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Abstract: When repeated evaluations for varying parameter configurations of a high-
fidelity physical model are required, surrogate modeling techniques based on model
order reduction are desired. In absence of the governing equations describing the dy-
namics, we need to construct the parametric reduced-order surrogate model in a non-
intrusive fashion. In this setting, the usual residual-based error estimate for optimal
parameter sampling associated with the reduced basis method is not directly avail-
able. Our work provides a non-intrusive optimality criterion to efficiently populate the
parameter snapshots, thereby, enabling us to effectively construct a parametric surro-
gate model. We consider separate parameter-specific proper orthogonal decomposition
(POD) subspaces and propose an active-learning-driven surrogate model using kernel-
based shallow neural networks, abbreviated as ActLearn-POD-KSNN surrogate model.
To demonstrate the validity of our proposed ideas, we present numerical experiments
using two physical models, namely Burgers’ equation and shallow water equations.
Both the models have mixed—convective and diffusive—effects within their respective
parameter domains, with each of them dominating in certain regions. The proposed
ActLearn-POD-KSNN surrogate model efficiently predicts the solution at new param-
eter locations, even for a setting with multiple interacting shock profiles.

Keywords: Active Learning, Data-driven Surrogate Modeling, Non-intrusive Model
Order Reduction, Shallow Neural Networks, Parametric Dynamical Systems

Novelty statement:

• ActLearn-POD-KSNN: A novel surrogate modeling framework for parametric
systems that is driven by actively learning the high-fidelity solution snapshots.

• A new non-intrusive error estimator based on the surrogate solution approxi-
mated in parameter-specific POD subspace which enables active learning.

• The active learning framework identifies areas in the parameter space with high
variation in solution features and generates new snapshots in those regions, en-
hancing surrogate solution accuracy and refining the learning process iteratively.

• The parameter-specific adaptive POD subspaces makes our approach efficient
for problems with mixed—convective and diffusive—phenomena, even in settings
with multiple interacting shock profiles under convection domination.

• The offline training and the online querying is fast due to the shallow neural
network architecture used in the construction of ActLearn-POD-KSNN.
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1 Introduction

In scenarios where computing the full-order model (FOM) becomes computationally expensive,
reduced-order modeling techniques provide beneficial alternatives. In recent years, there has been
significant interest in developing non-intrusive model order reduction (MOR) approaches as they
do not require access to first principle models. As a result, non-intrusive MOR is flexible for
constructing reduced-order models (ROMs) for systems that are simulated using a black-box soft-
ware or systems with limited access to the governing equations. Many of the non-intrusive MOR
methods are based on machine learning: some use shallow neural networks, such as radial basis
functions (RBFs), while many others use deep learning (DL) networks.
Many existing DL-MOR methods and RBF-MOR methods learn the ROM by assuming that

the solution manifold is well approximated by a linear subspace. Then a uniform reduced basis
is computed from the proper orthogonal decomposition (POD) of a snapshot matrix including
trajectories of the solutions at different parameter samples [1,2,5–7,12,13,17,18,21,22,25,28,30,31].
In contrast, the RBF-MOR method in [33] allows the solution manifold to be nonlinear with respect
to the parameter. The snapshots at a new parameter sample are learned via RBF interpolation,
which can be interpreted as a neural network with one hidden layer. The reduced basis for the
solution space at the new parameter is then available via singular value decomposition (SVD) of
the snapshot matrix corresponding to the new parameter.
Non-intrusively learning a ROM by assuming a nonlinear solution manifold is also proposed

in [10,11,26] based on deep learning. The method in [10] uses a deep feed-forward neural network
to compute the reduced state, then uses a decoder to recover the full state that approximates the
original solution. The method in [11] instead uses the encoder function to nonlinearly transform
the initial state to the reduced state, then uses a recurrent neural network, namely a long short
term memory (LSTM) to predict the reduced space at any desired future time. Finally, a de-
coder function is applied to recover the approximate full solution. Applicability of the method to
parametric dynamical problems whose initial condition remains unchanged is unclear. A similar
method is proposed in [26] where the Koopman matrix is used instead of LSTM in the reduced
space for time evolution. Intrusive DL-MOR methods and relevant error estimation are proposed
in [9, 15,19,24] that require the discretized governing equations of the PDEs to be known.
Compared with the high computational cost (repeated optimization, many epochs) of DL-MOR

that needs large amount of training data—solution snapshots—the RBF-MOR approach is com-
putationally cheaper due to no optimization, basically employing only a single epoch. Moreover,
since the key step in RBF-MOR is interpolation, the RBF-ROM reproduces the snapshot data,
while the training data are not guaranteed to be reproduced by the DL-ROMs [22].

1.1 Active-Learning-Driven Surrogate Modeling

High-fidelity
Model

Data-driven
Surrogate

Active

Learning
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Space
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POD approximation error

Surrogate approximation error

Figure 1.1: Overview of the active-learning-driven surrogate modeling paradigm.

When data-driven surrogate models are employed, a substantial amount of training data is typ-
ically required to obtain a reasonable approximation of the underlying physics. Generating such
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a vast amount of training data is computationally expensive since it is obtained by repeated eval-
uations of a high-fidelity model. Alternately, if the solution data is collected from experimental
measurements, conducting repeated experiments for a vast pool of parametric configurations could
become practically infeasible. To alleviate this situation, we propose a surrogate modeling frame-
work for parametric nonlinear dynamical systems that actively generates solution snapshots at new
parameter locations by querying the high-fidelity model only when necessary. This enables us to
iteratively arrive at a set of optimal training data corresponding to important parameter values.
By doing this, we improve the surrogate model in an efficient fashion—by relaxing the vast data
requirement to some extent and also providing an accuracy estimation of the constructed surrogate
model.
Figure 1.1 provides an overview of our proposed active-learning-driven surrogate modeling

paradigm. An initial coarse sampling of the parameter space is first considered, and the cor-
responding high-fidelity solution snapshots are generated and stored for a particular discrete time
trajectory. With this initial set of snapshots, a data-driven surrogate model is trained. By designing
an appropriate optimality criterion that helps us to pick new important parameter locations, we can
actively improve the accuracy of the surrogate model. Such an optimality criterion can be designed
by using the error caused in the surrogate approximation. However, in this work, we employ a new
strategy to design the optimality criterion—constructing an error estimator from the parameter-
specific POD-based solution approximations. We utilize a shallow neural network architecture
equipped with an RBF kernel as the nonlinear activation to construct the error-estimate-based
optimality criterion, as well as to construct the actively learned reduced-order surrogate model.
The shallow architecture renders a fast offline training phase, as well as a fast online evaluation
phase.
The proposed ActLearn-POD-KSNN surrogate iteratively detects locations in the parameter

domain where the variation between solution features is high, and queries the FOM solver in those
regions to generate new training snapshots. During this iterative procedure, a POD subspace
for the new parameter sample is created and appropriately enriched in an adaptive fashion by
using the error estimator. Such a POD subspace enrichment results in a varying number of POD
bases between each of the parameter-specific subspaces, corresponding to different levels of energy
(information) retention in each subspace. This enables us to choose an appropriate energy criterion
for creating POD subspaces at newly queried parameter samples in the online phase such that the
subspaces are expressive enough to provide a solution approximation up to a desired accuracy.
For a setting that requires a multi-query parametric generation of solution, the proposed active
learning framework becomes useful to build a surrogate model in an efficient fashion—by limiting
the generation of the expensive FOM snapshots to an optimal set of parameter samples which still
provide a sufficient exploration of the parameter space.

1.2 Relation to Previous Work

Estimating the error of the reduced approximations is crucial to assess their quality. For the
reduced basis method [16,27], an a posteriori error estimator is constructed by using the governing
equations which then drives the greedy algorithm for constructing the reduced-order model. To
reduce the offline time of the reduced basis method when a large training set of parameter samples
are required, authors in [4] propose a RBF-interpolation-based surrogate for the error estimator.
This reduces the numerous ROM evaluations that are required for the error estimator construction,
while enabling sufficient exploration of the parameter space for the reduced basis method. However,
efficient error estimation for non-intrusive MOR is still rarely discussed in the literature. In [32],
a machine learning technique is applied to learn the error of the RBF-ROM in [33]. The error is
the error of the approximate solution computed from the ROM and is a long vector of the FOM
dimension. The error estimator is obtained via two ROMs: the ROM of the FOM and the ROM of
the error, so that machine learning via Gaussian processes (GP) is done on the ROM of the error.
However, the learning process needs to be implemented for each element of the error vector, i.e.,
one GP error model is learned for each element of the error vector.
In this work, we propose a non-intrusive error estimator, built using a KSNN which is equipped

