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Abstract
1. Remote sensing (RS) increasingly seeks to produce global- coverage maps of plant 

functional diversity (PFD) across scales. PFD can be quantified with metrics as-
sessing field or RS data dissimilarity. However, their comparison suffers from the 
lack of normalization approaches that (1) correct for differences in the number 
and correlation of traits and spectral variables and (2) do not require comparing 
all the available samples to estimate the maximum trait's dissimilarity (unfeasible 
in RS).

2. We propose a generalizable normalization (GN) based on the maximum potential 
dissimilarity for the traits and spectral data considered and compare it to more 
traditional approaches (e.g. the maximum dissimilarity within datasets). To do so, 
we simulated plant communities with radiative transfer models and compared 
RS- based diversity measurements across spatial scales (α-  and β- diversity com-
ponents). Specifically, we assessed the capability of different normalization ap-
proaches (GN, local, none) to provide PFD estimates comparable between (1) RS 
and plant traits and (2) estimates from different RS missions.

3. Unlike the other approaches, GN provides diversity component estimates that 
are directly comparable between field data and RS missions with different spec-
tral configurations by removing the effect of differences in the number of traits 
or bands and the maximum dissimilarity across datasets.

4. Therefore, GN enables the separated analysis of RS images from different sensors 
to produce comparable global- coverage cartography. We suggest GN is neces-
sary to validate RS approaches and develop interpretable maps of PFD using dif-
ferent RS missions.
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1  |  INTRODUC TION

Reducing the current biodiversity loss rates requires synoptic, continu-
ous and comparable quantitative biodiversity measurements (Hansen 
et al., 2021). In this context, remote sensing (RS) emerges as a prom-
ising tool for mapping the spatiotemporal variability of vegetation 
properties at different spatial scales, including biodiversity (Cavender- 
Bares et al., 2017; Ma et al., 2020; Wang & Gamon, 2019). Among 
other dimensions of biodiversity, RS could map plant functional diver-
sity (PFD, the variability of plant functional traits), which is a key facet 
of biodiversity linked to ecosystem functions, stability, and species 
coexistence (de Bello, Carmona, et al., 2021; De Boeck et al., 2018). 
This approach is supported by the spectral variation hypothesis, which 
states that the spectral diversity in an RS image originates from the 
spatial heterogeneity of the environment, which influences the distri-
bution of plant species and their functional traits (Palmer et al., 2002). 
PFD can be estimated from the variability of (1) spectral signals (spec-
tral diversity) (Rocchini et al., 2021; Wang, Gamon, Cavender- Bares, 
et al., 2018) or (2) plant traits (PT) estimated from spectral imagery 
(e.g. leaf pigments) (Schneider et al., 2017; Torresani et al., 2021). 
Moreover, PFD can be estimated at local (α, β) or regional (γ) scales, 
known as biodiversity components (Whittaker, 1972).

Functional diversity metrics (FDMs) summarize the variability of 
several functional traits (or spectral variables) in a single measure 
(Mason et al., 2005). They generally require trait standardization 
and dimensionality reduction (pre- processing) to eliminate collin-
earity and differences in magnitude across the variables considered 
(Laliberté & Legendre, 2010). However, pre- processing should be ap-
plied to all the samples analysed simultaneously (Botta- Dukát, 2005). 
This is feasible in local studies (e.g. field surveys) but not in oper-
ational RS, where datasets are enormous and continuously grow. 
Pacheco- Labrador et al. (2022) showed that (1) pre- processing is 
necessary to link FDMs computed from RS and PT datasets, and (2) 
separately pre- processing RS images allows comparing some FDMs 
across images (Rao's quadratic entropy (Q), functional dispersion and 
functional richness (FRic)). However, differences in the data struc-
ture (dimensionality— the number of traits— and collinearity) lead to 
differences in the FMD values calculated from different datasets 
(e.g. RS missions), even if these feature similar diversity (Figure S1). 
This dependency hampers the comparability of PFD estimates, 
global- scale monitoring, and the use of ‘equivalent numbers’ in RS 
(see below).

PFD features different spatial components (i.e. α- , β-  and γ- 
diversity). The correct partitioning of these components likely 
requires a transformation of these indices, using the so- called ‘equiv-
alent numbers’ introduced in ecology by Hill (1973) and later by 
Jost (2006). Equivalent numbers provide formulation- independent 
values and prevent biases in β- diversity estimation induced by its 

