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SUPPORTING INFORMATION 1 

Figure S1 2 

 

Figure S1. Data-structure independence of generalizable normalization (GN). Twenty synthetic species are used to 

generate ten different communities (line colors) with abundances drawn from a uniform random distribution in the 

range [0, 1), and truncated to 0.0 for the cases below 0.5. Frequencies are normalized per community. Three linearly 

independent traits (p-value ≥ 0.30) are generated for the species sampling from a Normal distribution. From these 

three, up to 50 additional traits are generated by linear combination. Then Gaussian noise of mean 0 and standard 

deviation 0.01 is added to the traits to represent natural variability and observation uncertainty. Rao quadratic index 

(Q) is calculated for each community using an increasing number of linearly dependent traits. Non and local 

normalization Rao Q clearly depends on the dataset dimensionality and increases with the number of traits even if 

these carry no additional information (beyond the one brought by noise). Only GN provides data-structure 

independent values. 
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Supporting S1. Simulation of plant traits. 4 

Among the vegetation traits of SCOPE model, foliar parameters are the most prone to be correlated 5 

(Wright et al. 2004; Osnas et al. 2013). Therefore, we sampled N, Cab, Cca, Cdm, and Cw from a conditional 6 

Gaussian Mixture Model (GMM) fitted with two spectral libraries used for the development of commonly 7 

used leaf radiative transfer models (LOPEX (Hosgood et al. 1994) and ANGERS (Feret et al. 2008)). These 8 

datasets provided estimates of the leaf parameter N, an abstraction of the leaf structure correlated with leaf 9 

dry matter content (Cdm) (Jacquemoud & Baret 1990). Since N is not measurable, it is not available in 10 

typical leaf trait datasets. The GMM was optimized using the expectation-maximization algorithm 11 

(Dempster, Laird & Rubin 1977) implemented in the Python package Scikit-learn version 0.22.1 (Pedregosa 12 

et al. 2011). In addition, we considered that high contents of senescent pigments (Cs) and chlorophyll (Cab) 13 

would be unlikely since the first ones originate from the degradation of photosynthetic pigments and other 14 

leaf constituents (Pourcel et al. 2007; Mattila et al. 2018). High Cab and anthocyanins (Cant) contents were 15 

considered more likely but not necessarily common cases (Gould 2004; Manetas 2006; Hughes, Morley & 16 

Smith 2007). Therefore we used an exponentially decreasing function to scale the randomly sampled values 17 

of Cant as a function of Cab (Eq. S1):  18 

 19 

𝑓𝐶,max = e
𝑧∙(

100− 𝐶ab
100

−1)
 

(S1.1) 

 20 

where z was 40 and 7 for senescent pigments and anthocyanins, respectively, and fC,max ranges 21 

between 0 and 1. 22 

The remaining structural (Table 1) and soil (Table S3) parameters were simulated without prior 23 

knowledge of their covariance or distribution. Therefore, they were randomly sampled within the ranges 24 

predefined for "similar" and "dissimilar" species in each pool (see Section 2.1 of the manuscript). 25 
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In the simulations, the values of foliar, structural, and soil variables were limited within ranges 26 

commonly found in the radiative transfer model literature, either reporting databases (Hosgood et al. 1994), 27 

model development and parametrization (Feret et al. 2008; Féret et al. 2017; Vilfan et al. 2018), or model 28 

inversion (Zhang et al. 2016; Bayat, van der Tol & Verhoef 2018; Verhoef, van der Tol & Middleton 2018; 29 

Yang et al. 2020). 30 
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Table S1 32 

Table S1 Correspondence between remote sensing and field biodiversity analysis units in the simulations. The table 

defines how species, communities, and regions synthesized in species-traits and abundance-species matrices often 

used in ecological analysis find their corresponding entities in the context of remote sensing studies. 

Field / Ecology Remote Sensing 

Species 

Synthetic species are represented as unique sets of 

plant traits (i.e., vegetation radiative transfer 

model parameters). In the simulations, we assume 

no intraspecific variability. Thus, each species is, 

in practice, a vector of traits allocated into a 

species-traits matrix row. 

