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On locally nilpotent derivations of

Danielewski domains.

L. Makar-Limanov ∗†

Abstract

Let p(Z) ∈ C[Z] be a polynomial of degree d. In this note I’ll

show that if positive natural numbers n, m, and d are relatively prime

then up to an automorphism there is at most one nonzero irreducible

locally nilpotent derivation on the domain C[X,Y, Z]/(XnY m−p(Z)).

Introduction.

In this note we take the field C of complex numbers as the ground field.

In fact it is essential only that the ground field has characteristic zero. Also

all appearing rings are domains.

∗The author was supported by an NSA grant.
†The author is grateful to the Department of Mathematics of Hong Kong University

which he was visiting while working on this project and to the Max Planck Institute for

Mathematics, where this project was finished.
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Let R = C[x, y]. It is well known (see [Re]) that the kernel of a nonzero

locally nilpotent derivation of R is C[u] where u is an image of x under

an automorphism. More recently a similar result was proved for domains

C[X, Y, Z]/(XnY − p(Z)), n > 1, deg(p(Z)) > 1 (see [ML1] and [FMJ]) and

C[X, Y, Z]/(XY −p(Z)) where deg(p(Z)) > 0 (see [Da] and [ML2]). Here we

will look from this point of view on the domainsR given by C[X, Y, Z]/(XnY m−

p(Z)) where p(Z) is a monic polynomial and n, m, and d = deg(p(Z)) are

relatively prime positive natural numbers. If d = 1 then the corresponding

domains are actually isomorphic to C[x, y]. It turns out that a nonzero locally

nilpotent derivation (lnd for short) exists onR only if (d−1)(n−1)(m−1) = 0.

So as far as the description of lnds is concerned we have only previously de-

scribed cases. On the other hand we have here more direct proofs, which are

substantially shorter.

Definitions, notations and technical lemmas.

Here we recall briefly some necessary notions and facts.

Let A be a C-algebra. A C-homomorphism ∂ of A is called a derivation

of A if it satisfies the Leibniz rule: ∂(ab) = ∂(a)b+ a∂(b).

A derivation is irreducible if ∂(A) does not belong to a proper principal

ideal. (So, since (0) is not a proper ideal, according to this definition zero

derivation is irreducible!)

We will be using in the next section so called Jacobian derivations on

C[X, Y, Z]. Let us take any two p, q ∈ C[X, Y, Z]. Then ∂(r) = J(p, q, r)

where J(p, q, r) denotes the Jacobian, i. e. the determinant of the corre-

sponding Jacobi matrix, is a derivation. Let us recall that J(p, q, r) is also
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skew symmetric.

Any derivation ∂ determines two subalgebras of A. One is the kernel of

∂ which is usually denoted by A∂ and is called the ring of ∂-constants.

The other is NilA(∂), the ring of nilpotency of ∂ :

NilA(∂) = {a ∈ A|∂n(a) = 0, n >> 1}.

In other words a ∈ NilA(∂) if for a sufficiently large natural number n we

have ∂n(a) = 0.

Both A∂ and NilA(∂) are subalgebras of A because of the Leibniz rule.

We will call a derivation locally nilpotent if NilA(∂) = A.

The best examples of lnds (locally nilpotent derivations) are the partial

derivatives on the rings of polynomials C[x1, ..., xn].

With the help of a locally nilpotent derivation acting on A, we can define

a function deg∂ by deg∂(a) = max(n|∂n(a) 6= 0) if a ∈ A∗ = A \ 0 and

deg∂(0) = −∞.

Then the function deg∂ is a degree function, i.e.,

deg∂(a+ b) ≤ max(deg∂(a), deg∂(b)) and

deg∂(ab) = deg∂(a) + deg∂(b).

Two locally nilpotent derivations are equivalent if the corresponding de-

gree function are the same.

By definition deg∂ has only nonnegative values on A∗ and a ∈ A∂ \ 0 if

deg∂(a) = 0. So it is clear that the ring A∂ is “factorially closed”; i. e., if

a, b ∈ A∗ and ab ∈ A∂, then a, b ∈ A∂.

