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A B S T R A C T   

Electroencephalography (EEG) has shown potential for identifying early-stage biomarkers of neurocognitive 
dysfunction associated with dementia due to Alzheimer’s disease (AD). A large body of evidence shows that, 
compared to healthy controls (HC), AD is associated with power increases in lower EEG frequencies (delta and 
theta) and decreases in higher frequencies (alpha and beta), together with slowing of the peak alpha frequency. 
However, the pathophysiological processes underlying these changes remain unclear. For instance, recent studies 
have shown that apparent shifts in EEG power from high to low frequencies can be driven either by frequency 
specific periodic power changes or rather by non-oscillatory (aperiodic) changes in the underlying 1/f slope of 
the power spectrum. Hence, to clarify the mechanism(s) underlying the EEG alterations associated with AD, it is 
necessary to account for both periodic and aperiodic characteristics of the EEG signal. Across two independent 
datasets, we examined whether resting-state EEG changes linked to AD reflect true oscillatory (periodic) changes, 
changes in the aperiodic (non-oscillatory) signal, or a combination of both. We found strong evidence that the 
alterations are purely periodic in nature, with decreases in oscillatory power at alpha and beta frequencies (AD <
HC) leading to lower (alpha + beta) / (delta + theta) power ratios in AD. Aperiodic EEG features did not differ 
between AD and HC. By replicating the findings in two cohorts, we provide robust evidence for purely oscillatory 
pathophysiology in AD and against aperiodic EEG changes. We therefore clarify the alterations underlying the 
neural dynamics in AD and emphasize the robustness of oscillatory AD signatures, which may further be used as 
potential prognostic or interventional targets in future clinical investigations.   

1. Introduction 

Alzheimer’s Disease (AD) is the leading cause of dementia, 

accounting for 60–80% of all cases (Khan, 2016) and poses great eco-
nomic and health challenges. Pathologically AD is primarily charac-
terised by accumulation of amyloid-beta plaques and neurofibrillary 
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tangles which are associated with synaptic loss and cortical volume loss. 
Memory impairment is one of the earliest clinical symptoms, and this 
progressively generalises across a wide range of cognitive domains (Jack 
et al., 2013). However, evidence shows that pathophysiological changes 
precede the appearance of clinical symptoms by decades, thus compli-
cating attempts to avert or slow disease progression (Khan, 2016). 
Additionally, current early biomarkers such as the presence of amyloid- 
beta are not strongly predictive of cognitive function, thus complicating 
the estimation of cognitive decline (Blasko et al., 2008). This highlights 
the need for estimation of cognitively relevant neural function during 
the early stages of the disease that could provide prognostic markers of 
AD progression (Jack Jr. et al., 2018) and guide therapeutic in-
terventions before irreversible neurophysiological and cognitive dam-
age occurs. 

A tool that has shown potential for identifying novel early-stage 
biomarkers of AD is electroencephalography (EEG), which records the 
electrical activity of the brain generated by post-synaptic currents that 
are synchronous among a mass of neurons (Olejniczak, 2006). As a 
candidate technique for identifying biomarkers of neurological disor-
ders, EEG has many advantages. It is non-invasive, portable, widely 
available in healthcare systems world-wide (Smith, 2005), and rela-
tively cost-effective compared to other neuroimaging methods such as 
magnetic resonance imaging (fMRI) and positron emission tomography 
(PET) (Cohen, 2017). 

There is growing evidence that specific EEG signatures are associated 
with AD (Horvath et al., 2018; Poil et al., 2013; Rossini et al., 2020; Tait 

et al., 2020). The most consistent finding comes from spectral analysis, 
in which the EEG signal is decomposed into its constituent frequency 
bands including delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta 
(15–30 Hz), and gamma (30–90 Hz). Many studies have shown a 
‘slowing’ of the EEG signal (Besthorn et al., 1997; Dauwels et al., 2010) 
characterised by power increases in lower frequencies (delta and theta) 
and decreases in higher frequencies (alpha and beta), along with 
reduction of the peak alpha frequency, in AD patients compared to 
healthy controls (HC) (Babiloni et al., 2004; Benwell et al., 2020; 
Brenner et al., 1986; Meghdadi et al., 2021; Neto et al., 2016; Schreiter- 
Gasser et al., 1994; Tait et al., 2019). This pattern of changes, which can 
be captured in a single metric by calculating the (alpha + beta)/(delta +
theta) power ratio, has also been found, to a lesser degree, in conditions 
associated with increased risk for developing AD such as type-2 diabetes 
mellitus (Benwell et al., 2020; Cooray et al., 2011) and mild cognitive 
impairment (MCI) (Baker et al., 2008; Meghdadi et al., 2021). In AD, this 
power ratio has been shown to correlate with the degree of cognitive 
impairment (Benwell et al., 2020), thus highlighting its potential to 
index disease severity. 

However, standard EEG spectral power analyses involve trans-
formations that do not account for characteristics of the EEG signal that 
have also been found to carry functional significance. Recent method-
ological developments show that non-oscillatory (i.e., aperiodic) activ-
ity, which is superimposed with the periodic activity in the raw signal, 
can confound estimates of frequency band power (Donoghue et al., 
2020b; Donoghue et al., 2021; Gerster et al., 2022; He, 2014). The 

Fig. 1. Example of a parametrised spectrum and hypothesised periodic and aperiodic changes. A) An example power spectrum (gray solid line) parametrised into 
periodic and aperiodic components (dashed line). The periodic component (over and above the aperiodic component) and each identified peak can be characterised 
by a peak center frequency (CF), power over and above the aperiodic component (PW), and bandwidth (BW). The aperiodic component (dashed line) is characterised 
by the offset (intercept) and exponent (slope) respectively. B) Periodic change hypothesis, with simulated data representing healthy controls (HC) in gray and AD 
spectra in black. The aperiodic component for HC (gray dashed line) and AD (purple dashed line) are overlapping. This panel illustrates how changes in the purely 
periodic activity (above the aperiodic component) can give rise to low frequency power increase and high frequency power decrease without any changes in 
aperiodic component. C) An illustration of how changes in aperiodic component (dashed lines), without any concurrent changes in the periodic activity, could result 
in an overall increase in spectral power at low frequencies and a decrease in higher frequencies. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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neural power spectrum, which represents the amount of power across 
frequencies, reflects not only oscillatory activity but also the aperiodic 
1/f component (Donoghue et al., 2020a). Oscillatory activity can be 
characterised by peak center frequency, the power over and above the 
aperiodic component, and bandwidth, whereas the aperiodic compo-
nent can be measured by the aperiodic offset and exponent (Fig. 1A). 
Changes in the aperiodic component can alter power in the band(s) of 
interest and be misinterpreted as oscillatory power changes (Donoghue 
et al., 2020a). Therefore, the changes in the power ratio (low frequency 
power increase and high frequency decrease) observed in the EEG pro-
files of AD patients may not reflect true changes in the periodic signal 
but rather changes in aperiodic features (or a combination of both). For 
example, a recent study of brain maturation found that controlling for 
the aperiodic components reversed the previous finding of decreasing 
alpha power from childhood to adolescence (Tröndle et al., 2022), 
whilst slowing of the EEG signal induced by electroconvulsive therapy 
has been shown to be better explained by an increase of the aperiodic 
exponent of the signal than by changes in oscillatory power (Smith et al., 
2022). Moreover, aperiodic features themselves have been functionally 
linked to both aging (Cesnaite et al., 2022; Finley et al., 2023; Merkin 
et al., 2021; Voytek et al., 2015) and psychopathology (Karalunas et al., 
2022; Peterson et al., 2021; Robertson et al., 2019), demonstrating their 
functional significance and the importance of incorporating them into 
the analysis of AD biomarkers. 