with RBF kernels, to assess the quality of a data-driven surrogate model that emulates the physics
of a nonlinear parametric dynamical system. The error estimator is constructed by learning the
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norm of the POD-approximate state-vector error using interpolation in the parameter-time space.
No extra ROM for the error vector needs to be constructed as in [32]. Furthermore, a single
error model is learned rather than quite a few GP models for all the elements of the error vector
in [32]. The proposed error estimator is computationally much cheaper. The training data for
the KSNN-based interpolation are the snapshots at certain samples of the parameter and time
instances that can then be updated adaptively. We employ the RBF-MOR from [33] to show the
robustness of the proposed error estimator. Beyond the RBF-MOR method in [33], we propose a
greedy procedure in order to actively learn the POD-KSNN surrogate by adaptively and iteratively
updating the snapshot data. This process iteratively improves the accuracy of the POD-KSNN
surrogate model and updates the proposed error estimator at the same time. We further propose to
use an energy criterion to identify different POD bases corresponding to different parameters. An
adaptive technique for enriching the identified POD basis is proposed. This further significantly
improves the accuracy of the RBF-MOR method from [33], especially for convection-dominated
problems.
Active learning is also proposed in [5,7,21,34]. The method in [5] proposes a greedy non-intrusive

method that selects the parameters iteratively according to a proposed indicator. However, the
indicator has nothing to do with the the error of the approximate solution. The method in [7]
proposes RBF interpolation for predicting the reduced state vector in the future time instances.
Greedy algorithms are proposed to adaptively select the snapshots of the reduced state vector
that are called the projected snapshots. Moreover, the projected snapshots are greedily selected
according to a residual and a power function, rather than by error estimation of the approximate
solution. The projected snapshots are selected from precomputed solution snapshots at a given
set of time instances that need a lot of offline computations. The method applies only to non-
parametric time-dependent cases.
In [21], Gaussian process regression (GPR) is proposed to learn the reduced state vector as

a function of parameters. Active learning using deviation of GP as an indicator to iteratively
enrich the training data (snapshots) that are then used for retraining GPR. Again, the deviation
of GP cannot tell the error of the approximate solution computed from the proposed method there.
Steady-state problems are only addressed in [21], and extension of the method to time-dependent
problems is not straightforward. Similarly, in the most recent work [34], an error estimator based
GPR is proposed to perform active learning by using single-time step snapshots of the parametric
system states. Their method works for time-dependent problems, but its performance for models
with mixed—convective and diffusive—effects is unclear.
The non-intrusive error estimator in our method is built from the error arising in a parameter-

specific POD-approximation of the solution states. To the best of our knowledge, this is in contrast
to all the previously proposed frameworks for active learning. As a result, our error estimator based
non-intrusive optimality criteria allows us to actively learn important solution snapshots at new
parameter locations, completely in the offline phase, without the need to repeatedly evaluate and
retrain the entire surrogate model or non-intrusive ROM. This further reduces the computational
burden. During the online phase, we do not need to evaluate the high-fidelity model in real-
time, but can simply query the actively learned reduced-order surrogate model and obtain efficient
approximation of the physics.

1.3 Organization

The remaining article is organized as follows. In Section 2, the general setting for the parametric
nonlinear dynamical system is introduced. This is followed by introducing the kernel-based shallow
neural network (KSNN) which uses radial basis functions (RBFs) as the kernel functions. Finally,
we formulate the POD-based data-driven surrogate model using KSNNs. Next, in Section 3,
we propose a non-intrusive optimality criterion based on an error estimator which can be used for
actively learning any POD-based surrogate model. Section 4 summarizes the novel ActLearn-POD-
KSNN surrogate model by detailing its complete algorithm. Then, we provide detailed numerical
experiments for models with mixed—convective and diffusive—physical phenomena in Section 5.
At the end, we draw some conclusions in Section 6.
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2 Data-Driven Surrogate Model for Parametric Systems

We can represent a full-order nonlinear dynamical system arising from the spatial discretization of
a parametric partial differential equation as

du

dt
= f(u, t;µ), u(0) = u0(µ), t ∈ [0, T ], (2.1)

where T ∈ R+ denotes the final time; u ≡ u(t,µ) with u : [0, T ]×D → RN denotes the solution;
u0 : D → RN denotes the parameterized initial condition; µ ∈ D ⊆ RNµ denotes the parameters;
and f : RN×[0, T ]×D → RN denotes a nonlinear function. In this section, we provide a formulation
of a reduced-order surrogate model which can be constructed directly from the high-fidelity solution
snapshots of (2.1). The surrogate model is built by employing a series of neural networks with a
shallow neural network architecture. The shallowness enables a fast offline training procedure as
well as a rapid online querying of the surrogate model at new out-of-training parameter locations.

2.1 Kernel-Based Shallow Neural Network

We formulate the interpolation technique that will be used in this work as a radial kernel-based
shallow neural network (KSNN). The network is as shown in Figure 2.1 with an input, a hidden,
and an output layer. The input layer includes the data points xj where j = 1, . . . , ℓ. The activation
functions in the hidden layer are ϕi := ϕ(∥x− xi∥). The output f of the network is used to learn

(approximate) a scalar-valued function f̂(x). Mathematically, this can be expressed as follows,

f̂(x) ≈ f(x) =

r∑
i=1

wiϕi(∥x− xi∥). (2.2)

where {wi}ri=1 are the network weights; {xi}ri=1 are the centers; and ϕ is a kernel function depend-
ing on the radial distance of input x from a specified center xi. As an example, Table 2.1 lists a
few different radial basis kernels with the shape factor ϵ, and the radial distance d. Note that we
indicate the vectors of input and centers with a bar at the top to highlight that they can attain
any generic input and center values.

Name Function

Gaussian e−(d/ϵ)2

Multi-quadric
√
(d/ϵ)2 + 1

Inverse multi-quadric 1/(
√

(d/ϵ)2 + 1)
Linear spline d
Cubic spline d3

Quintic spline d5

Thin-plate spline d2 log(d)

Table 2.1: List of radial basis kernels.

The radial kernel or basis functions operate on multivariate input data, which in turn reduces
to a scalar function of the Euclidean norm of (x − xi). For exact interpolation, we take xi = xi,

r = l, and enforce f̂(xj) = f(xj) with j = 1, . . . , ℓ in (2.2). This reduces the training step to
a linear system solve for the weights {wi}ri=1. The coefficient matrix of the linear system is a
distance matrix D ∈ Rℓ×ℓ, where the entries of D are the kernel values evaluated at all the data
points (Dj,i = ϕi(xj) with i = j = 1, . . . , ℓ). After training, we can evaluate the scalar value f̂ at
any new input x.

To learn a vector-valued function ŷ(x) ∈ Rq, the output layer needs to have width q. More

Preprint. 2023-06-13



H. Kapadia, L. Feng, P. Benner: Active-Learning-Driven POD-KSNN Surrogate Model 6
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Figure 2.1: Illustration of a radial kernel-based shallow neural network with a scalar output.

precisely, the output y(x) of the KSNN can be written as follows,

ŷ(x) ≈ y(x) = [ y1(x), y2(x), . . . , yq(x) ]
T (2.3)

=

[
r∑

i=1

w
(1)
i ϕi(∥x− xi∥),

r∑
i=1

w
(2)
i ϕi(∥x− xi∥), . . . ,

r∑
i=1

w
(q)
i ϕi(∥x− xi∥)

]T
(2.4)

where, for exact interpolation, we again take xi = xi, r = l, and enforce ŷk(xj) = yk(xj) with
j = 1, . . . , ℓ and k = 1, . . . , q. An illustration of such a network is provided in Figure 2.2.

All the weights {w(k)
i }li=1 corresponding to components k = 1, . . . , q of y(x) can be collected in

a weight matrix W such that its entries are defined as below,

Wi,k := w
(k)
i . (2.5)

To obtain the weights in each column of W , we need to solve a linear system with the coefficient
matrix D ∈ Rℓ×ℓ during the training process. We avoid directly solving q linear systems and first
perform a pivoted LU decomposition of the distance matrix D,

D = PLU (2.6)

where P is a permutation matrix, L is a lower triangular matrix with unit diagonal elements,
and U is an upper triangular matrix. When such a decomposition is available, each column of
W can be obtained by simply performing forward and back substitutions. As a result, instead of
performing q computations in O(l3), we just perform one LU factorization in O(l3) followed by q
operations in O(l2). The benefit of such an adjacent training approach for vectorial interpolation
becomes more prominent as the number of data points {xj}lj=1 increases, as well as when the size

x1

x2

x2

xℓ

ϕ1

ϕ2

ϕ3

ϕℓ

y1
y2
y3
y4
y5

yq

W

Figure 2.2: Illustration of a radial kernel-based shallow neural network with a vectorial output.
For interpolation, the width of the hidden layer is the same as the number of inputs ℓ.
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of the vectors to be interpolated becomes significantly large, i.e., q ≫ l. We employ the multi-
quadric kernel function (which is not positive definite) to conduct all our numerical experiments,
so LU decomposition is used. But when a symmetric positive definite kernel is considered, we
can use the Cholesky decomposition instead of LU decomposition and obtain a further reduction
in computational complexity from 2

3ℓ
3 to 1

3ℓ
3 during the first step of matrix factorization while

training any KSNN with a vectorial output.