Let F be the field of fractions of A. Any derivation ∂ can be extended to

a derivation on F by the “calculus” formula ∂(ab−1) = (∂(a)b − a∂(b))b−2.

We will denote this extended derivation also by ∂.
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Lemma 1. Let ∂ be a locally nilpotent nonzero derivation of A. Then there

exists an element t ∈ F for which ∂(t) = 1 and NilF (∂) = F ∂[t].

Proof. ∂ is a nonzero derivation so A 6= A∂ and there exists an a ∈ A \ A∂.

Put r = ∂n(a) and s = ∂(r) where n = deg∂(a) − 1. Then r /∈ A∂, s ∈ A∂

and ∂(t) = 1 for t = rs−1. Observe that s ∈ A∂, we will use this fact later.

It is clear that F ∂[t] ⊂ NilF (∂). Let a ∈ NilF (∂). We will use induction

on deg∂(a) = n to show the opposite inclusion. If a ∈ F and deg∂(a) = 0

then a ∈ F ∂ by definition. Let us make the step from deg∂(a) = n − 1 to

deg∂(a) = n. If deg∂(a) = n then deg∂(∂(a)) = n − 1 and by induction

∂(a) =
∑n−1
i=0 ait

n−1−i for some ai ∈ F ∂. Let f =
∑n−1
i=0 (n− i)−1ait

n−i. Then

∂(f) = ∂(a). So ∂(a− f) = 0 which means that a = f + an where an ∈ F ∂.

2

Remark 1. It is clear that deg∂ and degt are the same functions. This,

of course, gives a proof of the properties of deg∂ mentioned above. See also

[FLN].

Remark 2. A∂ is algebraically closed in A. Indeed, if a /∈ A∂ then it is

represented by a polynomial of positive degree and p(a) also has a positive

degree for any nonzero polynomial p.

Lemma 2. Let ∂ be a nonzero lnd of A. If ∂ = aε where a ∈ A and ε is a

derivation of A then ∂(a) = 0 and ε is an lnd.

Proof. We want to show that deg∂(a) = 0. It is clear that Aε = A∂. If

deg∂(a) > 0 then deg∂(∂(b)) = deg∂(aε(b)) = deg∂(a) + deg∂(ε(b)) > 0 for

any b /∈ A∂. So if b /∈ A∂ then ∂(b) /∈ A∂ which means that ∂ is not an lnd if
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A 6= A∂ i. e. ∂ 6= 0. So ∂(a) = 0. Therefore deg∂(ε(b)) = deg∂(b)− 1 for any

b /∈ A∂. Hence ε is an lnd. Even more, deg∂ = degε. 2

Remark 3. We see that any nonzero lnd is equivalent to an irreducible lnd.

Lemma 3. F ∂ is the field of fractions of A∂.

Proof. This proof was suggested by Ofer Hadas. Let a, b ∈ A and r = ab−1 ∈

F ∂. Assume also that deg∂(a) is minimal possible for all presentations of r

as a fraction. Now, ∂(r) = (∂(a)b − a∂(b))b−2 = 0. So ab−1 = ∂(a)∂(b)−1

and deg∂(∂(a)) < deg∂(a). To avoid a contradiction we have to assume that

deg∂(a) = 0, so a and b are in A∂. 2

Remark 4. Since F = F ∂(t) the transcendence degree trdeg(F ∂) = trdeg(F )−

1. Furthermore, trdeg(F ) = trdeg(A), trdeg(F ∂) = trdeg(A∂) and trdeg(A∂) =

trdeg(A)− 1.

Lemma 4. LetQ ∈ C[X, Y, Z] be an irreducible polynomial, S = C[X, Y, Z]/(Q)

be the corresponding factor ring, and π the projection of C[X, Y, Z] on S.

Assume that there is a nonzero lnd ∂ on S. Let H ∈ C[X, Y, Z] be such that

π(H) ∈ S∂ \ C. Then ε(π(G)) = π(J(Q,H,G)) defines an lnd on S which is

equivalent to ∂.