Without considering the aperiodic 1/f-like component, it is impos-
sible to elucidate the mechanism(s) underlying the most consistent EEG 
biomarker of AD (power ratio change). The SPR changes may be 
explained by alteration(s) in the frequency and/or power of one or more 
neural networks subserving true periodic (oscillatory) activity (Fig. 1B). 
For instance, alpha power negatively correlates with cortical excitation 
(Romei et al., 2008) and hence its suppression in AD (Fig.1B) may 
indicate a shift towards functional disinhibition relative to healthy 
aging. Physiologically, decreases in SPR are also associated with greater 
proteinopathy (Coomans et al., 2021) as well as atrophy of gray and 
white matter (Babiloni et al., 2013; Babiloni et al., 2006c). Additionally, 
oscillatory neural activity shows reliable associations with cognitive and 
behavioural functions (Başar et al., 2001; Thut et al., 2012; Ward, 2003), 
and the encoding and transfer of information (Fries, 2015; Keitel et al., 
2022; Singer, 2018), potentially underpinning cognitive impairment in 
AD. 

Alternatively, AD related ‘slowing’ of the spectra may be explained 
by changes in the aperiodic (1/f-like) component of the signal (see 
Fig. 1C), which is thought to have different underlying physiological 
sources. Empirical data and computational models suggest that the 
aperiodic offset relates to asynchronous neuronal spiking (Manning 
et al., 2009; Miller et al., 2014) whereas the aperiodic exponent is linked 
to the neural excitation/inhibition ratio (Gao et al., 2017). If spectral 
changes in AD are found to be associated with steeper aperiodic slopes 
and greater offsets than controls (Fig. 1 panel C), this may indicate a 
shift towards a greater inhibitory to excitatory activity ratio (Gao et al., 
2017) and/or an increase in asynchronous spiking activity (Manning 
et al., 2009). Therefore, dissociating between these alternative mecha-
nisms represents a crucial step towards uncovering the nature of elec-
trophysiological abnormalities associated with AD. Here, across two 
independent datasets, including data previously published by Benwell 
et al. (2020) and Flores-Sandoval et al. (2023), we separated the 
aperiodic EEG signal from the oscillatory signal, while also parameter-
izing the aperiodic features: offset and exponent (Donoghue et al., 
2020b). Thus, we were able to test whether EEG changes associated with 
AD reflect true oscillatory changes, changes in aperiodic features of the 
signal, or a mixture of both. 

2. Methods 

2.1. Study design 

This study was carried out using two independent cohorts of Alz-
heimer’s patients and cognitively healthy controls. The data for both 
cohorts 1 and 2 was collected at the Berenson-Allen Center for Non- 
Invasive Brain Stimulation (BA-CNBS) and at Beth Israel Deaconess 
Medical Center (BIDMC) in Boston, MA, USA. 45 participants were 
included in cohort 1 and 44 participants were included in cohort 2. Note 
that data from cohort 1 was previously published in Benwell et al. 
(2020), and data from a subset (23) of the participants in cohort 2 was 
previously published in Flores-Sandoval et al. (2023). 

2.2. Participants 

Resting state EEG and neuropsychological test data were analysed 
from individuals who took part in research at the BA-CNBS between 
2012 and 2020. The research was approved by local institutional ethics 
boards and all participants gave written informed consent prior to data 
collection in accordance with the Declaration of Helsinki. The following 
groups were included: 

Cohort 1: A total of 45 individuals. 18 (11 females, 52–86 years old) 
had a probable diagnosis of mild-to-moderate AD according to DSM-5/ 
NINCDS-ADRDA criteria (McKhann et al., 2011) with a clinical de-
mentia rating (CDR) of 1 and a Mini-Mental State Examination (MMSE) 
(Folstein et al., 1975) score between 18 and 24. Six participants were on 
cholinesterase inhibitors, 9 on cholinesterase inhibitors and memantine, 
and 3 were not medicated with dementia-specific medication. Addi-
tionally, 27 healthy controls (17 female, 50–77 years old) with normal 
cognition (MMSE ≥27) and without a clinical diagnosis of diabetes 
(glucose metabolism HbA1c < 6.5%) were included. Additional general 
inclusion criteria were an age adjusted score above 80 on the 50-item 
Wechsler Test of Adult Reading. Note that this cohort were included 
in a previously published study (Benwell et al., 2020). 

Cohort 2: A total of 44 individuals were included. 29 adults with 
amyloid positive early AD (13 female, 53–80 years old). Amyloid status 
of was determined based on [18F]-Florbetapir PET and, where PET was 
not available, on assessment of cerebrospinal fluid with a lumbar 
puncture. Further inclusion criteria for the amyloid positive early AD 
group were a diagnosis of mild cognitive impairment (MCI) or mild AD 
by a board-certified neurologist according to Petersen criteria (Petersen 
et al., 1997) and guidelines from the National Institute of Aging and 
Alzheimer’s Association workgroup (N = 25), and the NINCDS-ADRDA 
criteria (McKhann et al., 2011) (N = 4). Additionally, 17 individuals had 
a CDR score of 0.5 and MMSE score ≥ 21; and 12 individuals had a CDR 
= 0.5–1 and MMSE ≥20 (Folstein et al., 1975). 15 healthy cognitively 
normal (MMSE ≥27 and CDR = 0) controls (7 female, 55–87 years old) 
were also included. Data from a subset of cohort 2 (N = 23, 17 AD) has 
been published in Flores-Sandoval et al. (2023). 

For both cohorts 1 and 2, general inclusion criteria were an absence 
of other unstable medical and neuropsychiatric conditions. All partici-
pants underwent a structured neurological examination, medical history 
review, formal neuropsychological testing, and an EEG visit. De-
mographic characteristics (Supplementary Table S1), including age and 
education, were compared between AD and HC groups within both co-
horts using independent samples t-tests, whilst non-parametric Kruskal- 
Wallis tests were used to compare MMSE scores. Handedness and gender 
proportions were also compared using Fisher’s exact test. Both AD 
groups were older than healthy controls, statistically significantly within 
cohort 1, and therefore Age was added as a covariate to all subsequent 
statistical between-group comparisons. 
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2.3. Neuropsychological testing 

Cohorts 1 and 2: Neuropsychological testing was performed on a 
separate visit from the EEG recording by a trained psychometrist. Tests 
and inventories were drawn from the National Alzheimer’s Coordina-
tion Center’s Uniform Data Set version 1.1 (NACC-UDS) (Beekly et al., 
2007) for Cohort 1, and version 3.0 for Cohort 2 (Weintraub et al., 
2018). Please note that the cognitive test scores were only available for 
31 participants out of the total sample of 44 (of those 25 belonged to the 
AD group) in cohort 2. See Table 1 for tests used to examine each 
cognitive domain. 

The raw scores for each of the above neuropsychological measures 
were z-scored according to normative values that were published for 
cognitively healthy individuals around the overall mean age across 
groups (Amariglio et al., 2012; Gale et al., 2007; Goldberg et al., 2010; 
Graham et al., 2004; Weintraub et al., 2018). Trail Making Test-A, Trail 
Making Test-B, ADAS-Cog Total, ADAS-Cog Recall, and ADAS-Cog 
Recognition scores were multiplied by -1 to ensure higher scores cor-
responded to better performance on all tests. Next, the z-scores from 
tests measuring similar cognitive functions were averaged together to 
form composite indices reflecting broader cognitive domains as shown 
in Table 1 (for similar approach see: (Benwell et al., 2020; Buss et al., 
2018, 2020; Crane et al., 2012; Gibbons et al., 2012; Zadey et al., 2021). 
Three composite scores were computed: Dementia Severity - testing 
general cognitive functioning and functional independence; Executive 
function – testing attention, working memory, set-shifting, strategic 
thinking, and psychomotor processing speed; and Learning and Memory 
– testing verbal memory with and without context. 