Remark 2.1 (Preserving positivity when interpolating error values). In our work, we
repeatedly build or retrain KSNNs to construct interpolants for the norm of the relative error
caused in the POD-approximate solution, which will be discussed at length in Section 3. While
interpolating these small error values, it could happen that the result is a negative value close to
zero, which would be nonphysical. This phenomenon is dependent on the distribution of the training
data, as well as on the shape factor’s (ϵ) value. To ensure the positivity of the error values, we
modify the training data by taking the logarithm of all the error values used for training. After
querying the network, we need to take the exponential of the result, to obtain the correct (positive)
interpolated error value.

2.2 POD-KSNN Surrogate Model

Consider that we have the solution snapshots along discrete time trajectories {t0, t1, . . . , tNt} with
t0 = 0 and tNt = T . The snapshots can be collected in matrices U(µi) sized N × (Nt + 1)
corresponding to each parameter sample µi for i ∈ {1, . . . ,m},

U(µi) = [ u(t0,µi) | u(t1,µi) | . . . | u(tNt
,µi) ]. (2.7)

We follow a two-step interpolation approach [33] to construct the non-intrusive reduced-order
surrogate model. In the first step, by building (Nt + 1) KSNNs (refer to (2.4)), we interpolate
the snapshot data U(µi) in the parameter space corresponding to all time-instances tj with j ∈
{0, . . . , Nt}. The KSNNs’ construction and training is done in the offline phase, whereas in the
online phase, they are queried at a new parameter instance µ∗. The result is an estimation of the
snapshot matrix corresponding to any new µ∗,

U I(µ∗) = [ Iµ
t0(µ

∗) | Iµ
t1(µ

∗) | . . . | Iµ
tNt

(µ∗) ]. (2.8)

In this case, y in (2.3) corresponds to each Iµ
tj in (2.8) (an N -dimensional vector), xi in (2.4)

are µi, and x is µ∗ when the KSNN is queried. Each column of U I is obtained by performing a
vectorial interpolation. So, {Iµ

tj}
Nt
j=0 denote (Nt + 1) KSNNs interpolating the snapshots in the

parameter space. Due to this reason, we interchangeably refer to the KSNNs as interpolants. It
is crucial to note that once the KSNNs {Iµ

tj}
Nt
j=0 are constructed, we do not need to store any

snapshot matrices U(µi) that were used to train the KSNNs.
The optimal linear subspace spanned by the approximate snapshot data for µ∗ can be com-

puted via proper orthogonal decomposition (POD). In practice, we can compute the POD bases
Φ̃(µ∗) := (ϕ̃1(µ

∗), ϕ̃2(µ
∗), . . . , ϕ̃s(µ

∗)) either using the singular value decomposition or (for large-
scale problems) using the method of snapshots, when N is very large and Nt ≪ N [29]. The
interpolated snapshots at µ∗ can then be written as a linear combination of the bases Φ̃(µ∗). By

Figure 2.3: Framework for POD-KSNN data-driven surrogate modeling.
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collecting all the coefficients for such a linear combination in a matrix A(µ∗), the interpolated
snapshots U I(µ∗) can be represented as,

U I(µ∗) = Φ̃(µ∗)A(µ∗), (2.9)

A(µ∗) = [ α0(µ∗) | α1(µ∗) | . . . | αNt(µ∗) ], (2.10)

where αj ∈ Rs is the vector of coefficients at time tj . For the complete POD space, s equals to
the number of nonzero singular values of U I(µ∗). However, in practice, usually the POD space is
truncated. In that scenario, s corresponds to the number of retained singular values.
To obtain the approximation of the solution corresponding to µ∗ at a new time instance t∗ ∈

[0, T ], a second interpolation step is carried out in the time domain by building and training an
additional KSNN (refer to (2.4)). We construct an interpolant It

µ∗ for the reduced coordinates

αj(µ∗) in the time domain,
αI(t∗) := It

µ∗(t∗). (2.11)

In this case, y in (2.3) corresponds to αI in (2.11) (an s-dimensional vector), xi in (2.4) is tj , and
x is t∗ when the interpolant is queried. The surrogate approximation of the solution is obtained
as follows,

us(t
∗,µ∗) = Φ̃(µ∗) αI(t∗). (2.12)

The complete POD-KSNN surrogate model is summarized in Figure 2.3. We adhere to a two-
step interpolation approach to divide the function complexity between space and time domains,
thereby allowing us to work with multiple reduced-sized KSNNs. The network size (layer width) is
directly related to the number of centers or data points under consideration. More data points lead
to a wider KSNN, whose training will require a larger linear system solve for the weights. As the
number of centers increases, the memory required for the linear system solve goes up considerably.
This is due to the quadratic dependence of the required memory on the number of centers. The
training could become infeasible in such a scenario. However, the two-step interpolation strategy
enables us to isolate the centers between space and time, thereby relaxing the total permissible
center count.

Remark 2.2 (Extension to system of parametric PDEs). One approach is to prepare differ-
ent snapshot matrices for all the solution components that are present in the system of equations.
Then prepare separate KSNNs for all components to interpolate between the snapshots in the pa-
rameter domain. Later, in the second step, we create POD subspaces, individually, for each of
the components. An additional KSNN for each component interpolates the reduced coordinates in
the time domain. We employ this methodology in our numerical experimants with shallow water
equations.
An alternate approach is to merge the solutions for all the components and form one big snapshot

matrix corresponding to each parameter instance. This allows us to proceed in the same fashion as
detailed above in this section. Undertaking this approach of first merging the component snapshots
and then applying POD leads to a single ROM, but with larger reduced size.

3 Active Learning for POD-Based Data-Driven Surrogates

We are concerned with dynamical systems which are parametric in nature. For this setting, one
typically requires a substantial amount of training data at several parameter samples to create a
good reduced-order surrogate model. Our aim is to be efficient and choose a set of optimal training
samples corresponding to different parameters, from a vast pool of parameters. However, there is
no trivial notion of optimality. We address this by proposing a non-intrusive error estimator as
an optimality criterion. This is further used to actively create the training or snapshot data and
leverage the most out of the POD-KSNN surrogate.

3.1 Non-Intrusive Optimality Criterion

To assess the quality of the POD-based data-driven surrogate solution in Section 2, we require
a way to estimate the error in its approximate solution, in comparison with the full-order (or
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high-fidelity) solution. There are two types of errors induced while constructing and deploying
the POD-based surrogate: the error caused due to restricting the solution corresponding to each
parameter sample in an (active) linear subspace obtained via POD, and the amalgamation of errors
arising from the chosen interpolation or regression technique. The total error E ∈ RN in the spatial
domain for some parameter µ corresponding to a time instance t can be represented as

E(t,µ) = EPOD(t,µ) + EI(t,µ), (3.1)

where EPOD ∈ RN represents the POD projection error, and EI ∈ RN represents the total inter-
polation error when the surrogate model is evaluated.
To understand the additive decomposition of the total error E(t,µ), let us look more concretely

at the error in the surrogate solution us(t,µ),

E(t,µ) := u(t,µ)− us(t,µ). (3.2)

This can be written in the following fashion for the POD-KSNN surrogate model:

E = (u− ΦΦ⊤u) + (ΦΦ⊤u− ΦΦ⊤uI) + (ΦΦ⊤uI − Φ̃Φ̃⊤uI) + (Φ̃Φ̃⊤uI − us). (3.3)

Here, Φ(µ) = (ϕ1(µ), ϕ2(µ), . . . , ϕs(µ)) are the bases obtained by performing POD of the solution
u; uI(t,µ) = Iµ

t (µ) is an approximation of u obtained via interpolating the solutions in the
parameter domain using KSNNs, as shown in (2.8); Φ̃(µ) = (ϕ̃1(µ), ϕ̃2(µ), . . . , ϕ̃s(µ)) are the
bases obtained by performing POD of the approximate solution uI .
By following (2.12), we can write the surrogate solution as us(t,µ) = Φ̃(µ)αI(t). Here, an

approximation of the reduced solution coordinates, αI(t), is obtained by interpolating {αj(µ)}Nt
j=0

from (2.10) in the time domain using a KSNN, i.e., αI(t) = It
µ(t). This allows us to write (3.3) in

the following way:

E = (u− ΦΦ⊤u) + (ΦΦ⊤u− ΦΦ⊤uI) + (ΦΦ⊤uI − Φ̃Φ̃⊤uI) + (Φ̃Φ̃⊤uI − Φ̃αI). (3.4)

The first term in (3.4) arises due to the retention of only the leading s POD modes. This results
in a parameter-specific linear subspace that captures most of the solution, but not in its entirety.
We refer to this omitted contribution as the POD approximation error and define it as,

EPOD := (u− ΦΦ⊤u). (3.5)

The second and third terms in (3.4) arise from the solution approximation uI , due to interpolation
in the parameter domain. More precisely, the second term accounts for the solution error resulting
from the reduced representation of the approximate solution obtained by projection onto the true
solution bases Φ. Whereas, the third term accounts for the solution error caused due to projection
of the approximate solution uI onto the bases Φ̃ instead of Φ, which is obtained from a POD of uI .
Finally, the fourth term in (3.4) provides the solution error caused because of an approximation
of the reduced coordinates αI via interpolation in the time domain. As a result, we can define the
total interpolation error in the following way,