Proof. Expression π(J(Q,H,G)) defines a derivation on S. To check this

we should first verify that if π(G1) = π(G2) then ε(π(G1)) = ε(π(G2)). In

this case G2 = G1 + PQ and

J(Q,H,G2) = J(Q,H,G1 + PQ) = J(Q,H,G1) + J(Q,H, PQ) =

J(Q,H,G1) + J(Q,H, P )Q.

Since J(Q,H, P )Q ∈ (Q) we see that π(J(Q,H,G2)) = π(J(Q,H,G1)).

5



The linear homomorphism ε is a derivation because

J(Q,H,G1G2) = J(Q,H,G1)G2 +G1J(Q,H,G2)

and π is a linear homomorphism.

Lnd ∂ defines a degree function on S and we can lift deg∂ on C[X, Y, Z] to

obtain a function deg on C[X, Y, Z] : deg(G) = deg∂(π(G)). This function is

nearly an ordinary degree function with the only difference being that there

are many polynomials in C[X, Y, Z] with deg = −∞: if G ∈ (Q) then (and

only then) deg(G) = −∞.

Consider the subring of the field of fractions of S consisting of fractions

with denominators in S∂ \ 0 and denote the result by B. This is a subring

since S∂ is closed under multiplication. As we know ∂ can be extended on

B and by the proof of Lemma 1 B contains an element t for which ∂(t) = 1.

(The derivation ∂ is an lnd on B.)

Denote by K the set of all polynomials in C[X, Y, Z] with degree zero,

i.e. the preimage of S∂ \ 0. Let A = C[X, Y, Z]K be the subring of the field

of rational functions C(X, Y, Z) consisting of fractions with denominators in

K. Since K is closed under multiplication A is a ring. The projection π can

be extended to A with image B. Take any preimage T of t : π(T ) = t.

By Lemma 1 any element b ∈ B can be written as b =
∑n
i=0 bit

n−i where

bi ∈ B∂. Hence any element a of A can be written as a =
∑n
i=0 aiT

n−i where

π(ai) ∈ B∂, i.e. ai ∈ L, the field of fractions of K. So

1 = J(X, Y, Z) =
∑

J(XiT
i, YjT

j, ZkT
k)

where π(Xi), π(Yj), π(Zk) ∈ B∂.
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Using that the Jacobian is skew-symmetric and is a derivation in every ar-

gument we can rewrite each of these summands as a linear combination with

coefficients in A of the Jacobians of the following two types: J(U1, U2, U3)

and J(U1, U2, T ) where π(Ui) ∈ B∂.

We are going to show that J(U1, U2, U3) ∈ (Q) and that J(U1, U2, T ) is

congruent modulo (Q) to J(Q,H, T ) multiplied by an element of A.

Since π(Ui) ∈ B∂ and trdeg(B∂) = 1 (Remark 4) elements π(Ui) and

π(H) are algebraically dependent. Therefore for any pair Ui, H there is a

polynomial fi such that fi(H,Ui) = PiQ. We can assume that all fi are

irreducible.

Now, some boring computations.

J(f1(H,U1), U2, U3) = J(H,U2, U3)∂f1
∂H

+ J(U1, U2, U3) ∂f1
∂U1

=

J(P1Q,U2, U3) ≡ P1J(Q,U2, U3) (mod (Q)).

Since f1 is irreducible and H, U1 ∈ K both ∂f1
∂H

and ∂f1
∂U1

are in K \ (Q) and

it remains to show that J(H,U2, U3) ∈ (Q) and J(Q,U2, U3) ∈ (Q).

Next, J(H, f2, U3) = J(H,H,U3)∂f2
∂H

+ J(H,U2, U3) ∂f2
∂U2

= J(H,P2Q,U3) ≡

P2J(H,Q,U3) (mod (Q)) and J(H,U2, U3) ∂f2
∂U2
≡ P2J(H,Q,U3) (mod (Q));

J(Q, f2, U3) = J(Q,H,U3)∂f2
∂H

+J(Q,U2, U3) ∂f2
∂U2

= J(Q,P2Q,U3) ≡ 0 (mod (Q)).

It remains to show that J(Q,H,U3) ≡ 0 (mod (Q)).