Pixel 

In the simulations, we assume imagery able to 

identify the spectral signature characteristic of 

each synthetic species (i.e., the reflectance factors 

predicted for the specie's traits). Given the spatial 

abstraction, it is not relevant whether this 

information comes from single or several pixels. 

Community 

Communities correspond to assemblages of 

several species sampled from the regional species 

pool, each featuring a given relative abundance 

normalized by the sum of the abundances within 

the community. 

Pixels patch or window 

In a remote sensing image, a community would be 

made of several pixels close in space that could be 

gathered with different criteria (geographical 

entities, moving windows, statistical clusters, …). 

Within this patch, pixels of similar reflectance 

factors would be associated with individual 

species (e.g., the spectral species concept from 

Féret and Asner, (2014)), allowing to determine 

the species identity and their relative abundance. 

On occasions, moving windows (e.g., n-by-n 

pixels) can be used, assuming each pixel is a 

species of equivalent relative abundance. 

Region 

A region would be defined by a set of 

communities whose biodiversity is separately 

analyzed (e.g., different rows of the abundance-

species matrix), which enables their comparison. 

Moreover, the joint analysis of these communities 

allows for quantifying their turnover and the total 

biodiversity, and therefore the partitioning or 

analysis of biodiversity across scales. 

Image, part, or set of images 

Analogously, several windows or patches of 

pixels can be analyzed separately and jointly. 

These can proceed from the same image covering 

all or part of it, or even from more than one 

image, depending on the aims and extent of the 

study and the spatial coverage of the images 

available. For example, an image could be split 

into large windows containing smaller moving 

windows (the former row in this table) analogous 

to communities. 
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Supporting S2. Radiative transfer modeling in the context of vegetation biodiveristy. 34 

Radiative transfer models (RTM) represent the interaction of light and matter, predicting the 35 

spectral properties (i.g., reflectance factors of the ratio of reflected radiation in the direction of the observer 36 

to the illuminating radiation) of leaves and canopies as a function of their biophysical properties. Usually, 37 

leaf and canopy are coupled to simulate canopy scale observations. Foliar variables predict leaf reflectance 38 

and transmittance factors (Figure S2.1a), which become an input of the canopy model (Figure S2.1b). The 39 

second represents the spatial distribution of leaves above the soil and, sometimes, other elements, such as 40 

trunks or branches. The simulations represent multiple, contiguous, and narrow spectral bands 41 

(hyperspectral) (Figure S2.1c) which can be convolved to coarser spectral bands of satellite sensors (Figure 42 

S2.1d). For a deeper view of the radiative transfer modeling of leaves and homogeneous canopies, see 43 

Jacquemoud et al. (1990), Verhoef (1984), and Jacquemoud et al. (2009). 44 

 45 

 46 

Figure S2.1. Schematic representation of a radiative transfer model (RTM) simulation. The leaf RTM predicts foliar 

reflectance (ρ) and transmittance (τ) factors (a). These are inputs of the canopy RTM (b), which predicts the canopy 

reflectance factor (R) for multiple, narrow, and contiguous bands (c). Hyperspectral reflectance factors can then be 

convolved to the spectral features of satellite sensors (d). 

 47 

 48 
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Vegetation foliar and structural variables (inputs of the coupled RTM) can be used as surrogates of 49 

plant functional traits to compute functional diversity metrics, which usually rely on the 50 

dissimilarity between species traits. The variability of the canopy reflectance factors simulated 51 

should accompany the species-related variability of these vegetation variables. Spectral variables 52 

can also be used as trait surrogates, and the corresponding diversity can be calculated from the same 53 

functional diversity formulations. This approach allows comparing the relationships between the 54 

diversities derived from the spectral vegetation and plant traits originating from their variability 55 

(Fig. S2.2). For a deeper view of these topics, we recommend the works of Wang et al. (2018), Ma 56 

et al. (2020), and Pacheco-Labrador et al.(2022). 57 

 58 

 

Figure S2.2. Summary of the use of radiative transfer models (RTM) to assess the relationships between plant 

functional and spectral diversity. The RTM vegetation variables used as plant functional trait surrogates are: leaf 

structural parameter (N), chlorophyll (Cab), carotenoid (Cca), anthocyanins (Cant), and senescent pigment (Cs) 

Contents (mass per area), dry matter (Cdm) and water (Cw) contents, leaf angle distribution function parameters 

(LIDFa and LIDFb), leaf area index (LAI), canopy height (hc), and leaf width (lw). 