inherent dependence on α- diversity (Jost, 2007). Their use was ini-
tially proposed for indices quantifying taxonomic diversity (species 
or taxonomical groups), where equivalent numbers were defined 
as the number of equiprobable species that provide the same index 
value (Hill, 1973; Jost, 2006). Later works extended their application 
to indices that account for the traits' dissimilarity between species 
(Ricotta & Szeidl, 2009), specifically Rao Q (Botta- Dukát, 2005), open-
ing the door to the partitioning of α and β components with functional 
and phylogenetic variables (de Bello et al., 2010), or spectral data 
(Rocchini et al., 2018). In this case, the Rao Q equivalent number (Qeq) 
is the number of equiprobable and maximally dissimilar species that 
give the same value as the index (Ricotta & Szeidl, 2009). However, 
calculating Qeq for diversity partitioning requires normalizing the 
dissimilarity metric within the range [0, 1] to ensure that α is always 
lower than γ- diversity (de Bello et al., 2010). In ecological studies, this 
normalization can be achieved by finding the maximum (local) dissim-
ilarity value within the dataset analysed. However, this is not feasible 
for global RS datasets. So far, RS has evaluated the use of diversity 
indices (Helfenstein et al., 2022; Torresani et al., 2019; Wang, Gamon, 
Cavender- Bares, et al., 2018) and partitioning approaches (Khare 
et al., 2019; Laliberté et al., 2020; Rossi et al., 2021a) such as the total 
variance framework (Whittaker, 1972) and diversity decomposition 
(Whittaker, 1960; Whittaker, 1972). However, the potential of equiv-
alent numbers to link RS imagery and PFD remains unexplored.

The lack of accepted normalization approaches for both RS and 
PT datasets leads to formulation-  and data- structure- dependent PFD 
estimates not directly (1:1) comparable, which limits RS biodiversity- 
monitoring capabilities. Furthermore, Pacheco- Labrador et al. (2022) 
showed that self- normalized FDMs (functional divergence or even-
ness) were not comparable between RS and PT, suggesting that 
(similar) local normalization might not be suitable in the RS context. 
Therefore, we propose a generalizable normalization approach (GN) 
applicable to any dataset of continuous variables and extend it to 
different metrics and diversity partitioning approaches. Then we 
use radiative transfer simulations of canopy stands to answer the 
following research questions: (1) Compared to other non-  or local 
normalization, can GN improve the estimation of PFD from RS? And 
(2) Can GN make directly (1:1) comparable PFD estimates from RS 
missions with different spectral configurations?

2  |  MATERIAL S AND METHODS

To assess the proposed GN, we simulated synthetic communities 
of species featuring unique PT (Section 2.1) and reflectance factors 
for different remote sensors using radiative transfer simulations 
(Figure 1a, Section 2.2). Then, we computed FDMs (Section 2.3) and 
partitioned diversity components (Section 2.4) from these synthetic 

K E Y W O R D S
diversity components, diversity partitioning, equivalent numbers, plant functional diversity, 
radiative transfer model, remote sensing, spectral diversity, spectral variation
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datasets (Figure 1b). Standardization and principal component anal-
ysis (PCA) (Pearson, 1901) were first applied to reflectance factors 
and PT, keeping the components that explained at least 98% of the 
variance. Eventually, we compared FDMs and diversity components 
computed from PT and RS datasets with different normalization lev-
els (non, local and generalizable) and sensors' spectral configurations 
(Section 2.6). GN is described in Section 2.5, whereas ‘local normali-
zation’ refers to metrics normalized using the maximum value in each 
dataset representing a region or an RS image.

2.1  |  Simulation of synthetic vegetation 
communities

We simulated 1000 regions (theoretical locations) featuring dif-
ferent community assemblages of synthetic species. Each consists 
of a species pool (where richness Sreg ϵ [5, 300]) distributed in sev-
eral (between 10 and Sreg/2) communities (species groups). As in 
Pacheco- Labrador et al. (2022), these regions have no explicit spatial 
extent, which we abstracted by working with relative abundances. 
Following Stier et al. (2016), we used a simple stochastic approach to 
populate the communities from their regional pool (Figure 2). First, 
we randomly determined Sreg and the relative abundance of species 
within the pool. Then, we separated the species into random groups, 
each directly contributing to a part of the communities. However, 
we allowed a random fraction of other groups' species to contrib-
ute to other communities. At this point, we randomly removed spe-
cies from some communities to increase β- diversity but ensured at 
least one species per community. Finally, we normalized the relative 
abundances per community.

As in Pacheco- Labrador et al. (2022), we defined synthetic plant 
species as sets of radiative transfer model parameters (Table 1) that 
enable simulating the corresponding reflectance factors. These are 

used as surrogates of plant functional traits that could be sampled 
in field surveys (see Pacheco- Labrador et al. (2022) discussion on 
the suitability of these parameters). We randomly sampled foliar 
and structural PT within plausible biological bounds ordinary in RS 
literature and avoided unrealistic combinations by accounting for 
known covariance between foliar traits (Supporting Information S1). 
Moreover, to cover the casuistic that assembling mechanisms (e.g. 
inter and intra- specific interactions, biotic and abiotic filtering) could 
produce, we forced a fraction of the species pool to feature ‘similar’ 
traits and drew the remaining ‘dissimilar’ species within the broader 
bounds in Table 1. For example, we could sample chlorophyll content 
between 40 and 50 or 0 and 100 μg cm−2, respectively. We randomly 
determined each region's ‘similar’ species fraction and trait ranges.