2.4. Electroencephalography acquisition and pre-processing 

Cohorts 1 and 2: All participants underwent 5-minute resting-state 
EEG recordings using an extended version of the International 10–20 
system with the ground and reference electrodes placed on the forehead. 
Two additional electrooculographic electrodes were placed at the outer 
canthi and below the left eye to capture horizontal and vertical eye 
movements. Electrode impedances were kept below 5 kΩ. The recording 
was obtained while participants sat in a semi-reclined chair with their 
eyes closed. They were instructed to remain quiet and relaxed, and to 
blink their eyes a few times every 1–2 minutes to maintain alertness or if 
observably drowsy. 

The Cohort 1 EEG data for all participants was recorded using a 64- 
channel system (eXimia EEG, v.3.2., Nexstim Ltd., Finland) with a 
sampling rate of 1450 Hz. Within Cohort 2, data from 17 participants 
(10 AD) was recorded with a 60-channel system (eXimia EEG, version 
3.2, Nexstim Ltd., Finland; 1450 Hz sampling rate); and for 27 partici-
pants (19 AD) with a 62-channel EEG system (BrainVision, Brain-
Products, GmbH, Germany; sampling rate 1000 Hz). All montages were 

equalised by including only the 50 shared electrodes in all subsequent 
analyses (F1, FZ, F2, F5, F6, FP1, FP2, C1, CZ, C2, C3, C4, C5, C6,CP1, 
CPZ,CP2,CP3,CP4, CP5, CP6, FC1, FC2, FC3, FC4, FC5, FC6, F7, F8, FT7, 
FT8, TP7, TP8, TP9, TP10, T3, T4, O1, OZ, O2, P1, PZ,P2, P3, P4, P7, P8, 
POZ, PO3, PO4). 

Cohorts 1 and 2: EEG data was pre-processed offline employing the 
same methodology and criteria for both cohorts 1 & 2 using custom 
written scripts in MATLAB 2016a, 2017a, and 2021a (Mathworks, USA) 
and incorporating EEGLAB toolbox functions (Delorme and Makeig, 
2004). First, low-pass (100 Hz) and high-pass (1 Hz) zero-phase second 
order Butterworth filters were applied and a 55-65 Hz notch filter was 
used to filter for line noise. The recordings were subsequently divided 
into 3-s epochs for visualisation and excessively noisy or faulty channels 
were removed (M(SD) = 2.63(2.03), range = 0–9). Next, the data were 
re-referenced to the average of all electrodes and noisy epochs removed 
using a semi-automated artifact rejection procedure (M(SD) = 22.09 
(11.60), range = 2–88). This resulted in an average of 76.5 (±9.1, range 
= 45–116) usable trials per participant. Independent component anal-
ysis was then run using the fastICA function in EEGLAB (Delorme and 
Makeig, 2004), and components corresponding to blinks/eye move-
ments, muscle activity, or transient channel noise were subtracted from 
the data. Lastly, previously removed channels were interpolated using a 
spherical spline method and the data were resampled to 1024 Hz. 

2.5. Experimental design and statistical analysis 

2.5.1. Canonical spectral power analysis 
Cohorts 1 and 2: The mean absolute power spectral density (PSD) 

across epochs was calculated for all frequency bands within the spec-
trum from 1 to 40 Hz at all electrodes using the spectopo EEGLAB 
function (window-size = 1024 samples, window-overlap = 512 samples, 
0.1 Hz resolution) (Delorme and Makeig, 2004). The power spectra were 
then averaged across all electrodes for each participant and used to 
calculate the (non-corrected) spectra power ratio. To enable comparisons 
with parametrized spectra, the lowest frequency analysed was 3 Hz 
(Donoghue et al., 2020a; Donoghue et al., 2020b; Robertson et al., 
2019). Absolute power estimates within each classic frequency band (3- 
4 Hz delta), (4-8 Hz theta), (8-13 Hz alpha), and (13-30 Hz beta) were 
obtained by summing the power estimates across the frequencies con-
tained within each band and then used to calculate an overall alpha+beta

delta+theta 
ratio for each participant. 

2.5.2. Spectral parameterization into periodic and aperiodic components 
Cohorts 1 and 2: Single-participant full scalp EEG power spectra were 

then parameterized using the ‘Spectral Parameterization (specparam)’ 
toolbox (also known as ‘Fitting Oscillations One Over F’ (FOOOF) 
toolbox) (Donoghue et al., 2020b) in MATLAB 2021a. The ‘specparam’ 
algorithm separates the aperiodic EEG signal from the oscillatory signal 

Table 1 
Neuropsychological tests and versions for each cohort.  

Cognitive domain Cohort 1 (N = 45, AD = 18) Cohort 2 (N = 31, AD = 25)a 

Normative values reference Normative values reference 

Executive function WAIS-R Digit Symbol Substitution Test (v 1.1 2005) 
Digit Span Forward 
(v 1.1 2005) 
Digit Span Backward (v 1.1 2005) 
Category Fluency: Animals (v 1.1 2005) 
Trail Making Test: Part A (v 1.1 2005) 
Trail Making Test: Part B (v 1.1 2005) 

Number Span Test: Forward (v 3.0 2015) 
Number Span Test: Backward (v 3.0 2015) 
Category Fluency: Animals (v 3.0 2015) 
Trail Making Test: Part A (v 3.0 2015) 
Trail Making Test: Part B (v 3.0 2015) 

Learning and Memory Logical Memory IA: Immediate (v 1.1 2005) 
Logical Memory IA: Delayed (30-40 min) (v 1.1 2005) 
Rey Auditory Verbal Learning Test (RAVLT) 10 items 

Craft Story 21: Immediate (v 3.0 2015) 
Craft Story 21: Delayed (20 min) (v 3.0 2015) 
Rey Auditory Verbal Learning Test (RAVLT) 15 items 

Dementia Severity Activities of Daily Living (ADL) 
70-item ADAS-Cog (Mohs et al., 1983)  

a The cognitive test scores were only available for 31 participants out of the total sample of 44 (of those 25 belonged to the AD group) in cohort 2. 
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through an iterative fitting procedure, while also parametrising the 
aperiodic features: offset and exponent. First, the individual PSDs were 
visually inspected to select the appropriate aperiodic mode reflective of 
the nature of the aperiodic component in log-log space (i.e., linear vs 
‘knee’). Consistent with prior work (Donoghue et al., 2020a; Donoghue 
et al., 2020b; Robertson et al., 2019), a 3–40 Hz frequency range (0.1 Hz 
resolution) was selected for the main analyses and the spectra were fit in 
the ‘fixed’ (i.e., linear) mode. The remaining settings were as follows: 
peak width limits (1− 12), peak threshold (1.0), aperiodic mode (fixed), 
maximum number of peaks (7), and minimum peak height at default (0). 
Additionally, the goodness-of-fit of the final model was quantified by 
computing frequency-wise differences between the raw spectra and the 
final model fits as well as computing R-squared and error metrics 
(Cohort 1: R2(error) = AD(0.997(0.026)), HC(0.997(0.033)); Cohort 2: 
AD(0.997(0.029)), HC(0.996(0.032)) – indicating good fits). 

Both the aperiodic offset and exponent were extracted for each 
participant and used in subsequent statistical analyses. The offset, also 
known as broadband intercept, quantifies the overall up-and-down 
translation of the power spectrum, whilst the exponent is equivalent to 
the (negative) slope of the log-log power spectrum (in ‘fixed’ mode), 
with smaller exponent values reflecting shallower spectra. Periodic pa-
rameters of the oscillatory peak with the highest power (over and above 
the aperiodic component) falling within an extended alpha range (5–15 
Hz) were additionally obtained, including the peak center frequency 
(CF), power (PW; above the aperiodic component), and bandwidth (BW). 

