. Following the methods of Section 5.3.1, we can
solve for the valley contour and finally derive an effective one-field description
in the Einstein frame

SE
inf =

∫
d4x

√
−g
(
− 1

2
M2

PlR− κCµνρσC
µνρσ +

1

2
F (S)2S□S − Uinf(S)

)
.

(6.31)

The modification to the kinetic term is

F (S) =
1(

1 + 4A
)
B

[(
1 + 4A

)
B +

3

2
M2

Pl

((
1 + 4A

)
B′ + 4A′B

)2]1/2
, (6.32)

where the functiosn A and B are defined by

A(S) =
4γ Uinf(S)

B(S)2M4
Pl

, B(S) =
βS2

M2
Pl

, (6.33)
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and primes denote derivatives with respect to S. The inflaton potential Uinf(S)
in (6.31) is given by

Uinf(S) =
Ueff(S)

B(S)2 + 16γ Ueff(S)/M
4
Pl

, (6.34)

and depends on the coupling constants λ, β, γ, and κ. One may also obtain
the canonically normalized field S̃ by simple integration as in (5.39).

For details on the methods used to study slow-roll inflation numerically,
we refer to Section 5.3.1, since the treatment is the same. We use (5.40)-
(5.42) to compute the inflationary CMB observables. After the renormalization
scale µ is fixed through the Planck mass identification (6.30) we consider the
dimensionless parameters in the range

λ = 0.005 β ∈ [103, 104] γ ∈ [103, 109] κ ∈ [102, 103.25] . (6.35)

This parameters space is then constrained by the scalar power spectrum ampli-
tude (5.43) and the resulting predictions for spectral tilt ns and tensor-to-scalar
ratios r are shown in Fig. 6.1. Though more parameter space than (6.35) was
explored, it did not yield promising predictions while remaining compatible
with this constraint. To highlight the effect of the R2 and C2 term on the
ns − r predictions, we display values for the corresponding parameters (γ and
κ) separately in the upper and lower panel of Fig. 6.1. The results shows that
from Ne = 50 up to Ne = 60 e-folds plenty of parameter space is compatible
with the tightest Planck and BICEP/Keck constraints [131,235].

The point labeled “B1” in Fig. 6.1 corresponds to the following benchmark
values.

B1 : λ = 0.005 β = 5.62× 102 γ = 1.22× 108 κ = 837 (6.36)

In order to get an order of magnitude estimate, the related field-dependent
masses mϕ and mgh in (6.11) evaluated at the VEV of S are

mB1
ϕ (S = vS) ≃ 6.35× 1013GeV , (6.37)

mB1
gh (S = vS) ≃ 4.21× 1016GeV . (6.38)

These masses can be taken as representative for most of the displayed points,
with the masses of the points displayed in Fig. 6.1 being roughly contained in
the ranges mϕ ∈

[
1013GeV, 1014GeV

]
and mgh ∈

[
1016GeV, 1017GeV

]
. An

important point is to be made here, which will clarify the importance of the
ghost contribution to the effective potential. Since low mϕ goes hand in hand
with high γ, the upper panel of Fig. 6.1 shows that low mϕ leads to relatively
small tensor-to-scalar ratios r. To achieve small r for this model, the contribu-
tion of the scalaron mass mϕ to the effective potential is relatively small. With
the scalaron contribution alone it is therefore not possible to achieve successful
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Figure 6.1: Predictions for the scalar spectral index ns and the tensor-to-scalar ratio r
with varying numbers of e-folds Ne are displayed. All shown points are taken according to
the parameter ranges in (6.35) while satisfying the As-constraint (5.43). The color gradi-
ent shows γ in the upper and κ in the lower plot. The blue regions indicate the Planck
TT,TE,EE+lowE+lensing+BK18+BAO 68% and 95% CL regions from [131, 235]. We also
included the predictions of the Starobinsky model (green) and linear inflation (red), where the
circles represent the predictions for Ne = 50 (left) and Ne = 60 (right) e-folds respectively.
This exemplifies that our results interpolate between these two results as in Fig. 5.4. The
effect of corrections to r due to the C2 term as discussed in [183–185] are included in Fig. 6.2.
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symmetry breaking of scale-invariance and dynamical generation of MPl while
maintaining low r, as favored by observations of inflationary CMB observables.
On the other hand, the massive spin-2 ghost is not so strongly tied to low
masses at low r. Since it scales as m2

gh ∝ 1/κ, the lower panel of Fig. 6.1 re-
veals that mgh is increasing for lower r. The ghost contributions to the effective
potential (6.24) is therefore substantial and is crucial for triggering symmetry
breaking while maintaining low r, which is a novel consideration with regard
to scale-invariant models.