J(Q,H, f3) = J(Q,H,H)∂f3
∂H

+J(Q,H,U3) ∂f3
∂U3

= J(Q,H, P3Q) ≡ 0 (mod (Q)).

Hence J(Q,H,U3) ≡ 0 (mod (Q)) and J(U1, U2, U3) ≡ 0 (mod (Q)).

Finally we will check that Jacobians J(U1, U2, T ) are congruent modulo

(Q) to J(Q,H, T ) multiplied by an element of A.

J(f1(H,U1), U2, T ) = J(H,U2, T )∂f1
∂H

+ J(U1, U2, T ) ∂f1
∂U1

=

J(P1Q,U2, T ) ≡ P1J(Q,U2, T ) (mod (Q)).
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J(H, f2, T ) = J(H,H, T )∂f2
∂H

+ J(H,U2, T ) ∂f2
∂U2

= J(H,P2Q, T ) ≡

P2J(H,Q, T ) (mod (Q)); J(H,U2, T ) ∂f2
∂U2
≡ P2J(H,Q, T ) (mod (Q)).

J(Q, f2, T ) = J(Q,H, T )∂f2
∂H

+J(Q,U2, T ) ∂f2
∂U2

= J(Q,P2Q, T ) ≡ 0 (mod (Q)).

The derivative ∂f2
∂U2

is a polynomial in H and U2 which are preimages

of elements from B∂. The projection π( ∂f2
∂U2

) ∈ S∂ \ 0 because we assumed

that f2 is an irreducible polynomial. Hence J(H,U2, T ) and J(Q,U2, T ) are

proportional to J(Q,H, T ) with coefficients from A and thus J(U1, U2, T ) is

congruent modulo (Q) to J(Q,H, T ) multiplied by an element of A.

Therefore 1 = J(X, Y, Z) ≡ aJ(Q,H, T ) (mod (Q)) for some a ∈ A, i.

e. 1 = π(aJ(Q,H, T )) = π(a)π(J(Q,H, T )). Since π(a) ∈ B its ∂-degree is

nonnegative. Hence deg∂(a) = deg∂(J(Q,H, T )) = 0.

To finish the proof observe that we showed that

(a) J(Q,H,U) ∈ (Q) if deg∂(U) = 0, so ε(u) = 0 if u ∈ S∂;

(b) deg∂(J(Q,H, T )) = 0, so ε(t) ∈ S∂ \ C.

So ε is an lnd on S and ker(ε) = ker(∂) since ker(ε) ⊃ ker(∂) and ker(ε) and

ker(∂) are algebraically closed in S (see Remark 2). Then (b) shows that ∂

and ε give the same degree function and therefore are equivalent. 2

Remark 5. We will be using the following description of ε(g):

ε(g) ≡ J(Q,H,G) where G is a preimage of g. To make it a derivation on S

we will consider the right side modulo the ideal (Q).

Remark 6. It turns out that a similar description of lnds is possible for any

finitely generated domain (see [ML3]).

Let us also recall the following construction for C[X, Y, Z]. We can take

some real valued weights w(X), w(Y ), and w(Z), define w(X iY jZk) =
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iw(X) + jw(Y ) + kw(Z), and extend w to polynomials by defining w(p) be

the maximal weight among the weights of all monomials which are present

in p with nonzero coefficients. Then any p ∈ C[X, Y, Z] can be written as

p =
∑v
i=u pi where each pi is homogeneous, i. e. consists only of monomials

with the same weight, and w(pi) < w(pi+1). We will call p̄ = pv the leading

form of p.

Results and proofs.

Theorem 1. If R = C[X, Y, Z]/(Q), where Q = XnY m − p(Z) and p is a

polynomial of degree d, has a nonzero lnd and m, n, and d are relatively

prime then (d− 1)(n− 1)(m− 1) = 0.

Proof. Let ∂ be a nonzero lnd on R and let h ∈ ker(∂) \C. We may assume

that degz(h) < d since zd = xnym + (zd − p(z)) in R. Let us replace this

derivation by ε described in Remark 5: ε(g) ≡ J(Q,H,G) where H is a

preimage of h such that degZ(H) < d.