To assess group differences in spectral power measures while con-
trolling for aperiodic influences, aperiodic-adjusted power spectra were 
computed by subtracting the ‘specparam’ generated aperiodic fit from 
the raw spectra. The aperiodic-adjusted PSDs were then used to calcu-
late the aperiodic adjusted spectral power ratio (SPR) (alpha+beta

delta+theta), providing 
an estimate of periodic-only activity. 

Additionally, the raw power spectra exhibited a bend in the aperiodic 
component (observable when plotted in log-log space) across 3–40 Hz in 
a subset of participants in cohorts 1 & 2. Therefore, the spectral 
parametrization was re-run with a model including an additional 
aperiodic parameter – knee, which captures a bend, or knee, in the shape 
of the power spectrum (see Supplementary Section 2 for details). This 
allowed us to calculate the knee frequency, which represents the esti-
mate of the frequency at which the aperiodic component changes from 
horizontal to negatively sloped. We found significant between-group 
differences in the knee-frequency in both cohorts 1 & 2 which are re-
ported in full in the Supplementary Material. However, while human 
electrophysiological recordings often show a knee (especially in higher 
frequency ranges) (Gao et al., 2020; Seymour et al., 2022), currently 
little is known about the neurophysiological significance of the knee 
parameter in the EEG signal, we refrain from making strong in-
terpretations of these results (see further discussion in Supplementary 
section 2). 

Finally, to test the spatial distributions of the SPR, adjusted SPR, and 
aperiodic parameter effects, we calculated the average of these EEG 
measures separately for 4 cortical regions of interest (ROIs). The 
following electrodes were included in each ROI: frontal (F1, F2, F5, F6, 
FP1, FP2, Fz), central (C1, Cz, C2, C3, C4, C5, C6, CP1, CPz, CP2, CP3, 
CP4, CP5, CP6, FC1, FC2, FC3, FC4, FC5, FC6), temporal (F7, F8, FT7, 
FT8, TP10, TP7, TP8, TP9, T3, T4), posterior (O1, Oz, O2, P1, Pz, P2, P3, 
P4, P7, P8, POz, PO3, PO4).For visualisation purposes, the difference 
between groups per electrode of SPR, adjusted-SPR, aperiodic offset, and 
aperiodic exponent were also calculated. 

2.5.3. Statistics 
Between-group differences in all EEG measures, periodic and aperi-

odic, were tested using separate Analyses of Covariance (ANCOVAs) 
with Diagnostic Group as independent variable, Age as covariate, and EEG 
as dependent variable for each of the following: SPR, aperiodic-adjusted 
SPR, offset, exponent, knee frequency (Supplementary section 2), peak 

power, center frequency, bandwidth. Eta squared (η2) was calculated as a 
measure of effect size. For all statistical analyses both the SPR and 
aperiodic-adjusted SPR were log transformed to normalise their 
distributions. 

The spatial distribution of the SPR, adjusted SPR, and aperiodic 
offset and exponent effects were tested using a 2 × 4 mixed ANCOVA, 
with each EEG measure as the dependent variable, group and the 4 
cortical ROIs as the independent variables, and age (centred) as a co-
variate. The age variable was centred for this analysis only, as without 
doing so ANCOVAs are shown to distort the estimates of within- 
participant factors (Schneider et al., 2015). A significant interaction 
between group and cortical ROI, would indicate that the diagnostically 
relevant changes in an EEG measure of interest are different across the 
cortical regions. 

We also analysed the extent to which band ratio measures, previ-
ously reported to capture in a single variable the power shift to lower 
frequencies in AD (Benwell et al., 2020; Flores-Sandoval et al., 2023), 
may be conflated with aperiodic changes and/or changes in periodic 
parameters beyond peak power including center frequency and band-
width (Supplementary Section 1). Here, bivariate correlations (Pear-
son’s) were calculated between the SPR (unadjusted) and exponent, 
offset, knee frequency (Supplementary Section 2), peak power, center fre-
quency, and bandwidth respectively. 

2.5.4. Internal mini meta-analysis 
To provide more precise estimates of the observed effects, we 

computed cumulative effect size estimates across both cohort 1 and 2 
using an internal mini meta-analysis approach as recommended by Goh 
et al. (2016). First, all eta squared effect sizes, obtained from the 
ANCOVAs testing the main effect of diagnostic group on each EEG 
measure, were converted into Pearson’s r for ease of meta-analytic 
calculation and Fisher z-transformed for analysis. The significance of 
the weighed mean rz was determined relative to a normal distribution (α 
= 0.05). Finally, each mean effect size was converted back to a Pearson’s 
coefficient for presentation and ease of interpretation. 

2.5.5. Neuropsychological functions and their relationship to EEG measures 
Finally, the relationships between EEG measures and cognitive 

functions within the cohort 1 and cohort 2 AD groups were investigated 
using partial correlation analyses carried out separately for the SPR and 
aperiodic-adjusted SPR, the aperiodic exponent (obtained from the 3–40 
Hz ‘fixed’ mode analysis), and the three dominant peak parameters 
(Supplementary): center frequency, bandwidth, and peak power. Partial 
correlations between the outcome measures: three composite neuro- 
cognitive scores for dementia severity, learning and memory, and execu-
tive function, and each EEG measure were calculated while controlling 
for participant Age. All EEG measures were z-scored to facilitate com-
parison between different predictors. 

3. Results 

3.1. Participant characteristics 

As expected, general cognitive test scores (MMSE) were significantly 
lower in AD compared to HC in both cohorts. AD participants were 
additionally significantly older than controls in cohort 1 (t(43) = 2.642, 
p = .011), but not in cohort 2 (t(42) = 1.799, p = .079), hence age was 
included as covariate in subsequent statistical analyses. The diagnostic 
groups were equal in years of education, and proportions of gender and 
handedness in both cohorts (see Supplementary Table S1). 

3.2. The spectral power ratio was significantly lower in AD across both 
cohorts 

First, the full scalp averaged raw power spectra were used to calcu-
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late the alpha+beta
delta+theta ratio for each participant. Fig. 2A-B plot group averaged 

raw spectra for each cohort. In line with Benwell et al. (2020) and Flores- 
Sandoval et al. (2023), an ANCOVA testing the main effect of Group, 
while controlling for Age, showed the SPR was significantly higher in 
healthy controls compared to AD in both cohorts (Cohort 1, F(1,42) =
26.192, p < .0001, η2 = 0.624, Fig. 2C; Cohort 2, F(1,41) = 6.436, p =
.0151, η2 = 0.157, Fig. 2D). An internal mini meta-analysis showed this 
was a strong effect, with mean r = 0.635, p < .0001 across both cohorts. 
In cohort 1, this effect was driven by high frequency power changes as 
no significant differences were found in the low frequency power (3–8 
Hz) (F(1,42) = 0.005, p = .942, η2 < 0.001), whilst high frequency 
power (8–30 Hz) differed significantly (F(1,42) = 14.361, p < .001, η2 =

0.342 (Fig. 2E&G). In cohort 2, neither low nor high frequency power 
alone showed significant between-group differences: 3–8 Hz: F(1,41) =
0.546, p = .464, η2 = 0.013; 8–30 Hz: F(1,41) = 0.036, p = .850, η2 <

0.001) (Fig. 2F&H). The mini meta-analysis showed no significant effect 
of 3-8 Hz power (mean r = 0.072, p = .254), whilst the 8-30 Hz power 
effect was significant (mean r = 0.340, p = .0006). 

3.3. Spectral parameterization 

Fig. 3 plots the grand average spectra for both AD and HC groups 
after full-scalp individual participant spectra were decomposed into 
periodic and aperiodic activity using the ‘specparam’ toolbox (Donog-
hue et al., 2020b). This allowed us to estimate both aperiodic parameters 
(offset and exponent) and periodic parameters (including peak power, 
center frequency, and bandwidth) at the individual level. Hence, we 
were able to investigate the respective contribution of aperiodic and 
periodic EEG features to the spectral power ratio and test for between- 
group differences. Bivariate correlation analyses confirmed that the 
SPR captures EEG features beyond oscillatory power alterations (Sup-
plementary Section 1). We therefore examined AD-related changes in 
purely oscillatory EEG measures after controlling for aperiodic features. 