Figure 6.2: Predictions for the scalar spectral index ns and tensor-to-scalar ratio rcorr
including the corrections due to the C2 term given in (6.39). The data is displayed in the
same way as in the lower panel of Fig. 6.1.

As mentioned in the introduction of this chapter, the C2-term can contribute
non-trivially to primordial tensor perturbations leading to a correction of the
tensor-to-scalar ratio [183–185]. It is therefore crucial to discuss how this can
influence the findings presented in Fig. 6.1. To calculate this correction we use
the slow-roll approximation during inflation5, i.e. H2 ≈ Uinf/(3M

2
Pl), and use

equation (6.51) in [236] to obtain

rcorr = r

(
1 +

2H2

m2
gh

)−1

≃ r

(
1 +

2 Uinf(S∗)
3M2

Pl m
2
gh(S∗)

)−1

, (6.39)

where r is the tensor-to-scalar ratio without the effect of the C2-term. The
results of Fig. 6.1 are corrected with (6.39) and displayed in Fig. 6.2. We find
that these corrections do not change the results substantially and the corrected

5To ensure a field value that is representative for inflation we choose S = S∗ to calculate
Uinf(S) and mgh(S).
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predictions are still fully compatible with the strongest cosmological constraints
from Planck and BICEP/Keck. It is safe to conclude that our approach is con-
sistent, i.e. that the direct effects of the inclusion of the C2 through (6.39)
do not jeopardize the effects of the ghost contribution to the effective poten-
tial in order to successful dynamical generation of MPl while maintaining an
inflationary potential that leads to low r.



Chapter 7

Conclusion

In this thesis we have questioned the origin of mass scales in high-energy physics.
To give a deeper, and maybe more satisfying, answer to this puzzle, we have
considered radiative generation of these scales based on the anomalous breaking
of scale-invariance as laid out in Chapter 2 and 3. This can be understood as a
dynamical origin in the sense that the mass scales follow necessarily out of the
theory, i.e. the mass scales can be determined by the dimensionless couplings
of theory if their values are defined at some renormalization scale. On top of
the gauge symmetries of the SM and general diffeomorphism invariance, we
used global scale-invariance of the classical theory in the context of particle
physics, gravity and cosmology as the pivotal guiding principle for establishing
this dynamical origin and constructed the models discussed in Chapter 5 and
6 in this manner. The emphasis was to provide a global picture of radiatively
generated mass scales and their interconnections. We have reevaluated the
hierarchy problem in this setting in Sections 3.3, 3.4, 5.4 and 5.5.

Chapter 5 in particular addresses the generation of widely separated scales,
which are usually understood to be completely independent of each other, with
a change of perspective: How can the Planck mass, Majorana mass, electroweak
scale and the neutrino masses be related? To answer this question, we extended
the SM with two additional scalar fields and applied the GW approach intro-
duced in Section 3.2. One of the scalars (σ) can then be integrated out due to
its heavy tree-level mass leaving the other scalar (S) to fulfill a quadruple role:
it breaks scale-invariance by the condensate vS = ⟨S⟩, generates the Planck
mass MPl ≈ βSv

2
S , generates the Majorana mass for right-handed neutrinos

MN = yMvs and serves as inflaton field. It was then further shown in Sec-
tion 5.6 that a DM candidate can be incorporated and be produced through
inflaton decay. The are also some portals between the hidden sector and the
SM which we exploit in Section 5.5 to bridge the large gap between the Planck
mass and the electroweak scale using the idea of the neutrino option [149] in
which the heavy Majorana neutrinos of the type-I seesaw model are integrated
out and matched to the SM EFT. This allows one to soften the huge hierarchy

83
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between the Higgs and Planck masses when both are dynamically generated.
To generate the correct Higgs mass and the light active neutrino masses one
needs to fix MN ∼ 107 GeV whereas the majorana mass MN = yMvs can
be more easily lowered with respect to MPl because a small Yukawa coupling
yM is technically natural. There are however some problematic portal terms
between the SM and the dark sector so we must assume that the additional
scalars are weakly coupled to the SM. The respective portal couplings have
to be tuned extremely small, though not to special values, and we have noted
that their smallness is stable under RG-running even though no enhancement
of symmetry is associated.