The simulated species, communities and regions are respec-
tively represented in RS by pixels, pixel patches or windows, and 
images (Table S1). We simulated the ideal case where spatial reso-
lution allowed obtaining the spectral signature of individual species 
(Pacheco- Labrador et al., 2022) and avoided spectral mixture, which 
is problematic but irrelevant to the normalization itself.

2.2  |  Radiative transfer model and emulator

Vegetation radiative transfer models simulate the absorption and 
scattering of radiation within canopies. They connect leaf biochemi-
cal properties (e.g. pigment contents) and canopy structural proper-
ties (e.g. leaf area and angles) with the spectral signals measured by 
remote sensors (Supporting Information S2). Emulators are statisti-
cal models (e.g. neural networks) that surrogate physical models at a 
faster computation speed (Gómez- Dans et al., 2016). We simulated 
the optical reflectance factors of synthetic species using an emulator 
of the SCOPE model (v1.73, Matlab 2015b) (van der Tol et al., 2009). 
The emulator (Scikit- learn v0.2.1, Python 3.7) was trained and 

F I G U R E  1  Workflow summary. First, a radiative transfer model emulator uses plant traits (PT) featuring species of simulated communities 
to predict remote sensing (RS) variables (i.e. reflectance factors), which are resampled to the spectral features of different remote sensors 
(a). Second, PT and RS variables are transformed (standardization and dimensionality reduction with principal component analysis (PCA)) 
and used to compute different functional diversity indices (functional richness from 8 and 3 principal components and Rao Q entropy), Rao 
Q equivalent number (Qeq), and the sum of squares (SS). These undergo different normalization levels (non, local, and generalizable (GN)). 
Then, Rao and SS metrics are used to partition α- , β-  and γ- diversity components (b). Third, the relationships between metrics and diversity 
components estimated from RS or PT variables are evaluated using the squared Pearson correlation coefficient, the slope of the linear 
model, and the averages' ratio (c).

(a) (b) (c)
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validated, respectively, with a look- up table of 6000 and 1000 pairs 
of reflectance factors between 400 and 2400 nm and model veg-
etation parameters (Table S2). In addition to species- dependent 
vegetation parameters, we randomly assigned soil parameters for 
each region, whereas atmospheric and illumination parameters and 
nadiral view were fixed for all the simulations (Table S3).

2.3  |  Diversity indices and equivalent numbers

2.3.1  |  Rao Q index and its equivalent number

The Rao Q entropy index expresses the expected dissimilarity (d) 
between two random samples from a population of N individuals of 
relative abundances p.

If dij = 1 for all i ≠ j (the maximum dissimilarity) and dij = 0 other-
wise, Rao Q reduces to the Gini- Simpson index (Botta- Dukát, 2005). 
This definition is equivalent to the maximum attainable func-
tional diversity, and the corresponding equivalent number (Qeq) is 
(Jost, 2006):

de Bello et al. (2010) showed that this formulation is valid for Rao 
Q expressing functional or phylogenetic diversity if the dissimilarity 
metric is normalized between 0 and 1.

2.3.2  |  Functional richness

We computed functional richness from the principal components 
(PC) selected using the Python function ConvexHull() from (SciPy 

(1)Q =

N
∑

i,j

pipjdji.

(2)Qeq =
1

1 − Q
.

F I G U R E  2  Schematic representation of the simulation of one of the communities of a region. Nine species are simulated and labelled 
from 1 to 9. The species pool is split into three groups (G), not necessarily evenly. Only G1 contributes with all the species to the community, 
whereas the others provide only a fraction (f) of their species. (left). Detail on the relative contribution of the species provided by each 
group; some species' abundance is set to 0 (italics red fonts) to increase β- diversity. Finally, the relative abundances are normalized (right).

Plant traits Symbol Units Bounds

Leaf chlorophyll content Cab μg cm−2 [0, 100]

Leaf carotenoids content Cca μg cm−2 [0, 25]

Leaf anthocyanins content Cant μg cm−2 [0, 10]

Leaf senescent pigments content Cs a.u. [0, 1]

Leaf water content Cw g cm−2 [0.004, 0.045]

Leaf dry matter content Cdm g cm−2 [0.00190, 0.01570]

Leaf structural parameter N layers [1, 3]

Leaf area index LAI m2 m−2 [0, 8]

Leaf inclination distribution function LIDFa — [−1, 1];
|LIDFa + LIDFb| ≤ 1Bimodality of the leaf inclination LIDFb — 

Canopy height hc m [0.1, 10.0]

Leaf width lw m [0.01, 0.1]

TA B L E  1  Vegetation radiative transfer 
model parameters, symbols, units, and 
bounds commonly found in the literature 
(see Supporting Information S1) used in 
the simulation.
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v1.8.0). Since the computational cost increases exponentially with 
dimensionality, the three first PCs are sometimes selected to com-
pute FRic (Dahlin, 2016; Rossi et al., 2021b). As for the rest of the 
data, we retained the PCs explaining at least 98% of the variance. 
However, we limited the maximum number of PCs to 8 to reduce 
computation time and 3 (FRic3) to understand the effects of this 
choice in previous works.