3.4. Periodic features (including the aperiodic-adjusted SPR) 
differentiated between AD and HC after controlling for aperiodic features 

Fig. 4A and C illustrate the group averaged full-scalp power spectra 
after removing the aperiodic component, leaving only oscillatory 

Fig. 2. Canonical spectral power changes. A-B Mean full scalp power spectra for each diagnostic group. Shaded areas represent the standard error of the mean. 
Cohort1: green = HC, blue = AD; Cohort2: yellow = HC, purple = AD. C-D Comparison of the SPR computed from the raw power spectra showed a significant 
difference between the groups in both cohorts. E-F No significant difference was found when considering low frequencies (delta + theta) alone in cohorts 1 and 2. G-H 
High frequency (alpha + beta) power increased significantly in cohort 1 but did not differ significantly in cohort 2. *** p < .0001, ** p < .001, * p < .05, ns p > .05. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 3. Group averages of parametrized power spectra. A Cohort 1. Mean full scalp power spectra for each diagnostic group after ‘specparam’ parametrization. The 
final ‘specparam’ model fits are in green (HC) and blue (AD). Each power spectrum further consists of periodic activity (shaded area) and the aperiodic component 
(dashed line). B Cohort 2 (yellow = HC; purple = AD). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 4. Periodic activity in full-scalp power spectra is altered in AD, exhibiting a shift in activity from higher to lower frequencies. A-B Cohort 1 results. A The group 
averaged spectra after the aperiodic activity has been subtracted from the raw spectra for each participant (AD = blue, HC = green). The shaded areas represent 
standard error. B Between-group comparison of periodic parameters showed power at the dominant alpha (5-15 Hz) peak is significantly reduced in AD, whilst its 
frequency and bandwidth are not. C-D Cohort 2 results. C Group averaged periodic components of the power spectrum (AD = purple, HC = yellow). The shaded area 
represents standard error. D Peak alpha (5-15 Hz) power differed between groups, whilst center frequency and bandwidth did not. CF: peak center frequency, PW: 
power over and above the aperiodic component, and BW: bandwidth. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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activity, for each cohort. We compared ‘specparam’ identified periodic 
parameters which characterised the dominant peak within the 5-15 Hz 
range. Fig. 4B shows that, in Cohort 1, the power over and above the 
aperiodic component at this peak was higher in HC compared to AD (F 
(1,42) = 24.212, p < .0001, η2 = 0.576) whilst the centre frequency (F 
(1,42) = 1.939, p = .171, η2 = 0.046) and bandwidth (F(1.42) = 2.862, 
p = .098, η2= 0.068) did not differ significantly. The same pattern of 
results was observed for Cohort 2 (Fig. 4D), with peak power being 
significantly higher in HC compared to early AD (Cohort 2: F(1,41) =
4.422, p = .042, η2 = 0.108) and no significant differences were 
observed for center frequency (Cohort 2: F(1,41) = 0.597, p = .444, η2=

0.015) or bandwidth (Cohort 2: F(1,41) = 2.824, p = .100, η2= 0.069). 
Accordingly, the internal mini meta-analysis showed the strongest effect 
across the two cohorts was that of peak power (mean r = 0.586, p <
.0001), followed by bandwidth (mean r = 0.262, p = .0073), and center 
frequency (mean r = 0.169, p = .0596). 

The aperiodic-adjusted spectra (at the individual level) were also 

used to compute an aperiodic-adjusted SPR (log-transformed). In line 
with the results of the canonical analyses (Fig. 2), aperiodic-adjusted 
SPR was significantly lower in AD relative to HC in both cohorts 
(Cohort 1: Fig. 5A, F(1.42) = 18.366, p < .001, η2= 0.437; Cohort 2: 
Fig. 5B, F(1,41) = 5.364, p = .026, η2 = 0.131) and the internal meta- 
analysis indicated a strong effect (mean r = 0.529, p < .0001).Simi-
larly to the canonical analysis results, in cohorts 1 and 2 (Fig. 5C-D, E-F), 
the aperiodic-adjusted low frequency power (3–8 Hz) did not differ 
significantly between groups, whilst high frequency (8–3 0 Hz) power 
decreased significantly in cohort 1 and showed a trend towards signif-
icance in cohort 2 (Cohort 1: 3-8 Hz: F(1,42) = 0.257, p = .615, η2=

0.006; 8-30 Hz: F(1,42) = 27.638, p < .0001, η2= 0.658; Cohort 2: 3-8 
Hz: F(1,41) = 0.743, p = .394, η2= 0.018; 8-30 Hz: F(1,41) = 3.970, p =
.053, η2= 0.097). When both cohorts were considered together in a mini 
meta-analysis, 8-30 Hz power showed a strong significant effect (mean r 
= 0.624, p < .0001) whilst the 3-8 Hz effect was not significant (mean r 
= 0.106, p = .167). This suggests that the oscillatory alterations in AD 

Fig. 5. A-B Comparison of the aperiodic-adjusted SPR (log-transformed) showed a significant between-group difference in both cohorts. C-D Low frequency power 
(3–8 Hz) did not differ in cohorts 1&2, whilst E-F high frequency power (alpha + beta) decreased in AD relative to HC (this difference was statistically significant in 
cohort 1). Cohort 1 AD (blue), HC (green). Cohort 2 AD (purple), HC (yellow). *** p < .0001, ** p < .001, * p < .05, ns p > .05. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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were primarily driven by alpha and beta power changes. 

3.5. No significant differences in aperiodic features between diagnostic 
groups 

Fig. 6 shows the results of analyses comparing the aperiodic features 
between AD and HC, also controlling for age, after parametrization of 
full scalp individual power spectra. The aperiodic 1/f components were 
overlapping in both AD and HC groups in Cohort 1 (Fig. 6A-C) and no 
significant main effect of diagnostic group was found for either the offset 
or exponent: offset (F(1.42) = 0.114, p = .737, η2 = 0.0027); exponent (F 
(1,42) = 0.771, p = .385, η2= 0.018). This pattern was replicated in 
Cohort 2 (Fig. 6D-F), with no significant between-group differences in 
either offset (Cohort 2: F(1,41) = 1.079, p = .305, η2 = 0.026), or 
exponent (Cohort 2: F(1,41) = 0.451, p = .506, η2 = 0.011) being found. 
In line with this, no significant effects were found for either offset (mean 
r = 0.106, p = .166) nor exponent (mean r = 0.120, p = .137) in a meta- 
analysis combining both cohorts. These results, replicated across distinct 
cohorts, suggest AD is not associated with alteration in aperiodic EEG 
activity. 

3.6. Spatially resolved analysis of SPR, adjusted SPR, and aperiodic 
parameters 

To test whether region specific changes in (adjusted) SPR and/or 
aperiodic features may have been missed in the global average analyses 
above, we also tested for spatially resolved diagnostic group differences 
in a region of interest (ROI) analysis. We used 2 × 4 mixed ANCOVAs, 
with ROI and diagnostic group as independent variables and age as 
covariate. A significant interaction between group and ROI would 
indicate the EEG measure of interest shows diagnostically relevant 
changes that differ according to ROI. 