EI := (ΦΦ⊤u− ΦΦ⊤uI) + (ΦΦ⊤uI − Φ̃Φ̃⊤uI) + (Φ̃Φ̃⊤uI − us). (3.6)

From (3.4)–(3.6) it is clear that we can decompose the total error E in an additive fashion as
represented in (3.1). Now, consider the norm of the total error in the spatial domain,

∥E(t,µ)∥ = ∥EPOD(t,µ) + EI(t,µ)∥. (3.7)

Upon application of the triangle inequality, we obtain

∥E(t,µ)∥ ≤ ∥EPOD(t,µ)∥+ ∥EI(t,µ)∥, (3.8)

ϵ(t,µ) ≤ ϵPOD(t,µ) + ϵI(t,µ), (3.9)

where ϵ, ϵPOD, and ϵI represents the spatial norms of the total, POD projection, and interpolation
errors respectively. More precisely, they are defined as ϵ := ∥E∥, ϵPOD := ∥EPOD∥, and ϵI := ∥EI∥.
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Assume we have snapshots
U(µi) at parameters {µi}i=m

i=1

Approximate snapshots
by µi -specific

dominant POD bases
Us(µi) = Φ(µi)A(µi)

Solution approximation
Prepare training data

Compute error snapshots
E (µi) = U(µi)− Us(µi)

E (µ1) E (µ2) ... E (µm)

εj(µi) =
||Ej(µi )||2
||Uj(µi )||2

i ∈ {1, ... ,m}, j ∈ {0, ... Nt}

Error interpolation

Compute ε̃j(µ
∗) by

interpolation of εj(µi)

ε̂(µ∗) := max
j

ε̃j(µ
∗)

Figure 3.1: Procedure to non-intrusively estimate the error at new parameter locations.

During the construction of the POD-KSNN surrogate model, the KSNN interpolation procedure
reproduces the training data exactly which results in ϵI = 0 for all the training parameter samples.
This makes ϵPOD the bound for the total error ϵ. As a result, we can construct an estimator for the
error ϵ caused in the surrogate solution by interpolating between the errors ϵPOD corresponding
to all the training parameter samples. Afterward, this error estimator can be queried at new
parameter samples, providing an approximation for ϵ at any out-of-training parameters. Through
our numerical experiments in Section 5, we see that employing such an error estimate is a reasonable
strategy to drive the active learning procedure. The key benefit is that we can carry out active
learning entirely in the offline phase without the need to repeatedly evaluate the POD-KSNN
surrogate model at the training parameter samples.
Let us now dive into the details of the error estimator construction, which we will use as the

optimality criterion. Consider a successful parameter sampling, followed by snapshot data col-
lection of all the chosen parameter points corresponding to the same time horizon by simulating
the high-fidelity model. For instance, following the setup for (2.7), we have the snapshot matrices
U(µi). Let us consider a POD approximation of the solution snapshots,

UPOD(µi) = Φ(µi)A(µi) (3.10)

with Φ(µi) ∈ RNx×ri and A(µi) ∈ Rri×(Nt+1). Here, ri ≤ min{Nx, (Nt + 1)} denotes the level of
POD space truncation for each parameter µi.
The error of the POD approximate solution at the parameters {µ1,µ2, . . . ,µm} is given by

E(µi) = U(µi)− UPOD(µi). (3.11)

Note that E(µi) is also the POD-KSNN surrogate error because Usurrogate = UPOD = Us for all
µi (since they are the training parameter samples). We avoid interpolating E(µi) entry-wise at
a new parameter location as the computational cost for doing that is equivalent to interpolating
the high-dimensional snapshots. Our motivation is to alleviate this computational burden, but at
the same time, have an informative indication for the error. This is accomplished by taking the
relative norm of the solution error Ej(µi) ∈ RNx at each time instance tj . In our experiments, we
have tested using l2, l1, and l∞ norms. We noticed similar qualitative results for all the norms.
Depending on the problem setting, one can be preferred over the other, for instance, physical
systems prone to advective effects might benefit from l1 norm usage. As a generic choice, we
use the l2 norm for our discussion because the considered test problems in Section 5 have mixed
diffusive and convective effects. We denote the relative norm by,

εj(µi) =
||Ej(µi)||2
||Uj(µi)||2

, (3.12)

where Uj(µi) denotes the jth column (corresponding to tj) of the snapshot matrix for µi.
The relative error values εj(µi) are used to train (Nt+1) KSNNs and obtain their weight values

w
(j)
i . The interpolated relative l2 error at time tj for any new parameter value µ∗ becomes

ε̃j(µ
∗) =

m∑
i=1

w
(j)
i ϕ

(j)
i (||µ∗ − µi||). (3.13)
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This can be written compactly as a vector with entries corresponding to each time instance,

ε̃(µ∗) = [ ε̃0(µ
∗) | ε̃1(µ∗) | . . . | ε̃Nt

(µ∗) ]. (3.14)

The final error estimate is taken to be the maximum interpolated relative error in time, given by

ε̂(µ∗) := ||ε̃(µ∗)||∞ = max(|ε̃0(µ∗)|, |ε̃1(µ∗)|, . . . , |ε̃Nt(µ
∗)|). (3.15)

The entire procedure to compute the non-intrusive error estimator is summarized in Figure 3.1.

3.2 Active Learning Framework

The intention of the active learning procedure is to enrich the snapshot data in a fashion that is most
beneficial for the reduced-order surrogate model. In other words, each enrichment of the training
snapshots lead to an optimal or near-optimal improvement of the approximate dynamics. The
motivation is similar to the greedy procedure used for the reduced basis method [16]. However, in
our setting we do not have access to the first principle models, so we cannot leverage the equations
to decide the choice of new parameter samples for efficient training of the non-intrusive ROM.
Instead, we utilize the non-intrusive error estimator as the optimality criterion to enable active
learning.
We initialize the parameter set P with a coarse sampling of the parameter space D. Additionally,

a second set P ∗ is prepared which holds all the candidate parameter values that could be included
in set P as the active learning progresses. Consider the coarsest initial sampling set P , i.e.,
P = {µi|i ∈ I} with index set I = {1, 2}. And the candidate set P ∗ is composed of a fine sampling
in (µ1,µ2), given by

P ∗ = {µ̄1, µ̄2, . . . , µ̄q} with µ̄j ̸= µi; i = 1, 2; j = 1, . . . , q. (3.16)

The high-fidelity solution is computed for all the parameters in set P . This is followed by
performing a POD approximation (3.10) for the snapshot matrix at each µi in P . The level of
POD space truncation ri for each µi ∈ P is obtained by maintaining a constant energy criterion
η(µi) defined at µi as

η(µi) = 1−
∑k=ri

k=1 (σ
(i)
k )2∑k=si

k=1 (σ
(i)
k )2

. (3.17)

Here, σ
(i)
k with k = 1, . . . , si, are the nonzero singular values obtained from SVD of the snapshot

matrix U(µi).
Using the high-fidelity and POD approximate solutions, error snapshots for the parameters in

set P are computed,
E(1)(P ) := {E(µ1), E(µ2)} (3.18)

where E(µi) is given by (3.11) and the superscript in E(1) denotes the first iteration of the active
learning loop, i.e. iter = 1. An error estimator is constructed for the parameters in the candidate
set P ∗,

ε̂(1)(P ∗) := {ε̂(µ̄1), ε̂(µ̄2), . . . , ε̂(µ̄q)}, (3.19)

where ε̂(·) is computed by (3.15).
The parameter sample corresponding to the maximal value of the error estimate is chosen (iter =

1),
µ̄(iter) = argmax

µ̄′∈P∗
ε̂(µ̄′). (3.20)

If ε̂(µ̄(iter)) > tol, the set P is extended by including the chosen parameter µ̄(iter). The candidate
set is also updated, P ∗ = P ∗ \ µ̄(iter). Here, tol is a predefined tolerance level that we intend to
achieve. In other words, we terminate the active learning process as soon as the error estimator
reaches a value which is less than the target tolerance.
Next, we compute the high-fidelity snapshots U(µ̄(iter)), and the POD approximation error at

µ̄(iter),
E(µ̄(iter)) = U(µ̄(iter))− UPOD(µ̄(iter)), (3.21)
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µ1 µ2

t0
t1

tNt−1

tNt

P = {µ1,µ2}

Candidate parameter set
P∗ = {µ̄1, µ̄2, ... , µ̄q}

µ1 < µ̄1

µ2 > µ̄q

Initial energy criterion (η)

Initialization Error estimation

→ Get error snapshots
for parameters in P

→ Compute estimate
ε̂(iter)(P∗) ∈ Rq, iter ≤ q

→ Choose µ̄(iter) ∈ P∗ such
that ε̂(iter)(µ̄(iter)) is max.
over P∗

Update training data

If ε̂(iter)(µ̄(iter)) > tol :

→ Add µ̄(iter) in P ; P∗ = P∗ \ µ̄(iter)

→ Compute solution and error
snapshots for µ̄(iter)