  59 



7 

 

Table S2 60 

Table S2. Training and validation statistics of the SCOPE emulator. The table shows dataset sizes, (n) presents the 

mean values of the Root Mean Squared Error (RMSE, in reflectance factor units), the relative RMSE (RRMSE, %), 

and the normalized RMSE (NRMSE) of all the bands (400-2400 nm with 1 nm step). 

Dataset n (samples) RMSE (-) RRMSE (%) NRMSE (%) 

Training 6000 0.0050 5.92 0.95 

Validation 1000 0.0056 6.59 1.29 
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Table S3 62 

Table S3. Additional SCOPE model parameters, symbols, units, and bounds commonly found in the literature (see 

supporting 1) used in the simulation. 

Parameter Symbol Units Bounds 

Soil Parameters 

Soil brightness B - [0.5, 1.0] 

Spectral shape "latitude" Lat deg [20, 40] 

Spectral shape "longitude" Lon deg [45, 65] 

Soil moisture capacity SMC % [5, 55] 

Soil moisture content SMp - [0, 1] 

Sun view and atmosphere 

Sun zenith angle θsun deg 30 

Diffuse-to-global radiation ratio δDG - 0.2 

 63 

  64 
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Figure S2 65 

 

Figure S2. Select of spectral configurations representing the main types of optical remote sensing missions available. 

The selection covers the combinations of hyperspectral-multispectral and VNIR-VSWIR types of imagers. The 

figure presents the full-hyperspectral configuration simulating a canopy reflectance factor (RF) (a) and the 

normalized Spectral Response Function (SRFn) of the remote sensing imagers DESIS (b), Sentinel-2 (c), and 

QuickBird-2 (d). 
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Figure S3 67 

 

Figure S3. Analogous to Fig. 3, simulating a maximum of 30 species. Diversity indices and equivalent numbers 

computed with non (first row), local (second row), and generalizable normalization (GN, third row) corresponding 

to field plant trait (y-axis) and full-hyperspectral remote sensing (x-axis) datasets. FRic (first column), FRic limited 

to up to 3 principal components (second column), Rao Q index (third column) and its equivalent number (fourth 

column). Squared Pearson correlation coefficient (r2), the linear model slope (b1), and the averages' ratio (�̅�/�̅�) are 

presented.  
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Figure S4 68 

 

Figure S4. Analogous to Fig. 4, simulating a maximum of 30 species. Diversity decomposition using the diversity 

index Rao Q with non (first row), local (second row), and generalizable normalization (GN, third row), or its 

equivalent number with local (fourth row), and GN (fifth row) corresponding to field plant trait (y-axis) and full-

hyperspectral remote sensing (x-axis) datasets. Estimates of α (first column), β (second column), and γ (third 

column) diversity, as well as the fractions of α (fourth column) and β (fifth column). Squared Pearson correlation 

coefficient (r2), the linear model slope (b1), and the averages' ratio (�̅�/�̅�) are presented. 

 69 
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Figure S5 70 

 

Figure S5. Analogous to Fig. 5, simulating a maximum of 30 species. Diversity decomposition using variance 

without (first row), with local (second row), and generalizable normalization (GN, third row) corresponding to field 

plant trait (y-axis) and full-hyperspectral remote sensing (x-axis) datasets. Estimates of α (first column), β (second 

column), and γ (third column) components, as well as the fractions of α (fourth column) and β (fifth column). 

Squared Pearson correlation coefficient (r2), the linear model slope (b1), and the averages' ratio (�̅�/�̅�) are presented. 
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