Table 2 shows the results of the ANCOVAs for SPR and aperiodic 
adjusted-SPR, for each cohort separately. In line with the global analysis 
results, we found a significant main effect of group on both SPR and 
adjusted-SPR in both cohorts, as well as a main effect of ROI. Addi-
tionally, a significant ROI*group interaction was found in cohort 1. Post 
hoc comparisons (Tukey HSD, α = 0.05) showed that AD and HC differed 
significantly in SPR (all p’s < 0.001) at each ROI with the strongest 
difference found at the posterior ROI (t-value frontal = − 5.300, central 
= − 4.732, temporal = − 4.568, posterior = − 5.806). Group differences 
in adjusted-SPR were also significant at each ROI (p’s < 0.01) and 

Fig. 6. Aperiodic parameters of individual global power spectra do not differ between diagnostic groups. A-C Cohort 1. A Aperiodic component of the power 
spectrum (bold) averaged across individuals within each diagnostic group from Cohort 1. Individual full scalp aperiodic components are also plotted (AD = blue; HC 
= green). B-C Comparison of the aperiodic offset and exponent between AD and HC within Cohort 1 showed no significant differences after controlling for participant 
age with an ANCOVA (p > .05). D-F Cohort 2. D plots group averaged aperiodic component over individual components from each diagnostic group within Cohort 2 
(AD = purple; HC = yellow). E-F Between-group comparisons controlling for age also showed no significant differences between HC and AD groups within Cohort 2 
(p > .05). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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strongest over the posterior ROI (t-value frontal = − 4.489, central =
− 4.052, temporal = − 4.010, posterior = − 4.930). However, no signif-
icant interactions were found in cohort 2, suggesting the diagnostically 
relevant SPR and adjusted-SPR changes were distributed evenly across 
the scalp. Fig. 7A illustrates the z-scored group differences (AD-HC) in 
SPR and adjusted-SPR across the scalp for each cohort separately. 

Table 3 shows the results of the ROI analysis for the two aperiodic 
parameters, offset and exponent. Whilst, in cohort 1, the aperiodic pa-
rameters differed across ROIs, as indicated by a significant main effect of 
ROI, these differences were not diagnostically relevant. Importantly, no 
significant interactions between group and ROI were found in either 
cohort 1 or 2. Fig. 7B shows the scalp resolved differences in offset and 
exponent (z-scored) between the AD and HC groups across all 50 elec-
trodes in both cohorts. 

3.7. Relationships with neuropsychological function 

In a final analysis, we sought to investigate the potential cognitive 
relevance of changes in the EEG measures of interest (SPR and aperiodic- 
adjusted SPR, aperiodic exponent and offset) in AD. 

Table 4 shows the results of partial correlation analyses testing the 
EEG-cognition relationships while Age was controlled for. The SPR 
significantly predicted dementia severity in cohort 1 (p = .015), whilst 
in cohort 2 this relationship did not reach significance (p = .088). When 
only the periodic activity was included in the aperiodic-adjusted SPR, 
higher adjusted-SPR was significantly associated with higher dementia 
severity scores (p = .033) in cohort 2, while in cohort 1 this relationship 
did not reach statistical significance (p = .130). However, when both 
cohorts were considered together in an internal mini meta-analysis, both 
SPR and adjusted SPR were significantly linked to dementia severity, 
with medium effect sizes (mean r = 0.453 (SPR), and 0.414 (adj-SPR)). 
Higher SPR and aperiodic-adjusted SPR also predicted better executive 
function performance in Cohort 1 (p = .026 (SPR), and 0.013 (adj-SPR)) 
but not significantly in cohort 2 (p = .200 (SPR), and 0.392 (adj-SPR)), 
when tested separately. An internal mini meta-analysis showed that 
overall, across cohort 1 and 2, there were moderately strong relation-
ships between executive function scores and both the SPR (mean r =
0.387) and adjusted-SPR (mean r = 0.365). No other relationships were 
statistically significant. Importantly, these results highlight that while 
periodic EEG activity changes associated with AD predict disease 
severity, we did not find evidence of an association between aperiodic 
features and neurocognitive functioning in AD. 

These analyses were additionally run for all three periodic 

parameters (peak power, center frequency, and bandwidth), however, 
no replicable significant relationships were found between these mea-
sures and the three cognitive composites (Supplementary Table S2). 
Similarly, no EEG measures significantly predicted cognitive function 
within the healthy control group (Supplementary Table S3). 

4. Discussion 

This study aimed to clarify the physiological processes underlying 
the hallmark resting-state EEG marker of Alzheimer’s disease, spectral 
power shift from high to low frequencies, by accounting for previously 
overlooked EEG components. We first successfully replicated the results 
of the canonical spectral analyses across two independent cohorts 
(Benwell et al., 2020; Flores-Sandoval et al., 2023). Crucially, after 
parametrising the EEG power spectra into periodic (oscillatory) and 
aperiodic activity, we found that the aperiodic-adjusted Spectral Power 
Ratio (SPR), which isolates changes in oscillatory power, differed 
significantly between AD and HC groups in both cohorts. Specifically, in 
comparison to HC, the AD group showed an oscillatory power decrease 
in high frequencies (8–30 Hz) in both cohorts, while low frequency 
power (3–8 Hz) did not differ significantly. In contrast, no significant 
differences in the aperiodic component (and its parameters: offset and 
exponent) were found between AD and HC. Hence, the results highlight 
that AD-related EEG alterations, captured in the Spectral Power Ratio, 
are primarily driven by periodic activity, whilst we found no evidence 
for aperiodic activity changes in AD. By replicating the main findings 
across two cohorts, we highlight the robustness of these oscillatory 
signatures of AD. Given the rising concerns regarding the replicability of 
scientific findings (Open Science Collaboration, 2015), especially within 
neuroscience and related fields (Button et al., 2013; Pavlov et al., 2021; 
Poldrack et al., 2017), the reproducibility of the findings is important. 

Our results highlight that previously reported EEG signatures of AD 
are driven by periodic EEG activity changes, adding methodological and 
mechanistic clarity to previous studies. Recent work emphasises that 
periodic and aperiodic EEG features can be confounded when pre-
defined frequency bands and their ratios are used (Donoghue et al., 
2020a; Donoghue et al., 2021). Indeed, we found that the non-corrected 
SPR correlated significantly with aperiodic offset and exponent in the 
present data (in both cohorts 1 & 2: see Supplementary Section 1). 
Nevertheless, the adjusted-SPR calculated from purely oscillatory ac-
tivity differed between diagnostic groups, in line with previous findings 
(Benwell et al., 2020; Babiloni et al., 2004, 2016; Brenner et al., 1986; 
Dauwels et al., 2010; Jeong, 2004; Meghdadi et al., 2021; Neto et al., 

Table 2 
Results of a 2 × 4 mixed ANCOVA testing the interaction between diagnostic group and ROI, whilst controlling for age.  

Cohort 1  

SPR adjusted-SPR 

df F p η2 df F p η2 

ROI 3, 126 15.059 <0.001 0.008 3, 126 29.604 <0.001 0.021 
Group 1, 42 27.055 <0.001 0.370 1, 42 20.033 <0.001 0.296 
age 1, 42 1.487 0.229 0.020 1, 42 1.865 0.179 0.028 
ROI*group 3, 126 6.289 <0.001 0.003 3, 126 2.990 0.034 0.002 
ROI*age 3, 126 1.411 0.243 0.0008 3, 126 0.903 0.442 0.0007   

Cohort 2  

SPR adjusted-SPR 

df F p η2 df F p η2 

Roi 3, 123 16.366 <0.001 0.015 3, 123 21.482 <0.001 0.032 
Group 1, 41 6.812 0.013 0.133 1, 41 5.701 0.022 0.107 
age 1, 41 0.427 0.517 0.008 1, 41 1.408 0.242 0.026 
ROI*group 3, 123 0.725 0.539 0.0007 3, 123 1.917 0.130 0.003 
ROI*age 3, 123 1.471 0.226 0.001 3, 123 1.267 0.289 0.002 

Note: Significant effects (p < .05) are highlighted in bold. 
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2016; Rossini et al., 2020; Schreiter-Gasser et al., 1994; Tait et al., 
2019), whereas the aperiodic features did not. These results thus lend 
support to an interpretation linking AD to abnormal neural oscillations 
relative to cognitively healthy controls. Intriguingly, this contrasts with 
a growing body of literature showing changes in the spectral aperiodic 
exponent are associated with a range of neuropsychological pathologies 
(Pani et al., 2022), including ADHD (Karalunas et al., 2022; Robertson 
et al., 2019), schizophrenia (Molina et al., 2020; Peterson et al., 2021), 
stroke (Johnston et al., 2023), and Parkinson’s disease (Belova et al., 
2021). 