→ Enrich POD space for µ̄(iter), while
maxµ′∈P, j∈{0,...,Nt} εj(µ

′) > ε̂(µ̄(iter))

Loop until tol is satisfied or iter > q

Figure 3.2: Procedure to actively learn the POD-KSNN surrogate model by greedy refinement of
the high-fidelity solution snapshots along the parameter domain.

where UPOD is constructed by adhering to the energy criterion η in (3.17). The subspace of the
POD bases for µ̄(iter) is further enriched if the maximal relative-error-norm at any time instance
in the extended set P corresponds to µ̄(iter). The POD basis is incremented until the following
holds true:

ε̂(µ̄(iter)) < max
µ′∈P, j∈{0,...,Nt}

εj(µ
′). (3.22)

This step essentially makes sure that the POD subspace of the newly selected parameter µ̄(iter) is
at least as expressive as all the other parameter-specific POD subspaces corresponding to samples
in P . Moreover, due to this procedure, we can obtain an update of the energy criterion η(µ̄(iter)),
which is later used during the online phase to construct an accurate POD subspace for any newly
queried parameter µ∗. A more detailed discussion about obtaining and using such an updated
energy criterion is provided in Section 4.
With the necessary POD space enrichment for µ̄(iter) and the updated parameter set P , the error

snapshots E(iter)(P ) are collected to start the next iteration. This is used as the training data for
the interpolation procedure to construct the new error estimator ε̂(iter)(P ∗). The next parameter
µ̄(iter) is then greedily picked using (3.20), followed by an adaptive refinement of the POD space
using (3.22). In this fashion, we iteratively expand the solution snapshots by greedy selection of
new parameters along with their POD space adaptation, until the tolerance tol is satisfied. The
complete active learning procedure is outlined in Figure 3.2.

Remark 3.1 (Choice of candidate parameter set P ∗). The preparation of P ∗ is not trivial, in
fact, a decent sampling procedure needs to be maintained while choosing the candidate samples for
P ∗. As the parameter values range over several orders of magnitude for the physical models pre-
sented in our numerical experiments, we consider a uniform sampling of the logarithm of the entire
parameter space. This ensures a reasonable selection of parameters through all of the parameter
space.

Remark 3.2 (Extension to system of parametric PDEs). We prepare different snapshot
matrices corresponding to all the solution components in the system of equations, i.e., {U (k)}qk=1

for q components. This is followed by forming the error matrices {E(k)}qk=1, and then proceeding
to apply the aforementioned active learning procedure, but now obtaining component-wise error
estimators {(ε̂(iter))(k)}qk=1 by following (3.19) for each component. The new parameter sample is
picked based on the maximal value of the average between all the component-wise error estimates.
So, (3.20) takes the following form:

µ̄(iter) = argmax
µ̄′∈P∗

(
1

q

q∑
k=1

(ε̂(iter))(k)(µ̄′)

)
. (3.23)

Similar to the scalar equation setting, now, if 1
q

∑q
k=1(ε̂

(iter))(k)(µ̄′) > tol, the set P is extended

by adding µ̄(iter) to it. The candidate set is also updated, P ∗ = P ∗ \ µ̄(iter). The POD bases
are incremented until the component-averaged error estimate value at the newly selected parame-
ter µ̄(iter) is less than the maximal component-averaged relative-error-norm values among all the
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parameter samples already present in P . So, (3.22) takes the following form:

1

q

q∑
k=1

(ε̂(iter))(k)(µ̄(iter)) < max
µ′∈P, j∈{0,...,Nt}

1

q

q∑
k=1

(εj)
(k)(µ′). (3.24)

4 ActLearn-POD-KSNN Surrogate Model

We summarize the complete methodology to construct and deploy the ActLearn-POD-KSNN
reduced-order surrogate model in this section. Algorithm 1 details the complete offline phase.
To iteratively construct the non-intrusive error estimator, a new KSNN (refer to (2.2)) is au-
tomatically built, trained, and queried at steps 5 and 18 of the algorithm. Solution snapshots
corresponding to new parameter values are actively selected, and the parameter set P is updated
during the offline phase. Since the POD subspace is refined adaptively during the active learning
process, the relative energy corresponding to the retained POD modes could be different for the
selected parameters in the final pool of P . We denote it by η̃(µi) for each µi ∈ P . The minimum
energy criteria would be

η̂ = min
µ′∈P

η̃(µ′). (4.1)

We adhere to this updated energy criterion, η̂, to construct the POD subspace for any new param-
eter during the online phase.

Algorithm 1 Offline phase: Constructing the ActLearn-POD-KSNN surrogate

Input: Initial parameter set P , snapshots U(µi) for µi ∈ P , candidate parameter set P ∗, initial
energy criterion η, tolerance value (tol) to terminate the active learning loop, iter = 1.

Output: Updated parameter set P , energy criterion η̂, KSNN surrogates {Iµ
tj}

Nt
j=0.

1: Based on η, calculate the POD truncation level ri for all µi ∈ P such that (3.17) holds.
2: Compute nonlinear reduced bases, i.e., the truncated parameter-specific POD subspaces Φ(µi).
3: Construct the POD approximate solutions UPOD(µi).
4: Obtain the error snapshots E(µi) following (3.11) and (3.18).
5: Compute the error estimate ε̂(µ̄j) using (3.15) and (3.19), where µ̄j ∈ P ∗.
6: Pick a parameter µ̄(iter) from P ∗ following (3.20). Store E(iter) = ε̂(µ̄(iter)).
7: while E(iter) > tol do
8: Extend P by including µ̄(iter). Update the candidate set, P ∗ = P ∗ \ µ̄(iter).
9: Get the solution snapshots U(µ̄(iter)) from a high-fidelity model or experiments.

10: Based on η, calculate the POD truncation level for µ̄(iter).
11: Compute the truncated POD subspace Φ(µ̄(iter)). Construct UPOD(µ̄(iter)).
12: Compute the error snapshots E(µ̄(iter)).
13: while maxµ′∈P, j∈{0,...,Nt} εj(µ

′) > E(iter) do

14: Enhance Φ(µ̄(iter)) by incrementing the truncation level for µ̄(iter), i.e., adding a new
basis.

15: Recompute U(µ̄(iter)) and E(µ̄(iter)).
16: end while
17: iter = iter + 1
18: Build the error estimate ε̂(µj) using (3.15) for each µj ∈ P ∗.
19: Following (3.20), pick a parameter µ̄(iter) from P ∗. Store E(iter) = ε̂(µ̄(iter)).
20: end while
21: Compute η̂ following (4.1).
22: Using U(µi) (µi ∈ P ) as training data, construct {Iµ

tj}
Nt
j=0 by building and training (Nt + 1)

KSNNs (2.4). As per (2.8), they will be queried in the online phase at new parameter location
µ∗.

Building upon the successful active learning procedure carried out during the offline phase, in
the online phase, we acquire the surrogate solution at a new time t∗ and parameter µ∗ value as
described in Algorithm 2. We do not query the full-order model in the online phase. The bases
Φ̃(µ∗) is obtained from the snapshot approximation U I(µ∗) by performing its SVD to extract the
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leading r∗ POD basis. Consequently, we have to do computations with the cost in O(NN2
t ), where

Nt < N . The truncation level r∗ is obtained by maintaining the energy criterion η̂. If r∗ can
be learned without relying on the energy criterion, the cost of evaluating the bases Φ(µ∗) can be
reduced to O(NNt log(r

∗)) with negligible loss of accuracy by leveraging randomized SVD [14].
This will be included in our subsequent work. Although the online computational cost depends on
the dimension of the full-order model, N , the online phase is fast, as evidenced by the numerical
results presented in Section 5.

Algorithm 2 Online phase: Querying the ActLearn-POD-KSNN surrogate

Input: New parameter µ∗, new time t∗, energy criterion η̂, KSNN surrogates {Iµ
tj}

Nt
j=0.

Output: Surrogate solution at (t∗, µ∗).
1: Evaluate U I(µ∗), the KSNN approximate snapshots for µ∗, on the training time grid via (2.4)

and (2.8).
2: Compute POD bases Φ̃(µ∗) by deciding the truncation level from the energy criterion η̂.
3: Compute reduced coordinates A(µ∗) with (2.9), after projecting U I(µ∗) onto Φ̃(µ∗) via (2.10).
4: Build and train a KSNN (2.4), It

µ∗ , by using A(µ∗) as the training data.

5: Obtain a vector of approximate reduced coordinates, αI(t∗), at t∗ by evaluating It
µ∗ via (2.4)

and (2.11).
6: Compute the surrogate solution us(t

∗,µ∗) using (2.12).

5 Numerical Results

We validate the proposed active learning framework with POD-KSNN reduced-order surrogate
models by performing numerical experiments on two test cases. The first test case is the Burgers’
equation, which is parametrized by the viscosity. It is known to develop an advecting shock in finite
time, even when starting with smooth solutions, given a low enough viscosity value. Additionally,
we also parametrize the initial condition with viscosity. The second test case is the shallow water
equation, which is parametrized by the viscosity and the mean-free path. It is used to model the
flow under a pressure surface in a fluid. Its solution comprises two waves moving with opposing
characteristic speeds. Due to a periodic boundary condition, the traveling waves repeatedly interact
with each other over time. In the remainder of this section, we provide details about both the
problem setups and our results for them.