2.4  |  Partitioning of α , β  and γ 
components of diversity

2.4.1  |  Diversity decomposition

Following de Bello et al. (2010), we transformed the Rao Q index 
into equivalent numbers and decomposed diversity (Equations 3– 5) 
using Q and Qeq. We calculated α- diversity extending Equation (2) to 
correct for differences in the number of communities within regions.

where ncom is the number of communities in the region, and Qi is the 
Rao Q index or the equivalent number of each community. Following 
de Bello et al. (2010), we used the average of the Q metric and not the 
average α- diversity component. We computed γ- diversity using the 
Rao metric of all the region species with re- normalized relative abun-
dances (Qγ),

We only calculated β- diversity using additive partition 
(Equation 5) since additive and multiplicative approaches are equiv-
alent for Qeq (de Bello et al., 2010),

The fractions of γ- diversity represented by α (fα) and β (fβ) com-
ponents were calculated by dividing α and β by γ, respectively.

2.4.2  |  Variance- based partitioning

Laliberté et al. (2020) proposed exploiting the variance of the spec-
tral signals to partition the spectral diversity of a region (γ- diversity) 
into additive α (within communities) and β (among communities) 
components. The method partitions the sum of squares (SS) of a 
matrix of spectral variables representing a region (SStotal) into the 
within (SSwithin) and the among- group (SSamong) components and can 
be summarized as follows:

where (following the original notation) p is the number of variables (i.e. 
PCs selected), n is the number of species or pixels of the region ana-
lysed, q is the number of communities among which variance is com-
pared, and m is the number of samples in each group (abundance). yij 
refers to an individual element of the n- by- p matrix, yj is the mean of 
each variable (i.e. PC), and ŷkj is the corresponding k community mean.

Laliberté et al. (2020) method directly applies to images where 
each pixel i is a sample. However, our simulations (Sections 2.1 and 
2.2) used relative abundances. Therefore, we adapted the method 
to partition diversity from a species- by- traits matrix and a matrix of 
relative abundances normalized per community. Also, we applied 
weighted PCA (Delchambre, 2015) implemented in the Python 
package wpca (https://github.com/jakev dp/wpca) to ensure the 
abundance- weighted sum of squares of the PCA components was 
unbiased.

2.5  |  Generalizable normalization approach

GN normalizes FDMs computed from PCs of standardized continu-
ous variables whose dissimilarity metric is the Euclidean distance:

where nvar is the number of continuous variables (x, plant traits or spec-
tral), dij is the Euclidean distance between the variables of the species 
(or pixels) i and j.

Our rationale departs from the traits. If these range within phys-
ically or biologically plausible upper (bupper) and lower (blower) bounds 
covering their variability in space and time, we can define a maxi-
mum plausible dissimilarity (dmax) directly from those bounds:

However, FDMs require standardizing x:

To calculate the maximum plausible dissimilarity of the z- scores 
(dmax,z) we redefine the bounds as the distance to the centred mean 
(μ = 0) expressed as a number (nσ) of standard deviations (σ) that 
cover most of a Normal distribution's probability. We chose nσ = 6 
covering more than 0.999999 of the data range, limiting exceeding 
variables to a minimum. These bounds are common to all variables,

(3)� =
1

1 −
1

ncom

∑ncom
i

Qi

,

(4)� =
1

1 − Q�

.

(5)� = � − �.

(6)SStotal = SSamong + SSwithin,

(7)
n
∑

i=1

p
∑

j=1

(

yij−yj
)2

=

q
∑

k=1

p
∑

j=1

m
(

ŷkj−yj
)2

+

m
∑

i=1

q
∑

k=1

p
∑

j=1

(

yij− ŷkj
)2
,

(8)dij =

√

√

√

√

nvar
∑

k=1

(

xk,i−xk,j
)2
,

(9)dmax =

√

√

√

√

nvar
∑

k=1

(

bupper,k,i−blower,k,j
)2
.

(10)z =
x − �

�
.

(11)dmax,z =

√

√

√

√

nvar
∑

k=1

(

2n�
)2
.
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Furthermore, FDMs require reducing collinearity with PCA, 
where a transformation maps the z- scores to a new space of uncor-
related variables:

where T is the matrix of components and is orthogonal, X is the matrix 
of variables in the original space, and W is the matrix of basis vectors 
made of the eigenvectors of X's covariance matrix (Σ). W is calculated 
from Σ using, for example, eigendecomposition:

where λ are the eigenvalues, proportional to the variance explained 
by each eigenvector (W columns). PCA keeps the L columns of W that 
explain a given fraction of the total variance (f�2). In this case, dmax 
cannot be generally calculated from the standardized bounds since 
projections differ for each dataset, and the projected bounds would 
not be generalizable. However, for any set of z- scores, the maximum 
Euclidean distance between PCs would be found if all the variables 
were orthogonal. In that case, Σ and the matrix of eigenvectors (W in 
Equation 12) equal the identity matrix (I), which enables the straight-
forward transformation of the (standardized) bounds (Xb):