Additionally, the present results suggest that oscillatory abnormal-
ities captured in the SPR are primarily driven by high frequency (8–30 
Hz) power decreases. Relative to HC, we found reduced alpha + beta 
power (in cohort 1), as well as lower alpha peak power in AD (in cohorts 
1 & 2), in line with previous literature (Babiloni et al., 2004, 2016; 
Benwell et al., 2020; Huang et al., 2000; Meghdadi et al., 2021). 
Conversely, we did not find a consistent significant slowing of the peak 
alpha frequency across cohorts, after controlling for the aperiodic signal, 
contrasting prior studies (Benwell et al., 2020; Moretti et al., 2004; Poza 
et al., 2007). This suggests, oscillatory power, rather than frequency, 
constitutes a more reliable marker of AD. Somewhat inconsistent with 
existing findings are our results regarding low frequency (delta + theta) 

activity (Babiloni et al., 2004; Benwell et al., 2020; Meghdadi et al., 
2021; Moretti et al., 2004), whereby we did not observe low frequency 
power changes in cohort 1 or 2. This discrepancy may stem from the use 
of relative spectral power in previous studies that found low frequency 
power increases in AD (Babiloni et al., 2004; Benwell et al., 2020; 
Moretti et al., 2004; Tait et al., 2019). Other studies that used both 
relative and absolute power, only report results of statistical compari-
sons for relative power (Meghdadi et al., 2021). When relative as 
opposed to absolute power is computed, the low frequency band power 
is normalised by dividing it by the total power of the spectrum. Conse-
quently, the relative power at low frequencies may also reflect any 
changes in power at high frequencies, potentially conflating the 
observed between-group differences. 

Notably, the periodic nature of neural abnormalities linked to AD we 
observed also highlights a dissociation between healthy aging and Alz-
heimer’s pathology. While previous research found peak alpha fre-
quency and power reductions in older age (Babiloni et al., 2006a) that 
appeared to be similar to the oscillatory ‘slowing’ observed in AD, recent 
studies have shown that healthy aging is accompanied by a reduction in 
the aperiodic exponent that may have previously been confounded with 
oscillatory changes (Cesnaite et al., 2022; Donoghue et al., 2020b; 
Merkin et al., 2021; Voytek et al., 2015). For example, after controlling 
for age-related flattening of the aperiodic exponent, Merkin et al. (2021) 
found that peak alpha frequency was significantly slower in older 
compared to younger adults, but alpha peak power did not differ. In 
contrast, our results showed that AD pathology was more reliably 
accompanied by reductions in aperiodic adjusted alpha (+beta) power, 
with no alpha peak frequency slowing observed, while the aperiodic 
signal did not differ relative to HC in either of the cohorts. Hence, we 
establish that AD differentiates from the often-found aging effect on 
aperiodic parameters, with a periodic-specific effect found to differen-
tiate between clinical and non-clinical participants. Interestingly, 
conceptually similar work examining spectral slowing in the context of 
stroke found influences of both periodic and aperiodic parameters 
(Johnston et al., 2023). These results highlight that differences in power 
ratios reflecting ‘spectral slowing’ can be driven by different underlying 
changes, and that spectral parameterizing can adjudicate between 
different changes. In doing so, we start to demonstrate that what might 
otherwise be considered similar patterns of “spectral slowing” can be 
shown to occur in distinct ways when differentiating between healthy 
aging and clinical disorders, and when differentiating between distinct 
disorders such as between AD and stroke. 

On a physiological level, this dissociation implies that the neural 
alterations accompanying healthy aging may be more closely linked to 
changes in asynchronous neuronal spiking (Manning et al., 2009) or 
synaptic excitation/inhibition balance (Gao et al., 2017), whilst patho-
logical aging due to AD is more associated with aberrant neural syn-
chrony (Babiloni et al., 2016). In particular, oscillations are proposed to 
reflect the global synchronisation of pyramidal cortical neurons that 
facilitate the integration of information from the cortex, thalamus, and 
the brainstem (Babiloni et al., 2016). Consequently, oscillatory abnor-
malities may reflect the effect of AD related neurodegeneration on large- 
scale cortical networks necessary for neuronal communication and 
cognition (Rossini et al., 2007; Uhlhaas and Singer, 2006). Interestingly, 
decreases in alpha power (and increases in delta + theta power) have 
been linked to a range of neurodegenerative processes including atrophy 
of the hippocampus (Babiloni et al., 2009; Fernández et al., 2003; Hel-
kala et al., 1996), cortical gray matter (Babiloni et al., 2013), and 
subcortical white matter (Babiloni et al., 2006c). Recent studies have 
additionally found correlations between oscillatory ‘slowing’ and pro-
teinopathy, such as tau decomposition (Coomans et al., 2021) and 
regional accumulation of amyloid-β plaques, while the strength of the 
latter relationship also predicted cognitive impairments (Wiesman et al., 
2022). 

The oscillatory nature of electrophysiological abnormalities linked to 
AD may additionally inform the understanding of the functional 

Fig. 7. Topographies of SPR, adjusted SPR, and aperiodic parameters change 
from AD to HC. All EEG measures were z-scored prior to calculating the group 
differences to facilitate comparison of different measures on the same scale. A 
plots the group differences in SPR and aperiodic adjusted SPR for each cohort 
separately (cohort 1 – top row, cohort 2 bottom row). B plots the AD-HC dif-
ferences in the aperiodic offset and exponent for each cohort. 
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consequences of AD pathophysiology. For instance, alpha oscillations 
have been proposed to negatively correlate with the degree of global 
cortical excitability (Romei et al., 2008). They are therefore thought to 
reflect functional inhibition which allows adaptive regulation of 
neuronal excitability necessary for facilitating top-down control and 
goal-directed cognitive and/or behavioural function (Jensen and 
Mazaheri, 2010; Klimesch et al., 2007). AD related decreases in alpha 
power may thus reflect a shift towards functional disinhibition relative 
to HC. Consequently, this may lead to cognitive impairments in domains 
in which top-down control plays a central role, such as executive func-
tions. Our results are consistent with this, as a significant relationship 
between the SPR (and adjusted-SPR) and executive function impair-
ments in AD was found, with higher SPR predicting better executive 
function scores. 

We further found that the SPR (and adjusted-SPR) were moderately 
associated with global dementia severity, even after the aperiodic signal 
was accounted for. This aligns with previous research linking increases 
in delta + theta, and decreases in alpha + beta power, to greater global 
cognitive impairment in AD and MCI (Babiloni et al., 2006b; Claus et al., 
2000; Luckhaus et al., 2008). In contrast to periodic measures, we did 
not find any significant relationships between aperiodic parameters and 
any of the neurocognitive composite scores. Hence, these results further 
highlight the dissociation between healthy aging and pathological 
changes due to AD, with the former being more tightly linked to 
aperiodic activity, whilst the latter is tracked by periodic EEG activity 
changes. Additionally, A. E. Smith et al. (2023) recently showed that 

dementia risk factors (e.g., apolipoprotein E ε4 (APOE-ε4) carriage, and 
cardiometabolic burden) were linked to periodic alpha/beta activity, 
whereas the aperiodic exponent was only related to cognitive function in 
a sample of older adults without a dementia diagnosis. Taken together 
with the present results, this suggests that different pathophysiological 
mechanisms, indexed by periodic versus aperiodic EEG metrics, underly 
cognitive decline in samples with different clinical profiles. 