The gravitational sector of our studies is globally scale-invariant and can
realize an inflating period in the early universe and give rise to primordial fluc-
tuations which are reflected in the CMB anisotropies. In our setup, we showed
in Sections 5.2 and 6.4 that scale-invariance is broken in the Jordan frame
and that a scale is generated. Consequently, we are allowed to perform a Weyl-
rescaling to go from Jordan to Einstein frame. In this frame, the scalaron degree
of freedom, originating from the R2-term, is made explicit. The resulting scalar
potential in the Einstein frame is two-dimensional but it exhibits a valley struc-
ture along which the potential is very flat, a feature that is itself a reflection of
scale-invariance. The slow-roll conditions can be easily satisfied along that val-
ley. Reducing the further analysis to the valley contour, as discussed in Section
5.3.1, this allows for an effective one-field description of inflation. Following
this approach we can use the formulas derived in Chapter 4, with some minor
modifications, to derive CMB observables related to inflation. Our results are
summarized in Fig. 5.4 and show that inflation can be naturally accommodated.
The predictions for the spectral tilt 0.964 ≲ ns ≲ 0.975 and tensor-to-scalar
ratio r ≲ 0.08 are well within observational constraints and interpolate be-
tween the predictions of Starobinsky inflation and linear chaotic inflation. Our
construction also allows for dynamical generation of the Planck mass, which
cannot be achieved for example in the popular models of Starobinksy or Higgs
inflation. In fact, we have assumed that the Higgs plays no role in our scenario
by choosing the non-minimal coupling βH small.

In Chapter 6 we have carefully analyzed how global scale-invariance can
be broken in the Jordan frame. The results of Chapter 5 seem to indicate
that two scalars are needed for the CW-mechanism, however, putting the focus
on quadratic curvature terms in the action of globally scale-invariant gravity
and the resulting metric degrees of freedom, this is must be revaluated. In-
cluding these terms renders quadratic gravity renormalizable but potentially
non-unitary [58], a fact which is unavoidably given that these quadratic terms
are also necessarily generated at the quantum level. Particular emphasis has
been put on the Weyl-tensor squared term which gives rise to a problematic
massive spin-2 degree of freedom that is the source of said unitarity violation.
After briefly listing some of the approaches to restore the unitarity of quadratic
gravity in Section 6.1, and being optimistic that in one way or another this
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matter will be resolved, we concluded that radiative corrections of the spin-2
ghost have to be taken into account. Therefore, we have computed the one-loop
corrections of this field to the effective potential in Section 6.3 and revaluated
the CW-mechanism in presence of gravitational degrees of freedom. The subse-
quent radiative generation of the Planck mass and the inflaton potential then go
qualitatively along the lines of Chapter 5 and we find that the one-loop correc-
tions coming from the spin-2 ghost are paramount to triggering the breaking of
scale-invariance while also realizing a flat inflaton potential that predicts a low
tensor-to-scalar ratio r. Our calculations also allow us to include the quantum
contribution from the scalaron. This degree of freedom alone cannot simulta-
neously account for successful inflation in the observationally favored regime of
low r and for dynamical generation of MPl however. These consideration show
that the field content of 5 can be reduced, meaning that the additional scalar
σ is not needed to trigger RSB when contributions from the spin-2 ghost are
also taken into account. Although not constructed explicitly in this thesis, the
more phenomenological aspects discussed in Chapter 5 can also be combined
with the framework developed in Chapter 6. In particular, the neutrino option
idea can be included as well in order to bridge the large gap to between the
Planck and electroweak scales.

Observational constraints on inflation might be the only way to scrutinized
the models discussed in this work in the near future, since all additional de-
grees of freedom with respect to the SM are relatively heavy and far beyond the
reach of colliders. Though neutrinoless double beta decay might confirm the
Majorana nature of neutrinos, this would give only a hint towards a connection
of the electroweak scale and the Majorana mass MN in light of the neutrino
option. Analyzing the inflationary dynamics more carefully, might allow to
test the scenario proposed in this thesis in more detail. Although we have
treated the inflationary dynamics always in an effective one-field description,
and we have argued that this is a good approximation, it might be worthwhile
to perform this analysis more carefully as has been done e.g. in [237] because
multi-field inflation can give rise to primordial non-Gaußianities in cosmologi-
cal fluctuations which are suppressed in single-field inflation [134] but give an
important effect on the CMB anisotropy as well as on the large scale structure
of the Universe (see for instance [135, 238]). There are several experimental
projects planned such as LiteBird [239], Euclid [240], LSST [241] to measure
the magnitude of non-Gaußianities and constrain their existence. Taking these
matters aside, we hope to provide some new insights on the interconnections
of radiatively generated mass scales in scale-invariant models, in interplay with
cosmic inflation.
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Appendix A

Discussion of the Valley
Approximation

An alternative method to obtain the valley contour is achieved by looking for
local minima in the direction of the field S, yielding the contour C′ and the
related inflationary potential,

C′ = {S̃(ϕ), ϕ} , where
∂V (S, ϕ)

∂S

∣∣∣∣
S=S̃(ϕ)

= 0 , Vinf(ϕ) = V (S̃(ϕ), ϕ) .