5.1 Burgers’ Equation

We consider the following viscous Burgers’ equation in a 1D spatial domain with Dirichlet boundary
conditions:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, (5.1)

where the solution is denoted by u, changing with time t ≥ 0, space x ∈ [0, 1], and viscosity ν.
The viscosity can be viewed as a parameter that controls the competing effects of diffusion and
advection, resulting in a varying solution behavior for a wide range of ν. We choose the following
initial condition, such that the solution space at t = 0 is also parameter-dependent:

u(x, 0) =
x

1 +
√

1
κ′ exp

(
Re x2

4

) ; κ′ = exp(Re/8), Re = 1/ν. (5.2)

Instead of simulating the equation using a numerical discretization technique, we opt to utilize
the exact solution by converting (5.1) into a parabolic nonlinear PDE through the application of
the Cole-Hopf transformation [8]. The exact solution takes the following form:

u(x, t) =
x

t+1

1 +
√

t+1
κ′ exp

(
Re x2

4t+4

) ; κ′ = exp(Re/8), Re = 1/ν, (5.3)
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Figure 5.1: Burgers’ equation: Evolution of exact solution over time t ∈ [0, 2] in (a), (b), (c)
for various Reynolds numbers; Comparison of solution at t = 0.5 in (d) for different
Reynolds number; Comparison of the singular value decay in (e) for different Reynolds
numbers.

where we refer to Re as the Reynolds number, denoting the inverse of viscosity.
Figures 5.1a to 5.1d show the behavior of the solution for selected time instances t ∈ [0, 2]

corresponding to various Reynolds numbers. To highlight the competing diffusive and convective
effects of the equation, we select representative Re values from different parametric regimes. Upon
singular value decomposition of the snapshot matrices, we observe a progressively slow singular
value decay in Figure 5.1e as we go towards higher Re, which is due to the convective effects
dominating the flow.
For our experiments, the spatial domain has 150 grid nodes, and the time-domain is t ∈ [0, 2]

with 100 time-steps. The parametric range for the Reynolds number is taken from 10 to 5500.
The total number of discrete parameters we consider when accounting for both the candidate set
P ∗ and the parameter set P are 100. These 100 values of Re are picked by uniformly dividing
the logarithmic ν values (log10(

1
5500 ) and log10(

1
10 )) into 99 intervals, ensuring a decent pool of

parameters.
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Figure 5.2: Active learning for Burgers’ equation: (a) shows the optimality criterion E(iter) (refer
Algorithm 1) varying with greedy iterations of the active learning process; (b) shows
the final POD subspace dimension for each of the chosen parameter samples.
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Figure 5.3: Burgers’ equation: The true solution (shown in first column), ActLearn-POD-KSNN
solution (shown in second column), and the solution error (shown in third column). The
error values correspond to the point-wise difference in the space-time domain between
the ActLearn-POD-KSNN solution and the true solution. The Re values going from
top to bottom in the rows are in the following order: {40, 100, 350, 1250, 3000}. All
these Re values and discrete time instances required to generate the plots are outside
of the training set.
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(a) Re = 40
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(b) Re = 100
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(c) Re = 350
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(d) Re = 1250
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(e) Re = 3000

Figure 5.4: Comparison of the ActLearn-POD-KSNN solution (denoted by R) and true solution
(denoted by T) for Burgers’ equation. All the Reynolds numbers and time instances (t)
are outside of the training set.

To begin the active learning procedure, the parameter set P is initiated by 21 viscosity values
corresponding to the following indices,

{0, 99, 10, 20, 30, 40, 50, 60, 70, 80, 90, 5, 15, 25, 35, 45, 55, 65, 75, 85, 95}.

Here, the ν values are ordered from lowest to highest and the index starts from 0 when counting
the 100 values. We report the indices instead of exact values for ease of readability. High-fidelity
snapshots are generated for all the viscosities in P at 100 instances of t ∈ [0, 2]. Using these
snapshots, POD-approximate solutions are computed such that the POD subspace retains 99.99%
of the energy, i.e., η(ν) = 10−4, ∀ν ∈ P .
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Figure 5.5: Plot (a) shows the true error of the ActLearn-POD-KSNN solution for the Burgers’
equation on a new time grid corresponding to several out-of-training Reynolds numbers.
The tolerance used for termination of the active learning procedure is also shown for
comparison. Plot (b) shows the estimated error on the original time grid.
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Figure 5.6: Burgers’ equation: Error comparison between the ActLearn-POD-KSNN solution and
the POD-KSNN solutions upon a random (30 samples, seed 10) and quasi-random (54
samples, seed 10) selection of parametric training data. The values labeled ’ActLearn’,
’Random’, and ’Quasi-random’ are the time-averaged (over the test time grid) relative
l2 errors in the spatial domain. The values labeled ’Estimate’ are the time-average (over
the training time grid) of the error estimate values given by (3.13). All the reported
Reynolds numbers are outside of the training set.

During the active learning loop, we sample from the candidate set P ∗ at each iteration. The
initial state of P ∗ for the reported results comprises 79 candidate values – upon exclusion of 21
values present in P (initially) from the total 100 values. Figure 5.2a shows the estimated error
E(iter) (see Algorithm 1) varying with greedy iterations of the active learning process. The error
decreases over iterations, and we stop the loop after a tolerance of 10−2 is met. So, 33 new
parameter points are selected in a greedy fashion and their corresponding estimated error values
are reported in Figure 5.2a.
The ultimate choice of viscosity values and their corresponding POD subspace dimensions are

shown in Figure 5.2b. The reported dimensions also account for the POD space adaptation (re-
finement) when required through the iterations, as discussed in Section 3.2. For low viscosities,
the subspace dimension is comparatively higher. And new selections are mostly concentrated in
regions where the nature of the POD subspace changes significantly. Among all the individual
parametric POD subspaces, the lowest energy criterion η̂ in (4.1) is 2.676× 10−11. This is used as
a condition for deciding the POD subspace dimension for any newly queried parameter.
In Figure 5.3, the solution to the ActLearn-POD-KSNN surrogate model is compared with the

true solution over the entire space-time domain. This allows us to see the evolution of the solutions
in time. The Reynolds numbers are taken outside the training set – {40, 100, 350, 1250, 3000}. The
solution is computed on a new test time grid with 99 instances starting from 0.01 with a step size
of 0.02. We can see that the ActLearn-POD-KSNN solution agrees well with the ground truth.
To further visualize and compare the solution with the truth, solutions are plotted in Figure 5.4
for three representative time instances from the start, middle, and end of the time domain. The
error contours in the third column of Figure 5.3 show the point-wise difference in the space-time
domain between the surrogate solution and the ground truth. The solution error stays reasonable
for the entire range of Re values.

To obtain an estimate of the relative solution error in the surrogate’s approximation at a newly
queried parameter µ∗, we train the KSNNs using the relative error data given by (3.12) for all
µi ∈ P . Doing this, we obtain an error estimate ε̃(Re) for all the time instances, which is given by
ε̃(µ∗) in (3.14). Such an estimation of the error is shown in Figure 5.5b for the training (original)
time grid corresponding to several out-of-training Reynolds number. Whereas, Figure 5.5a shows
the true relative error values of the ActLearn-POD-KSNN solution. Here, the time instances are
different from the training time grid. For the most part, the true relative errors are bounded by
the tolerance criterion 10−2 which is used for the active learning loop.

In Figure 5.6, we provide a comparative study between ActLearn-POD-KSNN solution error and
POD-KSNN solution errors that are obtained by randomly picking 30 and 54 parameter samples for
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(a) Error in the solution upon random selection of parametric training data.
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(b) Error in the solution upon quasi-random selection of parametric training data.