Let us take weights w(X) = m+dN , w(Y ) = −n, and w(Z) = nN where

N is a natural number. The leading form Q̄ ofQ isXnY m−Zd for anyN . The

leading form H̄ of H may depend on N . Let us check that by taking N suffi-

ciently large we can make H̄ = X iY jZk. Indeed, if monomials X i1Y j1Zk1 and

X i2Y j2Zk2 are in H̄ then N(di1 +nk1)+mi1−nj1 = N(di2 +nk2)+mi2−nj2.

If N > m degX(H) + n degY (H) then di1 + nk1 = di2 + nk2 and therefore

mi1 − nj1 = mi2 − nj2. Hence

d(i1 − i2) + n(k1 − k2) = 0
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and

m(i1 − i2)− n(j1 − j2) = 0

We assumed that (n,m, d) = 1. Therefore i1 − i2 = ns, k1 − k2 = −ds, and

j1 − j2 = ms where s is an integer. But then s = 0 since |k1 − k2| < d.

Let us fix such a sufficiently large N for which H̄ is a monomial X iY jZk.

Consider now a derivation ε̄(G) = J(Q̄, H̄, G). We can observe that the

projection of this derivation on R̄ = C[X, Y, Z]/(Q̄) is locally nilpotent on

R̄. Indeed, it is easy to see that J(Q̄, H̄, Ḡ) is either J(Q,H,G) or zero.

Since ε is lnd on R we know that after several applications of a derivation

D(−) = J(Q,H,−) to G we obtain a polynomial which is divisible by Q. It

implies, of course, that the leading form of this polynomial is divisible by the

leading form of Q. So if we apply at most the same number of times ε̄ to Ḡ

we get a polynomial which is divisible by Q̄. It may happen that we’ll get

zero or a polynomial which is divisible by Q̄ on one of the previous steps.

Condition (n,m, d) = 1 makes Q̄ = XnY m−Zd irreducible. Hence R̄ is a

domain. As we saw, in this setting the product of two nonzero elements is an

ε̄-constant only if both factors are constants. Since ε̄(H̄) = ε̄(X iY jZk) = 0

we can conclude that either x, or y, or z is a constant of π(ε̄). (Here x, y,

and z are the images of X, Y , and Z in R̄.) So according to Lemma 4 one of

the derivations εx(−) = J(XnY m−Zd, X,−), εy(−) = J(XnY m−Zd, Y,−),

εz(−) = J(XnY m − Zd, Z,−) induces a locally nilpotent derivation on R̄.

Now, εx(X) = 0, εx(Y ) = −dZd−1, εx(Z) = −mXnY m−1. To see when

the induced derivation is an lnd let us use the degree function defined by

this derivation on R̄. Denote by dx, dy, and dz the degrees of x, y, and z
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correspondingly. Then dx = 0, dy − 1 = (d − 1)dz, and dz − 1 = (m − 1)dy.

Thus −2 = (m− 2)dy + (d− 2)dz. Since dy and dz are natural numbers this

equality is possible only if either m = 1 or d = 1. In both these cases π(εx)

is an lnd.

For εy we have εy(X) = dZd−1, εy(Y ) = 0, εy(Z) = nXn−1Y m. This case

is similar to the previous one and π(εy) is an lnd if and only if either n = 1

or d = 1.

Finally εz(X) = mXnY m−1, εz(Y ) = −nXn−1Y m, εz(Z) = 0. Using the

degree function which would be defined by π(εz) we can see that π(εz) is

never an lnd.

This finishes the proof of Theorem 1. 2

We have now the following cases in which there is a nonzero lnd on R:

d = 1 which corresponds to the polynomial ring in two variables indepen-

dently of values of n and m; n = 1; m = 1.

If d > 1 and R has a nonzero lnd then either n = 1 of m = 1 and we may

assume without loss of generality that m = 1: if m 6= 1, n = 1 we will switch

x and y.

From now on d > 1 and R is given by a relation xny = p(z).

Theorem 2. Let ∂ be a nonzero lnd of R = C[X, Y, Z]/(Q) where Q =

XnY − p(Z) and let h ∈ ker(∂) \ C. Then there exists an automorphism α

of R such that α(h) = q(x).