Therefore, the maximum Euclidean distance for any set of princi-
pal components (dmax,PCA) only depends on the number of PCs kept 
for X if it was orthogonal (L┴) and the z- score bounds:

Since all the eigenvectors of an orthogonal matrix explain the 
same variance (λi = 1), L┴ will exclusively depend on f�2 and the num-
ber of variables in the original dataset. Additionally, we can use ceil 
rounding (notated as ]x[) to obtain the integer number of compo-
nents selected that explains at least the specified f�2,

This approach also allows formulating a maximum value for the 
sum of squares (SS) of a set of PCs, used in the total variance di-
versity partitioning framework (Section 2.4.2), as the sum of the 
squared half- bound range of all the samples of the dataset (ns):

SSmax,PCA could normalize the variance of different datasets 
when used to separate the spatial (Laliberté et al., 2020) or the spa-
tial and temporal diversity components (Rossi et al., 2021a).

The approach can be expanded to FRic, the convex hull volume 
of the selected PCs. Its maximum plausible value would be the n- 
dimensional volume of a Euclidean hypersphere (NIST, 2013) of ra-
dius r = n� f�2 in n- dimensional Euclidean space:

where Г is the Gamma function, and L is the hypersphere's dimension-
ality. In this case, L equals the number of PCs retained from the dataset 
z- scores so that normalization can correct for the dependence of the 
hypersphere volume on L:

2.6  |  Evaluation of the links between remote 
sensing and field plant trait information

We assessed the capability of local and generalizable normalization 
to:

1. Set diversity FDMs computed from RS variables and field plant 
traits to the same scale (data range). To do so, we adjusted 
linear models (y = b0 + b1x) (Figure 1c). We would expect that 
two datasets with the same diversity cast the same values, 
and then the slope (b1) would equal 1. However, this might 
not be the case due to non- linearities between plant traits and 
spectral variables (Pacheco- Labrador et al., 2022). Therefore, 
we also computed the averages' ratio (y ∕x) to assess to what 
extent, normalizations were able to set different variables at 
the same scale.

2. Keep or improve the strength of the correlations between RS and 
field FDMs via the squared Pearson correlation coefficient (r2).

3. Produce similar FDM values and correlations for four different 
spectral configurations (number of bands and spectral range) 
representative of the main optical RS missions (Figure S2). The 
reference case was the reflectance factors at 1 nm step directly 
output from the model (‘full- hyperspectral’, Hy). Then we con-
volved full- hyperspectral spectra to the bands of the three RS 
missions: The DLR Earth Sensing Imaging Spectrometer (DESIS), 
Sentinel- 2 (S2) Multi- Spectral Instrument, and QuickBird- 2 
(QB2). DESIS is a visible- to- near- infrared (VNIR) hyperspectral 
imager featuring 58 bands (4x binned) between 410 and 986 m. 
Sentinel- 2 is one of the Copernicus missions managed by the 
European Space Agency (ESA) with 10 bands from the visible 
to the short- wave infrared (VSWIR). QuickBird- 2 is a mission 
from Maxar (USA) and part of the ESA's Third Party Mission 
Programme. It carried the Ball Global Imagery System 2000 
(BGIS2000), featuring four VNIR bands plus a panchromatic one. 
While no longer operative, it represents high spatial resolution 
missions.

(12)T = XW,

(13)ΣW = �v,

(14)Tb = XbWL = XbIL.

(15)
dmax,PCA =

√

√

√

√

√

√

L
∑

k=1

(

2n�
)2
.

(16)
dmax,PCA = 2n�

�

]L [ = 2n�
√

]nvarf�2 [ .

(17)SSmax,PCA =

ns
∑

k=1

]L [ · n�
2 =

ns
∑

k=1

]nvarf�2 [ · n�
2.

(18)Vmax,PCA =
�

L

2



(

L

2
+ 1

)

(

n� f�2
)L
,

(19)FRicnorm = L

√

FRic

Vmax,PCA

.
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3  |  RESULTS

3.1  |  Comparability of remote sensing and plant 
trait diversity estimates

GN increased the comparability between field PT and RS diversity 
metrics differently. Non- normalized FRicnon presented large discrep-
ancies (Figure 3a); local normalization limited FRiclocal values within the 
range [0, 1] and slightly increased r2 (Figure 3d), whereas GN failed to 
provide comparable (1:1) FRicGN values but improved the correlation 
between RS and plant data (Figure 3h). Limiting the number of PCs to 3 
led to stronger correlations (Figure 3b,e) and GN maximized r2 without 
achieving 1:1 comparability (Figure 3i). For Rao Q (Figure 3c,f,j) and Qeq 
(Figure 3g,k), local normalization reduced r2 but brought values closer 
to the 1:1 line (Figure 3f,g). In contrast, GN kept the original r2 for Rao 
Q (Figure 3j) and slightly reduced it for Qeq (Figure 3k) while made field 
PT and RS metrics directly comparable.