Overall, we show that AD-related changes in SPR are best explained 
by changes in spectral power and not by broadband changes in the EEG 
signal. Furthermore, the SPR has the potential to index disease severity. 
Notably, our results emphasize that alpha and beta periodic activity may 
be a particularly specific marker of AD related changes. Periodic EEG 
activity therefore constitutes a robust and generalisable marker of AD 
pathology that could be further tested for potential diagnostic and 
interventional applications. For instance, both invasive and non- 
invasive neurostimulation techniques (e.g., deep brain stimulation and 
transcranial direct current stimulation) have shown promising effects on 
the treatment of symptoms of neurodegenerative diseases including 
Parkinson’s and Alzheimer’s disease (Lefaucheur et al., 2017; Little 
et al., 2013; Scharre et al., 2018). More recently, closed loop neuro-
stimulation approaches, where electrical stimulation is delivered based 
on an ongoing electrophysiological biomarker of the pathology, have 
begun to be developed (Iturrate et al., 2018). The pathological changes 
in oscillatory activity in AD could further be investigated as candidate 
markers for these interventions, given their reliability and cognitive 
relevance. Future prospective longitudinal studies should examine 

Table 3 
Results of a 2 × 4 mixed ANCOVA testing the interaction between diagnostic group and ROI, whilst controlling for age.  

Cohort 1  

offset exponent 

df F p η2 df F p η2 

ROI 3, 126 14.947 <0.001 0.018 3, 126 11.743 <0.001 0.024 
Group 1, 42 0.074 0.786 0.002 1, 42 0.948 0.336 0.019 
age 1, 42 0.026 0.872 0.0006 1, 42 0.113 0.738 0.002 
ROI*group 3, 126 0.320 0.811 0.0004 3, 126 0.991 0.399 0.002 
ROI*age 3, 126 2.356 0.075 0.003 3, 126 2.179 0.094 0.005   

Cohort 2  

offset exponent 

df F p η2 df F p η2 

ROI 3, 123 11.293 <0.001 0.011 3, 123 1.716 0.167 0.002 
Group 1, 41 1.266 0.267 0.028 1, 41 0.681 0.414 0.015 
Age 1, 41 0.601 0.443 0.013 1, 41 0.708 0.405 0.016 
ROI*group 3, 123 1.207 0.310 0.001 3, 123 0.637 0.593 0.0008 
ROI*age 3, 123 0.952 0.418 0.0009 3, 123 0.931 0.428 0.001 

Note: Significant effects (p < .05) are highlighted in bold. 

Table 4 
Results of partial correlations (Pearson’s) for the unique relationships between periodic and aperiodic parameters and neurocognitive functions while controlling for 
age.  

Cognitive Function AD Group SPR Aperiodic-adjusted SPR Exponent Offset 

r(p) r(p) r(p) r(p) 

Dementia Severity Cohort 1 0.578 (0.015) 0.382 (0.130) − 0.412 (0.101) − 0.263 (0.307) 
Cohort 2 0.355 (0.088) 0.436 (0.033) − 0.035 (0.872) 0.168 (0.433) 
Mean r 0.453 (0.001) 0.414 (0.004) − 0.196 (0.114) − 0.008 (0.480) 

Memory & Learning Cohort 1 0.228 (0.379) 0.241 (0.352) − 0.078 (0.767) 0.070 (0.790) 
Cohort 2 0.113(0.599) 0.113 (0.599) − 0.018 (0.935) 0.143 (0.505) 
Mean r 0.160 (0.163) 0.166 (0.155) − 0.042 (0.398) 0.114 (0.244) 

Executive Function Cohort 1 0.537 (0.026) 0.586 (0.013) − 0.329 (0.198) − 0.166 (0.524) 
Cohort 2 0.271 (0.200) 0.183(0.392) − 0.100 (0.641) 0.111 (0.607) 
Mean r 0.387 (0.006) 0.365 (0.010) − 0.196 (0.114) − 0.002 (0.496) 

Note. Each predictor was z-scored to facilitate comparability of the correlation coefficients. Mean r represents the results of an internal mini meta-analysis combining 
both cohorts. 
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whether the oscillatory abnormalities associated with AD can be used to 
detect individuals at risk of developing AD, as well as test their speci-
ficity to different types of dementia. 

4.1. Limitations 

Other aspects of the present research could also be developed upon in 
the future. While we show robust and replicable group differences in the 
SPR, adjusted-SPR, and oscillatory power measures, additional testing of 
their ability to dissociate between AD and HC at an individual level is 
necessary to establish the suitability of oscillatory markers as prognostic 
tools or therapeutic targets. Additionally, we cannot completely rule out 
the presence of preclinical AD in our healthy control individuals. While 
no HCs obtained MMSE scores indicative of clinical impairment, 
biomarker quantification (e.g., amyloid) would be necessary to confirm 
the absence of AD. Future studies may also investigate the association 
between the periodic and aperiodic components of EEG activity and 
amyloid load. Additionally, studies with large samples size would be 
needed to gain more precise estimates 0f the relationships between EEG 
and neuropsychological function, as the present study may have been 
underpowered to detect brain-behaviour correlations. 

Furthermore, our conclusions regarding the influence of the aperi-
odic component on EEG markers of AD are specific to the lower fre-
quency ranges and suffer from the limited spatial resolution inherent to 
EEG recordings. In order to focus on evaluating the range related to SPR 
measures, we parameterized spectra in the range of 3–40 Hz, and as 
such, the findings about aperiodic activity are potentially specific to this 
range. For instance, a recent MEG study showed the aperiodic exponent 
in the gamma range (>30 Hz) decreases in specific brain regions of 
patients with AD (van Nifterick et al., 2023). Additionally, using a 
measure of excitation/inhibition (E/I) balance derived from the aperi-
odic exponent in MEG recordings of MCI patients, Martínez-Cañada 
et al. (2023) found that different brain regions show opposite E/I effects 
which may cancel out in a whole brain analysis. Our spatial analyses 
found no evidence of region-specific aperiodic effects in AD. However, 
the spatial resolution of EEG is limited due to high volume conductance, 
and we cannot fully exclude the possibility that highly region-specific 
changes in the aperiodic activity occur in AD. Nevertheless, our results 
are consistent with recent EEG studies that found no differences in the 
aperiodic component between patients and controls (Azami et al., 2023; 
Wang et al., 2023), though interestingly aperiodic features may 
discriminate between different types of dementia instead (Wang et al., 
2023). 

5. Conclusion 

The present results advance our understanding of EEG markers of 
neuro-cognitive dysfunction in AD. Adding methodological and mech-
anistic clarity to previous work, we show that the electrophysiological 
spectral slowing in AD is driven by periodic oscillations, whilst aperiodic 
EEG features remain unaffected. Our results suggest that relative to HC, 
AD is most consistently characterised by high frequency (alpha + beta) 
power decreases and a lower SPR (including aperiodic adjusted-SPR), 
with the latter also showing the potential to track disease severity. 
Replicated across two independent datasets, these results help uncover 
mechanisms underpinning changes to neural dynamics in AD. Our re-
sults lay the foundation for further investigations aimed at establishing 
potential diagnostic and interventional clinical applications of oscilla-
tory AD signatures. 
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Munafò, M.R., 2013. Power failure: why small sample size undermines the reliability 
of neuroscience. Nat. Rev. Neurosci. 14 (5) https://doi.org/10.1038/nrn3475. 
Article 5.  

Cesnaite, E., Steinfath, P., Jamshidi Idaji, M., Stephani, T., Kumral, D., Haufe, S., 
Sander, C., Hensch, T., Hegerl, U., Riedel-Heller, S., Röhr, S., Schroeter, M.L., 
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