Proof. We will be choosing different weights for X, Y , and Z in the course

of the proof of this Theorem. Since for all these choices the weight of Z will
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be positive and nw(X) + w(Y ) = dw(Z), the leading form of Q for these

weights will be XnY − Zd.

As above, we can take a preimage H of h for which degZ(H) < d. Let

us use again the weights w1(X) = 1 + dN , w1(Y ) = −n, and w1(Z) = nN .

As we saw in the proof of Theorem 1 we can conclude that if N is very large

then the leading form H̄ of H is either X i or Y j. (It cannot be a product

X iY j since then ker(π(ε̄)) 3 x, y which is possible only if π(ε̄) = 0.) We

can also observe that if H̄ = Y j with our choice of N then h ∈ C[y] since

then w1(H) < 0 while the weight of any monomial which contains X or Z is

positive if N is large enough. (This, of course, imply that ker(∂) = C[y] and

(n− 1)(d− 1) = 0; so n = 1 and there exists an automorphism of R sending

y to x.)

Let us use now different weights: w2(X) = −1, w2(Y ) = n + dN , and

w2(Z) = N . Again, if N is sufficiently large the leading form of H is a

monomial. We already know that this monomial is either X i or Y j.

If it is X i then h ∈ C[x] and π(εx(g)) ≡ J(XnY − p(Z), X,G) is indeed

an lnd, and if it is Y j then n = 1.

So we see that if (n− 1)(d− 1) 6= 0 then h ∈ C[x]. It remains to consider

the case n = 1 with an additional assumption that h /∈ (C[x] ∪ C[y]). Then

the leading form of H relative to w1 is and Xa and the leading form of H

relative to w2 is Y b.

Since x→ y, y → x, z → z is an automorphism of R when n = 1 we may

also assume that a ≥ b.

Let us now chose natural positive weights w3(X) = ρ, w3(Y ) = σ,

w3(Z) = τ so that aρ = bσ, ρ+ σ = dτ , and ρ and τ are relatively prime. (If
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k divides ρ and τ then k divides σ and we can cancel it.)

Denote by H̄3 the leading form of H relative to w3. Then H̄3 contains

both Xa and Y b. Indeed if w3(H) = aρ = bσ, then both Xa and Y b are

in H̄3. Otherwise, since ρ > 0, w3(H) > aρ and H̄3 contains a monomial

X iY jZk for which iρ+ jσ + kτ > aρ.

To bring this to a contradiction let us consider the weights

w4(X) = ρ − dδ1, w4(Y ) = σ − dδ2, w4(Z) = τ − δ1 − δ2 where δ1 and δ2

satisfy the following conditions:

1) daδ1 + dbδ2 + degZ(H̄3)(δ1 + δ2) < w3(H̄3)− aρ.

2) δ1 and δ2 are positive irrational numbers which are linearly independent

over the field of rational numbers.

3) w4(X) > 0, w4(Y ) > 0, w4(Z) > 0.

Then H̄4 for w4 is a monomial in force of condition 2) and this monomial

cannot be neither Xa nor Y b since in force of condition 1) w4(X iY jZk) =

w3(H) − idδ1 − jdδ2 − k(δ1 + δ2) > w3(Xa) = w3(Y b) while w4(Xa) =

aρ− adδ1 < w3(Xa) and w4(Y b) = bσ− bdδ2 < w3(Y b). As we already know

it is impossible and hence H̄3 = µXa + . . .+ νY b.

Consider now XbH̄3. This polynomial can be rewritten as a polynomial

ψ ∈ C[X,Z] since XY = Zd in R̄.

The polynomial ψ is ρ, τ homogeneous, so ψ = c
∏
i(X

τ − ciZ
ρ) and

H̄3 = c
∏
i(X

τ − ciZρ)X−b. Let us replace H̄3 by H̄d
3 .

Lemma 5. (xτ − cizρ)dx−ρ ∈ R̄.