GN also provided 1:1 comparable PT and RS values of the α- , β-  and 
γ- diversity components estimated with Rao Q (Figure 4k– m), keeping 
the correlation from non- normalized indices (Figure 4a,b). Contrarily, 
local normalization reduced r2 and led to higher averages' ratios for α 
and γ- diversity (Figure 4f– h). In all the cases, the fractions of α-  and β- 
diversity remained the same (Figure 4d,e,i,j,n,o). Similarly, GN provided 
stronger and less biased correlations between diversity components 
(Figure 4u– w) than local normalization (Figure 4p– r) when using Qeq. 
However, it strongly reduced the range of variability of the fractions 
of α and β- diversity (Figure 4s,t); overall, the relationships between RS 
and PT estimates were weaker than when computed with the indices. 
In all the cases, γ- diversity was the least correlated.

GN applied to the variance- based partition approach (i.e. Laliberté 
et al. (2020)) slightly improved the strength of the correlation between 
PT and RS estimates of α, β, and γ components, making them compara-
ble in magnitude (Figure 5a– c vs. Figure 5k– m). On the contrary, local 
normalization (Figure 5f– h) reduced comparability and correlation. 

F I G U R E  3  Diversity indices and equivalent numbers computed with non (first row), local (second row), and generalizable normalization 
(GN, third row) corresponding to field plant trait (y- axis) and full- hyperspectral remote sensing (x- axis) datasets. FRic (first column), FRic 
limited to up to three principal components (second column), Rao Q index (third column) and its equivalent number (fourth column). Squared 
Pearson correlation coefficient (r2), the linear model slope (b1), and the averages' ratio (y ∕x) are presented.
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Moreover, variance analysis accurately linked PT and RS γ- diversity, 
while it did not affect nor compress α and β- diversity fractions.

3.2  |  Comparability across spectral configurations

Figure 6 summarizes the RS- PT comparison presented in the for-
mer section for different spectral configurations and the cases of 

non-  and generalizable normalization. Sentinel- 2 featured the larg-
est r2, followed by QB2 and DESIS for FRicnon (Figure 6a– c), whereas 
GN made the different sensors' r2 larger and more similar. For FRic3, 
full- hyperspectral presented the second largest r2; however, GN 
barely modified correlation strength and did not achieve direct 
comparability of FRic and FRic3 for none of the missions evaluated. 
Even after GN, the sensors with more bands deviated most from 
the unit model slope (Figure 6b) and averages' ratio (Figure 6c). In 

F I G U R E  4  Diversity decomposition using the diversity index Rao Q with non-  (first row), local (second row), and generalizable 
normalization (GN, third row), or its equivalent number with local (fourth row), and GN (fifth row) corresponding to field plant trait (y- axis) 
and full- hyperspectral remote sensing (x- axis) datasets. Estimates of α (first column), β (second column) and γ (third column) diversity, as well 
as the fractions of α (fourth column) and β (fifth column). Squared Pearson correlation coefficient (r2), the linear model slope (b1), and the 
averages' ratio (y ∕x) are presented.
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contrast, the VSWIR sensors achieved the strongest relationships 
once normalized. GN did not modify Rao Q correlation but strongly 
reduced sensor differences in slope and averages' ratio, making 
them closer to 1 and, therefore, more directly comparable. As with 
FRic, S2 presented the highest r2 before and after normalization. Qeq 
was computed only after normalization; correlations were slightly 
weaker than for Q (Figure 6a), but the slopes and especially aver-
ages' ratios were similar and close to 1 (Figure 6b,c). Diversity de-
composition showed that GN did not modify r2 except for α and β 
fractions when applied to Qeq (Figure 6d), which deviated from the 
1:1 relationship (Figure 6e,f). For the rest of the cases, GN homog-
enized the relationships for the different sensors, leading to similar 
slopes and similar and close- to- unity averages' ratios (Figure 6d– f). 
β and γ- diversity showed the strongest and the weakest RS- PT cor-
relations, respectively. As before, VNIR sensors presented lower r2 
than VSWIR sensors, whereas, without normalization, S2 estimates 
were the closest to the PT α, β, and γ components, followed by QB2. 
Results were similar for variance- based partitioning (Figure 6g– i). 
The lack of normalization made the metrics not directly comparable, 
whereas S2 and QB2 showed the closest results to PT. However, GN 
strongly homogenized RS estimates. Furthermore, it improved the 
correlation of β diversity while barely modifying r2 for the rest of 
the components, which were slightly better for VSWIR sensors. The 

variance- based partitioning offered stronger correlations between 
the γ- diversity than Rao Q decomposition but weaker for α and β- 
diversity fractions, unaffected by the normalization.