(A.1)

Completely analogous to the treatment of contour C, the field normalization
(replacing (6.32)) is now given by

F 2(ϕ) =

1 + e−Φ(ϕ)

(
∂S̃(ϕ)

∂ϕ

)2
 . (A.2)

We now compare the effect of the different methods for obtaining the valley
contours C and C′ on inflationary predictions. This corroborates the discussion
in Section 5.3.1 and justifies the method used there.

For the contour C′ we have to solve for S̃(ϕ) numerically by finding the
minimum for each value of ϕ in the S-direction. The inflaton field is then
identified with the scalaron ϕ and the slow-roll parameters and number of e-
folds are defined accordingly to that field parametrization. To exemplify the
two mentioned methods above, we show further contour plots in this appendix
where we also indicate the two contours in Fig. A.1,A.1 and 5.2 for the three
benchmark points of Table 5.1.

On the left hand side of these figures we show the one-dimensional infla-
tionary potentials which are obtained along the contours C and C′. Comparing
these contour plots reveals that for lower values of γ the valley extends more in
the S-direction, indicating that contour C might be the better choice. However,
both methods give similar results and approximate the valley contour equally
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Figure A.1: Scalar potential for benchmark point 1 of Table 5.1. The two contours defined
in Eqs. (5.33) and (A.1) are shown on top of the contour plot of V (S, ϕ) (5.31) (right) and
the corresponding one-dimensional inflaton potentials along those contours (left).

well. For lowers value of γ, we run into numerical problems using the con-
tour C′, indicating that the lowest value where we can test both contours is
γ ∼ 107. The two contours deviate more from each other as the parameter γ
grows larger. In the large γ-limit the inflation field becomes better identified
with the scalaron field ϕ since the valley points more in that direction. Here
the two contours start to deviate from each other and contour C′ is expected
to be the better approximation.

A more quantitative comparison shows us that the difference of the two
methods used at large γ leads to different predictions for the CMB observables
as can bee seen already in Fig. A.3. The experimental As-constraint is satisfied
for different pairs of γ and βS for the two methods. We use the parameter
pairs γ and βS shown in Fig. A.4 to show the effect on predictions for ns and r
considering the two contour methods. The deviation between the two methods
is relatively small, which justifies the use of contour C in Section 5.3.1
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Figure A.2: Scalar potential for benchmark point 2 of Table 5.1. The two contours defined
in Eqs. (5.33) and (A.1) are shown on top of the contour plot of V (S, ϕ) (5.31) (right) and
the corresponding one-dimensional inflaton potentials along those contours (left).

Figure A.3: The lines indicate the parameter combinations of γ and βS for which the scalar
power spectrum amplitude As prediction is fixed to the Planck constraint (5.43) for the two
inflationary contours defined in Eqs. (5.33) and (A.1). For all points we have fixed βσ = 1
and λS = 0.005. The three benchmark points defined in table 5.1 and displayed in Fig. A.1,
A.2 and 5.2 are marked.
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Figure A.4: Inflation parameters computed along the two contours C and C′: Tensor-to-
scalar ratio r (left) and scalar spectral index ns (right). Note that the relation between γ and
βS is different for contours C and C′, which can be understood from Fig. A.3.
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Figure A.5: Smaller and smaller, wood-engraving printed from four blocks, 38×38 cm, by
M.C. Escher. “The area of each of the reptile-shaped elements of this pattern is regularly and
continuously halved in the direction of the centre, whereas theoretically both infinite smallness
of size and infinite greatness of number are reached. However, in practice, the wood-engraver
soon comes to an end of his ability to carry on. He is dependent on four factors: 1. the quality
of his wood-block, 2. the sharpness of the instrument that he is using, 3. the steadiness of his
hand and, 4. his optical ability (good eyesight, plenty of light and a powerful magnifying lens).
In this particular case, the halving of the figures is carried through ad absurdum. The smallest
animal still possessing a head, a tail and four legs is about 2 millimeters in length. From the
point of view of composition, this work is only partially satisfying. In spite of the central limit,
it remains only a fragment, because the outer edge of the pattern has been arbitrarily fixed.
So a complete composition has not been achieved.” - M.C. Escher [242]. Figure taken from
Reference [242].
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