Proof. It is sufficient to show that any monomial xiτ−ρz(d−i)ρ ∈ R̄. Of

course, any monomial of this kind with iτ − ρ ≥ 0 is in R̄. If iτ − ρ < 0 then
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(d − i)ρ > d(ρ − iτ) since dτ = ρ + σ and the corresponding monomial is

equal to yρ−iτz(d−i)ρ−d(ρ−iτ) ∈ R̄. 2

The form H̄d
3 can be written as c

∏
i[(X

τ − ciZρ)dX−ρ] and each of the

factors (xτ − cizρ)dx−ρ belongs to R̄.

As we know the derivation which is induced on R̄ by ε̄(−) = J(XY −

Zd, H̄3,−) is an lnd. Since ε̄(H̄d
3 ) = 0 each of these factors is in the kernel

of the π(ε̄) and if there are two different factors then ker(π(ε̄)) has the tran-

scendence degree 2 and π(ε̄) = 0. Since it is not the case, there is just one

factor. Furthermore, since x→ λx, y → λ−1y, z → z is an automorphism of

R̄ it remains to find out for which ρ, τ , and d the derivation of R̄ given by

π(ε̄)(g) ≡ J(XY − Zd, (Xτ − Zρ)dX−ρ, G) is an lnd.

Let us compute π(ε̄)(z):

π(ε̄)(z) ≡ J(XY − Zd, (Xτ − Zρ)dX−ρ, Z) = JX,Y (XY, (Xτ − Zρ)dX−ρ) =

−X[d(Xτ − Zρ)d−1τXτ−1−ρ − ρ(Xτ − Zρ)dX−ρ−1] ≡

[ρ− τdxτ (xτ − zρ)−1](xτ − zρ)dx−ρ.

Now, π(ε̄)((xτ − zρ)dx−ρ) = 0, so π(ε̄)(xτ (xτ − zρ)−1) 6= 0 since ρ 6= dτ .

Let us denote by deg the degree induced by ε̄. Then deg((xτ−zρ)dx−ρ) = 0

and deg(z)− 1 = deg(ρ− τdxτ (xτ − zρ)−1) 6= 0.

We see that deg(xτ (xτ − zρ)−1) = deg(z)− 1 > 0. This is possible only if

deg(xτ ) = deg(zρ) > deg(xτ − zρ). So

τ deg(x)− ρ deg(z) = 0,

τ deg(x)− deg(z)− deg(xτ − zρ) = −1 and

ρ deg(x)− d deg(xτ − zρ) = 0.

Solving this system we obtain deg(xτ − zρ) = ρ2[ρ2 − τd(ρ− 1)]−1. Now,
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ρ2 − τd(ρ− 1) = ρ2 − (ρ+ σ)(ρ− 1) = ρ+ σ− ρσ = 1− (ρ− 1)(σ− 1) since

τd = ρ + σ. Since deg(xτ − zρ) > 0 we should have 1 − (ρ − 1)(σ − 1) > 0

which is possible only if (ρ− 1)(σ− 1) = 0. Since ρa = σb and a ≥ b we have

σ ≥ ρ and so ρ = 1 if ∂̄ = π(ε̄) is an lnd on R̄.

If ρ = 1 then deg(xτ − z) = 1, deg(x) = d, deg(z) = dτ . Hence if ∂̄ is an

lnd then ∂̄(xτ − z) = λ1 ∈ R̄∂̄.

Since ∂̄(xτ−z) ≡ J(XY −Zd, (Xτ−Z)dX−1, Xτ−Z) = −(Xτ−Z)dX−1 ≡

−(xτ − z)dx−1 = λ1 ∈ R̄∂̄ we can put xτ − z = λ1t where ∂̄(t) = 1.

Then x = −λd−1
1 td ∈ NilR̄(∂̄), z = xτ − λ1t ∈ NilR̄(∂̄) and y = zdx−1 =

−λ1−d
1 ((−λ1)(d−1)τ tdτ−1 − λ1)d ∈ NilR̄(∂̄), i.e. ∂̄ is an lnd on R̄.

We checked that if a ≥ b then H̄3 = c(Xτ − c1Z)kX−b. Therefore the

leading form of h relative to the weight given by w3(x) = ρ, w3(y) = σ,

w3(z) = τ is c(xτ − c1z)kx−b.