4  |  DISCUSSION

The proposed GN enabled the direct comparison (1:1) of FDMs (Rao 
Q and SS) and diversity components (α, β, and γ) computed from field 
plant traits and different remote sensors (first research question), 
keeping or increasing their correlation (second research question). 
Contrarily, the local normalization approach proved not suitable for 
RS. GN removes data- structure effects from biodiversity informa-
tion, casting similar FDM values for heterogeneous datasets of simi-
lar diversity but different numbers of correlated variables (Figure S1). 
Former works sought to bridge methods (Chao & Chiu, 2016) or 
outbalance autocorrelation (de Bello, Botta- Dukát, et al., 2021), but 
to our knowledge, no similar normalization has been proposed. The 
problem addressed might be less acute in ecology, where survey 
costs prevent the oversampling that RS can achieve, and technical 
challenges relate to aggregating numerous inhomogeneous data-
bases (Anderson et al., 2020; De Palma et al., 2018). However, RS 
brings its own challenges and methodological questions, such as data 

F I G U R E  5  Diversity decomposition using variance without (first row), with local (second row), and generalizable normalization (GN, third 
row) corresponding to field plant trait (y- axis) and full- hyperspectral remote sensing (x- axis) datasets. Estimates of α (first column), β (second 
column), and γ (third column) components, as well as the fractions of α (fourth column) and β (fifth column). Squared Pearson correlation 
coefficient (r2), the linear model slope (b1), and the averages' ratio (y ∕x) are presented.
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2132  |   Methods in Ecology and Evoluon PACHECO-LABRADOR et al.

F I G U R E  6  Comparison of remote sensing and plant trait functional diversity metrics (a– c), diversity decomposition (d– f), and variance- 
based diversity partitioning (g– i) with non and generalizable normalization for different spectral configurations: Full- hyperspectral (Hy), 
DESIS, Sentinel- 2 (S2), and Quick Bird 2 (QB2). Squared Pearson correlation coefficient (r2), the linear model slope (b1), and the averages' 
ratio (y ∕x) are presented; the red dashed line indicates unity. Assessment of functional richness (FRic), Rao quadratic entropy (Q), its 
equivalent number (Qeq), the α, β, and γ- diversity components, as well as the fractions of α and β.
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volume, sensors' diversity, or the validation of PFD estimates. In RS, 
normalization has only been applied in self- normalized metrics (e.g. 
functional divergence or evenness) using a local approach (Schneider 
et al., 2017; Wang, Gamon, Schweiger, et al., 2018), which makes 
them not comparable across images (Pacheco- Labrador et al., 2022). 
GN removes the confusion brought by the variability of spectral 
configurations and can be applied to heterogeneous field data to 
improve validation capabilities. Moreover, GN is data- agnostic since 
it does not require exploring the entire dataset to estimate the 
maximum dissimilarity, making comparable metrics computed inde-
pendently. We suggest GN as a necessary step toward developing 
interpretable global- coverage maps of PFD.

GN does not solve other RS limitations to infer PFD assessed 
in previous studies, such as spatial and temporal mismatches, res-
olution, trait retrieval uncertainty, or signal noise (Helfenstein 
et al., 2022; Pacheco- Labrador et al., 2022; Rossi et al., 2021b). 
These issues affect PFD estimation before normalization. 
Furthermore, while local normalization dependence on the max-
imum dissimilarity observed can increase the uncertainty of the 
normalized metrics, the data- agnostic GN prevents further uncer-
tainty propagation. We evaluated the new approach using a sim-
ulation framework similar to the one developed and validated by 
Pacheco- Labrador et al. (2022), who also discussed the use of spe-
cific radiative transfer models (i.e. SCOPE) and the computation of 
PFD from their inputs. As before, modelling conditions affect the 
estimation of PFD but not the GN itself. While our simulations en-
sure the correlation of spectral and PFD (noiseless, full spatial res-
olution), testing less ideal conditions led to no additional effects on 
the normalization (e.g. non-  and GN featured the same r2 between 
RS and PT data, not shown).

GN failed to make FRic comparable, but it improved the RS- PT 
correlations (Figure 3). Despite explaining less variance, limiting the 
number of components (FRic3) increased the RS- PT r2. Contrarily, 
the method provides comparable Rao Q indices and equivalent num-
bers (Figure 3), the latest unexplored in RS, which offers a more di-
rect interpretation and comparability of diversity estimates. GN led 
to comparable and similarly correlated Q, Qeq and respective α- , β-  
and γ- diversity. Equivalent numbers are supposed to prevent spuri-
ous underestimation of β- diversity (Jost, 2007); de Bello et al. (2010) 
found fβ increased when using only two functional traits. Contrarily, 
we found a substantial reduction of fβ both for PT and spectral data-
sets (Figure 4), but we also used datasets of much larger dimension-
ality. We hypothesize that large dimensionality makes it unlikely that 
many species are maximally dissimilar for numerous traits, leading to 
small normalized Q, large Qeq (Equation 2) and, therefore, α- diversity 
and fα. Variance- based diversity partitioning provided stronger 
correlations (r2) between RS and PT estimates and in particular for 
α-  and γ- diversity (Figure 5), which were consistently lower when 
computed from Rao Q (Figure 4). On the contrary, the relation-
ships between the fractions of α-  and β- diversity were less precise. 
Variance analysis was also computationally faster (~140 times) since 
it does not require comparing all the species.