Figure 5.7: Burgers’ equation: Error comparison between the POD-KSNN solutions upon a random
(30 samples) and quasi-random (54 samples) selection of parametric training data with
four different starting seeds: {10, 20, 30, 40}. The error values are the time-averaged
(over the test time grid) relative l2 errors in the spatial domain. All the reported
Reynolds numbers are outside of the training set.

preparing the training snapshots of the surrogate. We label the surrogate solution error obtained
by training with 54 random samples as quasi-random because this choice is actually informed by
the total number of parameter samples (21 + 33 = 54) upon termination of the active learning
loop. The random selection from a pool of 100 values of Re (which are the same as described
before during the preparation of sets P and P ∗) is done with a fixed representative seed value of
10 using the NumPy library written for Python programming language. The surrogate solutions
(us)k(Re) := us(tk, Re) are first computed over the previously described test time grid (tk with
k = 1, . . . , 99, t1 = 0.01, a uniform step size of 0.02, and the total discrete time instances are
Ñt = 99) after which the relative l2 error values in space are obtained,

εk(Re) :=
∥uk(Re)− (us)k(Re)∥2

∥uk(Re)∥2
(5.4)

We then take the average of these l2 errors over all the discrete time instances, i.e., Error :=
(1/Ñt)

∑
k εk(Re), and report the final result for active, random, and quasi-random sampling

in Figure 5.6. In a similar fashion, we report the time-average of the error estimate values ε̃j(Re)
defined in (3.13) on the training time grid (tj with j = 1, . . . , 100, t1 = 0.0, a uniform step size of
0.02, and the total discrete time instances are Nt = 100), i.e., Estimate := (1/Nt)

∑
j ε̃j(Re). We

observe that the error in the ActLearn-POD-KSNN solution is bounded by the tolerance of 10−2

specified for termination of the active learning procedure.
In Figure 5.7, we compare the POD-KSNN solution error for scenarios when 30 and 54 pa-
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rameters are randomly picked with four different starting seed values: {10, 20, 30, 40}. Similar to
Figure 5.6, the reported error values are the time-average (over the test time grid) of the relative
l2 error in space. Figure 5.7a shows that with 30 random samples the error goes up to 10−1, and
there is also significant difference among the solution error values corresponding to certain testing
Reynolds numbers for different starting seeds. We observe from Figure 5.7b that the error values
reduce by adding more samples, but there is still a noticeable variation between the values for
different starting seeds. This situation is addressed by the active learning framework. Moreover,
the procedure provides an idea about the number of parameter samples required for preparing the
snapshot training data such that the constructed surrogate model approximates the solution (at
any new parameter and time instance) up to some predefined accuracy level, as specified by the
tolerance value.

5.2 Shallow Water Equations

The free-surface flows in water bodies like channels or rivers can be modeled using the shallow
water equations [3]. They are obtained from the incompressible Navier-Stokes equations under
the condition that the fluid flow’s vertical extent is significantly smaller than its horizontal extent.
The conservation of mass and momentum takes the following form:

∂th+ ∂x(hu) = 0, (5.5)

∂t(hu) + ∂x

(
hu2 +

1

2
gh2
)
= −ν

λ
u, (5.6)

where h(t, x) is the depth of the channel, u(t, x) is the depth-averaged velocity along the length of
the channel, ν is the dynamic viscosity, λ is the mean-free path, g is the gravitational acceleration.
This form of the shallow water equations is also known as the Saint-Venant system, which naturally
allows us to capture a constant vertical velocity profile in a channel. To carry out the experiments,
the initial condition of the height is taken as a smooth bump described by the following nonlinear
function:

h(0, x) = 1 + exp(3 cos(π(x+ 0.5))− 4). (5.7)

The initial velocity is taken to be constant along x,

u(0, x) = 0.25. (5.8)

The periodic spatial domain is Ω ∈ [−1, 1] with 601 grid nodes, and the time-domain is t ∈ [0, 2]
in which the solution is stored at 200 uniform time steps. The high-fidelity solution of the system of
equations is computed using a discontinuous Galerkin solver with local polynomial reconstruction
of degree 1 [20]. The Riemann solver utilized to compute the numerical flux is local Lax-Friedrichs.
For integration in time, we use a second-order strong stability preserving Runge-Kutta scheme.
The equations are solved in non-dimensional form, and all the reported parameter values are non-
dimensional. For details about the conversion to dimensionless form, we suggest the reader to
refer [23]. We perform a singular value decomposition of the parameter-specific snapshot matrices
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(a) Singular value decay for the fluid height.
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(b) Singular value decay for the fluid velocity.

Figure 5.8: Shallow water equations: The decay in singular values for various viscosity samples ν.
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Figure 5.9: Active learning for shallow water equations: (a) shows the optimality criterion E(iter)

(refer Algorithm 1) varying with greedy iterations of the active learning process;
(b) shows the final POD subspace dimension for each of the chosen parameter samples.

for the fluid height and velocity and plot their respective singular value decays in Figure 5.8. The
decay is already not very fast for higher viscosity values, which gets exacerbated further as the
viscosity values are decreased. The hyperbolic nature of these equations renders an even greater
challenge for constructing an efficient reduced-order surrogate.
For our experiments, we fix λ = 0.1, and vary the viscosity ν from 1 to 10−5. The total number of

discrete parameters we consider when accounting for both the candidate set P ∗ and the parameter
set P are 100. These 100 samples of ν are picked by uniformly dividing the logarithmic ν values
(log10(10

−5) and log10(1)) into 99 intervals, ensuring a decent pool of parameters.
To begin the active learning procedure, the parameter set P is initiated by 11 viscosity values

corresponding to the following indices,

{0, 99, 10, 20, 30, 40, 50, 60, 70, 80, 90}.

Here, the ν values are ordered from lowest to highest and the index starts from 0 when counting
the 100 values. Like done for Burgers’ equation, we report the indices instead of exact values for
ease of readability. High-fidelity snapshots are generated for all the viscosities in P for 200 time
instances. Using these snapshots, POD-approximate solutions are computed such that the POD
subspace retains 99.99997% of the energy.

During the active learning loop, we sample from the candidate set P ∗ at each iteration. The
initial state of P ∗ for the reported results comprises 89 candidate values—upon exclusion of 11
values present in P (initially) from the total 100 values. Figure 5.9a shows variation of the estimated
error E(iter) (see Algorithm 1) with greedy iterations of the active learning process. The error
decreases over iterations, and we stop the loop after a tolerance of 10−3 is met. So, 26 new
viscosity samples are picked in a greedy fashion for which the estimated error values are reported
in Figure 5.9a.
The ultimate choice of viscosity values and their corresponding POD subspace dimensions are

shown in Figure 5.9b. Like for the Burgers’ equation, here as well the reported dimensions account
for the POD subspace refinement through the iterations. Also like Burgers’ equation, for low
values of viscosities, the subspace dimension is comparatively higher. New selections are mostly
concentrated in regions where the nature of the POD subspace changes significantly. Here, this
is towards the moderate to high viscosity regions. Among all the individual parametric POD
subspaces, the lowest energy criterion η̂ in (4.1) for the fluid height is 2.989 × 10−10, and for
the fluid velocity is 6.362 × 10−10. These are used as conditions for deciding the POD subspace
dimension for the fluid height and velocity at any newly queried value of ν in the online phase
(refer Algorithm 2).
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Figure 5.10: Shallow water equations’ fluid height: The true solution (shown in first column),
ActLearn-POD-KSNN solution (shown in second column), and the solution error
(shown in third column). The error values correspond to the point-wise difference
in the space-time domain between the ActLearn-POD-KSNN solution and the true
solution. The viscocity ν going from top to bottom in the rows are in the following
order: {5× 10−1, 5× 10−2, 5× 10−3, 5× 10−4, 5× 10−5}. All these ν values and time
instances are outside of the training set.
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Figure 5.11: Shallow water equations’ fluid velocity: The true solution (shown in first column),
ActLearn-POD-KSNN solution (shown in second column), and the solution error
(shown in third column). The error values correspond to the point-wise difference
in the space-time domain between the ActLearn-POD-KSNN solution and the true
solution. The viscosity ν going from top to bottom in the rows are in the following
order: {5× 10−1, 5× 10−2, 5× 10−3, 5× 10−4, 5× 10−5}. All these ν values and time
instances are outside of the training set.
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(b) ν = 5× 10−2
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(c) ν = 5× 10−3
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(d) ν = 5× 10−4
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(e) ν = 5× 10−5

Figure 5.12: Comparison of the ActLearn-POD-KSNN solution (denoted by R) and true solution
(denoted by T) for the fluid height in the shallow water equations. All the ν values
and time instances t are outside of the training set.
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(b) ν = 5× 10−2
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(c) ν = 5× 10−3
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(d) ν = 5× 10−4
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Figure 5.13: Comparison of the ActLearn-POD-KSNN solution (denoted by R) and true solution
(denoted by T) for the fluid velocity in the shallow water equations. All the ν values
and time instances t are outside of the training set.
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Figure 5.14: Plot (a) shows the true error of the ActLearn-POD-KSNN solution for the fluid height
of the shallow water equations on a new time grid corresponding to several out-of-
training samples of ν. The tolerance used for termination of the active learning pro-
cedure is also shown for comparison. Plot (b) shows the estimated error for the fluid
height on the original time grid.
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Figure 5.15: Plot (a) shows the true error of the ActLearn-POD-KSNN solution for the fluid ve-
locity of the shallow water equations on a new time grid corresponding to several
out-of-training samples of ν. The tolerance used for termination of the active learning
procedure is also shown for comparison. Plot (b) shows the estimated error for the
fluid velocity on the original time grid.