Observe that a homomorphism β given by x→ x, y → (p(z+c−1
1 xτ ))x−1,

z → z + c−1
1 xτ is an automorphism of R. If we apply this automorphism

to h then the leading form of h, as an element of R̄ becomes c[xτ − c1(z +

c−1
1 xτ )]kx−b = c(−c1z)kx−b = νyb. (Hence k = bd.)

Therefore degy(β(h)) = degy(h) while degx(β(h)) < degx(h). If β(h) ∈

C[y] we can finish the proof since x→ y, y → x, z → z is an automorphism

of R. If β(h) 6∈ C[y] we can find an automorphism which will decrease ei-

ther degx or degy of β(h). Since these degrees cannot decrease indefinitely, a

composition of several automorphisms of this type and, possibly, an automor-

phism exchanging x and y gives an automorphism α such that α(h) = q(x). 2
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Conclusion.

We proved that there is only the zero lnd on R = C[X, Y, Z]/(XnY m −

p(z)), deg(p) = d when (d − 1)(m − 1)(n − 1) 6= 0 and (d,m, n) = 1; when

(d − 1)(m − 1) 6= 0 and n = 1 or when (d − 1)(n − 1) 6= 0 and m = 1 all

nonzero lnds have the same kernel; when d = 1 or when n = m = 1 there are

lnds with different kernels but each kernel can be mapped on a “standard”

one by an automorphism.

Lemma 6. Locally nilpotent derivations of a domain A with the same kernel

are equivalent to each other.

Proof. Assume that nonzero lnds ∂1 and ∂2 of A have the same kernel K.

We know that NilF (∂1) = F ∂1 [t1] and NilF (∂2) = F ∂2 [t2] where F is the field

of fractions of A (Lemma 1) and that F ∂1 = F ∂2 = L = Frac(K) (Lemma 3).

We may assume that at1 ∈ A for some a ∈ K \0 (see the proof of Lemma 1).

Then ∂i2(at1) = a∂i2(t1) for any i. Hence t1 ∈ NilF (∂2) and t1 =
∑
i fit

i
2 where

fi ∈ L. Similarly, t2 =
∑
j fjt

j
1 where fj ∈ L. Hence degt2(t1) = degt1(t2) = 1

and Lemma is proved. 2

Remark 7. All these derivations are proportional to each other over F ∂ and

any linear combination of these derivations with coefficients in K is again an

lnd with the kernel K. By Lemma 2 at least one of these derivations is irre-

ducible. If A is not a unique factorization domain then there may be several

irreducible derivations among these derivations. (It would be interesting to

find an example.)

Theorem 3. If R is a ring satisfying conditions of Theorem 1 then, up to
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an automorphism (and multiplication by c ∈ C), there is just one nonzero

irreducible lnd of R. It is defined by ∂(x) = 0, ∂(y) = p′(z), ∂(z) = xn.

Proof. If ε is an lnd of R with Rε = C[x] then ε = q1(x)
q2(x)

∂ and we can assume

that polynomials q1, q2 are relatively prime. We can find two polynomials

p1, p2 ∈ C[x] such that the lnd ε1 = p1ε + p2∂ = 1
q2(x)

∂. Therefore ε1(y) =

p′(z)
q2(x)
∈ R and ε1(z) = xn

q2(x)
∈ R. If q2(x) 6∈ C then p′(z)

x
∈ R = C[x, p(z)

xn
, z]. As-

sume that p′(z)
x

= r(x, p(z)
xn
, z) where r(x, y, z) ∈ C[x, y, z]. Let us take w(x) =

1, w(z) = λ where λ is a positive irrational number, such that all monomials

of r(x, y, z) have different weights. Then w(p
′(z)
x

) = i + j(dλ − n) + kλ for

some nonnegative integers i, j, k, i.e. (d − 1)λ − 1 = i + j(dλ − n) + kλ.

Since λ is irrational, i − jn + 1 = 0 and jd + k − d + 1 = 0. Hence j = 0.

But then i = −1, which is impossible. Hence q2 ∈ C. 2
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