GN already provided insight into the relationships between 
spectral and PFD in this work. RS and PT Rao Q are centered 
(y ∕x  ~ 1); but biased (b1 < 1). Former studies could only assess the 
correlation but not understand whether RS under or overestimated 
PFD (Hauser, Féret, et al., 2021; Torresani et al., 2019). While the 
Spectral Variation Hypothesis has been validated for functional di-
versity (Pacheco- Labrador et al., 2022; Torresani et al., 2019), we do 
not know whether spectral diversity should equal PFD. GN allows 
us to hypothesize that they might not be due to non- linearities and 
saturating absorption or scattering (Pacheco- Labrador et al., 2022), 
background (Hauser, Timmermans, et al., 2021; Wang, Gamon, 
Schweiger, et al., 2018) or directional effects. We also found that 
species richness and β- diversity affect the correlations between PT 
and RS metrics. Pacheco- Labrador et al. (2022) simulated a maxi-
mum of 30 species, and FRic and Rao Q indices presented r2 ~ 0.61 
and 0.75, respectively. Here, Sreg = 300 led to lower r2 (0.04 and 
0.47, Figure 3); repeating the simulations with Sreg = 30 increased 
r2 to 0.22 and 0.66, respectively (Figure S3). Furthermore, during 
Rao Q diversity decomposition, lower species richness increased 
r2 for α and γ but reduced it for β- diversity (Figure S4). In contrast, 
correlations decreased for all the diversity metrics in the variance- 
based diversity partitioning (Figure S5). These results suggest that 
the size of the plots/moving windows used for analysis (and there-
fore the Sreg comprised) influences these correlations. While the 
relationship area- diversity has been explored in RS (Dahlin, 2016; 
Helfenstein et al., 2022; Schneider et al., 2017), the effect of the 
area on the RS- PT diversity relationships has not been analysed. 
Combining and comparing several approaches— facilitated by GN— 
might contribute to identifying uncertainties and understanding 
such relationships.

GN can improve the interpretation and comparison of RS and 
field FDMs. For example, S2 and PT metrics were closely compa-
rable in the simulations before normalization, suggesting that S2 
is better suited for this application than other sensors (Figure 5g– 
l). However, global normalization revealed that such comparability 
resulted from the similar dimensionality of the datasets (10 and 12 
variables). Results would differ for field datasets featuring fewer 
PT, which is often the case (Hauser, Féret, et al., 2021; Schneider 
et al., 2017). Also, VSWIR sensors better captured PFD than VNIR 
ones (larger r2) since SWIR radiation is affected by foliar dry matter 
and water contents; however, similar slopes for all sensors indicate 
no systematic underestimation of PFD from VNIR sensors.

Biodiversity monitoring would benefit from multi- mission 
products compensating for individual spectral, spatial, and tempo-
ral resolution or thematic information deficiencies. GN allows di-
rectly combining and analysing FDMs issued from heterogeneous 
datasets and, therefore: (1) Combining multi- mission RS imagery 
to analyse spatial resolution effects on a global scale (so far limited 
to local; Helfenstein et al., 2022; Schneider et al., 2017) and opti-
mize correction and data- fusion approaches. (2) Integrating lidar, 
radar, thermal, or sun- induced chlorophyll fluorescence data to ex-
ploit more structurally and physiologically- driven information (e.g. 
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Tagliabue et al. (2020)). (3) Mixing vegetation products (e.g. plant 
trait estimates) and spectroradiometric data. Pacheco- Labrador 
et al. (2022) showed that plant trait estimates correlated more 
than reflectance factors with PFD; since they accounted for con-
founding effects (e.g. background); but were sensitive to retrieval 
uncertainties. Thus, their combination could improve robustness 
and identify uncertain PFD estimates. (4) Through meta- analysis, 
integrating RS and heterogeneous vegetation datasets to decipher 
hidden relationships between spectral diversity and the diversity 
of plant traits with no physical link (e.g. root traits). (5) Comparing 
heterogeneous PT datasets to assess the information carried by 
different traits of interest in ecological research. In this context, 
GN would help to understand, but not solve, the differences in 
information content presented by observations generated with 
different physical mechanisms (e.g. optical, radar, lidar) and with 
different spatial resolutions and angular configurations. Further 
research will be required to interpret or remove confounding fac-
tors from the information on PFD.

5  |  CONCLUSIONS

We proposed a generalizable normalization approach that enables 
the comparability of Rao's quadratic entropy indices, equivalent 
numbers, and diversity components independently of the spectral 
configuration of the remote sensor or the number of field plant traits 
analysed. Since it provides data- structure- independent metrics, 
their comparison depends only on the diversity- information content 
and the quality of the datasets. The approach enables the integra-
tion of heterogeneous datasets for global monitoring of PFD from 
space and validating these new products; it might allow a better un-
derstanding of the capability and complementarity of the different 
missions to capture PFD. Generalizable normalization demonstrated 
that functional diversity metrics from plant trait and spectral infor-
mation correlate but are unequal. Furthermore, species richness and 
β- diversity affect their comparison.
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