In Figures 5.10 and 5.11, the fluid height and velocity obtained from the ActLearn-POD-KSNN
surrogate model are compared with the true height and velocity over the entire space-time do-
main. We can see that the ActLearn-POD-KSNN solutions are able to capture the multiple shock
interactions over time, in both the fluid height and the fluid velocity. The viscosity values are
taken outside the training set: {5× 10−1, 5× 10−2, 5× 10−3, 5× 10−4, 5× 10−5}. The solution is
computed on a new test time grid with 499 instances starting from 0.004 with a step size of 0.004.
We can see that the ActLearn-POD-KSNN solution agrees well with the ground truth. To further
visualize and compare the surrogate solutions with the true solutions, we plot them in Figures 5.12
and 5.13 at three representative time instances from the start, middle, and end of the time domain.
The error contours in the third column of Figures 5.10 and 5.11 show the point-wise difference in
the space-time domain between the surrogate solution and the ground truth.
An estimation of the error in the fluid height and velocity at several out-of-training parameters is

shown in Figures 5.14b and 5.15b, respectively, for the training time grid. Similar to the Burgers’
equation, the reported estimates are computed by training KSNNs and obtaining values for ε̃(µ∗)
in (3.14). Figures 5.14a and 5.15a show the true relative error values of the fluid height and velocity
obtained from the ActLearn-POD-KSNN surrogate. Here, the time instances are different from
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(a) Error in the fluid height for several out-of-training parameter samples ν.
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(b) Error in the fluid velocity for several out-of-training parameter samples ν.

Figure 5.16: Shallow water equations: Error comparison between the ActLearn-POD-KSNN solu-
tion and the POD-KSNN solutions upon a random (15 samples, seed 10) and quasi-
random (37 samples, seed 10) selection of parametric training data. The values labeled
’ActLearn’, ’Random’, and ’Quasi-random’ are the time-averaged (over the test time
grid) relative l2 errors in the spatial domain. The values labeled ’Estimate’ are the
time-average (over the training time grid) of the error estimate values given by (3.13).

the training time grid. For the most part, the true relative errors are bounded by the tolerance
criterion 10−3 which is used for the active learning loop.
Figure 5.16 provides a comparative study between the ActLearn-POD-KSNN solution error

and the POD-KSNN solution errors that are obtained by randomly picking 15 and 37 parameter
samples. The errors in fluid height and velocity are respectively reported in Figures 5.16a and 5.16b.
Similar to the Burgers’ equation example, we label the surrogate solution error obtained by training
with 37 random samples as quasi-random, because this choice is inspired from the active learning
procedure. For the random selection from 100 values of ν (which are the same as described before
during the preparation of sets P and P ∗), we again fix the random seed in NumPy to 10. All the
surrogate error values and the estimates in Figure 5.16 are computed in the same way as those
in Figure 5.6, i.e., the relative l2 errors in the spatial domain are time-averaged over the test time
grid (tk with k = 1, . . . , 499, t1 = 0.004, a uniform step size of 0.004, and the total discrete time
instances are Ñt = 499), whereas, the reported error estimate values are time-averaged over the
training time grid (tj with j = 1, . . . , 200, t1 = 0.0, a uniform step size of 0.01, and the total
discrete time instances are Nt = 200).
In Figures 5.17 and 5.18, we compare the error in the fluid height and velocity approximated by

the POD-KSNN surrogate for scenarios when 15 and 37 parameters are randomly picked with four
different starting seed values: {10, 20, 30, 40}. Similar to Figure 5.16, the reported error values are
the time-average (over the test time grid) of the relative l2 error in space. Figures 5.17a and 5.18a
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(a) Error in the fluid height upon random selection of parametric training data.
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(b) Error in the fluid height upon quasi-random selection of parametric training data.

Figure 5.17: Shallow water equations: Error comparison between the POD-KSNN fluid height
solution upon a random (15 samples) and quasi-random (37 samples) selection of
parametric training data with four different starting seeds: {10, 20, 30, 40}. The error
values are the time-averaged (over the test time grid) relative l2 errors in the spatial
domain. All the reported parameter samples ν are outside of the training set.

show that with 15 random samples, the error goes up to 10−2, and similar to our observation for
Burgers’ equation, there is also noticeable difference among the solution error values corresponding
to certain testing viscosities for different starting seeds. The error values reduce by adding more
samples as seen in Figures 5.17b and 5.18b, but there is still a noticeable variation between the
values for different starting seeds. So, the accuracy of the surrogate solution is dependent on how
the random sampling is done, i.e., the choice of the starting seed. The active learning procedure
resolves this situation by picking the parameter samples based on an optimality criterion.
From Figure 5.16 we notice that the error of the ActLearn-POD-KSNN solution is generally

the lowest and bounded by the tolerance of 10−3 specified for termination of the active learning
procedure. For ν = 1.6× 10−2, the error in the fluid height is 1.79× 10−3 and the fluid velocity is
1.91× 10−3, which is slightly higher than the tolerance. However, these error values are still lower
than the maximum error values we observe with random and quasi-random sampling in Figures 5.17
and 5.18, i.e., for ν = 1.6× 10−1 with a starting seed of 20. The active learning procedure gives an
idea about the most informative parameter samples useful for preparing the snapshot training data.
This way the ActLearn-POD-KSNN surrogate solution provides a reasonable accuracy without
oversampling the parameter space for preparation of the training snapshot data, thereby staying
computationally efficient.
We report runtime of the full-order shallow water equation solver and the ActLearn-POD-KSNN

surrogate model in Table 5.1. The numerical tests are carried out on a laptop with Intel® Core™
i5-1035G1 CPU @ 1.00GHz and 16 GB of RAM. All the reported timings are the average of
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(a) Error in the fluid velocity upon random selection of parametric training data.
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(b) Error in the fluid velocity upon quasi-random selection of parametric training data.

Figure 5.18: Shallow water equations: Error comparison between the POD-KSNN fluid velocity
solution upon a random (15 samples) and quasi-random (37 samples) selection of
parametric training data with four different starting seeds: {10, 20, 30, 40}. The error
values are the time-averaged (over the test time grid) relative l2 errors in the spatial
domain. All the reported parameter samples ν are outside of the training set.

three independent executions. The timings reported under offline phase and online phase of the
surrogate model are the total execution times for Algorithms 1 and 2 respectively. The time for
active sampling and other offline computations required for building the surrogate, excluding the
full-order model query time, is only 6.23 seconds for a grid size of 601, and 7.63 seconds for a grid
size of 1201. The total full-order model query time during the offline phase depends on the number
of parameter samples picked by the active learning procedure until its termination, and on the

Number of grid nodes FOM solver
ActLearn-POD-KSNN surrogate model

Offline phase Online phase

601 249.56 6.23 + (26× 249.56) = 6494.78 0.04

1201 894.62 7.63 + (17× 894.62) = 15216.17 0.08

Table 5.1: Comparison between runtime (in seconds) of the full-order model (FOM) and the
ActLearn-POD-KSNN surrogate model. The simulations are performed for the shal-
low water equations at two spatial grid sizes. All the reported timings are the average
of three independent executions.
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time it takes for generating the full-order solution for one parameter sample. Once the surrogate
is built, a fast approximation of the solution is possible, in just 0.04 seconds for a grid size of 601,
and 0.08 seconds for a grid size of 1201. Compared to evaluating the full-order solver at a new
parameter sample, we can query the surrogate and obtain the approximate solution with a speedup
of greater than O(103), as evident from Table 5.1. Note that the surrogate model becomes efficient
as soon as it is called more often for unseen parameter values than used in the offline time.

6 Conclusions

We have proposed an active learning framework for parametric non-linear dynamical systems that
generates solution snapshots at new parameter locations by evaluating the high-fidelity model when
necessary. This, in turn, improves the accuracy of the data-driven surrogate model. The central
driving force of the active learning process is an non-intrusive error-estimation-based optimality
criterion. It is designed from the parameter-specific relative POD approximation errors. Through
active learning, we iteratively arrive at a good selection of solution snapshots which are then used
to train the data-driven surrogate. In doing so, we relax the vast data requirement for training
data-driven surrogate models to some extent, and also provide an estimation of the surrogate
accuracy.
The numerical results show that the developed active learning framework iteratively detects

locations in the parameter domain where the variation in solution features is high, and prefers
new snapshot generation in those regions. For the Burgers’ equation, the ActLearn-POD-KSNN
surrogate model is able to successfully gauge the variation in its initial conditions and capture the
transport of shock profile accurately in time, over the entire range of viscosity values. Moreover,
for the shallow water equations, the surrogate model is able to efficiently predict, at new parameter
locations, the interacting shock waves that morph into each other over time. The parameter-specific
adaptive POD subspaces make our approach efficient, even for problems with mixed—convective
and diffusive—phenomena, where each of them dominate in certain regions. Additionally, we
observe that the true surrogate errors stay under or are very close to the tolerance level used to
terminate the active learning procedure. This indicates reliability of the proposed error estimate
that provides us a good measure to gauge the accuracy of the constructed ActLearn-POD-KSNN
surrogate model.
The interpolation steps in the active learning loop as well as within the surrogate model’s con-

struction are carried out by automatically building, training, and evaluating several kernel-based
shallow neural networks. Such a shallow architecture results in a fast offline training stage, as well
as a fast online evaluation stage, further reducing the overall computational burden. The training
strategy for our ActLearn-POD-KSNN surrogate model is problem independent, and automati-
cally selects the parameter locations whose additional solution snapshots would most improve the
non-linear reduced basis space. This minimizes the user interaction for data-driven surrogates built
using machine-learning, and the fast online deployment phase brings us a step closer to real-time
simulations for high-fidelity parametric physical systems.
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